Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
THE INFLUENCE OF STARTER STREPTOCOCCI
AND OTHER MICROORGANISMS
ON CHEDDAR CHEESE FLAVOUR,
WITH SPECIAL REFERENCE TO PROTEOLYSIS

A thesis presented in partial fulfilment of the
requirements for the
degree of Doctor of Philosophy in Microbiology
at Massey University, New Zealand.

Francis Gabriel Martley
1971
The investigation was undertaken to determine the features of different strains of lactic streptococci (starters) associated with good or poor flavour development in Cheddar cheese. An attempt was made to differentiate the roles of the starter streptococci, other microorganisms and rennet, particularly with respect to the influence of their relative proteolytic activities on the acceptability of the cheese and the formation of bitterness.

An improved agar medium was developed for the detection of proteolytic organisms in total bacterial counts, and used to assess the bacteriological quality of the milk received for cheesemaking over two dairying seasons. In spite of wide variations in the quality of the milk, the proteinases of the raw milk flora had no significant influence on the development of flavour, or off-flavours such as bitterness, in cheeses made with specific "non-bitter" or "bitter" starters.

Starter strains which characteristically made good-flavoured cheese possessed either one or both of the following features:
(i) low rate of cell division at the temperature of cheesemaking which resulted in relatively low numbers of cells being produced;
(ii) low proteolytic activity as determined in pasteurized skim milk (PSM) cultures in the presence of 4 or 5% NaCl.

Although the total quantities of free amino acids varied between cheeses having either good flavour or bitter or "burnt" flavour defects, the proportions of individual free amino acids formed by proteolysis of the casein were very similar in all the cheeses. This suggested that the specificities of the proteinases of the different starter strains used to make these cheeses were
not markedly different.

A comparison of proteolysis by starter strains and by rennet in PSW under similar conditions suggests that the starters, and particularly the more active strains, contribute significantly to overall proteolysis during cheesemaking and in the young cheese, but to a lesser extent in the later stages of cheesepipening.

A possible pathway of casein breakdown is suggested to explain the roles of rennet and starter in determining whether or not bitterness will be found in cheese. It is suggested that rennet proteolysis of the casein forms a pool of predominantly high MW non-bitter peptides. The extent to which the precursors are degraded by the starter proteinases determines the level of bitter peptides in the cheese.

Good-flavoured cheese is associated with a low level of starter proteolysis, while more extensive proteolysis by the "bitter" starters of the non-bitter precursor peptides results in the formation of bitterness. "Burnt" off-flavours in cheese associated with the use of certain starter strains probably reflect a further degree of starter proteolysis and the accumulation of relatively high levels of amino acids. The increase in the intensity of bitterness in cheese when higher levels of rennet are used presumably results from the production of greater amounts of precursor peptides available for subsequent degradation to bitter peptides by the starter proteinases.

The level of starter proteinase in the cheese appears to be the most important factor determining the development of bitterness. However, it is likely that the salt-in-moisture levels in the cheese will also exert some control on the development of
bitterness since NaCl inhibited proteolysis by both rennet and starter proteinases.

It is concluded that it should be possible to exert considerable control on cheese flavour merely by regulating the maximum population of starter streptococci, and hence the level of starter proteinase, attained during cheesemaking. Such control would be important in reducing the incidence or intensity of bitterness in Cheddar cheese.
ACKNOWLEDGEMENTS

The author is most appreciative of the opportunity and facilities provided by the New Zealand Dairy Research Institute which enabled this investigation to be undertaken.

In particular, thanks are extended to:

Dr R.C. Lawrence for his invaluable guidance and criticism throughout the course of the work;

Prof. D.F. Bacon for his continued interest, and criticism of the manuscript;

Mr J. Gilles for cheesemaking;

Mr B.C. Richardson for the amino acid analyses of cheese samples;

Dr L.K. Creamer for gel electrophoresis of cheese samples;

Miss M.A. Humphries and members of the taste-panel for the flavour assessments of the cheeses;

Dr D.F. Newstead for statistical analysis of some of the data;

Mr R.J. Lowrie for many useful discussions;

Mr C.M. Rofe for assistance with the figures;

my wife, Patricia, for both her patience and encouragement during this undertaking, as well as for excellent technical assistance.

The typing was undertaken by Mrs L.M. Foster.

Publication of material from the Appendices has been made as follows:

CONTENTS

ABSTRACT ... ii
ACKNOWLEDGEMENTS ... v
LIST OF FIGURES .. xi
LIST OF TABLES .. xii
INTRODUCTION .. 1

The influence of the microflora on Cheddar cheese flavour ... 1
Role of starter streptococci ... 2
Survival of starter streptococci 4
Role of non-starter organisms 5
Bacteriological quality of the milk 6
Component balance theory of cheese flavour 7
Role of lipolysis in Cheddar cheese flavour 8
Role of glycolysis in Cheddar cheese flavour 9
Role of proteolysis in cheese flavour 9
Amino acids .. 9
Compounds formed from amino acids 10
Peptides and bitterness ... 11
Enzymes involved in casein degradation 14
Milk protease .. 14
Proteinases of non-starter organisms 14
Proteinases of starter streptococci 16
Rennet ... 17
Effect of pH and NaCl on rennet activity 18
Phosphatases .. 19
Influence of salt on Cheddar cheese flavour 20

AIMS OF THE PRESENT INVESTIGATION 22

EXPERIMENTAL .. 25

I. General procedures .. 25

Cultures .. 25
Maintenance of the cultures .. 27
Skim milk .. 27
Spectrophotometric readings .. 28

II. Plate counting of starter streptococci 28

A: Media ... 28

B: Plate counting and chain lengths of streptococci 29

Methods

Cultures .. 31
Variation of chain length during growth 32
Effect of blending on chain length 32
Effect of blending on plate count 32
Effect of blending on viability 33
Results

Variation of chain length during growth 33
Effect of blending on chain length 34
Effect of blending on viability and plate count 36
Conclusions 38

III. Measurement of proteolysis 39
Proteolytic activity of starter strains determined by Hull and Kjeldahl methods of analysis 41

Methods 41
Cultures 41
Proteolysis 41

Results 42
Comparison of Hull and Kjeldahl methods of analysis 42
Proteolysis by starter strains 45

IV. Growth, survival and proteolytic activity of starters 46

Methods 46
Proteolysis 47
Growth and survival of starter 47

Results 48
Populations attained 48
Effect of CaCO$_3$ and NaCl on pH 50
Starter survival in the absence of NaCl 50
Starter survival in the presence of 4% NaCl 50
Starter survival in the presence of 5% NaCl 53
Proteolysis by the starter strains 55
Effect of NaCl on starter proteolysis 55
Influence of NaCl on starter survival and proteolysis 55

V. Proteolysis by rennet 60

A: The effect of NaCl 60

Methods 60
Results 61
Relative proteolytic activities of rennet and starter 64

B: The influence of starter on determining rennet concentration in cheese 65

VI. Phosphatase activity of starters 69

Methods 69
Cultures 69
Assay 69

Results 70
Preliminary experiments 70
Acid phosphatase of milk cultures and the relationship to proteolytic activity 72

VII. Influence of milk quality on cheese flavour 74

A: Bacteriological quality of milk 74
B: Influence of milk quality on cheese flavour

Methods
Cheeses
Milk quality
Results
Bacteriological quality of the milk
Cheese flavour
Conclusions

VIII. Manufacture and analyses of selected cheeses...

Methods
Manufacture of cheeses
Counts of starter during cheesemaking and maturation
Routine analyses at 14 days
Proteolysis during maturation
Determination of free amino acids
Determination of acid phosphatase activity in cheese
Flavour assessments

Results
Manufacturing and analytical data
Starter populations during cheesemaking
Survival of starter
Acid phosphatase
Proteolysis
Amino acid analyses of the cheeses
Flavour assessments
Contribution of free amino acids to the flavour of the cheeses

DISCUSSION

Growth of starters
Proteolysis by starters
Specificity of starter proteinases
Survival of starter in relation to proteolysis
Bitterness
Relationship of starter populations to proteolytic activity
Effect of NaCl on proteolysis and bitterness
Relationship of the pH of the cheese to the incidence of bitterness
Conclusions

REFERENCES

APPENDIX I
An improved medium for the detection of proteolytic organisms in total counts
The typing of coagulase-positive staphylococci by proteolytic activity on caseinate-agar, with special reference to phage nontypable strains

The rapid screening of milk samples for proteolytic and total bacterial counts
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Increase in chain lengths of starter streptococci during growth in pasteurized skim milk</td>
<td>35</td>
</tr>
<tr>
<td>2.</td>
<td>The effect of blending on the chain lengths and plate counts of starter streptococci</td>
<td>37</td>
</tr>
<tr>
<td>3.</td>
<td>Spectrophotometric measurement of tyrosine</td>
<td>43</td>
</tr>
<tr>
<td>4.</td>
<td>Proteolysis by starter strains measured by Kjeldahl and Hull methods</td>
<td>44</td>
</tr>
<tr>
<td>5.</td>
<td>Survival of starters in pasteurized skim milk in the absence of NaCl</td>
<td>51</td>
</tr>
<tr>
<td>6.</td>
<td>Survival of starters in pasteurized skim milk in the presence of 4% NaCl</td>
<td>52</td>
</tr>
<tr>
<td>7.</td>
<td>Survival of starters in pasteurized skim milk in the presence of 5% NaCl</td>
<td>54</td>
</tr>
<tr>
<td>8.</td>
<td>Proteolysis by starters in pasteurized skim milk in the absence of NaCl</td>
<td>57</td>
</tr>
<tr>
<td>9.</td>
<td>Proteolysis by starters in pasteurized skim milk in the presence of 4% NaCl</td>
<td>58</td>
</tr>
<tr>
<td>10.</td>
<td>Proteolysis by starters in pasteurized skim milk in the presence of 5% NaCl</td>
<td>58</td>
</tr>
<tr>
<td>11.</td>
<td>Rennet proteolysis in pasteurized skim milk at pH 5.2 in the presence of NaCl</td>
<td>62</td>
</tr>
<tr>
<td>12.</td>
<td>Influence of NaCl on rennet proteolysis of pasteurized skim milk</td>
<td>63</td>
</tr>
<tr>
<td>13.</td>
<td>Casein breakdown in Cheddar cheeses measured by gel electrophoresis</td>
<td>68</td>
</tr>
<tr>
<td>14.</td>
<td>Effect of pH on phosphatase activity of strain US₃</td>
<td>71</td>
</tr>
<tr>
<td>15.</td>
<td>Bacteriological quality of milk used for cheesemaking during the 1969-70 dairying season</td>
<td>80</td>
</tr>
<tr>
<td>16.</td>
<td>Overall flavour acceptability scores of 6-month-old Cheddar cheeses made during the 1969-70 season</td>
<td>81</td>
</tr>
<tr>
<td>17.</td>
<td>Bitterness scores of 6-month-old Cheddar cheeses made during the 1969-70 dairying season</td>
<td>82</td>
</tr>
<tr>
<td>18.</td>
<td>Starter populations during the making and ripening of Cheddar cheeses made with strains ML₄, US₃, Z₈ and HP</td>
<td>97</td>
</tr>
<tr>
<td>19.</td>
<td>Starter populations during the making and ripening of Cheddar cheeses made with strains ML₄, AM₂, AM₁ and HP</td>
<td>98</td>
</tr>
</tbody>
</table>
(list of Figures cont.)

20. Proteolysis in cheeses made with starter strains ML₁, US₃, Z₆ and HP

21. Chart trace of free amino acids in a 6-month-old Cheddar cheese

22. Comparison between the individual free amino acids in 3-month-old Cheddar cheeses and the amino acid composition of casein

23. Comparison between the individual free amino acids in 6-month-old Cheddar cheeses and the amino acid composition of casein

24. Role of rennet and starter in the formation of bitterness according to the hypothesis of Czulak

25. The suggested major pathways of casein breakdown by the proteinases of rennet and starter streptococci

LIST OF TABLES

I. Strains of starter streptococci used
II. Increase of starter populations during growth in pasteurized skim milk
III. Proteolysis by starter strains during growth in pasteurized skim milk
IV. Comparison of acid phosphatase and proteolytic activities of starter strains
V. Manufacturing details for cheeses
VI. Routine analyses of cheeses at 14 days
VII. Starter populations during cheesemaking
VIII. Proteolysis in cheese curd samples immediately prior to salting
IX. Free amino acids in cheeses during the course of ripening
X. Flavour scores of the first series of cheeses
XI. Flavour scores of the second series of cheeses