ETHANOL AND ACETALDEHYDE METABOLISM

IN SHEEP

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy
in Biochemistry

at
Massey University,
New Zealand.

Jane HENDTLASS

1973
Ethanol and acetaldehyde metabolism in sheep has been studied in three different types of experiments: in purified enzyme systems, in liver homogenates and in the intact animals. Particular emphasis has been placed on the aldehyde oxidase enzyme from sheep liver, a molybdo-flavoprotein with a broad specificity which includes aldehydes, quinines and N1-methyl nicotinamide. This thesis describes a method for preparing an enzyme solution in which sheep liver aldehyde oxidase constitutes 85% of the total protein present. Investigations of its physical and kinetic properties show that the sheep liver enzyme differs from the aldehyde oxidases previously prepared from pig and rabbit livers. In addition, an antibody to sheep liver aldehyde oxidase has been prepared from rabbit serum and has been shown to act as a specific, competitive inhibitor of the enzyme. This has been used to assess the contribution that aldehyde oxidase makes to acetaldehyde oxidation in sheep liver homogenates under several different conditions.

The effects of steroids on ethanol and acetaldehyde metabolism has been investigated, special interest being taken in the effects of progesterone. Progesterone stimulates sheep liver aldehyde oxidase activity \textit{in vitro} and inhibits sheep liver aldehyde dehydrogenase. Administration of progesterone to castrated sheep \textit{in vivo} increased the rates of ethanol and acetaldehyde oxidation, and aldehyde oxidase has been identified as a factor in decreasing acetaldehyde concentrations in the homogenates of livers from these animals during the metabolism of exogenous ethanol. Low endogenous ethanol concentrations in peripheral venous blood of sheep are positively correlated with high progesterone levels in sheep due to its experimental administration, and to pregnancy and the oestrus cycle.

Studies of the effects of disulphiram on ethanol and acetaldehyde metabolism have shown that the compound inhibits sheep liver aldehyde oxidase and aldehyde dehydrogenase enzymes \textit{in vitro}, increases endogenous concentrations of acetaldehyde in peripheral venous blood, and causes acetaldehyde accumulation during ethanol metabolism \textit{in vivo}. When diazepam is present together with disulphiram it provides protection from all but one of the effects shown by disulphiram alone. It does not alter the disulphiram inhibition of sheep liver aldehyde dehydrogenase. Amitriptyline is an inhibitor of both aldehyde oxidase and aldehyde dehydrogenase enzymes. It seems to increase the aldehyde
oxidase response to disulphiram, and its in vivo administration causes acetaldehyde accumulation in peripheral blood during and in the absence of metabolism of exogenous ethanol.

Investigations into the effects of ethanol on ethanol and acetaldehyde metabolism in sheep have shown that ethanol increases the activity of aldehyde oxidase in vitro and its chronic administration accelerates acetaldehyde oxidation in vivo. A supplementary study of the inter-relationships between the relative concentrations of NADH and NAD⁺, and ethanol and acetaldehyde metabolism shows that aldehyde oxidase participation in acetaldehyde oxidation is dependent on the NAD⁺ concentrations, and that acetaldehyde oxidation can account for much of the NADH accumulation that occurs during ethanol metabolism in vivo.

Acetaldehyde oxidation during ethanol metabolism in sheep can be diverted through the aldehyde oxidase catalyzed pathway, avoiding dependence on the NAD⁺-linked aldehyde dehydrogenase enzyme. The results in this thesis have shown that aldehyde oxidase can catalyze up to two-thirds of acetaldehyde oxidation in sheep liver when NAD⁺ is limited, and that the pathway is dependent on the endocrine state and the pattern of ethanol consumption of the animal.
ACKNOWLEDGEMENTS

The author wishes to thank her supervisors, Prof. R. D. Batt and Dr. R. M. Greenway, for their help and advice throughout the course of this study.

In addition she expresses sincere appreciation of the help, advice and technical assistance rendered by other members of the staff of the Department of Chemistry and Biochemistry, Massey University; in particular, thanks are due to Miss L. Burson who willingly performed many duties outside her usual sphere of work.

The staff of the Animal Physiology Unit, especially Mr. L. Robertson, were generous in giving freely of their time and knowledge in experiments involving live animals.

The author also thanks Mrs. E. Self for typing the manuscript and remaining patient during inevitable delays.

Finally the patience and perseverance of Mr. R. E. Hendtlass must be recognised, for without these this thesis would not have been.

Upon the advice of Prof. R. D. Batt, this thesis is presented in the form of several papers to facilitate its later publication.
LIST OF CONTENTS

Chapter 1 INTRODUCTION

Metabolism of Acetaldehyde
- I) Enzymatic Synthesis of Acetaldehyde in Mammals
- II) Enzymatic Degradation of Acetaldehyde in Mammals

Pharmacology of Acetaldehyde

OUTLINE OF THE WORK PRESENTED IN THIS THESIS

Chapter 2 ALDEHYDE OXIDASE

Methods and Materials
- I) Enzyme assays with Various Hydrogen Acceptors
- II) Other Methods

Results
- I) Enzyme Purification: Sheep Liver Aldehyde Oxidase
- II) Physical Properties: Sheep Liver Aldehyde Oxidase
- III) Kinetic Properties: Sheep Liver Aldehyde Oxidase
- IV) Immunology

DISCUSSION

Chapter 3 ESTIMATION OF ETHANOL AND ACETALDEHYDE IN BIOLOGICAL FLUIDS

Details of the Method
- Collection of Blood
- Storage of Blood Samples
- Estimation of Ethanol, Acetaldehyde and Acetone in Blood Samples
- Infusion of Ethanol or Acetaldehyde into Sheep
- Liver Homogenate Preparation and Analysis

DISCUSSION

Chapter 4 EFFECT OF PROGESTERONE ON ETHANOL AND ACETALDEHYDE METABOLISM

Methods

Results
- Aldehyde Oxidase and Xanthine Oxidase Activities in Sheep Livers
- Steroid Effect on Sheep Liver Aldehyde Oxidase
- Steroid Effect on Sheep Liver Aldehyde Dehydrogenase

Page numbers are not provided in the document.
Chapter 5 EFFECT OF DISULPHIRAM AND OTHER COMPOUNDS ON ETHANOL AND ACETALDEHYDE METABOLISM

METHODS
RESULTS

I) Disulphiram, Diazepam and Amitriptyline
i) Effects of Disulphiram, Diazepam and Amitriptyline Hydrochloride on Sheep Liver Enzymes in vitro
ii) Effects of Disulphiram, Diazepam and Amitriptyline Administration in vivo on Endogenous Acetaldehyde, Ethanol and Acetone Levels in Peripheral Venous Blood of Sheep
iii) Effects of Disulphiram, Diazepam and Amitriptyline on the Clearance of Exogenous Ethanol from Peripheral Venous Blood of Sheep

II) Metronidazole

DISCUSSION

Chapter 6 OTHER ASPECTS OF ETHANOL AND ACETALDEHYDE METABOLISM

METHODS
RESULTS

I) Effects of Chronic Ingestion of Dilute Ethanol Solutions on Ethanol and Acetaldehyde Metabolism in vivo
i) Voluntary Intake of Dilute Ethanol Solutions
ii) Effect of Chronic Ingestion of Ethanol on Basal Acetaldehyde, Ethanol and Acetone Levels in Peripheral Venous Blood of Sheep
iii) Effect of Chronic Consumption of Ethanol on the Clearance of Exogenous Acetaldehyde from the Peripheral Venous Blood of Sheep
II) Relationships between Relative Concentrations of NADH and NAD⁺, and Ethanol and Acetaldehyde Metabolism in Sheep
 i) Metabolism of Exogenous Ethanol in Sheep Liver Homogenates 104
 ii) Changes in the Relative Concentrations of Pyruvate and Lactate in Peripheral Venous Blood of Sheep during Acetaldehyde and Ethanol Metabolism in vivo 107

DISCUSSION 107

Chapter 7 CONCLUSION 110

Appendix I ALDEHYDE DEHYDROGENASE 113

REFERENCES 119
LIST OF FIGURES

FIGURE 1 Standard Curve for the Determination of Changes in Oxidised Methylene Blue Concentration

FIGURE 2 Standard Curve for the Emission Spectrographic Estimation of Molybdenum

FIGURE 3 Electrophoresis of a Purified Sheep Liver Aldehyde Oxidase Preparation

FIGURE 4 Diagrams to show the Patterns obtained when Sheep Liver Aldehyde Oxidase and Xanthine Oxidase were separated by Gel Electrophoresis and Stained with a Methylene Blue Activity Stain

FIGURE 5 Sedimentation Pattern of a Purified Sheep Liver Aldehyde Oxidase Preparation in the Analytical Ultracentrifuge

FIGURE 6 Absorption Spectra of Oxidised and Reduced Sheep Liver Aldehyde Oxidase

FIGURE 7 Determination of the Optimum pH for Sheep Liver Aldehyde Oxidase Activity using Acetaldehyde as Substrate

FIGURE 8 Determination of the Michaelis Constant of Sheep Liver Aldehyde Oxidase for Acetaldehyde as Substrate

FIGURE 9 Effect of Various Ethanol Concentrations on the Rate of Oxygen Uptake catalyzed by Sheep Liver Aldehyde Oxidase

FIGURE 10 Immunoelectrophoresis of Aldehyde Oxidase Preparations from Ewe and Wether Livers and a Xanthine Oxidase Preparation

FIGURE 11 Oxygen Uptake catalyzed by Sheep Liver Aldehyde Oxidase in the presence of Anti-Aldehyde Oxidase γ-Globulin or Blank γ-Globulin Preparations

FIGURE 12 Effect of Varying the γ-Globulin Concentration on the Rate of Oxygen Uptake catalyzed by Sheep Liver Aldehyde Oxidase

FIGURE 13 Effect of Anti-Aldehyde Oxidase γ-Globulin Preparation on Ethanol and Acetaldehyde Levels in Sheep Liver Homogenates during Metabolism of Exogenous Ethanol
FIGURE 14 Postulated Sequence of Sites of Electron Egress and Inhibition of Electron Transport within the Sheep Liver Aldehyde Oxidase Molecule

FIGURE 15 Collection of Blood from the Left Jugular Vein of a Sheep

FIGURE 16 Typical Variation in Endogenous Acetaldehyde, Ethanol and Acetone Levels in Sheep Blood (Left Jugular) throughout the Day

FIGURE 17 Variations in Acetaldehyde and Ethanol Concentrations in a Typical Blood Sample during Storage at 4°C

FIGURE 18 Typical Traces of the Gas Chromatographic Separation of Volatile Compounds in Standard Aqueous Solution and in a Sheep Blood Sample

FIGURE 19 Calibration Curves for the Gas Chromatographic Estimation of Ethanol, Acetaldehyde and Acetone Concentrations

FIGURE 20 Histogram to show the Distribution of Aldehyde Oxidase Activities in the Livers of Individual Sheep

FIGURE 21 Effect of varying the Progesterone Concentration on Sheep Liver Aldehyde Oxidase Activity

FIGURE 22 Clearance Pattern of Acetaldehyde from the Peripheral Venous Blood of Sheep following its Intravenous Infusion

FIGURE 23 Clearance Pattern of Ethanol from the Peripheral Venous Blood of Sheep following its Intravenous Infusion

FIGURE 24 Metabolism of Ethanol in Homogenates of Livers from Progesterone-Treated Wethers

FIGURE 25 Metabolism of Ethanol in Homogenates of Livers from Progesterone-Treated Wethers in the presence of Anti-Aldehyde Oxidase γ-Globulin Preparation

FIGURE 26 Comparison of the Variation in Endogenous Acetaldehyde and Ethanol Levels with the Levels of Progesterone in Peripheral Venous Blood of a Non-Pregnant Ewe reported in the literature

FIGURE 27 Mean Endogenous Acetaldehyde and Ethanol Levels in the Peripheral Venous Blood of a Ewe during and following Pregnancy
<table>
<thead>
<tr>
<th>FIGURE</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>Absolute Endogenous Acetaldehyde and Ethanol Levels in the Peripheral Venous Blood of a Pregnant Ewe for Three Weeks before and after Parturition</td>
<td>75</td>
</tr>
<tr>
<td>29</td>
<td>Structures of some Compounds that affect Acetaldehyde and Ethanol Metabolism</td>
<td>78</td>
</tr>
<tr>
<td>30</td>
<td>Inhibitor Constant for Disulphiram Effect on Sheep Liver Aldehyde Oxidase</td>
<td>82</td>
</tr>
<tr>
<td>31</td>
<td>Graph to show the Effect of Varying Diazepam Concentrations on Disulphiram Inhibition of Sheep Liver Aldehyde Oxidase</td>
<td>82</td>
</tr>
<tr>
<td>32</td>
<td>Inhibition of Sheep Liver Aldehyde Oxidase by Amitriptyline Hydrochloride with and without Disulphiram Present</td>
<td>85</td>
</tr>
<tr>
<td>33</td>
<td>Effects of Disulphiram, Diazepam and Amitriptyline Hydrochloride Administration in vivo on Endogenous Acetaldehyde, Ethanol and Acetone Levels in Peripheral Venous Blood of Sheep</td>
<td>87</td>
</tr>
<tr>
<td>34</td>
<td>Effects of Diazepam and Amitriptyline Hydrochloride Administration in vivo on Endogenous Acetaldehyde, Ethanol and Acetone Levels in Peripheral Venous Blood of Sheep</td>
<td>89</td>
</tr>
<tr>
<td>35</td>
<td>Effects of Oral Administration of Disulphiram, and Diazepam and Disulphiram together on in vivo Clearance of Exogenous Ethanol from Peripheral Venous Blood of Sheep</td>
<td>91</td>
</tr>
<tr>
<td>36</td>
<td>Effects of Oral Administration of Disulphiram, and Amitriptyline Hydrochloride and Disulphiram together on in vivo Clearance of Exogenous Ethanol from Peripheral Venous Blood of Sheep</td>
<td>92</td>
</tr>
<tr>
<td>37</td>
<td>Effects of Oral Administration of Metronidazole on in vivo Clearance of Exogenous Ethanol from Peripheral Venous Blood of Sheep</td>
<td>95</td>
</tr>
<tr>
<td>38a</td>
<td>Voluntary Consumption of Dilute Ethanol Solutions by Sheep I</td>
<td>102</td>
</tr>
<tr>
<td>38b</td>
<td>Voluntary Consumption of Dilute Ethanol Solutions by Sheep II</td>
<td>102</td>
</tr>
<tr>
<td>39</td>
<td>Effect of Chronic Consumption of Dilute Ethanol Solutions on the in vivo Clearance of Exogenous Acetaldehyde from the Peripheral Venous Blood of Sheep</td>
<td>103</td>
</tr>
</tbody>
</table>
FIGURE 40 Effects of Varying the NAD⁺ Concentration on Ethanol and Acetaldehyde Levels in Sheep Liver Homogenates during Metabolism of Exogenous Ethanol

FIGURE 41 Effect of Anti-Aldehyde Oxidase γ-Globulin Preparation on Ethanol and Acetaldehyde Levels in Sheep Liver Homogenates during Metabolism of Exogenous Ethanol in the presence of Varying NAD⁺ Concentrations

FIGURE 42 Effect of in vivo Metabolism of Exogenous Ethanol or Acetaldehyde on the Relative Concentrations of Lactate and Pyruvate in the Peripheral Venous Blood of Sheep

FIGURE 43 Major Pathways for Ethanol Metabolism in the Liver
LIST OF ABBREVIATIONS

a.m. ante meridian
by vol. by volume
CoQ coenzyme Q
D diffusion constant
Δ change in
DOI 2,6-dichlorophenol indophenol
DM dry matter
E.C.No. Enzyme Commission Number
EDTA ethylenediamine-tetra-acetate
FAD flavin adenine dinucleotide
g gravity
HCl hydrochloric acid
K degrees Kelvin
K_i inhibitor constant
K_m Michaelis constant
LD_50 lethal dose for 50% of a population
M molecular weight
MeB methylene blue
mmoles millimoles
mg% mg/100cm^3
N number of samples
NAD^+ nicotinamide adenine dinucleotide
NADH reduced nicotinamide adenine dinucleotide
NADP^+ nicotinamide adenine dinucleotide phosphate
NADPH reduced nicotinamide adenine dinucleotide phosphate
NE not estimated
OD optical density
p relative density
p< probability less than
pH_{max} optimum pH
R universal gas constant
R_f distance travelled relative to the front
RNA ribonucleic acid
s sedimentation coefficient
S Svedburgs
SD standard deviation
\(SE_M \) standard error of the mean

-\(S-S- \) sulphydryl group

tert. tertiary

T absolute temperature

\(\bar{\gamma} \) partial specific volume

vol. volume

w/v weight/volume

v/v by volume

'zero' taken at zero time