Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
ANALYTICAL, GEOCHEMICAL AND BIOGEOCHEMICAL
STUDIES OF TUNGSTEN AND MOLYBDENUM

A thesis presented in partial fulfilment of
the requirements for the degree of
Doctor of Philosophy
at
Massey University

BERTRAM FRANCIS QUIN
1974
To Lyn
ACKNOWLEDGEMENTS

I would like to thank my supervisor Dr. R.R. Brooks, for his enthusiastic encouragement and assistance during the course of the work described in this thesis. I also thank my co-supervisor, Professor J.K. Syers, for his guidance during the absence of Dr. Brooks.

Particular thanks are due to the Mineral Resources Sub-Committee of the University Grants Committee for funds to support this project.

Thanks to Mr. J.H. Hogland of the Grasslands Division, D.S.I.R. for his assistance with the clover pot trials. Mr. P. Nes kindly carried out the nitrogen analyses.

To Dr. N.E. Whitehead of the Nuclear Sciences Institute, D.S.I.R. for his assistance during the investigation into the use of proton-induced X-ray fluorescence.

To Dr. C.R. Boswell of the Computer Science Department, Massey University, for carrying out the trend surface analysis of biogeochemical data.

To Dr. M.H. Timperley of Chemistry Division, D.S.I.R. for the use of his soil and plant data.

I am indebted to Carpentaria Exploration Ltd. for logistic support during the investigations at Barrytown, and in particular I would like to thank Mr. J.A.C. Painter of this company for his assistance. Alex Harvey Industries kindly provided accommodation at Glenorchy. I am very grateful to Mr. E.J. Sixtus of Motueka for his assistance during the investigations at Canaan.

Finally, I would like to thank the Ministry of Agriculture and Fisheries for permission to complete this thesis after my appointment.
ABSTRACT

Section I: Studies were carried out which significantly improved the sensitivity of the colorimetric method for the determination of tungsten in geochemical and plant samples with dithiol. Proton-induced x-ray fluorescence was also investigated to determine its suitability for the detection of nanogram quantities of tungsten. However although it showed considerable potential, the sensitivity of the method could not be developed sufficiently to compare favourably with colorimetry.

A rapid method for the determination of tungsten in ores and concentrates by atomic absorption spectrometry was developed which, through the use of an alkaline sample solution, was free of interference and instability problems.

Following a careful study of the parameters involved in the colorimetric method for the determination of molybdenum with dithiol, a simple procedure was developed which could be used for the analysis of a wide range of materials.

The use of the nitric/hydrofluoric acid mixture for the digestion of soils and rocks was investigated. It was found that the tendency for calcium and magnesium to precipitate as their fluorides could be avoided by the addition of a small quantity of perchloric acid.

Section II: Scheelites from several localities in New Zealand were analysed for their trace element content. They were found to contain very low amounts of impurities. Their Sr/Ba ratio was found to be useful for distinguishing between lodes.
Section III: An investigation was carried out to compare the relative efficacy of geochemical and biogeochemical exploration for tungsten under a wide range of geological, vegetational, climatic and topographical conditions. It was found that, under most conditions, both soil and plant sampling could be used equally successfully to pinpoint scheelite bearing veins. In areas of high rainfall and rugged topography, soil sampling did not always reveal the presence of reefs and, in these cases, trunk-sampling of trees could provide additional information. It was found that, for the purposes of biogeochemical prospecting, all tree species could be grouped together.

Following this investigation, a more intensive study was carried out at Barrytown to test the suitability of trend surface analysis of biogeochemical data for locating rich pockets of scheelite with veins, with promising results.

A brief comparison of geochemical and biogeochemical prospecting for molybdenum was carried out at Canaan, Nelson. It was found that plant sampling gave more information where the low soil pH prevented movement of molybdenum into the upper soil.

Section IV: Following the results of the biogeochemical exploration in Section IV, which showed the existence of differences in the distribution of tungsten between tree organs from Barrytown and Canaan, the affect of soil sodium and potassium was investigated and was found to be responsible for these differences.
As considerable areas containing scheelite mineralisation support pasture, an investigation was carried out to study the effects of applied tungsten on clover growth. Tungsten, applied as tungstate, was found to slightly decrease growth where fixation was the sole nitrogen source. In the presence of combined nitrogen, however, increases were recorded.

A comparison of the elemental composition of native tree species was carried out to investigate the effects of substrate composition. It was found that, whereas vegetation analysis can in general be used to indicate the presence of mineralisation within a rock type, it is not a reliable indicator of the composition of different rock types.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Acknowledgements</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td></td>
</tr>
<tr>
<td>Table of Contents</td>
<td></td>
</tr>
<tr>
<td>List of Figures</td>
<td></td>
</tr>
<tr>
<td>List of Tables</td>
<td></td>
</tr>
<tr>
<td>General Introduction</td>
<td></td>
</tr>
<tr>
<td>Section I - Development of Analytical Methods</td>
<td>8</td>
</tr>
<tr>
<td>A. Introduction</td>
<td>9</td>
</tr>
<tr>
<td>B. Tungsten</td>
<td>12</td>
</tr>
<tr>
<td>1. Further development of colorimetric method</td>
<td>12</td>
</tr>
<tr>
<td>(a) Introduction</td>
<td>12</td>
</tr>
<tr>
<td>(b) Description of existing procedures</td>
<td>13</td>
</tr>
<tr>
<td>(i) Equipment</td>
<td>13</td>
</tr>
<tr>
<td>(ii) Solutions</td>
<td>13</td>
</tr>
<tr>
<td>(iii) Determination of tungsten in soils and rocks</td>
<td>14</td>
</tr>
<tr>
<td>(iv) Determination of tungsten in plant samples</td>
<td>15</td>
</tr>
<tr>
<td>(c) Further developments investigated</td>
<td>15</td>
</tr>
<tr>
<td>(i) Improvement of sensitivity</td>
<td>15</td>
</tr>
<tr>
<td>Use of smaller sample volume</td>
<td>15</td>
</tr>
<tr>
<td>Use of larger sample size</td>
<td>16</td>
</tr>
<tr>
<td>(ii) Improvement of productivity</td>
<td>17</td>
</tr>
<tr>
<td>Soils</td>
<td>17</td>
</tr>
<tr>
<td>Plant samples</td>
<td>19</td>
</tr>
<tr>
<td>(d) Conclusions</td>
<td>19</td>
</tr>
<tr>
<td>2. Investigation into the use of proton-induced x-ray fluorescence for the determination of nanogram quantities of tungsten</td>
<td>21</td>
</tr>
<tr>
<td>(a) Introduction</td>
<td>21</td>
</tr>
<tr>
<td>(b) Equipment</td>
<td>23</td>
</tr>
<tr>
<td>(c) Development work</td>
<td>26</td>
</tr>
<tr>
<td>(i) Introduction</td>
<td>26</td>
</tr>
<tr>
<td>(ii) Analysis of plant ash and soil samples</td>
<td>27</td>
</tr>
<tr>
<td>(iii) Purification and concentration of tungsten using anion-exchange chromatography</td>
<td>28</td>
</tr>
<tr>
<td>Introduction</td>
<td>28</td>
</tr>
<tr>
<td>Experimental</td>
<td>28</td>
</tr>
<tr>
<td>Results and discussion</td>
<td>29</td>
</tr>
</tbody>
</table>
3. Development of an atomic absorption spectrophotometric method for the analysis of tungsten in ores and concentrates
 (a) Introduction
 (b) Literature survey
 (c) Development
 (i) Digestion
 (ii) Flame conditions
 Flame stoichiometry
 Position of the flame
 (iii) Air draughts in the laboratory
 Air velocity in the fume exhaust
 (iii) Calibration curve
 (d) Experimental
 (i) Equipment
 (ii) Standard tungsten solutions
 (iii) Digestion of the sample
 (iv) Atomic absorption determination of tungsten
 (e) Reproducibility and recovery tests
 (i) Recovery of tungsten
 (ii) Reproducibility and accuracy
 (f) Interferences
 (g) Sensitivity
 (h) Productivity
 (i) Conclusion

C. MOLYBDENUM
 1. Literature survey
 2. Survey of existing dithiol procedures
 3. Development of the method
 (a) Preliminary treatment of samples
 (i) Ashing of botanical samples
 (ii) Fusion of geochemical samples
 (iii) Dissolution of steel samples
 (b) Parameters affecting the formation and extraction of the complex
 (i) The nature of the dithiol solvent
 (ii) Acidity of the sample solution
 (c) Interferences from other elements
 (i) Tungsten
 (ii) Iron
 (iii) Copper
 (iv) Tin
4. Experimental
 (a) Equipment 74
 (b) Reagents 75
5. Procedures
 (a) Determination of molybdenum in botanical and biological samples 75
 (b) Determination of molybdenum in geochemical samples 76
 (c) Determination of molybdenum in steels 77
6. Testing of method
 (a) Reproducibility and recovery tests 77
 (b) Sensitivity 79
 (c) Productivity 79
7. Conclusions 79

C. OTHER ELEMENTS 80
1. Introduction 80
2. Treatment of geochemical samples 80
 (a) Preliminary treatment 80
 (b) Dissolution procedure 80
3. Treatment of plant samples 82
 (a) Preliminary treatment 82
 (b) Ashing techniques 82
4. Interferences 84
 (a) Chemical interferences 84
 (b) Scattering and non-atomic absorption 84
5. Conditions used in atomic absorption determinations 85
6. Accuracy and reproducibility of the dissolution and analytical methods 85
7. D.S.I.R. analyses 85

SECTION II - THE TRACE ELEMENT COMPOSITION OF NEW ZEALAND SCHEELITES 88

A. INTRODUCTION 89
B. ANALYSIS OF SCHEELITE 90
 1. Purification 90
 2. Chemical analysis 90
C. RESULTS AND DISCUSSION 90
 1. Levels of impurities in scheelites 90
 2. Correlation between lodes 93
 (a) Introduction 93
 (b) Results and discussion 94
SECTION III - GEOCHEMICAL AND BIOGEOCHEMICAL EXPLORATION FOR TUNGSTEN AND MOLYBDENUM

A. INTRODUCTION
1. Tungsten
2. Molybdenum

B. TUNGSTEN
1. The detection of scheelite-bearing ore-bodies by the analysis of plants and soils
 (a) Introduction
 (b) Description of test areas
 (i) Glenorchy, Paradise, Macrae's Flat and Top Valley
 (ii) Barriytown and Canaan
 (c) Field work
 (d) Chemical analysis
 (e) Results
 (i) Glenorchy
 (ii) Paradise
 (iii) Macrae's Flat
 (iv) Top Valley
 (v) Barriytown
 (vi) Canaan
 (f) Discussion
 (i) Glenorchy, Paradise, Macrae's Flat and Top Valley
 (ii) Barriytown and Canaan
 (g) Conclusions
2. Trend-surface analysis of tungsten concentrations in tree trunks at Barriytown
 (a) Introduction
 (b) Trend-surface analysis
 (c) Field work
 (d) Results
 (e) Discussion and conclusion

C. MOLYBDENUM
1. Biogeochemical exploration for molybdenum at Canaan, Nelson
 (a) Introduction
 (b) Field work
 (c) Chemical analysis
 (d) Results and discussion
 (e) Conclusions
SECTION IV - BIOGEOCHEMICAL STUDIES

A. INTRODUCTION

B. THE EFFECT OF SOIL SODIUM AND POTASSIUM ON THE UPTAKE OF TUNGSTEN BY NOTHOFAGUS FUSCA

1. Introduction
2. Preliminary field work
3. Setting up of pot trial
4. Analytical methods
5. Results and discussion
 Distribution of tungsten in plants, Day 300
6. Conclusions

C. THE EFFECTS OF TUNGSTATE AND NITROGEN SOURCE ON THE DRY WEIGHT AND NITROGEN YIELDS, AND MOLYBDENUM AND TUNGSTEN CONTENT, OF WHITE CLOVER (TRIFOLIUM REPENS)

1. Introduction
2. Methods
3. Results
 (a) Dry weight and nitrogen yields
 (b) Molybdenum contents
 (c) Tungsten contents
4. Discussion

D. A COMPARISON OF METAL CONCENTRATIONS IN THE LEAVES OF FIVE NEW ZEALAND NATIVE TREE SPECIES GROWING ON ACIDIC AND BASIC SUBSTRATES

1. Introduction
2. The study areas
3. Sampling and analysis
4. Results and discussion
 (a) Potassium
 (b) Calcium
 (c) Magnesium
 (d) Iron
 (e) Manganese
 (f) Zinc
 (g) Copper
 (h) Cobalt
 (i) Chromium
 (j) Nickel
5. Conclusions

SUMMARY AND GENERAL CONCLUSIONS
REFERENCES
PUBLICATIONS ARISING FROM THIS THESIS
LIST OF FIGURES

Fig. 0.1 Map of South Island, New Zealand, showing schists of geosyncline and location of study areas 6

Fig. I.1 Calibration curve for colorimetric determination of tungsten in geochemical samples and plant ash, using large cells 15

Fig. I.2 Calibration curve for the colorimetric determination of tungsten in geochemical samples and plant ash, using micro cells 17

Fig. I.3 Proton-induced x-ray fluorescence 24

Fig. I.4 Computer-assisted analysis of x-ray spectra 24

Fig. I.5 X-ray spectrum of scheelite (CaUO₃) 26

Fig. I.6a X-ray spectrum of plant ash from area of scheelite mineralisation 27

Fig. I.6b X-ray spectrum of soil from area of scheelite mineralisation 27

Fig. I.7 X-ray spectrum of plant ash extract dried onto Kapton film 31

Fig. I.8 Standard curves for tungsten by proton-induced x-ray fluorescence, showing effect of limited or unlimited sample depths 32

Fig. I.9 Absorption profiles for tungsten (0.1%) in rich and lean nitrogen-oxide acetylene flames 45

Fig. I.10a Standard curve for tungsten, no scale expansion 46

Fig. I.10b Standard curve for tungsten, 40% scale expansion 46

Fig. I.11 Effect of emission line broadening and self-absorption on flame absorption 46

Fig. I.12 Rate of extraction of molybdenum into various solvents 65

Fig. I.13 Standard curve for colorimetric determination of molybdenum 79

Fig. I.14 Flow sheet for dissolution and analysis of geochemical and plant samples 81

Fig. III.1 Detailed maps of tungsten exploration study areas. (a) Glenorchy; (b) Paradise; (c) Macrae's Flat; (d) Top Valley; (e) Barrytown; (f) Canaan 102

Fig. III.2 Transect data for tungsten in soils and vegetation. (a) Glenorchy; (b) Paradise; (c) Macrae's Flat; (d) Wairau Valley 111
<table>
<thead>
<tr>
<th>Figure/Plate</th>
<th>Description and Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. III.3</td>
<td>Transect data for tungsten in soils and vegetation. (a) Barrytown; (b) Canaan</td>
</tr>
<tr>
<td>Fig. III.4</td>
<td>Map of Barrytown study area showing site of Transects</td>
</tr>
<tr>
<td>Fig. III.5</td>
<td>Original tungsten-tree data for Transects A and B</td>
</tr>
<tr>
<td>Fig. III.6</td>
<td>Trend surface analysis of data for Transects A and B (a) isoconcentration contours; (b) trend surfaces; (c) "residuals"</td>
</tr>
<tr>
<td>Fig. III.7</td>
<td>Map showing location of molybdenum mineralisation, Canaan, Nelson</td>
</tr>
<tr>
<td>Figs. IV.1 and 2</td>
<td>Growth and nitrogen yield responses of white clover to tungstate when growing on different nitrogen sources. (a) fixation; (b) nitrate; (c) ammonium</td>
</tr>
<tr>
<td>Figs. IV.3 and 4</td>
<td>Molybdenum and tungsten responses of white clover to tungstate when growing on different nitrogen sources. (a) fixation; (b) nitrate; (c) ammonium</td>
</tr>
<tr>
<td>Fig. IV.5</td>
<td>Map of New Zealand showing sites chosen for vegetation composition comparison</td>
</tr>
<tr>
<td>Fig. IV.6</td>
<td>Histograms of elemental concentrations in soils and plants from acidic (a) and basic (b) areas</td>
</tr>
<tr>
<td>Plate IV.1</td>
<td>Leaves from the trees sampled</td>
</tr>
<tr>
<td>Table 0.1</td>
<td>Physical and chemical properties of tungsten and molybdenum</td>
</tr>
<tr>
<td>Table I.1</td>
<td>Analysis of soils for tungsten using fusion and ignition techniques</td>
</tr>
<tr>
<td>Table I.2</td>
<td>Analysis of tungsten in vegetation with and without prior ashing</td>
</tr>
<tr>
<td>Table I.3</td>
<td>X-ray peaks of tungsten</td>
</tr>
<tr>
<td>Table I.4</td>
<td>Comparison of analysis of plant ash for tungsten by colorimetry and proton-induced x-ray fluorescence</td>
</tr>
<tr>
<td>Table I.5</td>
<td>Effect of time on extraction of tungsten from acid decomposition residue with potassium hydroxide</td>
</tr>
<tr>
<td>Table I.6</td>
<td>Effect of N₂O/C₂H₂ ratio on tungsten absorbance</td>
</tr>
<tr>
<td>Table I.7</td>
<td>Recovery of VO₃ added to low-grade ore-sample</td>
</tr>
<tr>
<td>Table I.8</td>
<td>Analytical data for replicate determination of tungsten in synthetic standards and ore samples</td>
</tr>
<tr>
<td>Table I.9</td>
<td>Analytical data for determination of tungsten in one sample on twenty consecutive days</td>
</tr>
<tr>
<td>Table I.10</td>
<td>Comparison of atomic absorption and colorimetric analysis of tungsten ores</td>
</tr>
<tr>
<td>Table I.11</td>
<td>Comparison of dry and wet ashing of plant material</td>
</tr>
<tr>
<td>Table I.12</td>
<td>Comparison of KHSO₄ fusion and HF/HNO₃ digestion of geochemical samples</td>
</tr>
<tr>
<td>Table I.13</td>
<td>Effect of final acid concentration on complexing of tungsten with citric acid</td>
</tr>
<tr>
<td>Table I.14</td>
<td>Analytical data for replicate determinations of molybdenum</td>
</tr>
<tr>
<td>Table I.15</td>
<td>Molybdenum recovered from various samples</td>
</tr>
<tr>
<td>Table I.16</td>
<td>Details of conditions for atomic absorption spectrometry</td>
</tr>
<tr>
<td>Table I.17</td>
<td>Analysis of standard diabase W-1</td>
</tr>
<tr>
<td>Table II.1</td>
<td>Typical Japanese tungsten ore specification</td>
</tr>
<tr>
<td>Table II.2</td>
<td>Average concentrations of penalisable and other metallic impurities in scheelites</td>
</tr>
<tr>
<td>Table II.3</td>
<td>Strontium and barium contents of New Zealand scheelites</td>
</tr>
<tr>
<td>Table III.1</td>
<td>Rainfall and soil pH data for the test areas</td>
</tr>
<tr>
<td>Table III.2</td>
<td>Tungsten BAC values for trees from Barrytown and Canaan</td>
</tr>
<tr>
<td>Table III.3</td>
<td>Summary of data for concentrations of tungsten in soils and plant ash from transects across mineralised reefs</td>
</tr>
<tr>
<td>Table III.4</td>
<td>Molybdenum concentrations in soils and dead wood</td>
</tr>
<tr>
<td>Table III.5</td>
<td>Molybdenum concentrations in tree samples collected above inferred position of reef, 50m from outcrop</td>
</tr>
<tr>
<td>Table III.6</td>
<td>Molybdenum concentrations in trees and soils at an area of transported molybdenum</td>
</tr>
<tr>
<td>Table IV.1</td>
<td>Average concentrations of tungsten in the organs of two tree species common to Barrytown and Canaan</td>
</tr>
<tr>
<td>Table IV.2</td>
<td>Average concentrations of sodium and potassium in two tree species from Barrytown and Canaan</td>
</tr>
<tr>
<td>Table IV.3</td>
<td>Soil data for pot trial</td>
</tr>
<tr>
<td>Table IV.4</td>
<td>Plant data for pot trial</td>
</tr>
<tr>
<td>Table IV.5</td>
<td>Distribution of tungsten in seedlings, Day 300</td>
</tr>
<tr>
<td>Table IV.6</td>
<td>Details of nutrient solutions</td>
</tr>
<tr>
<td>Table IV.7</td>
<td>Percentage change from WO treatment, in shoot dry weight and nitrogen yields, with variation in applied tungstate</td>
</tr>
<tr>
<td>Table IV.8</td>
<td>Experimental data expressed in concentrations</td>
</tr>
<tr>
<td>Table IV.9</td>
<td>Analytical data for soils and tree leaves from acidic (a) and basic (b) areas</td>
</tr>
</tbody>
</table>