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Abstract

Relativistic quantum chemistry is the relativistic formulation of quantum mechan-
ics applied to many-electron systems, that is to atoms, molecules and solids. It
combines the principles of special relativity, which are obeyed by any fundamental
physical theory, with the basic rules of quantum mechanics. By construction,
it represents the most fundamental theory of all molecular sciences, which de-
scribes matter by the action, interaction and motion of the elementary particles.
This science is of vital importance to physicists, chemists, material scientists, and
biologists with a molecular view of the world.

A full relativistic treatment of atoms and molecules which includes the quan-
tization of the electromagnetic field is currently one of the most challenging
tasks in electronic structure theory. Therefore, relativistic effects in atoms and
molecules were studied computationally. A combination of wave function and
density functional based methods within a correct relativistic framework proved
necessary to achieve accurate results of various atomic and molecular properties.
The first part of this thesis deals with investigations in atomic systems including
quantum electrodynamic effects in the ionization potentials of a large number
of elements. K-shell and L-shell ionizations potentials for 28Mt were calculated
and static dipole polarizabilities of the neutral group 14 elements were investi-
gated. The second part concentrates on molecular systems including superheavy
element monohydrides up to 120H"). In particular, the chemical bonding of the
superheavy elements 119 and 120 are investigated for the first time. Electric field
gradients of a number of gold and copper compounds were also calculated and
the nuclear quadrupole moment of gold and copper determined in good agree-
ment with experiment. Finally, the parity violation energy difference in the chiral
molecule bromochlorofluoromethane (CHFCIBr) was investigated by relativistic
coupled-cluster theory to provide benchmark results for all future investigations
in this field.
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Chapter 1
Introduction and Overview

Although Dirac himself, at the time he published his famous relativistic wave

equation, wrote that [1],

“The general theory of quantum mechanics is now almost complete,
the imperfections that still remain being in connection with the exact
fitting in of the theory with relativity ideas. This give rise to difficulties
only when high-speed particles are involved, and are therefore of no
importance in the consideration of atomic and molecular structure and
ordinary chemical reactions, in which it is, indeed, usually sufficiently
accurate if one neglects relativity variation of mass with the velocity
and assumes only Coulomb forces between the various electrons and

atomic nucler. ”

it is now a well established fact [2—4], that one often needs to account for rela-
tivistic effects in quantum theoretical calculations of atoms and molecules. For
molecules containing heavy atoms, non-relativistic calculations will not even give
qualitatively correct results [4], and even for molecules containing light atoms

relativity is needed for very precise calculations [5].

With the term “relativistic effect” one means the difference between the approx-
imative physical description using a non-relativistic model and the more correct
relativistic description. This difference is just the result of applying different
physical models and has no connection to reality, as there is no non-relativistic
molecule, but there are molecules which can be described sufficiently by a non-

relativistic model.

11



12 CHAPTER 1. INTRODUCTION AND OVERVIEW

The goal of this thesis was to study relativistic effects in heavy and superheavy
elements. For example in chapter 5, the influence of relativistic effects on the
static dipole-polarizability of group 14 elements is discussed. It is shown that the
spin-orbit effect is negligible for the lighter elements but becomes essential for Pb
as spin-orbit coupling reduces the polarizability by 20%. And in chapter 7, the
electrical-field gradients of copper- and gold-halides were calculated, showing the

importance of relativistic effects.

The relativistic effects in superheavy elements (Z > 90) are even more dramatic.
Superheavy element (SHE) research faces currently one of the biggest experi-
mental and theoretical challenges [6]. This multidisciplinary field combines nu-
clear physics, atomic physics, theoretical physics, chemistry and quantum chem-
istry with state-of-the-art computational and engineering methods. The earliest
studies of the atomic and chemical properties of the heaviest actinides led to un-
matched scientific discoveries: chemical analysis of the first attempts to create
superheavy elements led - at first - to the discovery of nuclear fission [7,8]. Later,
systematic investigations of fission fragments led - in turn - to the discovery of
the first trans-uranium elements [9, 10] and opened up the way for the synthesis
of superheavy elements. The production of ever heavier elements and the investi-
gation of their nuclear structure are unique tools to improve the understanding of
nuclear matter and nuclear forces under extreme conditions. In addition valuable
information is added to the knowledge of stellar nuclear synthesis - the mechanism

for the creation of the chemical elements found on earth.

Chemical characterization of the nuclear reaction products was at first crucial
for the element identification. Later, it was replaced by the observation of cor-
relations between recoil-nuclelr and subsequent a-decay chains. Today, both ap-
proaches are being combined and are supported by relativistic nuclear and elec-
tronic structure calculations to face the demanding challenge of unambiguous
iIsotope identification, as has been demonstrated very recently for superheavy el-
ements up to nuclear charge 114 [11]. Due to the development of powerful laser
systems during the last decades, atomic physics methods have also gained impor-
tance in this field as well. These investigations aim for a better understanding of
the electronic structure in the strong nuclear fields of the heaviest elements and

yield information on their atomic and nuclear properties.
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Superheavy elements can only be produced in nuclear fusion reactions at heavy
ion accelerators at rates around one atom a day [12]. Typical half life times in
the order of milliseconds hamper any attempt to produce macroscopic- and thus
visible amounts of the heaviest members of the periodic table. Combining meth-
ods for production, stopping and cooling of single superheavy ions may not only
render these elements visible but may also pave the way for precision spectroscopy
with ultracold ions which have been inaccessible so far. But for the interpretation
of the spectroscopic data, accurate relativistic structure calculations are essential

to assist and improve the experiment.

In chapter 4 calculated, K- and L-shell ionization potentials of the superheavy
element Meitnerium are shown and discussed. This was motivated by the obser-
vation of a 155 keV photon in a nuclear decay chain at the GSI in Darmstadt.
Experimentalists explained this by a possible X-ray transition during the decay
process. Therefore a Dirac-Hartree-Fock study was performed to gain more in-
sight into the X-ray transitions of Meitnerium. Properties of superheavy hydrides

are discussed in detail in chapter 6.

To obtain extremely high precision results for atomic properties one has to go
beyond relativistic quantum mechanics and use quantum electrodynamics (QED),
the relativistic quantum field theory of the interaction of charged particles and
photons. The predictions of the theory are in remarkably good agreement with
the results of experiments [13—15].

The basic structure of QED is quite the same as it was soon after the initial
formulation of renormalization methods in the late 1940s [16-18], and appli-
cations to bound-state problems in the 1950s [19-23]. Since then, QED has
been well established and has provided the underpinnings of the theory of a wide
range of phenomena ranging from properties of single particles [14] to complex
atoms [24], materials [25] and even chemical problems [26]. However, practical
computational difficulties have limited direct applications of the theory to only
the most simple systems. Even in one-electron atoms, the calculations based
on QED are formidable tasks, but often necessary to make predictions that are

correct at the level of precision of current experiments.

In recent years, this situation has been changing, and the domain of practical ap-
plications of QED has been expanding rapidly. New techniques in non-perturbative

studies of QED have been successful not only in improving the precision of cal-
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culations, but also in expanding the practical range of applicability, particularly to
highly ionized atoms and inner levels of heavy neutral atoms, where predictions

are necessary to interpret experimental results quantitatively.

Quantum electrodynamics is one of the most well tested theories in physics.
However, despite the enormous success of QED in predicting the properties of
electrons in weak external fields, the theory is not tested very well in the strong
field limit. Thus, one of the primary goals in future research is to explore the
behavior of electrons in some of the strongest electromagnetic fields accessible
to experimental investigation. For instance, the electric field strength at the
surface of a uranium nucleus with a radius of 7.42 fm, which amounts to £ ~
2 x 10 V/cm, or the field of the magnetic moment of the nucleus %% Bi at
the nuclear surface that gives a maximum magnetic field strength of about B =

102 Gauss.

Electrons in innermost bound states experience the largest overlap with this strong
field domain. Precision measurements of electron binding energies and transition
rates are best suited to deduce characteristic QED phenomena in intense fields.
The binding energy of a single K-shell electron in the Coulomb field of a ura-
nium nucleus amounts to about 132 keV, which corresponds to roughly one third
of the electron rest mass. In this case, the radial expectation value of the 1s
wave function, (r);s = 715 fm, is the same order of magnitude as the Compton

wavelength of the electron.

a) b) )

Figure 1.1: Lowest order Feynman diagrams for the self-energy (a), vacuum polarization
(b) and the Breit interaction (c) of bound electrons.

The fundamental processes under consideration are depicted by the Feynman
diagrams in Fig. 1.1. The double lines denote the motion of the electron in the
external Coulomb field of the nucleus. Here the Furry picture [27] is adopted
in which the interaction with the external potential is incorporated in the wave

function and the propagator from the very beginning. Hence, plane waves or free
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propagators, which do not account for the external potential, are avoided.

Part (a) in Fig. 1.1 indicates the self-energy, where a photon is emitted and
reabsorbed again by the bound electron. Due to the relatively small mass of
the electron, this virtual process of the bound particle dominates the QED level
shift in hydrogen-like atoms. Part (b) reflects the vacuum polarization where the
photon mediating the interaction between the electron and the nucleus virtually
generates an electron-positron pair. For an impression concerning the importance
of both radiative processes one considers the associated energy shift for a K-shell
electron in hydrogen-like uranium. The sum of the vacuum polarization and self-
energy correction amounts to 266 eV which should be compared with the total
1s binding energy of 132 keV. The current experimental uncertainty sums up to
16 eV [28], while future precision measurements may lower this boundary down
to 0.1 eV.

Traditionally, QED corrections are treated in a perturbation expansion in the
fine structure constant a ~ 1/137 representing the number of virtual photons.
Superimposed on this, one considers in every order in o an additional expansion
in Za, the coupling constant to the external field with nuclear charge number
Z . An essential aspect of strong-field bound state quantum electrodynamics is
the avoidance of any expansion in Za in order to incorporate the external field

exactly.

The determination of radiative corrections in atomic states started in 1935 when
Uehling published his calculation of the lowest-order vacuum polarization [29].
In 1947 Lamb and Retherford detected the splitting of the 2p,,, and the 2s,,,
states in hydrogen which initiated extensive developments in theoretical research

on QED corrections in atoms [30].

The investigation of QED effects in many electron atoms was another goal of
this thesis used later in the work for Meitnerium. In chapter 3, a semi-empirical
radiative potential for the self-energy is discussed, which was implemented into the
program package GRASP. The vacuum-polarization and self-energy contribution
as well as the Breit interaction to the ionization potential were calculated for all
group 1, 2, 11, 12, 13 and 18 atoms.

For an understanding of chemistry, fundamental forces other than the electro-
magnetic force (namely the gravitational, strong, and weak force) can usually be

safely neglected. It is nevertheless very tempting, albeit extremely challenging,
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to try to observe the influence of the weak interaction on molecular systems di-
rectly, as this would enable low energy tests of the weak interaction [31]. This
extremely weak and short-ranged interaction is of particular interest since it shows
preference for particle helicity, for instance involving almost exclusively left-handed
electrons [32]. As nicely shown by Wu et al. in the 3-decay of cobalt radionu-
clides [33] the weak interaction breaks parity symmetry as first proposed by Lee
and Yang [34]. As a consequence of this parity symmetry breakdown, commonly
called parity-violation (PV), the two “enantiomers” of a chiral molecule become
strictly speaking diastereomers, thus causing a small energy difference between
them.

The main obstacle for the observation of PV effects is its tininess. For instance,
in the case of aminoacids, the theoretical PV energy difference (PVED) between
the two enantiomers is on the order of 107'°kJ mol~! [35, 36] which, combined
with its significant variation as a function of molecular structure, precludes any
direct link between PV and biohomochirality unless a convincing amplification
mechanism can be found [37—-39]. To measure such minute energy differences
furthermore calls for very accurate experiments which have to be dedicated solely
to its observation. Only a few scientific groups in the world have performed
experiments aiming at detecting PV effects in molecular systems, but with no

clear-cut success so far [40-42].

A promising new experimental setup has been proposed by Chardonnet and co-
workers [42,43]. It aims at detecting PV vibrational transition frequency difference
by molecular beam spectroscopy using a two-photon Ramsey-fringes experiment.
A sensitivity of 0.01 Hz is expected, but the choice of the candidate molecule
and the preparation of its enantiomers are crucial for any successful experiment.
The ideal candidate chiral molecule for the experiment should: (i) be available in
large enantiomeric excess or, ideally, in enantiopure form; (ii) show a large PV
frequency difference of an intense fundamental transition ideally within the CO,
laser operating range (850 -1120 cm™1); (iii) not be too bulky since the sensitivity
of the experiment will be largely determined by the partition function of the
molecules in a supersonic beam where the internal degrees of freedom are frozen
down to about 1 K; (iv) avoid nuclel with quadrupolar moments; and (v) preferably
sublimate without decomposition for injection into the Fabry-Perot cavity of the

experiment, although laser ablation techniques may also be envisaged.
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Prior to 2002 small organic chiral molecules such as aminoacids, chiral confor-
mations of hydroperoxides [44, 45] or heterohalogenomethanes [43, 46-48] were
extensively studied. Among the latter, bromochlorofluoromethane (CHFCIBr)
has drawn particular attention due to its structural simplicity [49]. However,
such a chiral molecule, although a good model, shows a calculated PV too
small [48,50,51] (a few mHz) to be clearly observed considering today's best ex-
perimental resolution of around 1 Hz [52]. Recently, chiral halogenated adaman-
tanes and cubanes have been synthesized, but they were found to show very low
PV effects [53].

Since 2002, chiral metal transition complexes bearing heavy atoms have attracted
particular interest. Considering that the PVED scales approximately as Z° (where
Z is the atomic number) [54-57], theoretical studies clearly favor chiral com-
pounds with a heavy atom at or near the stereochemical center for large PV
effects. Indeed, chiral gold, mercury, iridium, osmium and rhenium complexes
were calculated to be favorable candidates for PV observation by Schwerdtfeger
and co-workers [58—60], as well as bismuth compounds by Lazzeretti and co-
workers [61]. The aim of the last chapter is actually to calculate the PVED of
the molecule CHFCIBr at the coupled-cluster level of theory, which will serve as

a future benchmark reference value.
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Layout of this thesis

The thesis presented here is divided into three parts:

1. The first part gives an introduction to the methodology, starting from rela-
tivistic quantum mechanics (chapter 2.1), followed by a detailed discussion

of quantum theoretical approximations (chapter 2.4).

2. The second part deals with atomic systems. In chapter 3, calculations of
the K-shell and L-shell ionizations potentials of Meitnerium are presented.
Then results of quantum-electrodynamic calculations of bound state QED,
obtained by implementing a new effective potential for the electron self-
energy into the program package GRASP, (chapter 4) are shown. In chap-
ter 5, the spin-orbit effects of the static dipole polarizability of group 14
elements are investigated by relativistic coupled-cluster calculations.

3. The third part is assigned to molecular systems. In chapter 6, molecular
properties of superheavy hydrides are calculated by density functional theory
and the influence of relativistic effects are discussed. Electrical field gradi-
ents of coinage metal halides, which were used to calculate precise nuclear
quadrupole moments of ®3Cu and 197 Au, are presented in chapter 7. Finally,
in chapter 8, parity violation effects due to electroweak interactions in the
molecule CHFCIBr are calculated at the coupled-cluster level of theory by

utilizing the finite-field method for the parity violation operator.



Chapter 2
Theory and Methodology

In this thesis, electronic properties of atoms and molecules are studied by theoreti-
cal methods within a relativistic framework. For a correct but yet computationally
feasible description of these quantum systems, a variety of different methods and
approximations have to be applied. This chapter gives a short overview on the
applied methods. A more detailed description can be found in standard references

and textbooks on electronic structure theory [62—67].

2.1 The Dirac Equation

The quantum mechanical equation describing the relativistic motion of a single
electron of mass m in a stationary state and a fixed external field V may be

written as
Ay = Ev, (2.1)

where H is the Dirac Hamiltonian (in S| units)

H=cda -p+mc?B+V (2.2)

In equation (2.1), the eigenfunction % is a four-component spinor that contains
two large components (L), which passes to the corresponding non-relativistic wave

functions for the two possible spin orientations in the limit ¢ — oo for the velocity

19
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of light, and two small components (S) which vanish in the non-relativistic limit.

wL
(7

Wh
¥h
Y7
Y3 )

The Hamiltonian given in (2.2) is a matrix operator in which 5'is a three-vector
whose elements corresponds to the components of the momentum p;, = —ih0,
(i = x,y,z). Thus, in coordinate representation, & is a three-vector whose

elements are the matrices

0001
0010 0 o,
a, = = (2.4)
0100 ox 0
1000
§ @@
0 0 i 0 0
a, = ’ - > (25)
0 - o, O
j 10
(0 1 0
0 00 -1 0 o,
a, = = 2.6
’ 00 (ozo> (E8)
0 -10

The components of & may be written in terms of the Pauli spin matrices

01
Ox:<1 0>- (27)
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which satisfy the commutation relations

[o5. &3] = 2iegok (2.10)
B is the matrix
1 0 0 0
o 0 0 1 0 0
g=|"° E (2.11)
0 —og 0 0 -1 0
0 0 0 -1

where gg is the 2x2 unit matrix. The Dirac equation reads than

Vgl + c(G-P)YS = Eyt

c(@- Pt + (V=-2mc?)y°® = Evy°. 213

The eigenvalue spectrum (shifted by —mc?) is shown schematically in Fig. 2.1.
It is made up of two parts. The first, in the interval (—>c, —2mc?), corresponds
to the negative energy states, and the second, in the interval (0, +2), to the

positive energy states.

The solutions with a positive energy describe the electronic continuum. The
states with an energy below —2mc? describe the “positronic” continuum. How-
ever, their presence is intolerable, as they make all positive energy states unstable
in the final analysis. The presence of negative energy states has been discussed
intensively in the literature and a proper description is only obtained in the frame-

work of quantum-electrodynamics.

2.1.1 The Dirac-Coulomb problem

In a first approximation, the energy levels of one-electron atoms are given by the
solutions of the Schrodinger equation for an electron in the field of an infinitely
heavy Coulomb center with charge Z

1 (Za)?

- 2
= —Emc T, (213)
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free particle V= - %—
0 = — _
o 282
S

RN

Figure 2.1: Spectrum of a free Dirac particle and the Dirac-Coulomb problem

where n is called the principal quantum number. Each state is completely de-
scribed by the principal quantum number, the value of the angular momentum /
and the projection of the angular momentum m;. In the non-relativistic Coulomb
problem all states with the same principal quantum number have exactly the
same energy which means that the energy levels of the Schrodinger equation in
the Coulomb field are n-fold degenerate with respect to the angular momentum
quantum number. As in any spherically symmetric problem, the energy levels in a
Coulomb field do not depend on the projection of the orbital angular momentum,
and each energy level with given [ is additionally 2/ + 1-fold degenerate. The
relativistic dependence of the energy of a free classical particle on its momentum

Is given by the relativistic square root

2

VMt + 22 = m? + £ — P

2m  8m3c2 o

4

(2.14)

The kinetic energy operator in the Schrodinger equation corresponds to the sec-
ond term of this non-relativistic series expansion, and thus the Schrodinger equa-
tion describes only the leading non-relativistic approximation to the hydrogen

energy levels.

A proper description of all relativistic corrections to the energy levels is given by

the Dirac equation with a Coulomb source. All relativistic corrections may easily
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be obtained from the exact solution of the Dirac equation in an external Coulomb
field

2 e hen) (2.15)
(it - @ayra-i-3p
B e Zer)* mcz(Za) 1 3
= me? - = 2 2 <J‘+§ _%>

B mc?(Za)® 1 N 3 +L+L> N
G+ Tag T TGy

where y =1/2,3/2,...,n — 1/2 is the total angular momentum of the state.

3P3/2— ) -

3S1 /) — SR
B - 3P1/2—

2P3/2 —

Fine structure

251/ = Lamb ] — 10.9 GHz
— shift 2P1/2—
1057 MHz
1S ) mm— Hyperfine structure

\ I 1420 MHz

Figure 2.2: Low-lying energy levels of hydrogen
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The main difference of the Dirac spectrum (Fig. 2.2) compared to the non-
relativistic one is that the energy levels with the same principal quantum number
but different total angular momentum are split into n components of the fine
structure. However, not all degeneracy is lifted: the energy levels corresponding

to the same n and j but different / = j + 1/2 values remain doubly degenerated.

This degeneracy is lifted by the corrections connected to the finite size of the
Coulomb source, recoil contributions and by the dominating QED loop contribu-

tions. The respective energy shifts are called Lamb shift.

The magnetic moment of the heavy nucleus is completely ignored in the Dirac
equation and hence the hyperfine splitting of the energy levels is missing in this

spectrum.

2.2 The Many-Electron Problem

As atoms and molecules are composed of electrons and atomic nuclel, a correct
description of such systems requires a complete picture of all mutual interactions,
but it is clear that such a description can only be approximate. Let us briefly review

the approximations involved.

First, the Born-Oppenheimer approximation is inherently incompatible with the
theory of special relativity since it singles out a preferred reference frame, namely
the frame in which nuclel can be treated as stationary sources of external fields.
Relativistic corrections to the nuclear motion are, however, expected to be very
small. The advantage of the Born-Oppenheimer approximation is that it reduces
the complexity of the molecular description and allows to focus on the electronic
degrees of freedom. The eigenvalues of the electronic Hamiltonian defined by the
Born-Oppenheimer approximation are assumed to vary smoothly as a function of
nuclear coordinates. This leads to the concept of molecular potential energy

surfaces.

Second, all hyperfine effects are neglected, which leads to a time reversal sym-

metric Hamiltonian.

Third, the description of even a single electron in the molecular field leads to
a many-body problem due to the possible creation of virtual electron-positron

pairs. The proper treatment of the problem can only be obtained within the
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framework of QED, which allows the number of particles in the system to vary.
One can avoid to work with the full mathematical machinery of QED by invoking
the no-pair approximation, which means to neglect all pair creations. Therefore
one remains within the framework of Dirac’s hole theory with the Dirac sea of
negative energy electrons at all times completely filled. It corresponds to working
with classical fields and implies neglect of QED effects, such as self energy and
vacuum polarization, which represent the interaction of the electron with the zero-

point fluctuations of the quantized electromagnetic and Dirac fields, respectively.

The use of the Dirac Hamiltonian as a relativistic substitute for the one electron
terms in the non-relativistic many-body Hamiltonian yields the Dirac-Coulomb
Hamiltonian [68]. This Hamiltonian can be utilized in conjunction with a Hartree-
Fock like wave-function in what is known as the Dirac-Hartree-Fock (DHF)
method, which has a special status in quantum chemistry. It is often used
to benchmark relativistic effects in the absence of electron correlation. Such
benchmark calculations provide an estimate of accuracy of more approximate
methods, which attempt to include relativistic effects as a perturbation of the
non-relativistic Hartree-Fock case, as well as methods which employ transformed,
simplified versions of the Dirac-Coulomb Hamiltonian [69].

The capability of the Dirac equation to describe the relativistic interaction of
electrons with nuclei makes it a good starting point for a relativistic many-body
Hamiltonian. The relativistic electron interaction can be approximated by the
non-relativistic Coulomb operator g, = 1/r,, although the higher order Breit
corrections become important in high-precision atomic calculations. The Dirac-
Coulomb Hamiltonian for a molecular system of n electrons in the field of N fixed

nuclei is then given by (in atomic units)

. e 1
Hoc :ZhP+Zr_+VNN (2.16)
! 1<y Y
n 1
=D (c(@, - 7)) + mEB, + Voue) + D — + Van,
g i<j M

where the last term is the Coulomb interaction of the nuclei

Lig e
Viy = ) =222 (2.17)

I
ab ab
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and the Dirac matrices in the standard Dirac-Pauli representation for particle /

&,:(? 5>, 5,=<0° 0 ) (2.18)
c O 0 —0p

The electron-nucleus interaction V,,c is in general represented by

Z pN ra E (219)

| —f3|

“l

nuc

where pyn in the nuclear charge distribution. The associated wave equation
I:IDC\U = EV is not Lorentz invariant, and as a result /:/DC does not represent
a proper relativistic Hamiltonian. In order to obtain a two-electron interaction
term which is consistent with special relativity, it is necessary to utilize quantum
electrodynamics (QED).

2.3 The Dirac-Hartree-Fock Approach

Analogous to Hartree-Fock theory, the Dirac-Hartree-Fock (DHF) model begins
with the assumption that an n-electron wave-function W can be approximated by

a trial function corresponding to a Slater determinant of orthonormal orbitals:

v=A (H w,(a)) (2.20)

=0

V(7)) Ya(r) - (i)

where A is the antisymmetrizer operator and the v, are molecular 4-spinors of

the form (2.3). The expectation value of the total energy is
E = (W|Apc|w) (2.21)

= 3" Wilholb) + 5 30 (Wbvb) - Wb b))

hJ
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where the Mulliken notation for the two-electron integrals is used
— - -
Wabtot) = [[ FRPEY AR VRN (2.22)

The single-particle 4-spinors are expanded in separate scalar function basis sets

for the large {x*“} and small {x°} component parts,

([ e > xheke )
LB i LB
ve=| " | = 2 g 1= | (2.23)
k Z Xu vk
/6] S

This method has been adopted from non-relativistic molecular theory, where it
was first introduced by Roothaan. The energy is thus parameterized in terms of
the complex expansion coefficients {c}. Utilizing the variational principle leads,

as in non-relativistic theory, to a pseudoeigenvalue equation
Fc =€Sc. (2.24)

A major difference, however, is that matrices and vectors may be complex. In a

real basis, the overlap matrix S is real and block diagonal with elements
SXY = (xXIx!)0xy: XY =La, LB Sa. SB. (2.25)

The Fock-matrix F is conveniently split up into two parts. The one-electron Fock
matrix F[I is the matrix representation of the Dirac operator in the current basis

VL _jedtS 0 —icd'®
- 0  —icdtS VL jedtS '

Fiedt O icdt W2
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where
VX = (xIVIX) (2.27)
Wi = <xu|V 2me?|xy) (2.28)
= (X Elxb (2.29)
dir, = <xff|a% ok i%lxﬁ) (2.30)

The two-electron Fock matrix is given by

F2 = F/ 4 FX (2.31)

F/ = . (2.32)

0 0 0 J¥F
KLaLa KLaSa KLaLB KLaLB
FK B KSaLa KSaSa KSaLB KSaLﬁ 5 33
T | KiBLa KlBSa KLBLB KLBLB |- (2.33)

KS[BLa KSBSa KS[BLB KS[BLB

As in the non-relativistic theory it can be divided into a Coulomb contribution

I =300 DX xS X xY) (2.34)

X Ak

and an exchange contribution

Ko = DXY XX IXEX), (2.35)
ALK

The contributions are defined in terms of the back-transformed density matrix
Df: Z CA/ KI* (236)

The generalized matrix eigenvalue problem (2.24) is the solution to the DHF
problem utilizing a finite basis set. It has to be solved iteratively in a self-consistent
manner for a given set of positions of the atomic centers. With this electronic
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solution, the forces on the nuclei resulting from the electron distribution can be
calculated. Hence after each electronic convergence step the atoms are moved
along the forces following by a new electronic step. This is repeated until the
forces are below a certain threshold. By this outlined procedure, the geometry
and the electronic structure of a molecule can be obtained at the DHF level.
It is obvious that for large basis sets the dimensions of the matrices become
quite large, which results in the need of enormous computational resources to

diagonalize the equations.

2.4 Basis Sets

The 4-spinor wave function is usually parametrized in molecular calculations by
expanding the single-particle solutions in a set of analytic basis functions. The
choice of basis set is almost exclusively given by a set of atomic centered Slater
or Gaussian functions. Gaussian basis sets have become particularly popular.
With this choice, the most time-consuming integrals in molecular calculations,

the two-electron integrals, can be calculated extremely efficiently.

In DIRAC [70], the 4-spinors are expanded in scalar basis functions (2.23). Atomic

centered cartesian Gaussians

a

T (Fa) = Nxpyhza exp(—ary) (2.37)

are used, where i + j + k = | is the angular quantum number, A refers to the
nuclear center and N is a normalization constant. For a given quantum number
| there are (/4 1)(/ + 2) cartesian Gaussians. This basis set for a given / value

may be transformed to a set of (2/ + 1) spherical Gaussians,
pim(Fa) = Nri~ exp(—ara) Yin(6a, ¢a) (2.38)

with the restriction n = / + 1, where Y),,(6, ¢) are the spherical harmonics. It is

also possible to transform directly to a set of 2-spinor Gaussians of the form
Givem, (Fa) = Nra~texp(—arz) Xu.m (6a, da) (2.39)

where X« m, is the angular part of the hydrogenic solution to the Dirac equation.
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It is tempting to assume that the basis for the large component should be quite
close to the non-relativistic basis. While this holds for lighter elements, it is
normally not accurate enough for heavy elements. Usually higher exponents are
required for an accurate description of the relativistically contracted inner shells.
Furthermore orbitals with / > 0 are spin-orbit split into two components, which

may have their maxima quite apart from each other.

An important feature in 4-component calculations is that the basis sets for the
large and the small component should not be chosen independently due to the
apparent coupling between both components. The relationship between the large
and small components of the bound state 4-spinor solutions may for a one-electron

atom be written as

= _V]_ (2.40)

2mey® = B(E)(G - p)yt; B(E) = [1 e

In the non-relativistic limit, the operator B(E) tends toward unity, so that

lim 2mcy® = (& - p)yt. (2.41)

Cc—00

This observation forms the basis for the kinetic balance conditions [71]. The
operator (& - ) acting on a large basis function generates a linear combination of
basis functions. In the unrestricted kinetic balance (URK) approach no such fixed
combinations are assumed, and all Gaussians generated (2.41) are independently
used as basis functions

XL ={G/} — XS = {G.,, G/Cil : (2.42)

From this it is obvious that the number of small component basis functions is
approximately twice the number of large component basis functions. In a basis
of 2-spinor Gaussians, the restricted kinetic balance (RKB) leads to a one-to-one
matching of the large and the small component basis due to their k-dependence.
In a scalar basis, however, the ratio between the number of small and large basis
functions will be exactly two for all / values. The resulting basis set is best

expressed in terms of spherical Gaussians

a 2ar?
XL = {G/olum} — Xs = {G/+2.I+l,m' (2/—+1 - 1) G/(.Il—l,m}' (2~43)
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In summary, kinetically balanced basis sets give energy eigenvalue spectra for
molecular and atomic systems that consist of continuum solutions below —2mc?
and above 2mc? as well as bound state solutions in the gap below 2mc? There is a
strict separation of positive and negative energy states for any reasonble chemical
system, and the electrons of the system are allowed to occupy only positive energy
states. The calculated energies converge towards the exact solutions when the
basis set is increased towards completeness. The convergence may be from above

or below, and this is the only difference from the non-relativistic case.

The scalar small component basis can be reduced by using dual family basis sets.
Exponents for the primitive large component basis for a given atomic center are
then selected from two lists, one for even-/ and one for odd-/ functions. That
means that for instance the large d exponents will be a subset of the set of
large s exponents, so that the small p exponents generated from the d functions
is already included in the p exponents generated from s and may therefore be

discarded.

2.5 Electron Correlation

In the Hartree-Fock approximation, the electron-electron interaction is considered
to be represented by only one Slater determinant. Generally, this solution recovers
about 99% of the total energy, but for many applications the remainder is crucial
to get an accurate description of the properties for the system. In the HF Ansatz,
the motion of the electrons are said to be uncorrelated and the state corresponding

to this configuration is often called the “vacuum".

In real systems, electrons interact with the field generated by all the other elec-
trons through the manifestation of instantaneous excitations from occupied to
unoccupied spin-orbitals. The correlation energy E..,, is then defined as the dif-
ference between the total exact non-relativistic (or relativistic) energy Eio of the

system and the Hartree-Fock energy Enxr in a complete basis-set expansion [62]
Ecorr = Etot - HHF- (2'44)

Since the HF wave function is the best single-determinant that can be obtained,

it is clear that any approach aiming at introducing electron correlation has to re-
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lax this constraint by considering more than one Slater determinant. A common
strategy is to include a number of determinants, managable by the computational
resources, that reproduce a large portion of the electron correlation. A customary
procedure to expand the determinantal space is to generate determinants that
involve unoccupied (virtual) one-electron states. This implies that one has to
consider determinants in which an electron has been promoted from an occupied
state in the HF wave function into an unoccupied state. This can be done for sin-
gle electrons in any of the occupied states into any of the unoccupied states. Such
a type of determinant receives the name of single-excitation determinant (S). In
the same manner, determinants in which two electrons have been promoted from

the occupied into the unoccupied states are called double excitation-determinants

(D).

2.5.1 Configuration Interaction

The simplest multi-determinantal method consists of adding Slater determinants
constructed from the occupied and unoccupied orbitals of the HF wave function
[63]

occ virt occ wvirt
W) = [Wue) + DD Wi+ ) ) chalwig) + - (2.45)
a r ab rs

= [Whe) + ) cslWs) + > cplWp) + -
5 D

This method is called configuration interaction (Cl), which stems from the fact
that electron correlation is retrieved from contributions to the electronic energy
arising from Hamiltonian matrix elements between different Slater determinants,
i.e. different electronic configurations. The ground-state is obtained by mini-
mization of the Cl energy

Ve | AW
Eco= min (Ve |H[Wq)

2.46
{es.py (ValWVa) ( )

with respect to the coefficients {c,}. This is equivalent to solving the secular
equation

Hc = EC|C, (247)
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where H is the Hamiltonian matrix with the matrix elements H,, = (W,|H|WV,).
Here the HF orbitals remain frozen and only the coefficients are optimized. The
lowest eigenvalue E¢, found is the electronic ground-state energy. Higher eigen-
values correspond to electronic excited states.

The method, in which all available determinants resulting from an expansion
in a finite set of orbitals are included in the calculation, receives the name of
full Cl. Despite its formal and conceptual simplicity, it is only applicable to the
simplest systems as the number of determinants is growing rapidly with the size
of the system and cannot be handled computationally. It is therefore necessary
to truncate the Cl expansion so that only a small subset of determinants of the
full set is included. The truncated Cl expansion should preferably recover a large
part of the correlation energy.

Usually, the singly and doubly excited configurations are retained, and the trun-
cated Cl is therefore called CISD. In general this scheme can recover about 90%
of the dynamic correlation which arises from the mutual Coulomb repulsion. How-
ever, in some situations the quasi degeneracy of a few states makes the single
reference state approach less sound, and a multi-reference (MRCI) approach is
required to evaluate the static and dynamic correlation arising from the simulta-

neous excitation of more than one determinant.

An important problem of truncated Cl methods is size-inconsistency. This means
that the energy of two infinitely separated fragments is not the sum of the energy
of the individually treated fragments. Therefore CISD is not suitable for the

correct description of dissociations in molecules.

2.5.2 Coupled-Cluster Methods

Since its introduction to quantum chemistry in the late 1960s by Cizek and Pal-
dus [72—74], coupled cluster (CC) theory has emerged as perhaps the most re-
liable, yet computationally affordable method for the approximate solution of
the electronic many-electron problem and the prediction of molecular properties.
Compared to CI methods, it has the advantage of being size-consistent by con-

struction. The CC wave function is written in a product from as an infinite
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expansion of a single determinant by considering excitations to infinite order

Wee) = [H(l + t;alaa)} !H (1+ t¥alalapas)| - - |Whe). (2.48)

a,r ab,rs

It should be stressed that the Cl and the CC wave functions are entirely equivalent
provided all excitations are included in the expression, and only differ in their
parameterization. Their nonequivalence becomes apparent only when some of

the excitation operators are omitted from the wave function.

Since (1+ t}ala,) = exp (t;ala,), it can be shown that the CC wave function can

alternatively by written as an exponential ansatz
|Wee) = exp T Whe), (2.49)
with the excitation operator
T=T1+To+ -+ Tp, (2.50)

where the T, denote the set of all possible excitations of n electrons

Ty = Z tlala, (2.51)
a,r

75 = Z e L VT (2.52)
ab.rs

The coefficients t7; are called coupled cluster amphtudes. A Taylor expansion

of the exponential operator leads to the following CC wave function

1 1:
Wee) =|Vhe) + T1|Whe) + (Tz + §T12> [WhE) + <T3 + ToT, + §T13) W)
1, 1., 1.,
+(Ta+T3T1 + §T2T1 + 57_2 + 57_1 Wnue) + -+, (2.53)

which contains triple and higher excitations as products of lower order excitations.

The CC wave function has to fulfill the electronic Schrodinger equation
HIWce) = EcclVcc), (2.54)

and i1s equivalent to the optimization of the coupled-cluster amplitudes t.;-. The
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nonlinear parametrization of the wave function (2.48) means that the derivatives
of the coupled cluster state become complicated functions of the amplitudes.
Therefore, the variational minimum conditions on the amplitudes give rise to an

intractable set of nonlinear equations for all amplitudes
(W le" HlWee) = Ecc (Vi leTWee). (2.55)

Solving these equations is impossible for all but the smallest systems which
makes the variational principle unsuitable but not impossible for the coupled clus-
ter method. Instead, the cluster amplitudes are determined by projecting the

Schrodinger equation in the form
T 5T _
e ' He' |[Vyr) = Ecc|WVhr) (2.56)

against a set of configurations (W’3 | that span the space of all states that can be

reached by applying the cluster operator T linearly to the reference state |Wye):

(Wpele THe |[Wye) = Ecc (2.57)
(Wis le"THe |Whe) = 0 (2.58)

This set of equations for the coupled cluster energy Ecc and the coupled cluster
amplitudes t77- are called linked coupled-cluster equations. The term linked is
used, because in diagrammatic coupled-cluster theory the energy independent
equations give rise to only linked diagrams [75)].

A Baker-Campbell-Hausdorff (BCH) expansion of the similarity-transformed Hamil-

tonian is no higher than quartic in the amplitudes:

e TAET <A+ [A.T1+ 31T, T) + S [A.7).T).7)

+ % (A, 1. 7]. 7). 7] (2.59)

The projected coupled cluster Schrodinger equation (2.58) therefore yields at
most quartic equations in the cluster amplitudes - even for the full cluster ex-
pansion. The BCH expansion terminates because of the special structure of the
cluster operators, which are linear combinations of commuting excitation oper-
ators of the form (2.52). Since the Hamilton operator H contains only one-

and two electron operators it leads to a rather simple expression for the coupled
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cluster energy:

Ecc = (Wuele T He™ |Wye) (2.60)
- 1 , -
= Eur+ ) Vel V) + 3 abeg(taz + £t — £5t) (Whel AIVE).

The coupled cluster correlation energy is therefore determined completely by the

singles and doubles amplitudes.

In practical calculations, the cluster operator T must be truncated at some exci-
tation level due to the growing number of excited determinants. By truncating,
some of the terms in amplitude equations will become zero and the amplitudes
derived from these approximate equations will no longer be exact. The energy
calculated from these approximate singles and doubles amplitudes will therefore
be approximate. How severe these are, depends on how many terms are included
in 7. Taking only the T; operator into account does not give any improvement
over HF, as matrix elements between HF and singly excited states are zero. The
lowest level of approximation is therefore T = T»; referred to as CCD. Compared
to doubles, there are relatively few singly excited determinants. Using 7 = T;+ T,
gives the more complete CCSD model. Both CCD and CCSD scales like M® in
the limit of a large basis set. Including triple excitations , T = T; + 7> + T3,
results in the CCSDT approximation (M8 where M is the number of basis func-
tions). The most frequently used method is the perturbative treatment of the
triple excitations on top of a CCSD calculation, CCSD(T) (M7).

The extension of the coupled cluster method to the relativistic case is very techni-
cal but rather straight forward. First, one has to examine the role of the negative
energy states in the N-particle wave function. Here, the no-pair approximation
is frequently used, meaning that all determinants contain only positive-energy
spinors. In a second step, the time reversal symmetry of a closed shell system is
used to introduce a Kramers-pair basis. The time-reversal operator i1s applied to
the excitation operators T, and leads to symmetry relations between the ampli-
tudes of Kramers pairs and furthermore to new expressions for the T,. Finally, the
reference determinant is replaced by the DHF wave function. This procedure is
the basis of the Kramers-restricted CCSD (KRCCSD) method [76]. Since all in-
tegrals are complex and due to the lack of spin symmetry in the relativistic theory,

an increase in computation time by a factor of 32 compared to the non-relativistic
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CCSD method is caused.

2.6 Density Functional Theory

The traditional methods in electronic structure theory, in particular Hartree-Fock
theory and its successors, are based on a complex multi-valued many-electron
wave-function. The main objective of density functional theory, which originates
from the Thomas-Fermi model, is to replace the many-body electronic wave func-
tion with the one-particle electronic density as the basic quantity. Whereas the
many-body wave function is dependent on 3n variables, three spatial variables for
each of the N electrons, the density is only a function of spatial three variables,

and is therefore a simpler quantity to deal with both conceptually and practically.

Density functional theory is founded on the Hohenberg-Kohn theorem and the
Kohn-Sham equations which will be reviewed shortly. The time independent

Hamiltonian of an n-electron system can be written as
A=T + Ve + Vi, (2.61)

where T is the contribution from the kinetic energy, Ve the interaction potential of
the n electrons, and Vi, the external potential, which is in the Born-Oppenheimer

approximation the sum of the nuclear Coulomb potentials.

n

n N
~ ~ 28
Vnuc:ZV("/) :Zga. (2.62)
For an n-electron system, the potential Viuc defines its identity. This means that

the V-term determines if for example we have a 68 electron system denoted an
Er atom, a Mt*'* jon or a CHFCIBr molecule.

The first Hohenberg-Kohn theorem [77] legitimizes the use of the density p(7)
as a basic variable. It states that: The time-independent external potential v(r;)
is completely determined by the electron density p(F) to within an additive con-
stant. In other words, from a given electron density the external potential, i.e.
the positions of the nuclei are determined. Furthermore, the wave-function and
hence all properties of the ground state can be obtained at least in principle from

the density. By inserting the external potential, determined by the density into the



38 CHAPTER 2. THEORY AND METHODOLOGY

Schrodinger equation, the Hamiltonian and therefore the wave-function is deter-
mined. It is important to note that the theorem states just the existence of this

connection, but does not give a recipe or a way to construct the wave-function.

The second Hohenberg-Kohn theorem [77] establishes a variational principle for
the energy as a functional of the density: If p(7) is the density arising from the
solution of the N-electron Schrodinger equation

AV = Efpl|¥) (2.63)

and for any density p'(r) # p(r) that satisfies

/p'(F')d3F: n, (2.64)

it follows E'(r) > E(F).

This theorem is derived from the Rayleigh-Ritz variational principle and the cor-
respondence between the wave function and the one-particle density. By using

the Lagrange multiplier the stationarity condition is given by

o {etel - | [ ptrror- |} -0 (2.65)
Utilizing the energy functional,
Elo) = (WIAIV) = (VT + Vee + Ve V) (2.66)
= (U|T + Vee|W) + /.p(F')v(F')dF
—Flol+ [ p(v(rar
the stationarity condition can be expressed in the Euler-Lagrange form

p= Sl _ 7y o 0PI

8p(F) op(F)’

where F[p] is a universal functional (independent from the external potential) for

(2.67)

all n-electron systems with Coulomb fields. The simple form of this equation
hides the fact that this universal functional is not available in explicit form.

Kohn and Sham found a practical scheme to map a many-electron system to a
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non-interacting system of quasi-particles which has the same ground state density
as the interacting system. By using single-particle orbitals {¢,}, the wave function
of the non-interacting system may be written as a single determinant, although
the Kohn-Sham orbitals are only trial functions to construct the one-particle

density. The electron density and the total energy are

o(F) =Y 1A, (2.68)
E=—5 L @0I10) + 5 [ 7PN 707)
+ 3 (@iIVaucld) + Exclol. (2.69)

The unknown exchange-correlation functional E,.[p] contains all contributions

beyond the Hartree energy. The orbitals {¢,}, are solutions of the Kohn-Sham

equations
1 2 eff
—SV2 4+ (9) = e ) (270)
eff 3 p(F') 6EXC
— . 2.71
v V+/dr|F—F’|+6p(F) ( )

The canonical Kohn-Sham equations have the same form as the Hartree equa-
tions, except that they contain a more general local potential v¢f(7). The com-
putational effort to solve the Kohn-Sham equations is not much more than to
solve the Hartree equations - and less than for the Hartree-Fock equations. The
Hartree-Fock equations contain a nonlocal potential operator in the two-electron
Hamiltonian and hence are not a special case of the Kohn-Sham equations. Nev-
ertheless, all three theories - Hartree, Hartree-Fock and Kohn-Sham - provide
one-electron equations describing many electron systems. The Kohn-Sham the-
ory, exact in principle, is distinguished from the Hartree-Fock theory in its ca-
pacity to fully incorporate the exchange-correlation effect for electrons. But the
success of DFT depends on finding an accurate exchange-correlation potential
Ve (F) = 0E,./Op(F). There is an extensive literature discussing the merits of

various potentials, and good accounts may be found elsewhere [78].

The extension of the Hohenberg-Kohn theorems to relativistic systems was first -
given by Rajagopol and Callaway [79—-81]. The main idea is that in the relativistic



40 CHAPTER 2. THEORY AND METHODOLOGY

model, the four-current j plays the same role as the density does in the non-
relativistic case. The generalization is straight forward but rather technical and
some subtleties have to be addressed. The relativistic Kohn-Sham equations are

given by
[c(@- B) + mc?(B — 1) + v*"[j]] %i(X) = €9i(R) (2.72)
where the effective potential may be written in the form

eff[7 1 _ 2 [ (7)o ‘5EXC>
.01 =~ (o0 + & [ ER 07+ 2

= > f N meis 56
—ca <eA(F')+e / |F~r‘|dr + 6J(F)> (2.73)

Here ¢ denotes the electrostatic and A the vector potential. Equation (2.73)
explicitly shows the contributions from the charge density and current density
parts of the four-current. These equations are also known as Dirac-Kohn-Sham

equations.

For the majority of quantum chemical problems suitable for a DFT treatment,
the accuracy ambitions are compatible with the use of the Dirac-Coulomb Hamil-
tonian. It was shown [82—84] that in those cases one can use the exchange-
correlation form from ordinary non-relativistic DFT without much loss of accu-
racy. This includes the use of gradient-corrected and hybrid functional which are

easily implemented in the relativistic formalism.
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QED Effects in Atoms

Considerable progress has been made in the past decades to accurately describe
few-electron systems in strong Coulomb-fields [85,86]. For example, calculations
for Li-like uranium using relativistic many-body perturbation theory gives 322.33
eV for the 251,,/?P;;> level splitting [87], which corrects to 280.56 eV upon
inclusion of lowest order vacuum polarization and electron self-energy [88, 89].
This is already in excellent agreement with the experimental value of 280.59(9) eV
of Schweppe et al. [90]. Higher-order quantum electrodynamic (QED) corrections
including mass polarization and recoil contributions from the nucleus are not
negligible, but approximately cancel out [85]. Even more impressive, QED effects
to the electronic g-factor are now so precise that hadronic contributions need to

be considered to achieve higher accuracy [91-93].

The situation completely changes for multi-electron systems as accurate rela-
tivistic electronic structure calculations including QED effects become more de-
manding in computer time with increasing number of electrons involved if electron
correlation is taken into account. Moreover, one changes from the simple free-
particle Feynman-Dyson picture to the bound-state Furry picture which modifies
the electron propagator involving the actual one-particle functions from the Dirac-
Hamiltonian. Nevertheless, in the last decade great progress has been made in
relativistic quantum calculations of heavy atoms or molecules with high nuclear
charge [64], in particular at the Dirac-Breit level applying Fock-space coupled-
cluster theory to atoms [94, 95]. These calculations now reach accuracies of a
few tenths of an eV for ionization potentials and excitation energies. Hence, they
are now in the region where one has to consider self-energy (SE) and vacuum

41
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polarization (VP) contributions to correct for valence properties.

To lowest order, QED effects consist of the one-photon Breit interaction (BI)
[96], the Uehling form of the vacuum polarization [29] and the one-loop self-
energy contribution [19, 97], with Breit interaction being the dominant term,
followed by the electron SE. The VP is usually much smaller than the SE and
of opposite sign. While the Bl and the VP (including higher order in the fine
structure constant a) are easily implemented into atomic program codes, the
evaluation of the SE term requires a complete set of one-particle Dirac states
within the Furry picture of QED, which becomes rather tedious even in the lowest
order. In a recent paper, Labzowsky and co-workers presented estimates for the
Lamb shift of the valence ns-electron levels in the alkali (Li-Fr) and coinage metal
atoms (Cu-Au) [98]. In a subsequent paper they confirmed these estimates by
using the multiple-commutator method for SE calculations within a Dirac-Slater
approach [99].

In this work the Dirac-Hartree-Fock approach within an interaction picture of
bound state QED [24] is used. The QED corrections to valence-shell ionization
potentials for the group 1, 2, 11, 12, 13 and 18 elements of the periodic table

down to the heaviest atoms with nuclear charge Z=120 are calculated.

3.1 The Breit Interaction

The interaction between two electrons is covariantly described by the exchange of
virtual photons (Fig. 3.1). This interaction can be interpreted by a potential ®(r)
which simplifies to the Coulomb potential in the static hmit. Here a derivation
of the frequency independent Breit interaction within the framework of modern
QED is given.

(1) (2)
f Y

rl'\/\/\/\/\/\/\/\/\/\ r

wl(l) 1/)’(2)

Figure 3.1: Feynman diagram of the lowest order Breit interaction
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The S-matrix element for the process is given by

— i [ d'n [ dniP()De(r - )P0, (3.1)
with the photon propagator Dg and the transition currents
i(n) = PP (v (n) (3.2)
y w( n) ;
— _/ﬁ )( ) i rl .

The time-dependence has been separated and the transition frequency is defined
by w{™ = E{ — E™ . To distinguish 4-vectors from spatial vectors, the vector-
arrow is omitted. By inserting the Fourier representation of the currents and the

photon propagator (in the Feynman gauge) into (3.1) one obtains

d*k @, —4meikle—n) . _ o)
—I/d4f1/ d4f2/ 4 ;?) )e'wf/ t’:kz—w_/;/l)(rl)elwﬁ Erj,
(3.3)

The following t.,-integration reduces the four dimensional momentum integral to
a three dimensional integral. After transformation to spherical coordinates, the
angular part of the k-integral can be integrated trivially and the remaining radial

integration can be solved by using the residual theorem.

(1) e
e'Yri (t=|rA—r3l)
= _I/d3r2/dtjf, ’wf' /d3r1 f]é})( 1). (34)

|f1“f2’

£ ;
fi A (7,t)

From this one can see, that the vector potential A ( , t) can be rewritten as a
retarded potential

@) B3 [

At — [ =

A(f];)(r—z"t):/d?,rl.jf/ (1 : ’_} 2’)' (35)
| — A

and the transition current jﬁf)(rz) interacts with the electromagnetic field emitted

by the other current j{V(73) at an earlier time with time difference |4 — 7| =

|ri — f3|/c (from now on the c is kept for the purpose of approximations which

have to be made).

The transition currents can now be inserted into (3.4), where the identity 9 =
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9% is used and the exponential function is replaced by a Taylor expansion in

powers of 1/c. The time integration can thus be carried out
Sf/ ~ __27”6 1) +Ld /d3 /d3f1 ,‘/J(2 )w(l ( )(1(1 1(2 d' (1) . (2))

Nwsl| wi|A — A
( g ol 9pli— 21N 4@ )y 07).
|n — |

c 2c
(3.6)
With w,((}) = -wﬁ?) and the assumption that the % are eigenfunctions of the
Hamiltonians HMy{? = EMy{ one can show that
wiilA = B = [HY, [H?, 1A - 2. (3.7)

This expression can be calculated by using the explicit form of the Dirac Hamil-
tonian H®) = ca® - g, + M2 + HE (7)), where the momentum operator does

not commute with | — 73|

al.ag® g . (g -)a? . (7 -5
wﬂﬁ—@zﬁ{q o _ab-(A-Ran- (A 2@ (3.8)
| — a3l A — )
By inserting this result into (3.6) one obtains (7= 7/r)
Sri > — 2mid (W' + w? /d3 /d3f1 P PN(B) YV (7) (3.9)
1 an . G2 4 (G0 . 7 (a2 - 7) B
¢ [ _ = ( )( :| (2)(f) )(F1)-
A —fl 2|A — R

The term in the brackets is the desired effective interaction potential. The second
term, within the brackets, is the frequency independent Breit term. This correc-
tion to the electron-electron interaction accounts for the magnetic interaction
and retardation to the order a2, and only includes the exchange of a single virtual
photon as shown in Fig. 3.1.

Therefore, the effective interaction operator has the form

e? e a(l) a(2 + (a(l) )( —'(2) . ﬁ)
®(r;) = — (3.10)
e 2 2

= Pc(n2) + Perei(n2).

As expected the first term denotes the Coulomb potential between the particles.
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In addition there is a correction term ®geit, quadratic in the velocity, which is
known as Breit interaction. In a non-relativistic approximation (also for the wave-
function w,(,”f)) the potential can be reduced to a sum of contributions that can

be recognized as two-electron spin-orbit and spin-spin interactions [21].

3.2 Radiative potentials

The momentum representation of the high-frequency contribution to the radiative
potential is equal to [100]

) (3.11)
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where ® is the atomic potential that at small distances is equal to the unscreened
nuclear electrostatic potential. Here, the first term contains the polarization
operator P(—p?) and leads to the Uehling potential. The actual problem is the
calculation of the self-energy, represented by the terms containing the electric
f(p?) and the magnetic g(p?) formfactor of the electron.

The Uehling correction is derived first because of the simplicity of its calculation.
The field of a fixed charge (nucleus) is given by the Coulomb potential ®c(r) =
Ao = Ze/r (relativistic units). The components of its three-dimensional Fourier

expansion are

Plp= Aglp) = —5— (3.12)

Including the radiative corrections, this field is replaced by the effective field

P
Ag = Ay + D0p4—‘7’:AA. (3.13)

The second term gives the required change in the scalar potential. In the first

approximation of perturbation theory for P(5?), the exact photon-propagator
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D(p?) can be replaced by the free photon-propagator D(5?)

4

D(p?) ~ D(F%) = ~ =3 (3.14)

Thus, the radiative correction to the field potential is

dn/e
 (p2)?

To determine the form of this correction in the coordinate representation, the

0®(p) = P(=5") (3.15)

inverse Fourier transform has to be calculated

d35
PTED( D) 3.16
o) = [ 750 1555 (3.16)
Since 0P (pP) is a function of z = —p? only, integration over angles gives
sm sinrv -z
d(F) = d(t 3.17
5(7) i / 6 24(-2) (3.17)
I T

where was used that the integrand is an even function of y = \/—z. The contour
integration can now be moved into the upper half-plane of y, and coincides with
the branch cut of the function P(—p?). This cut extends along the imaginary
axis from the point 2/m, the physical sheet corresponding to the left side of the

cut. Replacing y by a new variable x = jy, one obtains

Od(r) = ﬁ /2: Imod(x?)e™ ™ x dx. (3.18)
Integration over £ = x2, yields
6d(r) = Q;ﬁ /: Im dd(€)e™"VE de. (3.19)
The imaginary part
Im §D(€) = —%elmp(g) (3.20)

araZe |¢— am?
= 7r3a£2e gm(£+2m2)
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can be found in standard textbooks [101], and after an obvious change of variable

one obtains
Dy(r) = 8d(r) (3.21)
2a = 1 t2-1
— "o —2mrt e _== dt'
3 Pelr) /1 c < 2t2> 2

the well-known Uehling potential [29].

In analogy, the potential ®mag(r) for the magnetic interaction can be derived

Orag(r) = = / P )5 7 bc(F) el (3.22)
maa(r) = 5 [ €779(=P)P-F Pc(P) i3 ‘
_4mZe 57 g(— )5 21 d3p
_nZe, . = [ ¢ 5. Iy @5
After angular integration one obtains
Ze | _ =1 > g(—p°)
= . . _| 1pr .
Onag(1) = o (=i7-S)7m [ Tempdp (329
A el [ g(€) JE
= —iy V)= Im =>2eVi d
27rm( it )r,/o m £ © ¢
where the new variable £ = —p? was introduced. With the imaginary part of the
magnetic form factor of the electron [101]
img(g) = ——2 (3.24)
§(€ —4m?) '

and another change of variable £ = 4m?t?, one obtains

Oraslr) = o (=7 9) [0 [ (e ar-1)].

The last term leads due to the electric interaction to the potential ®¢(r) which
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is given by
G _ L d*p
®U(r) = /e’” (F(=p") = 1) CDC(D)W (3.25)
Z ® f(-p%) -1
2K Im / ———( pﬂ) eP pdp
mr - p
o £(g)

Tr Jo

After angular integration and sufficient changes of variables, the imaginary part

of the electric form factor of the electron [101]

Im f(§) = = [—3£+8m2+2(£~2m2)log E——mT (3.26)
4\/t(t — 4m?) A2 '
can be inserted. The final integration gives
Ay - _ @ -1 o
ok == 5oc) [ = [(1-38)
4m? ST ) [
X [Iog(t2—1)+|og (7)} —§+§:| 2 d (327)

Here, A is a low-frequency cut-off parameter. To reproduce the results of ref.
[102,103], a suitable replacement for the second logarithm is 4log(1/Za + 0.5)
where X was selected [24] of the order of the electron binding energy A ~ (Za)?m.
The electrical potential 1s furthermore not applicable for very small distances
r K Zare. This is taken into account by a small distance cut-off coefficient

mr/(mr+ 0.07Z%a?). The final expression for the electric form-factor reads

Su(r) = = AZ. ) 20c(r) [ dtt [(1 ~ 2
elll) = T - c\r ) \/t—z—-_—I _ﬁ
x |log(t? — 1) + 41 2 105 —§+i (3.28)
g o\ 2T | '
with
mr

A(Z r)=A.(2Z) (3.29)

mr + 0.0772a2"

A consistent calculation of the low-frequency contribution to the nonlocal self-
energy operator using Coulomb or parametric Green's functions is a complicated
task [24]. It is much easier and also sufficient to fit this contribution using a
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parametric potential ®.,(r). To reproduce the p-level radiative energy shifts

[102,103], the following expression can be used

B(Z)
e

Drow = — bl o o o R o (3.30)

Here ag is the Bohr radius and is given by B(Z) = 0.074 + 0.35Za.

3.3 Computational details

Dirac-Hartree-Fock (DHF) calculations were carried out using the Dirac-Coulomb

Hamiltonian (in atomic units), as described before

H = Z (ca@ - B + B + Viue) + rl (3.31)

i i<j Y
with @ and B denoting the Dirac matrices in the standard Dirac representa-
tion. The equations were solved numerically using a modified code of the pro-
gram system GRASP [104]. For heavy elements, the 1s-shell radius is very small
({r)1s = 500 fm) and as a consequence, the influence of the finite nuclear size
is an important contribution to the total energy. The electrostatic potential of

the nucleus Vi, was therefore modeled by a two-parameter Fermi-type charge
distribution [105, 106]

_ 0o
 14exp[(r—a)/b’

o(r) (3.32)

where a and b were extracted from ref. [105].

Due to the small size of the quantum electrodynamic (QED) corrections, they are
treated as a perturbation [107]. A fully self-consistent implementation of these
effects within the GRASP code is currently in progress. The major correction
to the non-relativistic Coulomb term stems from the Breit operator, which was
treated within the Coulomb-gauge [96, 108, 109]

ay - Gy R o exp(iwiar) — 1

exp(iwianz2) — (a1 - V1)(@2 - V) >
n2 Wiz N2

gw.C(1r2) ==

(3.33)
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where wy, is the energy of the virtual (transversal) exchange photon. The first
term is the retarded Gaunt term (Gl) and the second term arises from the choice
of the Coulomb gauge instead of the Feynman gauge. This is known as the re-
tarded gauge term. This correction to the electron-electron interaction accounts
for magnetic interaction and retardation to the order a?, and only includes the
exchange of a single (left-right), virtual photon as depicted in Fig. 3.1.

The (other) radiative corrections are calculated by a nonlocal radiative potential,

which 1s split into an self-energy and a vacuum polarization part

AEvp = (V[Dyp(r)|V)
~ (V|Dy(r) + dwk(r) + dks(r)|V). (3.34)

This implies that the energy shift is calculated as an expectation value of a ra-
diative one-electron potential using the eigenfunctions of the DHF operator. In
general the radiative perturbation is a series expansion in the two parameters «
and Za, where the powers of a describe the order of the QED corrections and
Za describes the order of relativistic corrections to the energy levels [107]. It is
known that the latter expansion works quite well for lighter elements, but it is
less than clear how well it works for elements with high nuclear charge such as

the superheavy elements where Za < 1.

For the vacuum polarization the potential is well known. By utilizing perturbation
theory for the polarization operator P(—p?), the energy contribution of lowest
order (a(Za)) is given by the Uehling potential (3.22), where the virtual electron-
positron pair is allowed to propagate freely (Fig. 3.2). The Uehling term gives
typically more than 90% of the VP in hydrogen-like atoms. In presence of the
nuclear Coulomb field the electron and positron wave functions become distorted.
Wichmann and Kroll [110] have considered the vacuum polarization of order a in
a strong Coulomb field (Fig. 3.2) and have shown that the polarization charge

density is an analytic function of Za for |[Za| < 1,

3 2
owelr) =22 (-20@)+ 5 - 1) 7+ 2mcd

s @ 9
—%3 + (—66(3) + % - %2> r+ O(fz)} : (3.35)

The Kallen-Sabry correction [111] cannot be written in such a short analytical
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form. Therefore, just the crucial Feynman diagrams are presented in Fig. 3.3.

Figure 3.2: Feynman diagrams for vacuum polarization of order a(Za) Uehling (left)
and of order a(Za)3 Wichmann and Kroll (right).

Figure 3.3: Vacuum polarization of order a?(Za) (Kallen-Sabry).

The calculation of the self-energy operator (r, r’, E) shown in Fig. 3.4 is more
complicated and rather tedious. The problem can, however, be divided into two
parts. In the first part the electron interacts with a high frequency virtual photon
where the nuclear Coulomb field needs to be included only in first order. The

second part represents the interaction with a low frequency photon.
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The radiative potential for the self-energy is given by a sum of three terms
(DSE(r) = (Dmag(r) £ CDel(r) . % (Dlow(r)- (3-36)

which were derived in chapter 3.2. All three self-energy potentials ®¢m, Pmag and

Figure 3.4: Feynman diagram of the electron self-energy

®w were implemented into GRASP. For the numerical t-integration a modified

Simpson-rule on a logarithmic grid was used to handle the pole of the integrands.

The function A,(Z) in the electric interaction term (3.28) was obtained by ad-
Justing the obtained values to accurate calculations of self-energy contributions
in hydrogen-like atoms for ns electrons by Mohr [102, 103,112, 113]. A suitable
choice for A,(Z) is

Z

An(Z) = Ano + A"ll + exp[(Z/An2)°]

(3.37)

Adjusted coefficients A,, for the different main quantum numbers are given in
Table 3.1. For higher principal quantum numbers n, the coefficients A, can be

derived from a least squares fit to the data in Table 3.1
Ani = Cio (1 + cin?). (3.38)

The coefficients are listed in Table 3.2.
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n AnO Anl An2

1 0.7645 0.00230 112.930
2 0.7912 0.00629 101.636
3 0.7980 0.00738 101.611
4 0.8009 0.00779 101.047
5 0.8023 0.00799 100.632
6 0.8032 0.00813 100.607
7 0.8037 0.00824 100.591
0 0.8061 0.00860 100.765

Table 3.1: Adjusted coefficients A,(Z) for the electric interaction term in eq. (3.37).

1.05

0.85

0.8

Figure 3.5: Adjusted coefficients A,(Z) for different ns orbitals for the electric inter-
action term in eq. (3.37)

/ Cio Ci1 Ci2
0 0.80608 -0.0516 1.489
1 0.00860 -0.7329 1.465
2 100.76488 0.1207 3.473

Table 3.2: Adjusted coefficients ¢; for the coefficients A,
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3.4 Results and Discussion

The calculated contributions from the VP, the SE and the Bl to the ionization
potential for Group 1, 2, 11, 12, 13 and 18 elements of the periodic table are
given in Table 3.3.

The SE contribution is approximately an order of magnitude larger than the VP
and has the opposite sign as one expects. However, the total VP contribution is
increasing over several orders of magnitude for the heavier elements and becomes
comparable to the SE term with increasing nuclear charge Z. This originates from
the strong Coulomb field that the inner tail of the valence electrons experience
with increasing nuclear charge. This is most important for the short-range Uehling
potential. In fact the VP and SE contributions for the valence shell ionization

potentials approximately fit a simple power law,
E(Z)=CZ" (3.39)

as shown in Fig. 3.6. The coefficients C and <y are obtained from a linear
regression and given in Table 3.4. It is worth mentioning that the exponent -y for
the vacuum polarization as well as the self-energy of groups 11 and 12 is roughly
70% larger than for the others investigated groups. All three SE terms in (3.36)
are important for the total SE contribution. A nice example is the 2S;,, — 'S
ionization of gold. The magnetic form-factor contribution to the total SE is 71 %,
the electric form-factor contributes for 22 %, and the (long-range) low-frequency
contribution is 7 %.

A comparison of the SE values to the results obtained by Labzowsky et al. [114]
for group 1 and 11 valence-shell ionization potentials shows good agreement
(Table 3.5). Note that for Rg and Cp, the relativistic 7s contraction is so large
that ionization occurs out of the 6ds/, shell instead of the 7s shell [115]. This is
in contrast to the lighter group 1 and 11 elements where ionization occurs out of
the valence ns shell. This explains the changing trend in all QED contributions
down the group 11 and 12 in the periodic table. Note that Labzowsky et al. [114]
only considered removal of an electron out of the ns shell. A recent paper by
Indelicato et al. [116] also investigated QED effects in superheavy elements. Their
total SE term within the Welton model [117] at the DHF level of theory for Rg

Is 0.084 eV, which is in good agreement with the presented value.
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system SE VP SC-Gl (w=0) SC-Bl(w=0) PT-Bl (w=0) PT-Bl(w — w=p)
Group 1
(3512 = 1 So)
Li ~3.366 x 107° 1189 x 107® —1418 x 107* —1279 x 107*% —-1.279x 107* —9.450 x 107°
Na —1.366 x10°% 1.639x1075 —2734 x10"% —2.799 x 107* —2.088 x 10°% —7.250 x 1077
K —5414x107% 3729 x107° —2482x10"% —2751x10% —-2753x10"* —3.530x 107°
Rb —~9.720x107* 1440 x10°% —-2630x 10"% —3.568x 10°% —3.580x 10°* —2.770 x 1075
Cs —2.376 x 1073 3.296 x 1074 —2.247 x 1074 —3711x10°* —3.736 x 10°* —8.800 x 105
Fr —6.150 x 1073 1.651 x 107> —4.816 x 10°% —7.454 x 107*% —7.457 x 107* —-5130x10~*
E119 —2.120x 1072 1.212x10°2 —4.244x 103 —4650x 1073 —4.639x10"3 —-3070x10°3
Group 2
(*So — 251)2)
Be —-8998 x 107>  3.450x 10°° —3.763 x 1074 —3.460 x 107* —3.460 x 107* —2.550 x 1078
Mg —4.436 x 107* 2469 x 10 ° —5319 x 10°* —-5.206 x 107 —5.208 x 10~* —1.136 x 107°
Ca —6.976 x 1074 4.860 x 107°° —4.602 x 10°% —4.690 x 10°* —4.693 x 107* —4.600 x 10~°
Sr —1705x107*% 1.728x10* —5628x10"% —6.297 x 107 % —6.318 x 107* —=3.170 x 105
Ba —2729 x 1073 3814x107% —-5679x10°* —6.793x 10* —6.814x10"* —9.700 x 10°°
Ra —-6.982x1073 1786 x10 % —1060x10"3 —1254x 103 —1256x 1073 —5370x10°*
E120 —2278x 1072 1.321x1072 —5341x 1073 —5591 x 1073 —5593 x 103 —3.120 x 103
Group 11
(2S1/2 — 1S0)
Cu —-3328x 1073 2.765x 1074 —3686 x 103 —3437 x 103 —3.448x 1073 —4.900 x 10°°
Ag —7377x1073 8495 x 104 —5432x10"3 —-5188x 103 —5210x 1073 —4.630x10°°
Au —2643x1072 5284 x107% —1274x10°2 —1224x102 —-1.232x1072 —4660 x 10°*
Rg —8.958 x 1072 3.648 x 1072 —3643 x 1072 —3.423x 1072 —3.444 x 1072 —3400x 103
Rg? 3290 x 1072 —1.276 x 1072 2958 x 1072 2791 x 102 2796 x10°2 —6.000x 10
Group 12
(.‘50 - 251 2)
Zn —3.366 x 1073 2.864 x 107* —3414x 1073 —-3.217x 1073 -3236 x 103 —1090 x 10°°
Cd —7.287x10°3 8559 x 10 % —5110x 103 —4.905x 103 —4926 x 1073 —6.100 x 10°°
Hg —2575x107%2 5262 x 107 —1208 x 1072 —-1162x 102 —1169x 1072 —-5230 x10°*
Cp —9076 x1072 3790 x 1072 —3682x 1072 —3457 x 1072 —3478 x 1072 —3.640 x 1073
Gp? 3520 x 1072 —1397 x 102 3072x10°2 2898x10°2 2900x 1072 —6.700x10°*
Group 13
(P, = 1S0)
B 2381 x107*% -9695x 1079 —8681 x 107 —6.847 x 10°% —6.848 x 10~* 1.305 x 1077
Al 5776 x 1074 —3210 x 10> —1291 x 1073 —-1071 x10"3 —1.071 x 1073 3.100 x 1077
Ga 2.018 x 1073 —1.707 x 1074 —4.157 x 1073 —-3.482x 103 —3490 x 1073 7.600 x 10°©
In 3466 x 1072 —4.010 x10°* —7.249 x 1073 —6.184 x 1073 —6.213 x 103 1.943 x 104
TI 6226 x 1073 —1230x 1073 —1.673x 1072 —-1488x 1072 —1502 x 1072 —2.180 x 10~*
E113 —3.143x 1073 2860 x 1072 —4877 x 1072 —-4.615x 1072 —4.479x 1072 —4679x 103
Group 18
(*So — 2P3,)
He —1781x107% 5871 x10°% —1.735x10 3 —1736x10 3 —1.735x 103 0000 x 1079
Ne 1037 x1073 —6090x 10°° —2152x 103 —-1473x103 —-1473x 103 1217 x 1073
Ar 1240 x 1073 —9.531 x 107° —1.488 x 1073 —7.247 x 1073 —7.235x 107* 3.993 x 1075
Kr 2374 x10°3 —2.986 x 107* —3.056x 1073 —1675x 103 —1.674 x 103 2.897 x 104
Xe 3.183x 1073 —6.060 x 10°* —4.149x 103 —2370x 10 3 —-2.373x 103 8.240 x 104
Rn 6.142 x 1073 —2290x 1073 —4.828 x 1073 —2.336 x 1073 —2.357 x 1073 3.129 x 1073
E118 1192 x 1072 —8.441 x 1072 —1631 x 1072 9422x10°* 8613 x 10°* 6.350 x 1073

Table 3.3: The self-energy (SE), vacuum polarization (VP) and frequency-dependent
Breit contributions (BI) (in eV) and sum over all QED contributions to the
ionization potential E — E™ of each element E at the DHF level of theory.

Notation:

SC: self-consistent treatment; PT: Perturbative treatment; Gl:

Gaunt term only; w=0: low frequency limit. The last term PT-Bl(w — w—g)
denotes the correction to the Breit interaction due to the finite frequency of
the transversal exchange photon. ¢ The 2D5/2 —+ 3D3 transition is taken.

b The Sg -+ 2Ds 5 transition is taken.
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group Cse [eV] YsE Cvp [eV] Yvp
1 3.510 x 107° 1.685 5.867 x 1078 2.318
2 9.246 x 107° 1.505 9.074 x 1078 2.236
11 7.880 x 1077 2.427 1.218 x 107° 3.576
12 6.298 x 1077  2.469  8.841 x 1071 3643
13 3.136 x 107° 1.202 4.719 x 1077 1.746
18 8.682 x 107>  0.965 4.193 x 1077 1.944

Table 3.4: Adjusted parameters C and y from a linear fit of the loglog plot in eq. (3.39).

The SE and VP contributions for the Group 13 and 18 elements of the peri-
odic table are also listed for comparison. However, one needs to include QED
effects self-consistently to properly account for second-order effects originating
from SE/VP core-relaxation of the s-electrons at the nucleus, which leads to
shielding/de-shielding of the nuclear charge. For a detailed discussion see Flam-
baum and Ginges [24] as well as Derevianko et al. [118]. Nevertheless, the results
clearly show that even for the superheavy elements, SE and VP contributions for

the p-shell rarely exceed 0.01 eV and one can expect even smaller effects for
d-and f-shells.

Table 3.3 shows that, as expected, the frequency independent (instantaneous)
Gaunt term is the dominant contribution to the total Breit interaction for all
elements considered, as discussed earlier in great detail by Lindroth et al. [119].
It was confirmed that the frequency dependent contribution to the Bl is negligible
for the lighter elements, but can become rather large for high nuclear charges.
For high Z such contributions cannot be neglected anymore in the valence space,

even in lowest order.

There has been intensive discussion in the past if the two-electron Breit term
should be used perturbatively or variationally [120-122]. Grant pointed out that
a variational procedure is clearly preferred in a subsequent treatment of electron
correlation [123]. Moreover, it has been argued that a variational treatment of
the Breit interaction is most important for valence properties in many-electron
systems [119]. In order to analyze this in more detail, the difference of a self-
consistent with a perturbative treatment for the Breit interaction is compared for
a series of elements in the periodic table. The results in Table 3.3 clearly show
that the self-consistent total energy contribution to the ionization potential does

not differ significantly from the perturbative treatment even for high Z atoms.
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This is in agreement with the results of Ishikawa et al. who found similar small
changes for Ne, Ar and Xe [124].

system our work Ref. [114]
Li —3.366 x 107> —-3.84 x 107°
Na -1.366 x 107* —-2.83x107*
K —5.414 x 107* —493 x 1074
Rb —9.720 x 1074 -1.23 x 1073
Cs —2.376 x 1073 —2.15x 1073
Fr —6.150 x 1073 —-6.03 x 1073

E119 —2.120 x 1072 —2.74 x 1072
Cu —3.328 x 1073 —-2.66 x 1073
Ag —7.377 x 1073 —6.14 x 1073
Au —2.643 x 1072 —2.21 x 1072
Rg —8.958 x 102 —8.66 x 1072

Table 3.5: A comparison between our calculated SE contributions with those of Lab-
zowsky et al. [114] for the ionization energies (2S;,, — Sg) of the alkali
and coinage metal atoms (in eV).

Furthermore a detailed study of the Breit contributions to the orbital energies
for the neutral mercury atom, similar to the work by Lindroth et al. [119], was
performed. (Table 3.6). For the self-consistent treatment, the results of Lin-
droth and co-workers [119] were reproduced. The perturbative treatment gives
qualitatively the same values for the orbital energy contributions. Here, the or-
bitals from a Dirac-Hartree-Fock calculation (without Breit or any other QED
contributions) were used to calculate the change in orbital energies due to the
frequency independent Breit term. It is evident that the largest contributions
come from the inner shells. However, the difference in both treatments becomes

rather large in the valence shell, as observed earlier by Lindroth et al. [119].

Naturally, one relates orbital energies to ionization potentials by Koopmans the-
orem [125]. The data in Table 3.7 proves that Koopmans' theorem is still valid
for the Breit contributions, as both changes in orbital energies and direct calcu-
lations of energy differences between the neutral and charged atoms give very
similar results for all ionizations out of specific nlj levels in the mercury atom. A
full variational treatment includes changes in Coulomb- and exchange contribu-
tions of the Breit interaction due to orbital relaxation, which obviously cannot be
neglected anymore for orbital energies. Moreover, the DHF orbitals are not eigen-

functions to the Fock-operator including the Breit term. One should therefore
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Hg DHF PT-BI PT-BI[L19] SC-BI  SC-BI [119]
ls  -83696.997 312.101 315.103  298.661 298.233
2s  -14979.173  41.981 41714  33.486 33.470
3s -3623.573 9.926 9.635 6.198 6.193
4s -834.330 2.761 2.496 1.272 1.270
55 -138.927 0.568 0.493 0.192 0.191
65 -8.932 0.038 0.042 0.012 0.012
2p*  -14336.797  66.549 65.470  56.259 56.245
3p*  -3337.260  15.397 14337  10.704 10.702
4p* -710.891 4.153 3.491 2.269 2.269
5p* -96.271 0.778 0.593 0.330 0.330
2p  -12385.198  45.457 43.918  35.505 35.510
3p -2899.170  11.147 9.736 6.386 6.386
4p -603.760 3.203 2.322 1.186 1.186
5p -77.326 0.628 0.373 0.131 0.131
3d*  -2433.623 9.369 8.304 4.648 4.648
4d* -402.618 2.405 1.349 0.625 0.625
5d* -17.683 0.273 0.119 0.007 0.007
3d -2340.654 7.619 8.304 2.989 2.988
4d -382.369 1.972 1.349 0.260 0.260
5d -15.631 0.219 0.119  -0.030 -0.030
4f* ~121.699 1.218 0.759  -0.158 -0.158
4f -117.313 1.032 0.597  -0.313 -0.313

Table 3.6: Dirac-Hartree-Fock (DHF) orbital energies and self-consistent (SC) as well as
perturbative (PT) Breit (Bl) contributions (eV) to the corresponding orbital
energies of the mercury atom in comparison with Lindroth et al. [119]. In
the usual angular momentum notation asterisk denotes j = / — 1/2 and no
asterisk denotes j = [+ 1/2.

not conclude from the original perturbative analysis for orbital energies [119] that
the Breit interaction for valence energies cannot be treated perturbatively any-
more for the valence shell. On the contrary, the results clearly demonstrate that,
if high precision is not required, a perturbative treatment of the Breit interaction
for the valence space is sufficient. However, to incorporate changes in atomic (or
molecular) properties due to the Breit term (see for example refs. [126,127] for

recent molecular work), a variational treatment is preferred.

Finally, recent accurate Fock-space coupled-cluster calculations for the gold atom
by Eliav et al. [128] should be mentioned. The calculated ionization potential of
9.197 eV changes to 9.176 eV when VP and SE is included, which now is in
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nl AE Ae
1s 302.439 298.661
2s 33.693 33.486
3s 6.186 ©.198
4s 1.250 1.272
5s 0.184 0.192
6s 0.012 0.012
2p* 56.452 56.259
3p* 10.661 10.704
4p* 2.232 2269
5p* 0.316 0.330
2p 35.741 35.505
3p 6.374 6.386
4p 1.165 1.186
5p 0.125 0.131
3d* 4.651 4.648
4d* 0.608 0.625
5d* 0.004 0.007
3d 3.010 2.989
4d 0.251 0.260
5d -0.029 -0.030
4f* -0.161 -0.158
4f -0.308 -0.313

Table 3.7: Comparison of the Breit contribution (eV) to the ionization energy AE of the
mercury atom compared to the Breit contribution to the orbital energy Ae
obtained from a variational treatment of the Breit interaction for the mercury
neutral atom. The removal of an electron is calculated for each shell with
quantum number n/j. In the usual angular momentum notation the Asterix
denotes j =/ —1/2 and no Asterix denotes j =/ + 1/2.

less good agreement with the experimental value of 9.225 eV [129]. Hence, the
total correlation error is estimated to be 0.049 eV in Eliav's calculation, that is
96.8 % of the total electron correlation has been accounted for. This clearly
demonstrates that the bottleneck in such calculations still remains in the electron

correlation treatment.



Chapter 4

Dirac-Hartree-Fock studies of X-ray

transitions in Meitnerium

4.1 Superheavy elements

Transuranium elements are usually man-made. By neutron capture, for example
in supernovae explosions or in high flux reactors, and subsequent 3~ decay, it is
possible to produce elements up to fermium. While from neptunium to californium
some isotopes can be produced in amounts of grams, the two heaviest species,
2%4Es and 2%"Fm, are only available in quantities of micro- and picograms, respec-
tively [130]. Due to the lack of 3~ decay and too short a and fission half-lives

of the heavier elements this method ends at fermium.

Hence, one faces huge problems for the production of superheavy elements. The
best possibility to access elements beyond fermium is by utilizing heavy-ion fusion
reactions. This canbe done byshooting heavy, neutron-rich ions from accelerators
on heavy-element targets. Unfortunately, the cross-section for such a process is
very small. Nevertheless, a wide range of projectiles and targets are available.
Possible combinations are actinide targets irradiated by relatively light projectiles
ranging from neon to calcium, or bismuth targets with projectiles ranging from
calcium to krypton for example. Since the ratio of neutrons to protons increases
with the nucleon number A, one cannot easily combine nuclei from the known
region to reach the so-called island of stability, because the produced nuclei would

be severely neutron-deficient. The heaviest elements have so far been produced by
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using very neutron-rich radioactive projectiles and targets. Generic accelerators
are cyclotrons with diameters of a few meters and high-beam currents in order

to compensate for the decreasing cross-section for the nuclear synthesis.

The first transuranium elements were identified by using their a-decay and chem-
ical properties. Later, physical techniques were developed which made it possible
to detect nuclei with lifetimes of less than a second. Further improvements of
these methods culminated in the velocity Filter SHIP at the GSI in Darmstadt.
It is an electromagnetic separator, designed for in-flight separation of unretarded
complete fusion reaction products. The main subjects for investigation are a-,
proton-emitting and spontaneously fissioning nuclei far from stability with half-
lives as short as microseconds or below and formation cross-sections down to the

picobarn region [12].

The study of the reaction ®4Ni +2%° Bi — 273Rg* with beam energies ranging
from 300 to 400 MeV revealed a complex decay chain (Fig. 4.1). In the first
two measurements in 1994 and 2000 a total of six atoms were observed at the
GSI in Darmstadt [131,132]. The half-lives of the products are in the range of

272Rg CN
[e31
11.0 MeV
268t 2.70 ms
Qo
0.7 MeV
264 37.14 ms
a3
9.1 MeV
260D 3.01s
Qg
9.1 MeV
256 4.06 s
Qs
8.4 MeV
252014 206 s

Figure 4.1: Possible decay chain of 272Rg which is produced by 84Ni +209 Bj — 273Rg*
and a subsequent neutron emission [132]

milliseconds to seconds and are very common for such superheavy elements. The

nuclei were identified by position and time correlation analysis which allows to
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establish genetic relations of the nuclei within the decay chain. The data were

measured by using position sensitive Si detectors [133].

The stability of superheavy elements can be determined from calculations of
the nuclear ground-state binding energy. In macroscopic-microscopic models the
binding energy is given by a sum of the macroscopic part, derived from the liquid
drop model of the nucleus, and the microscopic part, which is deduced from the
nuclear shell model. The advantage of this hybrid model is that more exact values
for the binding energy can be obtained as parameters are used from measurements
of known nuclei [134, 135].

The knowledge of the ground-state binding energy, however, is not sufficient for
the calculation of partial spontaneous fission half-lives. Here, it is also necessary
to determine the size of the fission barrier over a wide range of deformation.
These calculations of spontaneous fission and «a-decay rates predict especially
stable nuclei with closed shells near Z = 114, 120 or 126 and possibly for Z = 164.

4.2 Meitnerium Experiments

In heavy ion separators like the velocity filter SHIP at the GSI in Darmstadt, the
produced superheavy nuclei come to rest in less than a us before they are inves-
tigated by their nuclear decay properties [12]. Such studies include precise mass
measurements in ion traps [136], or by atom-at-a-time chemistry [137]. Being
at rest, the atoms fill their electron shells within much less than a microsecond,
probably in the picosecond or femtosecond time scale. Exceptions may arise for
some of the outer shell electrons or for some exotic atomic or nuclear isomeric
states. Hence, the history of the fusion process is completely forgotten as far as
the electrons are concerned.

During and after radioactive decay, the electron shells have to reorganize. In
the case of 2{2Rg an a-particle of about 11 MeV is emitted from a neutral 111
atom sitting on a Si lattice. The electrons have to rearrange from Z = 111
to Z = 109. The a-particle populates a nuclear level at 207 keV, so the recoil
nucleus is excited, but comes again to rest quickly (< 107%2s), as the recoll
velocity is small, and the atom is again or still charge neutral. The 207 keV

state decays by <y-emission or K-conversion with a lifetime of <lus. In the
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latter case the kinetic energy of the emitted electron is 207 keV minus K-shell
binding energy of the neutral atom [132]. This electron leaves the atom within
approximate 1071%s. The hole in the K-shell is filled within approximately 1071 s
by an L-electron under emission of a K-X-ray followed by L-X-ray emission and/or
a cascade of Auger electrons.

It is currently a non-trivial task to unambiguously identify new superheavy ele-
ments, as the isotopes of the decay products are not always known. In this context
the coincidence of the 272Rg a-decay with a measured signal of (155.0 + 0.8) keV
energy in the Ge detector [132] is especially interesting as it is close to the pre-
dicted K41 X-ray energy of 109Mt of Carlson et al. [138]. lonization potentials of
K- and L-shell electrons for superheavy elements can now accurately be obtained
from relativistic quantum theoretical calculations [139] including quantum elec-
trodynamic effects up to high orders for the most important inner shells, and up
to the valence shell [24,98,99, 116, 140]. In the following the 155.0 keV signal is

investigated as a possible K-inversion event of $55Mt.

4.3 Computational details

Dirac-Hartree-Fock (DHF) calculations were performed using the Dirac-Coulomb
Hamiltonian The equations are solved numerically using a modified code of the
program system GRASP [104]. The K, transition energies are obtained by calcu-
lating the difference in the total electronic energy between the different electronic
states. The 1s-shell radius of meitnerium is very small ({r);s = 546 fm), and as
a consequence the influence of the finite nuclear size cannot be neglected any-
more. The electrostatic potential of the nucleus V,,. was therefore modeled by
an extended charge distribution. The nuclear charge distribution can be obtained
from scattering experiments where high energy electrons are scattered on nuclei
(Mott scattering) [141]. In scattering processes with large momentum transfer
the resolution is increased due to the reduced wavelength of the virtual photon.
Therefore the scattered electron is no longer sensible to the total charge of the
nucleus, but only parts of it. The spatial extension of the spherically symmetric
nucleus is described by the form factor F(§?) which depends only on the momen-

tum transfer g. Experimentally, the magnitude of the form factor is determined
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by the ratio of the measured cross section to the Mott cross section
(4.1)

do do -
(Fﬁ) = (a@) '\F(q2)|2-
exp Mott
In principle, the normalized radial charge distribution f(r) can be determined
from the inverse Fourier transform of the g2-dependence of the experimental

form factor
1 -9 T — 3=
(=55 [ F(@)exp(=iq-X/n)d°q. (4.2)
It can be seen that the interior charge

Some examples are given in Fig. 4.2.
density is nearly constant and that it falls off over a relatively large range at
the surface. These charge distributions can be approximately described by the

0.08

0.06

p [e/fm7)

0.04

0.02

r [fm]

Figure 4.2: Radial charge distribution of various nuclei

Oo

two-parameter Fermi distribution
or) = 1+exp[(r—a)/b]
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where a and b were taken from ref. [105]. For superheavy atoms, QED effects
have to be taken into account [24, 98,99, 116, 139, 140, 142], which is done
perturbatively (as discussed in chapter 2). This approximation leads to deviations
of no more than a few eV for all known K- and L-shell ionization potentials
up to the heaviest elements [139]. All other (minor) corrections (e.g. electron

correlation or mass polarization effects) are neglected.

4.4 Results and Discussion

In order to assess the accuracy of the various approximations used, the K, tran-
sition energies for all Group 9 transition-metals are calculated. The results are
shown in Table 4.1. For cobalt, rhodium and iridium they are accurate to 15eV
as compared to experiment, which implies that the code produces reliable re-

sults. However, for meitnerium this is not the case. The difference between the

element K K= KeP K-
2 Eo 6.930 6.929 6.915 6.913
19BRA 20.216 20.215 20.074 20.072
PG 64.895 64.883 63.286 63.271
2068Mt 155.000 151.780 - 141.610

Table 4.1: Calculated and measured K, transition energies (in keV) of the Group 9
transition-metals. Experimental values are from refs. [132, 143].

calculated and the experimental value is (3.2 +0.8) keV. The deviation cannot
be explained by missing terms like electron correlation (which is less than 1eV
per electron [144]). Size-consistent effects neglected by the perturbative QED

treatment are also in the eV region.

To further evaluate the accuracy of the method applied, some recently measured
Kq and Kg transitions for few selected heavy actinide and transactinide elements
(Table 4.2) are listed. These values were obtained in various spectroscopy studies
at SHIP, seeref. [145], and the calculated values fit very well with the experimental
findings. There are a number of possibilities for the rather large difference in the
case of meitnerium. The first possibility is that the meitnerium atom could be in
an ionized electronic state which implies that some of the outer valence electrons

could be missing. Hence, the K-(1s), L-(2s), L-(2s1/2) and L-(2ps2) electron
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element KS?P HoSAS KE® Kl Kg? Kgale Kes K2 K2
G 110.1£0.1 109.837 115.2+0.1 115040 129.6+0.1 129.821 134.6+0.4 133317 133.651
38%Es 113.340.3 112,539 117.840.2 118.021 132.74+0.2 133.136 138.0+0.2 136.712 137 066
224Fm 115.240.1 115287 121.04£0.1 121.062 135.8+0.2 136.515 140.9+£0.2 140.171 140.547
23Fm 1149+0.1 115286 1205401 121061 1358+0.2 136.514 140.1+0.2 140.170 140.546
223Mmd 117.740.1 118090 123.940.1 124173 1387402 139968 1441+04 143704 144103
223No 121.0+0.1 120952 127.2+0.1 127.359 142.6+0.2 143.498 147.4+31 147.316 147.738
ey 123.9+02 123867 130.540.1 130.613 - 147.101 - 151000 151446
R IRE 126.740.4 126.839 133.5+04 133941 150.3+0.3 150.782 - 154.762  155.235
Table 4.2: Calculated and measured K, and Kg (K'ﬁ2 = N3 = K, ng = N, = K)

transition energies (in keV) for various actinide and transactinide isotopes.
Experimental values were obtained in various spectroscopy studies at SHIP,

see for example ref. [145].

lonization potentials were calculated for various states of ionization, by varying

the number of electrons between Ng = 1 and Ng = Z, that is successively filling

the inner shells, with all atoms kept in the electronic ground state. For simplicity

only closed shell states were selected. For future experimental and theoretical use
all data are listed in table 4.3.
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Figure 4.3: Kg, transition energy of meitnerium depending on the number of remaining

electrons Ng.
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e B e bl Ne Kas Ka
109 -177.322 -35.786 -34.724 -25543 107 142.608 151.782
107 -177.344 -35.801 -34.737  -25.562 104 142.607 151.782
104 -177.387 -35.844 -34.780 -25.605 100 142.607 151782
100 -177.459 -35916 -34.852 -25677 96 142.607 151.782
96 -177.552 -36.007 -34944 -25768 94 142.611 151.794
94 -177.610 -36.062 -35999 -25.823 92 142613 151798
92 -177.671 -36.120 -35.058 -25.881 84 142.611 151.788
84 -177975 -36.427 -35.364 -26.189 78 142.607 151.781
78 -178.243 -36.700 -35.636 -26.462 72 142.606 151.783
72 -178.570 -37.026 -35.964 -26.787 68 142.607 151.785
68 -178.811 -37.266 -36.204 -27.026 64 142 .616 151.799
64 -179.076 -37.519 -36.460 -27.277 62 142.632 151.817
62 -179.236 -37.663 -36.605 -27.420 60 142.641 151.828
60 -179.392 -37.806 -36.751 -27.564 52 142.629 151.811
52 -180.237 -38.667 -37.608 -28.426 46 142.618 151.796
46  -180.943 -39.387 -38.325 -29.147 41 142.618 151.812
41  -181.727 -40.162 -39.109 -29.915 36 142.628 1518825
36 -182.302 -40.724 -39.673 -30476 32 142663 151.885
32  -182904 -41.275 -40.241 -31.019 30 142.723 151.951
30 -183.283 -41.593 -40.560 -31.332 28 142.756 151.995
28 -183.630 -41.895 -40.875 -31.636 22 142.766 152 067
22 -185.283 -43503 -42517 -33.215 18 142.805 152.121
18 -186.514 -44685 -43709 -34.393 14 142.926 152.330
14 -187.781 -45.774 -44.855 -35451 12 143.136 152.556
12 -188.640 -46.424 -45504 -36 083 10 143.245 152.706
10 -189.377 -47.003 -46.132 -36.672 6 143.781 -

6 -192.329 -49.059 -48.547 -

; }ggg‘;i -50.299 - - Table 4.4: K,, and Ky, transi-

N s i ) ) tion energies (in keV)

of meitnerium depen-
dent on the number of
electrons (Ng).

Table 4.3: K- and L-shell ionization poten-
tials (in keV) of meitnerium de-
pendent on the number of elec-
trons (Ng).

Furthermore, the calculated K4, and Ko, transition energies are listed in table
4.4,

A plot of the K, transition energies (Fig. 4.3) reveals that the value increases
exponentially with the number of missing electrons as discussed before for the
superheavy elements [139]. This is attributed to the tail of one-particle functions

that contribute to the screening of the nuclear charge.

Unfortunately, the transition energies are too small to explain the 155 keV transi-
tion even for the highest ionized closed shell state. Of course, some more exotic

ionized states give more promising K, values as shown in table 4.5, even though
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these are most improbable. Another possibility is the influence of the finite nu-

element Ka, element Ko Kas
(1st 2p3/2) — (152) 155.026 10659 140.832 132.961
aoacaln oG e wd o lwE i
152 2 108M1S 2 }
(1s'2s 2p3/2) — (15225 ) 154.327 LosMt 151,782 142 506
(1s'2p552p3,,) = (15°2p; ) 154469 | iDs 155.625 145.965
111Rg 159.554 149.389
Table 4.5: K,, transition energies of 112Cp 163.563 152.867
meitnerium for some exotic
highly ionized states. Table 4.6: K, transition energies (in

keV) for elements with nu-
clear charge 106-112.

cleus size effect to the electronic structure. The effect of varying the radius a and
the skin thickness b in the Fermi charge distribution, eq. (4.3), to the K41 energy
is shown in Fig. 4.4. The total electronic energy is more sensitive to the size of
the nucleus then to the skin thickness. Within the allowed variation (uncertainty)
of nuclear size effects, this cannot explain the difference to the measured value
either. Hence, one can conclude that the 155 keV event is not due to an X-ray,
but is a <y-ray which is emitted from a 207 keV level in 2°®Mt being populated
by the a-decay of 22Rg. For future reference the K, transition energies for a
number of superheavy elements are listed in table 4.6.
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Figure 4.4: K,, transition energy (in keV) depending on the nuclear geometry.
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Chapter 5

Static electric polarizabilities of
group 14 atoms

The electric dipole polarizability is the tendency of a charge distribution, like the
electron cloud of an atom or molecule, to be distorted from its normal shape by
an external electric field. The static electric dipole polarizability o is defined as
the ratio of the induced dipole moment £ of an atom to the electric field E that

produces this dipole moment,
i =aE. (5.1)

The polarizability is not a scalar quantity. In general, an homogeneous external
electric field can induce a dipole moment in all three directions. Therefore, the

polarizability is correctly described by an symmetric tensor of rank two

u = a;F (5.2)

and can be represented by a 3 x 3 matrix.

The accurate determination of these polarizabilities for isolated atoms or molecules
currently constitutes a challenge for both experimental and theoretical research
groups [146]. Recent advances on the experimental side include time-of-flight
measurements of laser cooled atoms in an electric field, which, for example, have
led to a considerable improvement in the accuracy for the dipole polarizability

of cesium [147]. Also classical molecular beam electric field deflections meth-
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ods [148-150] and interferometric techniques [151] offer valuable information.
On the theoretical side one faces the difficulty of accurately describing electron
correlation and relativistic effects, the latter increase substantially with increas-
ing nuclear charge Z [152-154]. While closed-shell atoms and ions have been
studied extensively in the past and accurate polarizabilities are available for most
of these elements, open-shell species are far more difficult to treat as often a
multi-reference procedure is required to resolve all the |M,|(|M,|) components
of the LS(Jj) coupled states [146]. It is therefore not surprising that accurate
polarizabilities are not easily available for open p- [155] and especially for open d-
and f-shell atoms or ions [154]. For the open d- and f-shell elements one has to
rely on early relativistic local density functional calculations of Doolen, who lists
averaged (isotropic) dipole polarizabilities [154, 156]. Laudable exceptions are
the recent paper by Fleig [157], who calculated spin-orbit resolved static polar-
izabilities of the group 13 atoms using four-component relativistic configuration
interaction and coupled-cluster methods, and the recent study of Kaldor and co-
workers [158], who used Dirac-Coulomb coupled-cluster theory for the elements
Hg, E112, Pb and E114.

Usually, electron correlation effects to dipole polarizabilities dominate over rela-
tivistic effects for the lighter elements, as electron correlation effects can be very
large [159]. In 1981 both Desclaux et al. [160] and Sin Fai Lam [161] demon-
strated however that relativistic effects cannot be neglected anymore for dipole
polarizabilities In heavy atoms. An example is the Hg atom where relativistic
effects almost halve the non-relativistic Hartree-Fock (NRHF) value from 80 to
43 au at the Dirac-Hartree-Fock (DHF) level of theory [162]. This is due to a
large direct relativistic 6s-shell contraction. For closed p-shells, relativistic ef-
fects are much less pronounced, i.e. for Rn one obtains 47.6 au at the NRHF
level of theory compared to 46.4 au at the DHF level of theory [161]. As the
spin-orbit splitting becomes very large for the heaviest p-block elements in the
periodic table, one expects that such effects will considerably influence the dipole
polarizabilities. In order to fill the gap for open-shell polarizabilities, accurate
non-relativistic and relativistic coupled-cluster calculations for all group 14 atoms
in their 3Py ground state were performed. Here, one has the advantage that the
p1/2 shell is complete in the j; coupled scheme. Furthermore, there seems to be
no experimental data available [163,164]. As density functional theory came un-

der scrutiny for properties which are dependent on the long-range behavior of the
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density, the coupled-cluster results are compared to a number of well known den-
sity functional approximations. In addition, a comparison with new experimental
measurements for the dipole polarizability of both Sn and Pb using a molecular

beam electric field deflection technique [165] is performed.

5.1 Theoretical Methods

For the dipole polarizability calculations of the group 14 atoms non-relativistic
(NR), scalar-relativistic Douglas-Kroll (DK) [166—169] and Dirac-Coulomb (four-
component) [70] theory within both wavefunction based methods (Hartree-Fock,
HF, second-order many-body perturbation theory for the electron correlation,
MP2, and coupled-cluster singles-doubles including perturbative triples, CCSD(T)),
and density functional theory (the local density functional approximation, LDA
[170], the generalized gradient approximations PBE [171] and BLYP [172], and
the hybrid functional B3LYP [173,174]) were used. In the Dirac picture, Kramers
(time-reversal) symmetry was applied in the coupled cluster procedure (KR-
CCSD(T)) to save computer time [76]. If analytical procedures were not available
for the calculation of the polarizability tensor, a finite field method was used in-
stead. In this case, fields of 0.0, 0.001, 0.002 and 0.005 au were applied. In the
non-relativistic and scalar relativistic cases the two tensor components of M, =0
and M = +1 were obtained in the finite field method by fixing the occupation
of the p-orbitals lying parallel or perpendicular to the homogeneous electric field
applied. For the open-shell case spin unrestricted Hartree-Fock and Kohn-Sham
theory was used. Extensive, uncontracted Gaussian type basis sets were applied,
which were thoroughly tested to yield converged polarizabilities with respect to
basis set extension towards softer and harder functions at the coupled-cluster
level. In detail: Starting from uncontracted, augmented correlation consistent
quadruple-zeta basis sets (aug-cc-pVQZ) [175-177], (13s/7p/4d/3f/2g) basis
sets for C, (17s/12p/4d/3f /2g) for Si and (23s/19p/15d/4f /2g) for Ge were
chosen. For these elements the full active orbital space was used in the electron
correlation procedure. For Sn an extended dual-type Dyall-QZ basis set [178] was
applied, and a soft (3s/2p/3d/6f /2g) set of functions was added to end up with
a (36s/29p/21d/6f /2g) basis set. All orbitals between -12 au and +100 au (22

electrons) were correlated. Similarly, for Pb starting with the original Dyall-qz
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set [178] a (37s/33p/25d/19f/2g) basis set was finally chosen by adding a soft
(3s/2p/4d/5f/2g) set. Here, all orbitals between -10 au and +100 au (36 elec-
trons) were correlated. For element 114 (E114) the Faegri basis set [179] was
used as a starting point which lead to a decontracted (32s/31p/24d/18f /3g) set
of Gaussian functions. The correlated orbitals were between -7 au and +100 au
(36 electrons). Finally, the Gaunt term was considered. In the Feynman gauge,

the interaction between two electrons / and j becomes [180],

VG (r/jv Ldu) = /g ! (1 - d/ i C—ij) e' 1|wu\rul (53)

J
Since the frequency of the virtual exchange photon w,, is small compared to c/rj
(¢ is the velocity of light), the frequency dependent exponential is neglected in the
calculation (low frequency hmit). Perdew and Cole implemented the Breit term
within a local density approximation, but pointed out that accurate ionization
potentials can only be achieved by including the self-interaction term in DFT
[181]. Therefore the Gaunt interaction to the polarizability was evaluated at the

Dirac-Hartree-Fock level of theory only.

At the non-relativistic and scalar-relativistic level of theory the (state) average
polarizability & and anisotropy Aa of the polarizability tensor for the L = 1 state
is defined as

a = (o +20a1)/3 (5.4)

Aa = a; — ay, (5.5)

where ag and a; are the polarizability components for M, =0 and M, = #*1

respectively.

5.2 Results and Discussion

The experimental setup that was used by the collaborating group at the University
of Darmstadt will be explained briefly. Polarizabilities o of tin and lead atoms were
experimentally determined by Schafer and co-workers utilizing a molecular beam
electric field deflection apparatus [150]. Short, pulsed molecular beams of tin
and lead atoms were generated with a laser ablation source using tin and lead

targets. The laser ablation source was equipped with a temperature-controlled,
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cryogenic vacuum expansion nozzle, that offers the possibility to produce atomic
ground state species, with a low kinetic energy, in the molecular beam. In the
experiments on tin atoms the nozzle was held at 100 K, in the case of lead atoms
at 40 K. After the expansion the molecular beam is tightly collimated and passes
through an inhomogeneous electric field, where it gets deflected. The deflection
d is measured by scanning a moveable slit across the molecular beam profile and
detecting transmitted atoms with a time-of-flight mass-spectrometer. For this
purpose the atoms are ionized with a Fy-excimer laser. The deflection d of the
molecular beam is related to the polarizabilty « by

=2 (5.6)

mv?2
with an apparatus constant A, the mean velocity v of the particles, which is
measured with a molecular beam shutter, and the mass m of the atoms. By
comparing the deflection of e.g. lead dj;, to the beam deflection of a species
with known polarizability, as barium [182], the absolute value of the polarizability

apy, IS given by
D
dpy, Mpy, Viy,

57
dBa MBa Vé;. (57)

Qpp = ABa

The current apparatus does not allow to measure the polarizablity of the lighter
homologues of tin and lead, since the ionization potentials of carbon (11.26 eV),
silicon (8.15 eV) and germanium (7.90 eV) [156] exceed the energy per photon
of the ionization laser (7 .87 eV).

The molecular beam profiles with and without electric deflection field of tin and
lead atoms are shown in Figure 5.1 in comparison to the beam deflection of barium
atoms, which was used as a calibrant [150]. The mean velocity of tin, lead and
barium atoms was determined to be 1020, 650 and 1410 m/s, respectively, with
an uncertainty of 2%. Using Eq. (5.7) and the experimental polarizability of
the atomic barium ap, = (268 + 21) au [182], the polarizabilities of tin ag, =
(42.4+11) au and lead ap), = (47.1+7) au are obtained. The error margins in the
case of tin are significantly enlarged compared to lead, since it was not possible to
generate a sufficiently intense molecular beam of tin atoms at expansion nozzle
temperatures below 100 K. This leads to the higher velocities of the tin atoms

and thereby reduced deflections in the electric field.

The results of all calculations are summarized in Table 5.1. The most accurate
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(b) Sn H (84 + 20) pm
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Figure 5.1: Molecular beam profiles of Ba (a) [150], Sn (b) and Pb (c) atoms with
(circles) and without (crosses) applied electric deflection field. As a guide
to the eye the experimental beam profiles are fitted with Gaussian functions.
The field induced beam deflections d are indicated above the profiles.
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coupled-cluster results including the Gaunt term at the DHF level are compared to
other theoretical data in Table 5.2. There is excellent agreement of the presented
results with the non-relativistic CCSD(T) value of carbon and silicon obtained by
Thakkar and co-workers [183,184]. These authors also provide a more complete
overview of previous results. The anisotropy Aa for carbon and silicon of Thakkar
and co-workers are 2.10 and 8.41 au, respectively, which are also in excellent
agreement with the non-relativistic results (2.13 and 8.57 au). Further, very
recent calculations at the Dirac-Coulomb level of theory for the heaviest elements
Pb and E114 from Pershina and co-workers [158] also agree with the presented

results.

Fig. 5.2 compares the calculated polarizabilities at the HF and CCSD(T) level of
theory. Relativistic and electron correlation effects are shown in Fig. 5.4 and in
Table 5.2. The following observations are made: (i) At the non-relativistic and
scalar-relativistic level, both the polarizability a and the anisotropy A« increase
with increasing nuclear charge of the group 14 element. (ii) From a compari-
son between non-relativistic and scalar relativistic polarizabilities, one obtains a
roughly Z2 increase in relativistic effects for the M, =0 component, while there
is little change for the M, = 41 component of the polarizability tensor. (iii)
The anisotropies are larger at the scalar relativistic level compared to the non-
relativistic results. In fact, the relativistic change in the anisotropies roughly
increase with Z2. (iv) Electron correlation reduces the dipole polarizability (with
the exception of the J=0 state for E114) by about 1 (C) to 6 (114) atomic units,
but is much less pronounced than for the dipole polarizabilities of the s-block el-
ements [152, 153, 158]. (v) For the lighter elements, LS-coupling (spin-orbit
coupling small) gives a much better description than jj-coupling. Hence, it is of
no surprise that the relativistic Hartree-Fock wavefunction, with the p,,, dou-
bly occupied, is not the best zero-order wavefunction for the electron correlation
procedure as the lowest energy field perturbation in the LS-coupled M, = +1
state. To compensate for this, the coupled-cluster procedure leads to a larger
correlation effect in the jj-coupled compared to the LS-coupled case for elements
where spin-orbit interactions can be neglected. In contrast to the HF case, the
polarizabilities for the Dirac J = 0 and Douglas-Kroll M, = +1 state agree nicely

at the coupled-cluster level for carbon. (vi) Fig. 5.4 clearly shows that spin-orbit
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NR (CP) DK (°P) Dirac J=0
M; =0 M, = +1 av. M, =0 M, =+1 av. M,;=0
Carbon
HF 10.91 12.51 11.97 10.89 1250 11.96 11.76
LDA 11.39 14.18 13.25 11.38 14.18 13.25 14.28
PBE 11.42 14.50 13.48 11.42 1451 1348 14.30
BLYP 11.44 14.42 13.42 11.43 14 .42 13.42 14.44
B3LYP 11.05 1355 12.72 11.04 1355 12.71 13.52
MP2 9.64 12.31 11.42 9.64 12.31 11.42 12.06
CCSD 10.21 12.33 11.63 10.20 12.33 11.62 11.34
CCSD(T) 10.28 12.41 11.70 10.27 12.41 11.70 11.26
Silicon
HF 32.56 4139 38.45 32.48 41.46 38.46 41.66
LDA 33.71 45.48 4156 33.67 4563 41.64 4495
PBE 34.00 4553 41.68 33.95 4566 41.76 4493
B3LYP 33.44 4433 40.70 33.39 4445 40.76 44.09
MP?2 32.02 40.68 37.79 31.97 40.76 37.83 40.73
CCSD 31.76 40.31 37.46 31.70 40.39 37.49 37.69
CCSD(T) 31.83 40.40 37.54 31.77 4058 3758 37.28
Germanium
HF 34.02 4526 41.51 33.24 4530 41.28 43.86
LDA 34.14 49.18 4417 33.59 49.63 44.29 46.23
PBE 35.29 50.60 45.49 3473 51.09 45.64 47.92
B3LYP 34.39 48.60 43.86 33.78 48.96 4391 45.94
MP2 32.66 4343 39.84 31.93 43.47 39.63 41.70
CCSD 32.82 4378 40.13 32.11 43.84 3993 39.94
CCSD(T) 32.83 4383 40.16 32.11 4390 39.97 39.33
Tin
HF 50.69 63.09 58.96 47.17 62.34 57.28 57.35
LDA 48.60 65.12 59.61 46.21 65.74 59.23 57.45
PBE 50.87 68.06 62.33 48.41 68.90 62.07 60.44
BLYP 51.06 69.44 63.31 48.76 70.29 63.11 60.80
B3LYP 49.67 65.51 60.23 47.05 65.90 59.62 58.01
MP2 45.88 59.53 54.98 43.58 59.79 54.39 54.25
CCSD 47.74 60.68 56.37 44 81 60.53 55.29 53.32
CCSD(T) 47.63 60.70 56.34 4474 60.60 55.31 52.70
Lead
HF 58.42 72.04 67.52 46.87 70.10 62.36 49.71
LDA 55.01 73.17 67.00 47.24 74.59 65.47 49.86
PBE 57.83 76.85 70.53 49.77 79.25 69.42 52381
BLYP 5801 77.89 71.46 50.45 80.34 70.37 53.05
B3LYP 56.46 73.88 68.09 48.02 7482 65.89 50.48
MP2 51.75 66.77 61.76 43.65 67.30 59.42 47.63
CCsD 54.56 68.71 63.99 44.69 67.97 60.21 47.36
CCSD(T) 54.36 68.66 63.90 44,67 68.04 60.25 4734
E114
HF 76.75 91.18 86.39 49.69 101.40 84.16 30.13
LDA 70.27 88.92 82.70 52.31 98.37 83.02 33.34
PBE 75.18 96.83 89.61 56.17 109.14 91.48 34.17
BLYP 74.59 96.37 89.11 57.07 107.08 90.42 35.35
B3LYP 72.84 91.54 85.31 53.36 101.10 85.19 33.08
MP?2 65.05 92.09 78.64 47.26 93.64 78.18 32.02
CCSD 70.92 88.25 82.47 47.88 94.97 79.28 31.05
CCSD(T) 70.29 88.04 82.12 47.90 94.66 79.07 31.49
Table 5.1: The static dipole polarizabilities (in au) of the group 14 elements at different

levels of theory. Non-relativistic (NR) and scalar relativistic Douglas-Kroll
(DK) calculations are for the M; = 0 and M; = 1 components of the 3P
state, and Dirac values for the J = 0O state. av. is the average polarizability
according to eq. (5.4)
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Method C Si Ge Sn Pb El1l4
Ap -1.15 -3.12 -4 50 -8.27 -21.33 -56.55
AN T 0.005 0.032 0.097 0.21 0.37 0.38
N -0.50 -4.38 -4.53 -4.65 -2.37 1.18
KR-CCSD(T)+AGaun: 11.26 3731 39.43 52.91 47.70 31.87
others 11.672 37.17° 41.0° 52.09 46.96¢ 30.59¢
recommended 11.3 37.3 39.4 52.9 47.3 31.0
experimental - — — 42.4x11 4717 -

Table 5.2: Total relativistic, Ag, including spin-orbit corrections for the 3P, state (rel-
ative to the M, = +1 component). Gaunt, Agun:. at the DHF level of
theory and electron correlation contributions, Aco,,, for the J = 0O state, and
final Gaunt corrected KR-CCSD(T) for the dipole polarizabilities of the group
14 elements compared to previous theoretical results. All values are in au.
The recommended values are from the CCSD(T) results and from Pershina
et al. [158], and corrected for Gaunt interactions. ¢ & NR-CCSD(T) from
ref. (183]). ® @ NR-CCSD(T) from ref. [184]. ¢ @ NR-PNO-CEPA from
ref. [185]. 9 R-LDA from ref. [156]. € Dirac-Coulomb CCSD(T) results for
J =0 from ref. [158].

contributions are as important as scalar relativistic effects for these p-block el-
ements, and that they are not even negligible for carbon. (vii) Already for Ge,
relativistic effects (including spin-orbit) are as important as electron correlation.
For E114 a huge reduction in the dipole polarizability (64 %) from 88.0 to 31.5
au due to relativistic effects is observed. As a result, E114 has a smaller dipole
polarizability compared to Si (37.3 au), as discussed in detail by Pershina et
al. [158]. Pershina and co-workers also pointed out that the polarizability nicely
correlates with the mean radius of the p;/, orbital. (viii) The Gaunt contribution
increases with nuclear charge and, for the three heaviest elements, cannot be
neglected anymore in precise calculations. (ix) Correlating the next shell below
the nsnp-valence shell is also important. For example, a change from 37.47 to
37.28 au for Si and from 47.68 to 47.34 au for Pb due to core correlation is seen.
(x) Triple contributions to the CCSD procedure are rather small, indicating that
higher (quadruple) contributions are probably negligible. (xi) Finally, the results

clearly show that relativistic and electron correlation effects are non-additive.

An important question is if some of the popular density functionals are able to
accurately reproduce dipole polarizabilities for these p-block elements. There
are some notable failures in the past. For example, Stott and Zaremba [186]
reported a LDA value of 1.89 au for He, far too high compared to the experimental

value of 1.3832 au [187]. More recent calculations with larger basis sets give a
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Figure 5.2: The static dipole polarizabilities of the group 14 elements at the HF (upper
picture) and CCSD(T) (lower picture) level of theory. Non-relativistic (NR)
and scalar-relativistic Douglas-Kroll (DK) calculations are for the M, = 0
and M; = 41 components of the 3P state, and Dirac values for the J = 0
state.
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Figure 5.3: The static dipole polarizabilities of the group 14 elements for different DFT
functionals. Non-relativistic (NR) and scalar-relativistic Douglas-Kroll (DK)
calculations are for the M, = 0 and M; = +1 components of the 3P state,
and Dirac values for the J = 0 state.



5.2. RESULTS AND DISCUSSION

0 e T T e Fom
10+ |
_20L -
= | |
5,
|3 -30 |
<19 i 1
-0 — SRM, =0 ) I
—— SRM =1 i
| - J=0 "
-50+ E
" | | | l |
ki 20 40 60 80 100 120
nuclear charge Z
2 T T T
L NRM =0
-- NRM_ =1
D - DKM, =0
L

Sn

Pb

83
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better comparison, i.e. one obtains 1.322 (HF), 1.362 (MP2), 1.686 (Xa),
1.644 (LDA), 1.558 (BPW91), and 1.505 (B3LYP) au [154]. In this case, all
functionals overestimate the dipole polarizability by a few atomic units. Increasing
the exact exchange will not help as the HF value is larger than the coupled-cluster
value. Instead one needs to correct for the wrong long-range behavior in common
density functionals. The overestimation is proportional to the polarizability, that
is the worst DFT results are obtained for the Sn atom, which exhibits the highest

polarizability of all group 14 elements.

The recommended polarizabilities for all Group 14 elements for the lowest 3P,
state are listed in Table 5.2. For Pb and 114 Pershina et al. [158] chose slightly
different basis sets including h-functions. As their values are slightly smaller
compared to the presented ones here, they are listed including the here calculated

Gaunt contribution.

Comparing the experimentally determined polarizabilities of Sn and Pb with the
theoretical predictions in Table 5.1, it i1s obvious, especially in the case of Pb, that
not only the scalar-relativistic but also the spin-orbit correction has to be taken
into account in order to reproduce the experimental data. However, the large
error margins of the experimental polarizabilities express the need for future high-
precision experiments to actually check the accuracy of the theoretically predicted
polarizabilities for the open-shell atoms discussed here. More work has to be done
on other open p- as well as the open d- and f-shell elements. In addition for the
energetically higher lying J=1 and 2 states, a multi-reference treatment is also

required.



Chapter 6

Scalar relativistic and spin-orbit
effects in superheavy hydrides

Investigations of the existence of new chemical elements resulted in the recent
discovery of the elements with nuclear charge 111 (Rg) and 112 (Cp) by the GSI
in Darmstadt [12, 131, 132, 188], and most recently the elements with nuclear
charge 113, 114, 115, 116 and 118 by the JINR group in Dubna [189-193].
Isotopes of these elements are extremely short-lived, undergoing a-decay within
a second or less [194]. It is hoped that in near future more long-lived neutron-
rich isotopes can be synthesized [195] making these elements better accessible
to atom-at-a-time chemical experiments [6, 196, 197]. The latest super-heavy
elements for which atom-at-a-time chemistry has been carried out are the ones
with nuclear charge 112 [198-200] (a-decay half-life tf,=3.8 s for 2112 and
29 s for 2%°112) [201] and 114 (t7,=0.6 s for 287114 and 2.7 s for 2%°114).

Once these rare isotopes have been successfully prepared, one naturally is inter-
ested in their physical and chemical properties, and how these elements compare
with their lighter group members (in the periodic table) [6,196]. Recent advances
in atomic spectroscopy made it possible to observe the atomic level structure of
the element with nuclear charge Z =100 (***Fm with a half-life of 20.1 h) in
an optical cell filled with argon buffer gas [202]. However, 2.7x10'° atoms of
255Fm were used in these experiments, and such a large number of isotopes is not
available for experiments on the newly discovered superheavy elements. There-
fore one relies on chemistry on a one-atom-at-a-time scale [203]. Even if great

progress has been made in trapping single atoms or molecules [204—208] and fu-
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ture experimental studies might well be able to explore spectroscopic properties of
short-lived superheavy elements by such techniques, the current situation is that
only few chemical studies are available for the trans-actinides [6,196]. Thus, one
should mention the recent atom-at-a-time experiments on Bh (Z=107) [209],
Hs (Z=108) [197], element 112 [198-200], and very recently on element 114.

In the meantime one can study the chemistry and physics of superheavy elements
by using theoretical methods [210-213]. However, the treatment of superheavy
elements is non-trivial as a large number of electrons is involved and both relativis-
tic and electron correlation effects need to be taken into account [210,214-220].
Considering the main-group superheavy elements there are already a number
of theoretical studies available on atoms and molecules, mostly using the rela-
tivistic pseudopotential approximation [221] or relativistic density functional the-
ory [222,223]. It is however important to have benchmark calculations to test
the various relativistic methods in use [224,225]. Therefore one can study the
closed-shell superheavy element monohydrides from Rg to element 120 at both
the Dirac-Hartree-Fock and Dirac-Kohn-Sham level of theory, and include elec-
tron correlation effects by a coupled-cluster procedure. Further, to discuss the
importance of spin-orbit and scalar relativistic effects in electronic properties cor-
responding scalar relativistic (spin-free) as well as non-relativistic calculations were
carried out. Some of the monohydrides have been studied before using various
relativistic approximations, i.e. RgH [222, 223, 226-230], CpH* [162,231-233],
113H [234-237], 114H* [232], 117H [235,237,238] and 118H" [232]. For exam-
ple, spin-orbit effects in the series of neutral element hydrides from 113H to 118H
have been investigated by Lee and co-workers using a relativistic pseudopoten-
tial approximation [235]. Finally, there are only few atomic studies on electronic
properties of element 119 [152,211,239-242] and 120 [211,242], and molecular

calculations containing these two elements have not been carried out so far.

6.1 Computational Details

In order to investigate the molecular properties of superheavy element hydrides
non-relativistic (NR), scalar-relativistic spin-free (SF) [167, 168, 243] and rela-
tivistic Dirac-Coulomb (four component) [70] theory (R) were applied. On the
method side, wave-function based theory applying the Hartree-Fock (HF) approx-
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imation, second-order many body perturbation theory (MP2) and coupled-cluster
theory including single and double substitutions (CCSD) and including the per-
turbative triples (CCSD(T)) to account for electron correlation [244], as well
as density functional theory using the local density approximation (LDA) [170],
the generalized gradient approximations (GGA) with the Perdew-Burke-Ernzerhof
functional (PBE) [171], and the hybrid three-parameter Becke-Lee-Yang-Parr
functional (B3LYP) [172-174] were used. In the Dirac picture, Kramers (time-
reversal) symmetry was applied in the coupled cluster procedure to save computer
time [76]. The active orbital space included the 6s, 6p, 7s, 6d, 7p, and 8s orbitals
with the virtual space being truncated above 100 a.u., i.e. we correlated 20 elec-
trons for RgH and CpH™, 22 electrons for 113H and 114H*, 26 electrons for 117H
and 118H™, and 28 electrons for 119H and 120H*. The (SS|SS) two-electron
integrals over the small components were neglected and Visscher's correction was

used instead [245]. A finite-size Gaussian nuclear model was chosen [246].

All all-electron calculations were performed using extensive, uncontracted Gaussian-
type basis sets tested to yield converged molecular properties with respect to
the basis set extension towards softer functions. For the superheavy elements
with nuclear charges 111-118 we started from Faegri's four component basis
sets [179] and arrived at (28s/24p/20d/12f /3g) by adding a number soft s, p
and d-functions as well as three g-functions. Basis sets were not available for the
elements 119 and 120. Therefore new basis sets were adjusted by starting from
the exponents for element 118 extended by three s-functions and subsequently
reoptimized the Gaussian exponents at the Dirac-Hartree-Fock (DHF) level us-
ing the program package GRASP [104], until the energy difference compared to
the Dirac-Hartree-Fock basis set limit was smaller than 20mH (Appendix A). For
hydrogen an uncontracted (9s/5p/4d/1f) set of Gaussian functions was used
obtained from refs. [247,248]. The variational stability in all four-component
calculations was ensured by using dual basis sets with the appropriate kinetic bal-
ance condition [249]. The basis sets are large enough to suppress the basis set
superposition error, i.e. using the Boys-Bernardi counterpoise method [250] the
bond distance at the scalar relativistic CCSD(T) level of theory increases only by
0.0009 A for RgH and 0.00012 A for 117H.

The equilibrium bond lengths r. and force constants k. were obtained from poly-

nomial fits of the potential curve around the minimum. The calculation of the
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dissociation energy D, for the molecules was only carried out at the DHF, DHF-
MP2 and DHF-CCSD(T) levels of theory and required more attention. First DHF,
MP2 and CCSD(T) calculations were performed for the intermediate dissociation
of the hydrides into a proton (H*) and the corresponding closed-shell superheavy
element or ion, whose total electronic energy could be calculated accurately with
the program system DIRAC [70]. To obtain the correct dissociation energies, the
ionization potential (IP) of hydrogen and the electron affinities (EA) or ioniza-
tion potentials for the charged and neutral superheavy elements are required at
different levels of theory, which were obtained from DHF and Fock-space coupled-
cluster (FSCC) calculations [251,252] using the same basis sets. The considered
dissociation paths for the investigated superheavy hydrides are as follows

RgH — HT+Rg™ (!Sy) = H+Rg  (2Ds;2/?S1)2)
CpH* — HY*+Cp  (*So) = H+Cp*t  (2Ds2/%S1)2)
113H — HY+1137 (}Sg) — H+113  (2Py»)
114HT — HT+114 (3R) — H+114% (3A,)
117TH  — HY +1177 (1Sp) — H+117  (?Py))
118HT — H*+118 (1S)) — H4+118% (?Pyp)
119H — H*+1197 (1S5) — H+119  (3S;))
120H — H*+120 ('Sy) = H+120% (3Sy)

The results of our atomic FSCC calculations are shown in Table 6.1. The non-
relativistic ground state for Rg and Cp* is of 251/2 symmetry with a 6d°7s!?
configuration, while the correct relativistic ground state is of 2D5/2 symmetry
(6d°7s?) [211,253]. Further, positive electron affinities indicate that the electron
in the negatively charged species is not bound, and in the complete basis set limit it
should be zero. Nevertheless, these small positive electron affinities were used for
correcting our dissociation energies. Small errors, which stem from the different
coupled-cluster treatment for the molecules and dissociated atoms, are within the
basis set and correlation error. For example, for RgH and 113H a dissociation
energy of 2.052 and 3.435 eV were calculated at the non-relativistic level of theory
respectively, whereas from unrestricted coupled CCSD(T) calculations [166] one
obtains 2.139 and 3.511 eV respectively. The Gaunt term of the Breit interaction
(180, 254] was considered as well as a small correction to the usual Coulomb
interaction between two electrons. However, the changes in bond lengths and

other properties are much smaller compared to the errors introduced by the use of
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Transition Method R SF NR
Rg—Rg~ HF ~0.210 -1.436 -0.071
FSCC -1.645 -2.533 -1.103
Cp—Cp* HF 10.441 11.482 6.246
FSCC 11.668 12.813 7.721
113-5113~ HF -0.090 0.633 0.514
FSCC -0.484 -0.087 -0.486
1141147 HF 8.029 5.592 5.882
FSCC 8.390 6.558 6.684
117—-117~ HF -0.602 -1.968 -2.475
FSCC -1.369 -2.765 -3.070
118-+118* HF 7.805 10.076 10.209
FSCC 8.668 10.795 10.777
119—119~ HF -0.092 0.064 0.053
FSCC -0.164 -0.162 0.157
120--120% HF 5.011 4903 3.647
FSCC 5.470 5.407 3.998

Table 6.1: Electron affinities (EA) and ionizations energies (IP) of the superheavy el-
ements (in €V) from four-component (R), scalar relativistic spin-free (SF)
and non-relativistic (NR) Hartree-Fock (HF) and Fock-space coupled-cluster
(FSCCQ) calculations.

finite basis sets, restricted orbital space in the correlation procedure or corrections
from non-iterative triples or higher substitutions in the coupled cluster procedure,
and were therefore neglected. For example, for RgH and 117H the bond lengths
increased by 6.2x107* A and 9.3x10~* A respectively at the DHF level of theory
upon inclusion of the Gaunt term.

6.2 Results and Discussion

The results of our molecular calculations are summarized in Tables 6.2, 6.3, 6.4
and 6.5. Before discussing the properties of the superheavy element hydrides
with respect to their lighter congeners, the presented results will be compared

with previously published calculations using various models of approximations.

There are a number of papers concerning RgH [222, 223, 226-230]. Here one
should mention Dolg et al. who obtained from benchmark spin-orbit coupled

pseudopotential calculations including electron correlation at the CCSD(T) level
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of theory re=1.529 A, k.= 409.8 Nm~! and D.= 2.83 eV [229]. This is in
excellent agreement with the here applied all-electron DHF-CCSD(T) treatment.
Earlier all-electron DHF-CCSD(T) results by Seth and Schwerdtfeger (r.=1.523
A ke= 4197 Nm~! and D.= 2.83 eV [227]) are in similar good agreement.
Concerning CpH* Mosyagin et al. obtained r.= 1.537 A, k.= 387.4 Nm~! and
D.= 3.96 eV using Fock-space coupled-cluster calculations within a generalized
relativistic effective core potential scheme [233], again in very good agreement
with the presented results. For comparison Seth et al. obtained r.= 1.517 A,
ke= 419.4 Nm~! and D.= 4.09 eV [162], and Nash obtained r.= 1.583 A and
D.= 3.50 eV [232], both using CCSD(T) calculations but differently adjusted
relativistic pseudopotentials (RPP). 113H has been investigated before by Seth
et al. (re= 1.789 A, k.= 109 Nm~! and D.= 1.44 eV) using four-component
CCSD(T) [234] but applying much smaller basis sets. Lee et al. (re= 1.759 A
and D.= 1.46 eV) performed two component CCSD(T) using RPPs [235], and
Choi and co-workers (re=1.755 A, ke=132.5 Nm~! and D.= 1.53 eV) used spin-
orbit DFT (SO-DFT) in connection with RPPs [236,237]. For 114H* there is
only one paper published by Nash (re= 1.73 A and D.= 1.01 eV) using a RPP in
a CCSD(T) scheme [232]. For 117H one can mention three different calculations
by Lee et al. (re=1.949 A and D.= 1.79 eV) obtained by using a two component
RPP within a CCSD(T) procedure [235], by Choi et al. (re= 1.957 A, k= 1432
Nm~! and D.= 1.58 eV) using SO-DFT [237], and by Peng et al. (r.= 1.988 A,
ke= 128.3 Nm~! and D.= 2.04 eV) using a Dirac (four component) Kohn-Sham
scheme [238]. Lastly, one should cite results for 118H* by Nash (r.= 1.992 A
and D= 1.60 eV) obtained by CCSD(T) calculations using a RPP [232], which
deviate substantially from our values indicating problems in the pseudopotential
approximation used. The Tables 6.2 and 6.3 also show that density functional
theory performs reasonably well for these superheavy elements, with the B3LYP

functional apparently performing best.

The calculated relativistic and electron correlation effects for various properties
are shown in Table 6.6. One can observe clear trends within the series of su-
perheavy element hydrides. For the bond distances, relativistic effects are much
larger than electron correlation effects with the largest bond contractions calcu-
lated for RgH and CpH* due to scalar relativistic contributions. For these two
compounds spin-orbit contributions to the bond distance are very small. More-

over, scalar relativistic effects to the bond distance are much larger for RgH and
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RgH CpH* 113H 114H7*

Method le ke le ke le ke le Ke
Dirac-Coulomb

DHF 1.520 454.0 1526 3909 1698 1366 1.716 1946
MP?2 1.505 427.4 1525 397.7 1.701 1341 1728 165.8
CCsD 1.519 438.1 1530 373.2 1.721 1305 1.747 1585
CCSD(T) 1522 4384 1534 3712 1.728 1290 1762 1445
LDA 1.540 409.6 1559 3440 1.759 1343 1789 1438
PBE 1558 3449 1560 3449 1798 1141 1811 131.3

B3LYP 1540 4118 1552 369.7 1.777 1260 1789 146.0

scalar relativistic

HF 1513 4889 1531 4032 2013 934 1911 171.3
MP2 1501 5044 1527 4141 1939 1105 1881 178.38
CCSD 1.512 4702 1530 389.2 1973 1012 1901 161.1
CCSD(T) 1.515 467.1 1533 387.7 1967 996 1902 1593
LDA 1528 4184 1555 3452 1982 997 1921 15438
PBE 1532 4193 1555 3464 2021 894 1939 1446

B3LYP 1.528 420.7 1550 3705 2.020 903 1.932 1529

non-relativistic

HF 2.019 109.0 1952 1572 2079 1214 1980 182.2
MP2 1.876 1339 1883 166.6 2.032 1230 1.955 1931
CCsSD 1931 1152 1926 1448 2.051 1183 1966 1827
CCSD(T) 1923 1168 1930 1386 2.048 1168 1968 180.6
LDA 1.871 1282 1907 1470 2069 1105 1993 1543
PBE 1911 1187 1931 130.0 2.094 1037 2.004 157.8

B3LYP 1928 1126 1930 1434 2089 1060 1.991 1606

Table 6.2: Bond distances re (in A) and force constants ke (in Nm~1) for the superheavy
element hydrides at various levels of theory.

CpH* compared to the other two s-block element hydrides 119H and 120HT,
which stems from the relativistic maximum at the group 11 or 12 elements along
a period in the periodic table (see refs. [255-259] for a detailed discussion). The
situation changes completely for the p-block element hydrides. Here spin-orbit
coupling becomes the dominant relativistic contribution for bond distances, with
scalar relativistic effects being much smaller but still large in comparison to elec-
tron correlation. This is expected from the pronounced spin-orbit splitting in the
7p-shell [256], i.e. FSCC calculations by Kaldor and co-workers give a ?P,,/?P3/2
splitting for element 113 of 2.79 eV [260], and Dirac-Fock-Breit calculations give



92 CHAPTER 6. SCALAR RELATIVISTIC AND SPIN-ORBIT EFFECTS

117H 118H" 119H 120H*
Method o ke Fo Ke le ke 75 ke
Dirac-Coulomb
DHF 1.970 1505 1904 1919 2529 531 2291 11838
MP?2 1.902 166.6 1.868 201.2 2402 61.6 2226 1125
CCsD 1.939 1438 1.895 1815 2443 557 2254 100.6
CCSD(T) 1.941 1445 1902 1686 2434 56.1 2255 98.2
LDA 1.961 140.8 1.929 1609 2452 56.1 2284 939
PBE 1.982 1302 2937 1635 2480 529 2292 951

B3LYP 1.979 1319 1930 1652 2489 529 2289 976

scalar relativistic

HF 1.793 2678 1.774 277.1 2601 467 2328 99.6
MP2 1.767 268.7 1.757 2756 2450 560 2254 102.8
CcCcsb 1.781 250.7 1.765 2616 2501 498 2289 0934
CCSD(T) 1782 2475 1768 2584 2491 514 2290 919
LDA 1.811 231.6 1.805 2263 2494 503 2310 88.0
PBE 1.821 2219 1.807 2288 2528 476 2319 89.2

B3LYP 1.814 2344 1800 2424 2540 499 2319 0919

non-relativistic

HF 1.847 269.3 1823 2849 2761 358 2231 903
MP?2 1.817 2943 1.797 2966 2633 397 2156 97.1
CCSD 1.826 277.1 1801 2958 2655 374 2161 965
CCSD(T) 1.827 2740 1.803 2927 2.643 389 2154 950
LDA 1.858 2345 1.846 2506 2.603 412 2170 99.7
PBE 1.864 236.6 1.844 2520 2625 395 2177 96.2

B3LYP 1.857 251.8 1.836 2527 2667 371 2192 939

Table 6.3: Bond distances r. (in A) and force constants k. (in Nm™1) for the superheavy
element hydrides at various levels of theory.

a 2P3,2/?Py/; splitting of 9.91 eV (!) for element 117. Hence, a spin-orbit bond
contraction for 113H and 114H* can be observed due to the spin-orbit contrac-
tion of the 7p; p-shell, and a spin-orbit bond lengthening for 117H and 118H*
due to the spin-orbit expansion of the 7ps/,-shell. These spin-orbit effects are
greatly diminished when moving from the neutral to the isoelectronic positively
charged molecule, i.e. from 113H to 114H* and from 117H to 118H™, as deple-
tion of electron density of either the 7p; /.- or 7p3/»-shell reduces these relativistic

effects.

An exception to the whole trend is found for 120H* where a relativistic bond
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Method RgH CpHT 113H 114HT 117H 118HT 119H 120HT
Dirac-Coulomb

DHF 1.675 2,583 0.546 0.192 0.892 0.698 0.583 0.580
CCSD(T) 2989 3.776 1.774 1.402 2170 2181 1.793 1.804

scalar relativistic
HF 2.658 3.462 2.077 2.261 1.833 2.144 0.474 0.464
CCSD(T) 3.721 4.812 3.264 3.635 3.246 3551 1.656 1.676

non-relativistic
HF 0.906 0.688 2.032 2.648 2.180 2.505 1.101 2.408
CCSD(T) 2.052 1.786 3.435 3.755 3.616 3.914 2242 3.514

Table 6.4: Dissociation energies D, (in eV) for the superheavy element hydrides at the
DHF and CCSD(T) level of theory using the atomic values listed in Table

6.1.
Method RgH 113H 117H 119H
Dirac-Coulomb
DHF -0.309 0.507 -2.544 -6.847
CCSD(T) -0.013 0.067 -1.943 -5.605
scalar relativistic
HF -0.544 -2.797 -0.700 -7.698
CCSD(T) -0.139 -2.467 -0.617 -5.488

non-relativistic
HF -5.792 -0.499 0.261 -9.902
CCSD(T) -4.213 -0.819 0.070 -0.233

Table 6.5: Dipole moments we (in Debye) for the neutral superheavy element hydrides
at the DHF and CCSD(T) level of theory.

expansion, rather than a contraction is seen as one might expect. As a con-
sequence no change in the trend of bond lengths is observed due to relativistic
effects for the positively charged group 2 hydrides in contrast to the group 1
series of hydrides, cf. Figure 6.1. In order to verify this rather intriguing result
FrH, RaH* and BaH* were investigated as well, but only at the B3LYP level of
theory using a Dyall triple-zeta basis set with three g-functions. For FrH similar
results compared to 119H are obtained showing a relativistic bond contraction,
i.e. r.= 2537 A (Dirac), 2.547 A (SF), and 2.563 A (NR). However, for RaH*
one obtains r.= 2.234 A (Dirac), 2.241 A (SF), and 2.167 A (NR). In comparison
for BaH™ one gets r.= 2.137 A (Dirac), 2.135 A(SF), and 2.111 A (NR). Hence
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RgH CpH* 113H 114H* 117H 118H* 119H 120H*

Y 0.001 0.008 0.030 0.047 -0.029 -0.002 -0.095 -0.036
ArsR -0.408 -0.397 -0.081 -0.066 -0.044 -0.035 -0.152 0.135
Ars© 0.007 0.000 -0.240 -0.140 0.158 0.134 -0.057 -0.034
ArSR¥SO 0401 -0.396 -0.321 -0.206 0.114 0.099 -0.209 0.101
AkSoT -156 -19.7 76 -50.1 -6.1  -233 31 -206
AKSR 350.4 249.1 -171 213 -265 -343 125 -3.6
AkS© -288 -165 294 -148 -103.1 -89.8 48 6.4

AKIRTSO 3216 2326 122 -362 -1296 -1241 172 3.3

/D) S 1.314 1.193 1228 1.210 1.278 1.483 1209 1.224

ADSR 1.669 3.027 -0.172 -0.120 -0.370 -0.363 -0.589 -1.838
ADS® -0.733 -1.063 -1.489 -2.233 -1.076 -1.370 0.137 0.128
ADSR*SO 0937 1990 -1.661 -2353 -1.446 -1.733 -0.449 -1.710
ApSor 0.322 -0.440 -0.601 -1.242
AuR 4.074 -1.648 -0.687 3.745
Apg® 0.126 2.534 -1.326 -0.117
AuSR+Se  4.200 0.886 -2.013 3.628

Table 6.6: Relativistic effects at the CCSD(T) level of theory and electron correlation
effects at the DHF level of theory for bond distances r. (in A), force con-
stants ke (in Nm™1!), and dissociation energies De (in eV) for the superheavy
element hydrides. SR: scalar relativistic effects, SO: spin-obit effects, Corr:
Correlation effects.

RaH™ shows exactly the same trend in relativistic effects compared to 120H™.
What is the origin of this relativistic bond expansion in view of the relativistic

valence s-contraction?

The answer lies perhaps in a previous study on BaH™ and RaH* by Pyykko and
co-workers [261, 262], who emphasized the importance of the vacant d-orbitals
in the bonding, which is analyzed in more detail here for 120H*. Table 6.7 shows
the gross atomic charges obtained from a Mulliken population analysis. What
is interesting here is not only the large charge flow from the neutral hydrogen
atom to the metal atom due to relativistic effects for the compounds RgH (Rg
becomes negatively charged), 113H and to a lesser extent 119H, but also the
rather large positive charge at element 120 indicating that 120H" is best de-
scribed as 1202tH~. The first and second ionization potentials for element 120,
which are 5.47 eV (see Table 6.1) and 11.58 eV (from the first ionization poten-
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tial in Table 6.1 and the double ionization potential calculated recently by Dinh
et al. [242]) respectively. One observes that the second ionization potential is
relatively small. In fact smaller than the ionization potential of the hydrogen
atom (13.595 eV [263]). Depleting almost completely the valence s-shell will
significantly reduce relativistic effects [264] as this is the case for 120H". How-
ever, similar small ionization potentials are found for all the group 2 elements,
and one should therefore expect similar small relativistic effects for the lighter el-
ements. This is indeed the case for RaH* and BaH™" as discussed above, and has
been demonstrated earlier for these two molecules in calculations by Pyykko and
co-workers [261, 262]. The scalar relativistic valence populations for the vacant
d-orbital at the heavy atom at the HF level of theory for 120H*, RaH* and BaH*
are -0.02, -0.10 and -0.15 respectively. In contrast, at the non-relativistic level
we have -0.14, -0.19 and -0.19 respectively. Hence, going down the group 2 ele-
ments, the relativistic valence-s contraction and the relativistic expansion of the
vacant d-orbitals opens up the s-d gap and diminishes the valence d-participation
in the bond, thus rationalizing the relativistic increase in the bond length observed
for 120H*. Indeed, in removing the most diffuse d-functions reduces substan-
tially the relativistic bond expansion in 120H*. It is worthwhile to mention that
for 120H* the vacant f- and g-orbitals show negligible populations. The bond
distances along the 7th period main group hydrides RgH, CpH*, 113H, 114H™,
117H and 118H™, as well as 119H and 120H* are compared in Figure 6.2 at dif-
ferent levels of theory, which nicely shows the interplay between scalar relativistic
and spin-orbit effects as discussed above. Note that the close proximity of the HF
and coupled cluster curves which shows that relativistic effects are more impor-
tant than electron correlation. Figure 6.3 shows the trend in bond distances down
the periodic table for the neutral element hydrides. One clearly sees changes in
trends between the elements Fr/119 and Ag/Au due to a scalar relativistic va-
lence s-contraction causing bond contractions, between the elements T1/113 due
to a spin-orbit 7p;/p-contraction causing a large bond contraction for 113H, and
a large increase in bond length for 117H due to a spin-orbit 7ps/,-expansion (see
also ref. [218] for a detailed discussion on relativistic effects in bond distances).
The trend in bond distances down a specific group of elements in the periodic
table depicted in Figure 6.3, closely resembles the trends in atomic radii published
by Fricke [211], and the more recently published trends in covalent radii published
by Pyykko and Atsumi [230]. The force constants show similar relativistic effects
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Figure 6.1: Bond distances for the Group 1 (MH) and 2 (MH*) metal hydrides. Exper-
imental values are extracted from ref. [265]. All other values are obtained
from our calculations or from ref. [266].

as shown in Table 6.6. The corresponding trends across and down the periodic
table are illustrated in Figures 6.4 and 6.5. Here, one sees rather large relativistic
effects for the group 11 and 12 element hydrides leading to a strong increase in
force constants causing large changes in periodic trends already at gold, which
has been discussed in detail before [4,264]. For 117H and 118H* a very large
relativistic decrease in the force constants was obtained, leading to a monotonic
decrease in the force constants down the group 17 series of elements as shown
in Figure 6.5. The rather small force constant calculated for 117H is in agree-
ment with the rather small dissociation energy calculated at the four-component
CCSD(T) level of theory. The dissociation energies are more difficult to discuss,
as relativistic effects for the separated atoms have to be considered and electron
correlation effects are significant as one expects. For both RgH and CpH* the
large scalar relativistic effect is partly cancelled by spin-orbit coupling due to a
change in the electronic configuration from 2S;,(6d'°7s') to 2Ds,»(6d°7s?) for
the elements Rg and Cpt [211, 253]. Nevertheless, there is a large relativistic

increase in the dissociation energy for RgH and CpH* as shown in Figure 6.6,
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Transition Method R SF NR
RgH HF -0.25 -0.25 0.66
B3LYP -0.43 -0.44 0.48

CpH* HF 0.49 0.51 1.47
B3LYP 0.37 0.37 1.29

113H HF 0.16 0.60 0.62
B3LYP 0.16 0.55 0.52

114H* HF 0.89 153 k.52
B3LYP 0.90 1.47 1.45

117H HF 0.52 0.43 0.39
B3LYP 0.42 0.39 0.34

118H* HF 1.36 1.29 1.25
B3LYP 1.28 1.26 1.20

119H HF 0.77 0.77 0.89
B3LYP 0.61 0.59 0.83

120H* HF 1.75 1.76 1.92
B3LYP 1.60 1.58 1.94

Table 6.7: Mulliken charges at the superheavy element at the HF and B3LYP level of
theory at he relativistic Dirac (R), scalar relativistic spin-free (SF) and non-
relativistic (NR) level of theory.
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Figure 6.2: Comparison of calculated relativistic (Dirac), spinfree scalar relativistic (SF)
and non-relativistic (NR) HF and CCSD(T) bond distances across the 7th
period main group hydrides RgH, CpH*, 113H, 114H*, 117H and 118H™,
as well as 119H and 120H™.
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Figure 6.3: Comparison of the calculated relativistic (not filled), spinfree (partly filled)

and non-relativistic (filled) CCSD(T) bond distances for RgH, 117H, 113H
and 119H with experimental values for the lighter homologes. Experimental
values (circle) are taken from [265], the non-relativistic value of AuH from
ref. [225] and the relativistic value for AtH from ref. [267] respectively.
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Figure 6.4: Comparison of calculated relativistic (Dirac), spinfree scalar relativistic (SF)

and non-relativistic (NR) HF and CCSD(T) force constants across the 7th
period main group hydrides RgH, CpH*, 113H, 114H*", 117H and 118HT,
as well as 119H and 120HT.
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Figure 6.5: Comparison of the calculated relativistic (not filled), spinfree (partly filled)
and non-relativistic (filled) CCSD(T) force constants for RgH, 113H, 117H
and 119H with experimental values for the lighter homologes. Experimental
values (circle) are taken from ref. [265] and the relativistic value for AtH
from ref. [267] respectively.

leading for example to a dissociation energy of RgH larger than that of AgH (but
smaller than that of AuH due to the spin-orbit effects as just discussed). The
p-block element hydrides all undergo relativistic destabilization effects mainly due
to spin-orbit stabilization at the atomic level. One should mention the very large
scalar relativistic destabilization of 120H", (and to a lesser extent for 119H),
which again is rather unexpected and contrary to the dissociation energies for the

group 11 or 12 element hydrides.

Finally it is worth mentioning that the large changes in the Mulliken charges and
corresponding charge flow from the hydrogen to the superheavy element (except
for 118H") results in rather large changes (especially for RgH) in the dipole

moments as can be seen in Table 6.5.
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Figure 6.6: Comparison of calculated relativistic (Dirac), spinfree scalar relativistic (SF)
and non-relativistic (NR) HF and CCSD(T) dissociation energies across
the 7th period main group hydrides RgH, CpH*, 113H, 114H*, 117H and
118H*, as well as 119H and 120H*.
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Figure 6.7: Comparison of the calculated relativistic (not filled), spinfree (partly filled)
and non-relativistic (filled) CCSD(T) dissociation energies for RgH, 113H,
117H and 119H with experimental values for the lighter homologes. Experi-
mental values (circle) are taken from ref. [265] and the relativistic value for
AtH from ref. [267] respectively.



Chapter 7

Electric field gradients of
transition-metal halides

With the development of generalized gradient approximations (GGA) into den-
sity functional theory (DFT), it has now become the preferred choice for the
quantum theoretical treatment of large molecules and the solid state [268]. It
is now well documented that density functionals perform well for most atomic
and molecular electronic properties. There are, however, several shortcomings
in the DFT methodology. The (rather long) list includes the incorrect descrip-
tion of highly non-local, long-range dispersive type of interactions [269-271],
strongly correlated systems [272], magnetic materials [273], systems of high
multi-reference character in the wavefunction [274] (for example in transition
states of chemical reactions [275,276]), charge-transfer processes [277], proper-
ties which delicately depend on the charge distribution, like dipole moments or
electric field gradients [278-281] in transition metal compounds, or dipole and
hyper-polarizabilities [154, 282, 283], and a few more.

One remaining notorious problem is the correct description of the quadrupolar
charge distribution close to the nucleus in atoms, molecules and solids, which
gives rise to the electric field gradient (EFG). In 1999 it was reported that cur-
rently applied density functionals perform poorly for the calculation of EFGs in
transition metal containing compounds, especially in late transition metals where
the polarization of the d-core has to be accurately described [278]. It was shown
that the error in the electric field gradient (EFG) at the copper nucleus in CuCl

correlates with the error in the valence charge distribution (dipole moment). Sim-

101
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ilar defects were found for other transition metal compounds [284-286]. Thus,
errors introduced in the long-range charge distribution of an atom leads to errors

in the short range as the total charge has to be conserved.

In a recent paper [287] it was demonstrated that the charge distribution in Group
11 halides can be correctly described by coupling short-range gradient-corrected
DFT with long-range exact exchange. Further improvement was achieved by
combining the gradient-corrected short-range functionals with coupled-cluster
theory [287]. The present study aims at calculating EFGs in copper and gold com-
pounds by using the newly developed CAM-B3LYP functional of Yanai et al. [282].
This functional already gave notably improved dipole polarizabilities [288] and
dipole moments [287] compared to the standard B3LYP functional. It will be
shown here that this method will also lead to substantially improved electric field

gradients at the metal center.

7.1 The CAM-B3LYP functional

The Ewald decomposition of the electron-electron Coulomb operator into a short-
range density functional and a long-range wavefunction based part goes back to
a work in 1985 by Savin and Stoll [289]. The CAM-B3LYP approximation starts

from a generalization of this decomposition [282]

Z 1— [a+ Berf(ur,)] N Z o+ Berf(ur;)

rij rij

Vee = (7.1)

1<J 1<J

by introducing two new parameters a and 3 with the constraints 0 < a+03 < 1,
0<a<1and 0 < B <1, erf is the well-known error function. The first term
accounts for the short-range interaction described by DFT and the second term
for the long-range part described with the Hartree-Fock (HF) exchange. The
parameter a determines the weight of the HF exchange for all distances, while
additional long-range HF exchange is mixed in with parameter 3. The short-
range DFT part the B3LYP functional is used, which already contains the exact
exchange [172,174]. The resulting Coulomb-attenuated form is called CAM-
B3LYP, where the parameters were determined to be optimal for « = 0.19,
B = 0.46 and . = 0.33 [282]. The commonly used hybrid functional B3LYP is
obtained by setting a = 0.2 and B = 0.0 and adjusting the pre-factor of the B88
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gradient correction to LDA exchange. The original routines have been written
by Salek [288] and recently been implemented by Saue into the program package
DIRAC [70].

7.2 Electric Field Gradients

The components of the electronic and nuclear field-gradient tensor qg’ﬁ and §g5°

at nucleus X are the expectation values over the corresponding operators [290]

n

_ = — i 512
~el (RX) - Z 3(r/a RX&)(r/B RXB) 6&[3“« RX‘ (72)

Ao =
o i |F; - RX‘S
and
~nu ZX[3(RYC! - RX )(RYB - RXﬁ) -9 ‘Rsx = /?y[2]
(R0 =3 TR Rl @3
Y #X X ¥
In expressions (7.2) and (7.3) «,B stand for x,y or z, (x,y,z) = 7, and

(X.Y,Z) = Ry the summation in (7.2) runs over all electrons i and the summa-
tionin eq. (7.3) runs over all nuclei X. The nuclear part (7.3) is easily determined
as a constant addition to the electronic part of the field-gradient tensor. In the
Kohn-Sham case the expectation value can be written as a sum of one-particle
integrals of the form

= 1
el KS I
an(RX:(b/ ) < )‘aRXQaRXﬁ’I‘—RX

¢,m>, (7.4)

where @, represent the Kohn-Sham orbitals.

7.3 Calculations for °2Cu and !°’Au

Diatomic compounds CuX and AuX (X=H,F,CI,Br and I) with and without CO
attached were chosen for the studies, i.e. OC-CuX and OC-AuX (X=F,Cl,Br
and ). This provides nuclear quadrupole coupling constants (NQCCs) over a
large range of values. All calculations were carried out applying relativistic basis

sets in their fully uncontracted form to allow maximum flexibility of the one-
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particle density close to the nucleus. Energy-optimized dual-type Gaussian basis
sets (GTOs) for Cu (20s/16p/11d/3f) and Au (26s/24p/18d/12f) [284] were
used. For the halides the following basis sets were applied: (13s/7p/4d) for
F. (17s/12p/4d) for Cl, (19s/17p/9d/2f) for Br and (20s/19p/11d/2f) for
| [247,291,292]. The basis set for hydrogen was a (11s/6p/4d/3f). For C and O
a (11s/6p/3d/2f) and a (11s/6p/3d/2f) basis-set was used respectively [247].

The equilibrium bond distances and nuclear quadrupole coupling constants for
the diatomic compounds were taken from experiment [265], and from recent
experimental measurements by Gerry and co-workers [293, 294] and Okabayashi
[295]. The corresponding data for the four-atomic compounds are from OCAuX
(X=F,CI,Br) [296], OCAul [297], OCCuX (X=F,Cl,Br) [298] and OCCul [299].

The parameters published by Yanai et al. [282] were determined to accurately
produce atomization energies and charge transfer excitations. Therefore, it seems
to be necessary to re-optimize these parameters for EFG calculations. Thus, the
parameters were adjusted to the experimental copper electric field gradient in
CuCl (-0.31(2) au). Not surprisingly one finds a strong dependence of the copper
field gradient on the value of «, see Fig. 7.1. For different values of o the
EFG can even change sign. There is also a slight dependence on 3. Finally,
the parameter set @ = 0.4, B8 = 0.179 and . = 0.99 was obtained and the
resulting functional will be called CAMB3LYP*. For this parameter region, the
value for the Cl field gradient (1.63 au) is also quite close to the experimental one
(1.68(2) au). A second indicator for the good performance is that the calculated
dipole moment of CuCl (5.47 Debye) is also close to the DK-CCSD(T) value of
(5.32 Debye) given in ref. [278].

According to
UNCQQ[MHZ] = 2349647q [au] Q [b] , (75)

where vncqq is the NQCC, the (spectroscopic) nuclear electric quadrupole mo-
ment Q of 83Cu and °7Au is determined by the slope of the experimental NQCC
at the metal center to the theoretically determined electric field gradient. The
slopes are obtained by a linear least-square fit. This method is by construction
of the best fit of the slope, and more robust than the indirect method used in
ref. [300]. The quality of the calculated EFGs and the linear fit is given by the
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Figure 7.1: The calculated EFG (in atomic units) of CuCl for different values of o of
the CAMB3LYP functional.

linear correlation coefficient of the linear regression and by the intercept which
should be exactly zero [301]. Any deviation from the zero intercept points to-
wards a systematic error in the method applied. The experimental field gradients
are obtained from the nuclear quadrupole moments listed in ref. [302], which are
-0.220(15) b for ©3Cu and +0.547(16) b for 1°”Au (1 b = 10728 m?).

7.4 Results and Discussion

The electric field gradients at Cu and Au for a variety of diatomic compounds
with and without CO attached are shown in Tables 7.1-7.4. First one should
note that all pure density functionals (LDA and GGA) yield the wrong sign for
the copper EFG in all diatomic compounds. In the case of the diatomic gold
compounds the EFGs are similar in error, as pointed out before [286]. This is

in contrast to other properties (structures, energies vibrational frequencies, etc.)
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where density functionals (especially hybrid functionals) like B3LYP are found
to perform extremely well. Also the CAM-B3LYP functional with the suggested
parameters does not perform well for EFGs. For the molecules with CO attached,
the EFGs are in somewhat better agreement, as the absolute values are rather
large and less close to zero. Nevertheless, the variation in the EFGs between the

different density functionals is still not acceptable.

Method CuH CuF CuCl CuBr Cul
HF -0.702 -1.835 -0.896 -0.742 -0.571
LDA 0.616 0.570 0.498 0.505 0.487
PBE 0.598 0.546 0.404 0.429 0.418
PWO1 0.708 0.792 0.634 0.617 0.572
BLYP 0.776 0.879 0.718 0.696 0.640
B3LYP 0.338 0.112 0.149 0.181 0.208
CAMB3LYP 0.311 0.145 0.129 0.152 0.176
CAMB3LYP* -0.085 -0.503 -0.315 -0.237 -0.141

Table 7.1: Calculated electric field gradients (in atomic units) at Cu for different di-
atomic copper compounds.

Method OCCuF OCCudl OCCuBr OCCul
HF -2.178 -1.961 -1.876 -1.783
LDA -0.686 -0.706 -0.668 -0.659
PBE -0.739 -0.751 -0.711 -0.697
PWO1 -0.736 -0.748 -0.708 -0.695
BLYP -0.685 -0.699 -0.663 -0.654
B3LYP -1.012 -0.976 -0.932 -0.907
CAMB3LYP -1.148 -1.123 -1.082 -1.059
CAMB3LYP* -1.558 -1.450 -1.391 -1.339

Table 7.2: Calculated electric field gradients (in atomic units) at Cu for different tri-
atomic copper compounds.

The calculated nuclear quadrupole moments (NQM) are given in Tables 7.5 and
7.6. As pointed out before [286] for LDA, the GGAs and B3LYP erratic NQMs for
each sub-set of molecules, the diatomics as well as the four-atomics, were derived.
In fact the intercept is not even close to zero. Obviously the CAM-B3LYP with

the original parameter set does not perform well either.

Considerable improvement for all subsets and molecules is achieved for the CAM-
B3LYP* approximation with the newly adjusted parameters. For the first time a
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Method AuH AuF AuCl AuBr Aul
HF -2.015 -4.610 -3.428 -2.903 -2.240
LDA 4013 4.074 3.746 3.700 3.514
PBE 3.693 3.718 3.375 3.348 3.204
PWI1 3.746 3.783 3.441 3.411 3.259
BLYP 3.886 4.005 3.659 3.625 3.445
B3LYP 2.899 2.190 2.206 2.280 2.310
CAMB3LYP 2.142 1.285 1.384 1.502 1.625
CAMB3LYP* 0.780 -0.858 -0.290 -0.010 0.332

Table 7.3: Calculated electric field gradients (in atomic units) at Au for different di-

atomic gold compounds.

Method OCAuF OCAuCl OCAuBr OCAU!
HF -1.186 -1.169 -1.143 -1.119
LDA -4.059 -4.653 -4.583 -4.676
PBE -4.405 -4.950 -4.881 -4 957
PWO91 -4.339 -4.883 -4.815 -4.896
BLYP -4.125 -4.663 -4661 -4.702
B3LYP -5.784 -6.161 -6.059 -6.091
CAMB3LYP -6.677 -7.094 -7.002 -7.039
CAMB3LYP* -8.544 -8.708 -8.542 -8.470

Table 7.4: Calculated electric field gradients (in atomic units) at Au for different tri-

atomic gold compounds.

diatomics CuX

four-atomics OCCuX

all CuX + OCCuX

Method IC. Q corr. IC. Q corr. IC. ® corr.
HF -6.2 -91 0808 16.2 -117 0.989 -26.9 -205 0.970
LDA 358 -189 0.308 15.7 -345 0.389 37.9 -206  0.980
PBE 243 -108 0.278 419 -655 0.817 34.9 -203 0.980
PWO1 -906 139 0.351 -428 -663 0.816 395 -175 0.971
BLYP -15.8 160 0.425 -49.0 -747 0.738 423 -172 0.965
B3LYP 29.7 -382 0.968 -25.8 -424 0.994 21.7 -214 0.994
CAMB3LYP 29.0 -397 0.860 -57.6 -490 0.987 20.2 -192 0.990
CAMB3LYP* 0.1 -200 0955 -15 -210 0.997 -0.3 -208 0.998
Exp 0.0 -220(15) 1.000

Table 7.5: The nuclear quadrupole moment @ (in 1073 b) of 63Cu. Intercept (ic. in
MHz) and correlation factor (corr.) from the linear fit of the NQCC vs. EFG.

reasonable accuracy in the NQMs of ©3Cu and !’Au is achieved, despite some-

what large deviations for the OCAuX compounds with an intercept which differs

substantially from zero. Nevertheless, the correlation factor is close to one and

CAM-B3LYP* performs significantly better than any other density functional used

here.
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diatomics AuX four-atomics OCAuX all AuxX + OCAuX
Method IC. Q corr. IC. Q corr. IC. Q corr.
HF 290.1 333 0911 -438.1 208 0.771 4198 522 0.996
LDA 119.2 -75 0.046 -1040.3 -35 0.129 -432.1 539 0.991
PBE 3.4 59 0.035 -1039.9 -33 0.108 -390.8 542 0.992
PW91 35.3 20 0.012 -10416 -34 0.115 -39838 542 0.991
BLYP 2559 -230 0.136 -1054.3 -48 0.167 -423.7 541 0.991
B3LYP -606.8 1184 0917 -948.6 39 0.080 -2463 536 0.996
CAMB3LYP -363.9 1119 0.981 -987.9 9 0.002 -143.6 527 0.997
CAMB3LYP* 53.1 598 0.977 516.3 755 0.960 53.6 526 0.999
Exp 0.0 547(16) 1.000

Table 7.6: The nuclear quadrupole moment @ (in 103 b) of ®’Au obtained from a
linear fit. Intercept (ic. in MHz) and correlation factor (corr.) from the

linear fit of NQCC vs. EFG.
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Figure 7.2: The experimental NQCC (in MHz) as a function of the calculated EFG (in

atomic units) for different copper compounds
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Figure 7.3: The experimental NQCC (in MHz) as a function of the calculated EFG (in
atomic units) for different gold compounds.

By correlating all compounds, as shown in Fig. 7.2 and 7.3, one obtains an
excellent performance for the CAM-B3LYP* method with NQMs now in good
agreement with the experimentally predicted ones. For instance, for ®3Cu one
gets -0.208 b, which lies within the experimental uncertainty [302].

For 197Au the muonic value of 0.547 b [303] has been debated very recently.
Schwerdtfeger et al. [284] obtained 0.64 b using the (CO)AuF molecule and
0.61 b using several solids. It was pointed out that it is currently very diffi-
cult to obtain an accurate NQM for ¥“Au, and consequently the muonic value
remained unchallenged. More recently Belpassi et al. [300] obtained 0.510 b,
ltano [304] 0.587(29) b using the Au atom 5d°6s? 2Ds, 5,2 states in multi-
configuration Dirac-Hartree-Fock and relativistic configuration-interaction cal-
culations, and Palade et al. [305] give 0.560(30) b for Au-Al alloys obtained
from 197 Au Mossbauer spectroscopy measurements and relativistic linearized aug-
mented plane wave (LAPW) calculations. Pyykko et al. obtained 0.509 b for AuH
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from relativistic coupled-cluster calculations including both Gaunt and quantum
electrodynamic contributions [306]. The most accurate value comes perhaps from
the Tel-Aviv group with 0.521(7) b obtained from relativistic Fock-space coupled-
cluster calculations with single and double excitations including the Gaunt term
for 2D5/2.5,2 states of atomic gold [307]. The calculated result reported here with

0.526 b is in excellent agreement with this value.

Finally one should mention that whilst the EFG is not reproduced accurately by
most density functionals, in spanning the whole range of all possible EFGs using a
variety of compounds, one clearly observes an error cancellation when the NQM
Is determined. Hence, all density functionals perform reasonably well, i.e. from
-0.206 b (LDA) to -0.172 b (BLYP) for ©3Cu, and 0.526 b (CAM-B3LYP*) to
0.542 b (PW91) for *“Au. However, the intercept can deviate substantially from
the correct value of zero which is disappointing. Therefore one can conclude
that the readjusted CAM-B3LYP* hybrid functional is currently the best density
functional to be used in electric field gradient calculations of transition element

containing compounds.



Chapter 8

Parity Violation in CHFCIBr

Despite the well accepted fact that the weak neutral currents between electrons
and nucleons predicted by the electroweak theory create an energy difference be-
tween the two enantiomers of a chiral molecule, this kind of parity violation (PV)
has never been observed in experiments. Unfortunately this energy difference can
not be measured directly. One promising method is to measure PV-shifts in vi-
brational transitions of chiral molecules. Currently Chardonnet and co-workers
are setting up an experiment using highly frequency-stable tunable lasers [43] for
high-resolution measurements, which can reach resolutions below 1 Hz, coming
close to the order of magnitude for the PV effect predicted for example for a
molecule like CHFCIBr.

Because of the very small size of the PV effect, it is essential for experimentalists
to have an accurate theoretical value for comparison. However, it is well known
that electron correlation is very important in electronic structure calculations es-
pecially for PV energy shifts [57]. State-of-the-art methods to predict this energy
shift are Dirac-Kohn-Sham (DKS) calculations using various functionals due to
the advantage of low computational costs and wave-function based methods like

Kramers-restricted coupled-cluster theory.

In this investigation one of the most promising molecules, bromochlorofluoro-
methane (CHFCIBr) was chosen to test a number of different methods. The
atoms form a tetrahedron with the hydrogen, fluorine, chlorine and bromine at

the corners and the chiral carbon atom in the center (Fig. 8.1).

In this study it is shown that none of the density-functionals work very well in

111
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Figure 8.1: Two enantiomers of the CHFCIBr molecule. The molecule on the left is the
S-enantiomer, the one on the right is the R-enantiomer.

PV calculations and therefore cannot be used without further investigations. A
consistent wave-function based correlation treatment might give the only accu-
rate solution at present. Coupled-cluster [CCSD(T)] calculations were therefore
performed, using a finite field approach for the PV operator as suggested previ-
ously by Thyssen et al. [308]. The CCSD(T) results were subsequently used to
evaluate the quality of various density functional approximations. Furthermore
the three parameters of the Coulomb attenuated functional CAM-B3LYP [282]
were adjusted to reproduce the PV energy shifts of each atom in CHFCIBr as
obtained by the CCSD(T) calculations. It was found in previous studies that
this procedure works quite well for dipole moments and electric field gradients in

transition-metal halides (see previous chapter) [287,309].

8.1 Theory of Electroweak Interaction

The route to the effective 4-component relativistic parity-violating (PV) electronic
neutral weak Hamiltonian for molecular calculations is a long journey “through
the beautiful field of particle physics, gauge theories, and quantum field theory "
[310] which is beyond the scope of this thesis. The Lagrangian density of the
neutral weak electron-nucleon (e-nuc) contact interaction in the low-energy (zero

momentum transfer) limit [310], serves as a starting point here

G ;€ ‘nucC
Lo = 5™ (8.1)

with the Fermi coupling constant Gg = 2.22255 x 107** au and an implicit sum

over all nucleons (nuc), that is, all protons (p) and neutrons (n). Being a contact
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interaction, the attention can be restricted to one atomic center, say nucleus K,
with Zk protons and Ny neutrons. At this stage, the generalized 4-currents J,
can be regarded as linear combinations of the generalized densities ! M1y with
M denoting the Dirac matrices. The Dirac matrices and the associated currents
can be classified according to the transformation under parity reversal as polar
vectors (V) and pseudoscalars (P) which change sign, and as axial vectors (A)
and scalars (S) which do not.

It can be shown [310] that only V-A (polar vector minus axial vector) Fermi
coupling is of relevance, and the corresponding electron and nucleon 4-currents

that appear in eq. 8.1 are given by

JE :Jﬁv _./EA

= CSI(A, Laxa)We — CRVI(Z, ¥®) e (8.2)
o=~ Uy
= C\'}ucwrtuc(d 12x2)'wnuc - CRUCWUC(E' O)wﬂUC' (83)

where v> = a,a,a, and Y =53 In eq. (8.3) the so-called non-relativistic
approximation has been invoked which means to neglect of the nucleon small

component bispinors

Before giving the explicit coupling coefficients C of egs. (8.2) and (8.3), and
actually coupling the electron and nucleon 4-currents, it is worthwhile to study
first the transformation under the parity operation of the space-like components
(&, L, &) and time-like components (1axa, 5 lax2) and their combinations: &
transforms as the coordinates which change sign (V), matrices ¥ and G transform
as rotations (A), laxs and loxo as S, and finally ° is the pseudoscalar chirality

matrix (P). The four possible electron-nucleon combinations are

Jiv '™ which transforms as S
Javat Vv
P e P
Bais A

The parity-even S and A combinations can be dropped being practically unob-

servable due to the minute size of the Fermi coupling constant Geg. Only the
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parity-odd V and P combinations shall be considered in the following. They
are tiny, too. However, they distinguish themselves from all other fundamental
interactions by symmetry breaking which makes them observable in a suitable

experiment.

Returning to egs. (8.2) and (8.3), the electron (e), up quark (u), and down quark
(d) coupling coefficients read as [310]

Cé=1—4sin’ Oy (8.4)
Cl=1- %5]n2 O (8.5)
Cd=1- gsm2 Bw (8.6)
Ci=-3 ®.7)
CY = % (8.8)
¢ = —é (8.9)

with the Weinberg parameter sin? 6y, = 0.2397(13) [310]. The p and n coupling
coefficients are approximately given by

Ch=2Cy+CJ (8.10)
Cl = 2CY + Cy, (8.11)

with corresponding relations for C{, and CJ, since protons consist of two u and

one d and neutrons of two d and one u quark.

The nucleon V-currents can be combined (added up) to the weak charge Qﬁ

which allows us to express the V current for nucleus K by
Jv = (0. Q%pk), (8.12)

where pk is the nuclear charge distribution (typically modeled by a Gaussian
distribution), and the weak charge Q¥ is given by

Qx = (22;( + NK)C{J/ S (2NK + ZK)C\d/
= Zk(1 —4sin®6y) — Nk. (8.13)
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Zx and Ny are the proton and the neutron number of nucleus K. In contrast to
j‘f\, the combination of nucleon A-currents to form JKA is less evident. Typically,

Jf,A is approximately given by

Jf,A = (AKFKPK 0)

(i" My px., 0> (8.14)

with the nucleus-dependent form factor A on the order of unity and chosen
as Ax = 1 in actual calculations. The nuclear spin distribution is approximated
by the nuclear Gaussian charge distribution scaled with the nuclear spin /} ) ©F
equivalently, scaled with the nuclear magnetic moment My and divided by the

gyromagnetic ratio yx.

We have now gathered all ingredients to form the parity-odd combinations of
electron and nucleon 4-currents and obtain the effective one-electron Hamiltoni-

ans

Hia= A SZprK ) (8.15)

and

G C§
H,v s de MKpK (8.16)

respectively, with Ci and C¢ given in egs. (8.4) and (8.7). The first Hamiltonian
H, a is employed in calculations of PV energy differences between enantiomers.
The second Hamiltonian H, v is employed in calculations of PV effects on nuclear

spin dependent effects like nuclear magnetic resonance.

8.2 Computational Method

At the Dirac-Hartree-Fock (DHF) and DKS level the contribution of atom K
In a molecule to the parity violation energy shift Epy can be calculated as the

expectation value

Egv = <W|H;§v|w) (8.17)
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over the nuclear spin-independent P-odd operator (8.15)

Hpy = 2\/QZQW% pn(F;) (8.18)

The summation is over all electrons. For the number of nucleons Ax = Nk + Zk,
values of 1, 12, 19, 35 and 79 have been used for H, C, F, Cl and Br respectively.
All calculations were performed by using the program package DIRAC [70], which
calculates the expectation value at the DHF and DKS level of theory. Because
it is currently not possible to obtain a CCSD(T) wave function to calculate the
expectation value, the finite field method [308] was applied instead to obtain
the parity violation energy for CHFCIBr at various correlated levels. The parity-

violation energy shift can be written as

Gr K pgK
Epy = Ve Z QuwMpy. (8.19)

ME, =<\U > Pox(7) \U>

=(V| MK, V) (8.20)

where M{, is given by

The basic idea is to deploy the parity violation operator as an perturbation for
the DHF operator with perturbation strength A

~

H()\) = F/DHF+>\M;§V- (821)

Mg, is found as the first derivative of the total energy of the molecule with
respect to A, which has to be sufficiently small to obtain converged values for

M,
8.3 Results and Discussion
Density functional calculations using the functionals (LDA, BLYP, B3LYP, PBE

and CAM-B3LYP) were performed for the molecule CHFCIBr at the CCSD(T)
optimized geometry using completely uncontracted cc-pVDZ basis sets [176,247,
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291]. The results are summarized in Tab. 8.1 and depicted in Fig. 8.2. Each
functional gives different atomic PV contributions. Some LDA and PBE even
yield the opposite sign for the bromine value compared to the Dirac-Hartree-

Fock calculation.  As a result of this varying performance for different func-

Br al F C H
HF 1.683E-05 -1.845E-05 6.803E-06 5.761E-07 -0.829E-08
LDA -0.483E-05 -0.529E-05 7.802E-06 6.874E-07 -3.274E-08
BLYP 0.029E-05 -0.868E-05 7.645E-06 5.548E-07 -3.099E-08
B3LYP 0.623E-05 -1.279E-05 7.752E-06 6.127E-07 -2.555E-08
PBE -0.057E-05 -0.749E-05 7.581E-06 5.545E-07 -3.083E-08

CAM-B3LYP  1.208E-05 -1.712E-05 8.318E-06 6.532E-07 -1.911E-08
CAMB3LYP*  1.393E-05 -1.772E-05 7.741E-06 6.422E-07 -1.637E-08
MP2 0.959E-05 -1.413E-05 6.740E-06 6.820E-07 -1.522E-08

Table 8.1: M,’;‘V values for CHFCIBr calculated at different levels of theory using a cc-
pVDZ basis set.

tionals, relativistic DHF, MP2 and CCSD(T) calculations were performed using
completely decontracted cc-pVDZ and cc-pV TZ correlation consistent basis sets
for all atoms by utilizing the finite field method. The perturbation strength A
was varied over a large range (107! — 107° au). The first task was to reproduce
the PV expectation value at DHF level for each atom. It was found that for
A > 1072 au the weak perturbation regime was left and the MY, value drifted
to larger values. For A < 107* au an oscillational behavior was observed which
can be explained as to be due to numerical instabilities at such tiny perturbation
strengths (Fig. 8.3). The MP2, CCSD and CCSD(T) values were also found
to be converged in the same parameter region (Fig. 8.3). In-between, the Mpy
values remained almost constant over a range of two orders of magnitude. For
the DHF and MP2 calculations they differed less than 0.5% from the expectation
value (Tab. 8.2). This indicates that the finite field method in numerically sta-
ble and provides reasonable accuracy. For the coupled-cluster calculations it was
however necessary to determine which orbitals need to be correlated. Even by
using state-of-the-art computers one is forced to restrict the correlation space to
the valence shell. In this study we restricted our calculations to correlate only the
valence electrons otherwise the calculations would not be feasible on the avail-

able computers. The multi-reference character of the system was tested, and



118 CHAPTER 8. PARITY VIOLATION IN CHFCLBR

2e-05 T T T T | I T
— IBp
B — ¢l Il
F
— G
H
1e-05— —
;E = L ] I n ] - - ] L] ] | | - | _|
-1e-05 — =
2605 L_L | I l | | | l l
HF LDA BLYP B3LYP PBE CAMB3LYP MP2 CCSD CCSD(T)

Figure 8.2: Mr’fv of CHFCIBr calculated at different levels of theory using a cc-pVDZ

basis set
atom method expectation value finite field
Br DHF 1.6832 x 107° 1.6830 x 107>
MP2 0.9591 x 10°° 0.9587 x 10°
Cl DHF —1.8454 x 107° —1.8450 x 1073
MP2 —1.4131 x 107> —1.4180 x 1073
F DHF 0.6803 x 1073 0.6826 x 107°
MP2 0.6740 x 107> 0.6702 x 1075
C DHF 0.0576 x 107° 0.0577 x 107°
MP2 0.0682 x 1073 0.0677 x 107>
H DHF —0.0008 x 10> —0.0008 x 107°
MP2 —0.0014 x 1073 —0.0013 x 1073

Table 8.2: Parity violation (Mpy) at different levels of correlation, cc-pVDZ basis sets
are used for all atoms of CHFCIBr
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Figure 8.3: Correlation dependence of the PV contribution of the single atoms on the
perturbation strength A

the obtained value of 0.009 for the T1-diagnostic implies that it is reasonable to
perform single reference CCSD(T) calculations.

With the knowledge of the perturbation strengths to be applied to each atom,
it was possible to extend the basis sets to cc-pVTZ. The DHF value with that
basis set increased by roughly 30% for each atom compared to the cc-pVDZ

calculations. The MP2 results are summarized in table 8.3.

Nevertheless, it was impossible to perform a vast number of coupled-cluster cal-
culations using this basis set to find a regime for the perturbation strength where
a converged PV energy difference could be obtained. Therefore difference be-
tween the MP2 and CCSD(T) results at the cc-pvDZ level of theory was added
to the MP2 value obtained by a cc-pVTZ calculation.

By using the same perturbation strength as in the cc-pVDZ calculations, single
CCSD(T) calculations were performed and the PV energy difference calculated.
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The PV energy differences at cc-pV TZ level obtained by both methods are listed
in Tab. 8.4. One can see that both procedures give basically the same value
close to the MP2 result.

method ME? ME], ME,, MS,, ME,
DZ DHF 1.683107> -1.84510"> 6.80310°° 5.76110~" —8.291107°
DZ MP2 9.591107® —1.413107° 6.74010°® 6.82010~7 —1.37110°8
DZ CCSD(T) 9.34010™® -1.31010"°> 6.280107° 6.34010°7 -
TZ DHF 2.230107°> -2.36010"° 9.700107® 8.51010°7 —1.8801078
TZ MP2 1.055107°> -1.71010"° 9.61010~® 1.09010°® —8.71210°°

Table 8.3: Parity violation Mpy values at different levels of correlation. cc-pVDZ and
cc-pVTZ basis sets are used for all atoms of CHFCIBr.

method M5!, ME!, ME, MS,, Epy [au]
extrap. 1.03010~® 161510 0.15510~% 1.04610~° —1.945x 10—
single calc. 1.054107> —1.57010"> 8.86010~° 1.010107® —2.064 x 10~!8

Table 8.4: Parity violation (Mpy) at different levels of correlation. cc-pVTZ basis sets
were used

The CAM-B3LYP functional performed reasonably well, but the parameters pub-
lish by Yanai et al. [282] were determined to accurately reproduce atomization
energies and charge transfer excitations. Hence, it was necessary to reoptimize
these parameters for calculations of the PV contributions of the single atoms.
The adjusted parameters are @ = 0.10, B8 = 0.25 and u = 0.50 for which the
coupled-cluster values for the Br as well as the Cl atoms were reproduced within

an error of less than 5%. This functional should be used in future PV calculations.



Conclusion

Relativistic quantum chemistry is the relativistic formulation of quantum me-
chanics applied to many-electron systems, i.e., to atoms, molecules and solids.
It combines the principles of special relativity, which are obeyed by any funda-
mental physical theory, with the basic rules of quantum mechanics (NB: So far
no violation of the CPT theorem has been found which would imply violation of
Lorentz invariance). By construction, it represents the most fundamental theory
of all molecular sciences, which describes matter by the action, interaction and
motion of the elementary particles. This science is of vital importance to physi-
cists, chemists, material scientists, and biologists with a molecular view of the
world. Nevertheless, a full relativistic treatment of atoms and molecules which
includes the quantization of the electromagnetic field has been and will remain a

challenging task for future investigations.

The goal of the presented thesis therefore was to study relativistic effects in
atoms and molecules. A combination of wave function based and density func-
tional methods within the four-component approach proved necessary to achieve

accurate ab-initio results of atomic and molecular properties.

Quantum electrodynamic (QED) calculations were presented within the Furry
picture of bound state QED for the frequency-dependent Breit interaction be-
tween electrons, the vacuum polarization and the electron self-energy correction.
Starting from the Dirac-Coulomb Hamiltonian, QED effects in the ionization po-
tentials of the group 1, 2, 11, 12, 13 and 18 elements of the periodic table, down
to the superheavy elements up to nuclear charge Z=120, were investigated. The
results for the s-block elements were found to be in excellent agreement with
earlier studies by Labzowsky et al. using a different methodology.

The K-shell and L-shell ionizations potentials for 25Mt were calculated at the

Dirac-Hartree- Fock level taking into account QED and finite nuclear-size effects.
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The Kqi-transition energies for different ionization states are accurately predicted
and compared with recent experiments for the a-decay of 2{2Rg. It was concluded
that the observed y-ray came from a nuclear and not from an electronic transition

as originally postulated.

Static dipole polarizabilities for the 3P, ground state of the neutral group 14 el-
ements C, Si, Ge, Sn, Pb and the element with nuclear charge Z = 114 were
studied by utilizing all-electron relativistic coupled cluster theory. A compari-
son to molecular beam electric field deflection experiments for Sn and Pb shows
good agreement with the theoretical values presented here. The isotropic and
anisotropic components of the polarizability increase monotonically with the nu-
clear charge Z, except for the spin-orbit coupled J = 0 states, which start to
decrease from Sn to Pb and even further to element Z = 114. Hence, spin-orbit
coupling leads to a significant reduction of the polarizability of the superheavy
element with Z = 114, i.e., from 47.9 au at the scalar-relativistic Douglas-Kroll
level to 31.5 au at the Dirac-Coulomb level of theory, which is even below the
value of Si (37.3 au). The calculations further demonstrated that relativistic and

electron correlation effects are non-additive.

Relativistic and electron correlation effects were studied for the closed-shell super-
heavy element mono-hydrides RgH, 112H*, 113H, 114H*, 117H, 118H*, 119H,
and 120H"*. In particular, the chemical bonding of the elements 119 and 120 were
discussed for the first time. Periodic trends were discussed by comparing the cal-
culated properties to the ones for the lighter elements. The size of the relativistic
effects varied considerably between the different molecules, with the s-block el-
ements being dominated by scalar relativistic effects and the p-block elements
by spin-orbit effects. In most cases, relativistic effects are more important than
electron correlation effects, and both are non-additive as one expects. 120H*
behaves in a counterintuitive way as it shows a relativistic bond-length expansion
together with a large relativistic decrease in the dissociation energy. The reason
behind this anomalous behavior is due to the relativistically diminished valence-7d
participation in the 120-H bond.

The electric field gradient in late transition metal compounds is incorrectly deter-
mined by most density functionals. It was shown that the coupling of short-range
density-functional based with long-range wave-function based methods using a

reparametrization of the Coulomb-attenuated Becke three-parameter Lee-Yang-
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Parr approximation gives reliable results for the electric field gradients of cop-
per and gold for a series of compounds. The obtained results for the nuclear
quadrupole moment of -0.208 b for $3Cu and +0.526 b for 1°”Au are in good
agreement with experimental values of -0.220(15) and +0.547(16) b, respec-
tively.

Finally, the parity violation energy difference in the chiral molecule bromochlo-
rofluoromethane (CHFCIBr) was investigated by coupled-cluster theory to pro-
vide benchmark results for future investigations in this field. It was shown that
several common density-functionals do not give reliable parity violation energy
differences, and post-Hartree-Fock methods are necessary to determine reliable

values.

Apart from the methodological developments presented in this thesis, further
developments on the proper treatment of QED effects including the variational
treatment of the frequency dependent Breit interaction for molecules are re-
quired in the future. It would also be desirable to obtain the first-order density
matrix at the coupled-cluster level to obtain analytical values for parity violation
effects. Concerning more fundamental physics, future directions could include
CP-violation in molecules and the variation of fundamental constants in space-
time. As a final note, a variation of the fine-structure constant a in time would

make relativistic effects an observable although we are living in a relativistic world.
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Appendix A

Optimized all-electron basis set for E119:

s-function
5.091668956E+07
6.607847134E+405
2.301056890E+04
1.042165304E4-03
7.648605902E+01
5.694991331E400
2.321115096E-01
p-functions
5.031897077E+07
5.929368615E+05
1.324032464E+04
5.291243799E+02
3.421889384E+01
2.078539763E+00
1.658290237E-02
d-functions
1.542441377E405
1.891395079E+03
1.204406179E4-02
1.207024238E+01
1.056798873E+00
f-functions
4.120309094E+-03
1.271125591E402
1.091116838E+01
g-functions
4.289594660E+00

1.347831724E4-07
2.737019912E+05
1.037559421E+04
5.123914361E+02
3.542020946E+01
2.546113509E+00
7.180576917E-02

1.523337693E+07
2.183325340E+05
5.575565265E4-03
2.588492993E+02
1.829221006E+01
9.508184813E-01

3.866202542E+04
8.774341485E+02
6.666032461E+01
6.655835950E+00
3.396845605E-01

1.316576971E+03
6.792952691E4-01
5.816823986E+00

1.966077054E4-00

4.530740933E406
1.176557660E+4-05
4.747374580E+03
2.620383859E+-02
2.038134279E+01
1.350338309E+00
3.321066380E-02

4.903828414E+06
8.307012207E+04
2.444836914E403
1.305792752E4-02
9.067189643E+00
3.680182730E-01

1.217614717E4-04
4.333455716E4-02
3.716339889E+01
3.664465519E+00
6.076462852E-01

5.358876458E+02
3.672053657E+01

2.993907297E4-00

8.317942084E-01
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1.665507863E406
5.164287912E+04
2.215375000E+03
1.371848955E4-02
1.032790533E+01
5.051671669E-01

1.658290237E-02

1.669357228E4-06
3.262132975E+-04
1.116155971E+03
6.743056066E+01
4.654906999E+00
1.272904516E-01

4.461979426E403
2.238953375E+02
2.118231734E401
1.996186902E4-00
6.204466083E-03

2.497599114E+02
2.011846380E+01
1.387176783E+00
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Optimized all-electron basis set for E120:

s-function
5.162618437E+07
7.007021263E+05
2.358607440E+04
9.277500091E+02
5.928136973E+01
4.310842507E400
1.364072274E-01
p-function
4.407272658E+07
4.110495924E+05
8.205427711E+03
3.207412860E+02
2.018757553E+01
1.014299392E+00
d-function
5.479045503E+04
2.030244380E+03
1.138341954E+02
8.526138493E+00
3.601002333E-01
g-function
3.418125913E+03
1.556393871E+02
1.016391211E+01
h-function
4.972993223E+00

1.370909772E+-07
2.951775330E+05
1.022285093E+04
4.446344710E+402
3.106605433E+01
2.000679334E+00
5.508453754E-02

1.230100536E+07
1.459007846E+05
3.418125913E+03
1.556393871E+02
1.016391211E+01
3.289355306E-01

2.358607440E+04
9.277500091E+02
5.928136973E+01
4.310842507E4-00
1.364076777E-01

1.490376017E+03
7.777038082E+01

4.972996091E+00

2.320545345E+00

4.644059340E+06
1.271902118E+05
4.500247349E+03
2.215381115E+02
1.651074746E+01
9.045727573E-01

2.374576348E-02

3.730589360E4-06
5.379213794E4-04
1.490376017E+03
7.777038082E+01
4.972996091E+00
1.007678935E-01

1.022285093E+04
4.446344710E+02
3.106605433E+01
2.000679334E+00
5.509376426E-02

6.787826028E+02
3.935273324E+01

2.320541515E4-00

8.563543110E-01

Appendix A

1.731442084E+06
5.479045503E+04
2.030244380E+03
1.138341954E+02
8.526138493E+00
3.601002333E-01

1.035348933E-02

1.207666545E+06
2.059076555E+04
6.787826028E4-02
3.935273324E+-01
2.320541515E4-00
5.023479845E-02

4.500247349E+03
2.215381115E+402
1.651074746E+01
9.045727573E-01
2.372309746E-02

3.207412860E+02
2.018757553E+01
1.014299392E+-00
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