Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Job Skills Inventory for Information Systems Personnel in New Zealand: An Exploratory Study of Change

John Monin

A dissertation submitted in fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in the
Faculty of Business Studies

Massey University

1997
TABLE OF CONTENTS

TABLES AND FIGURES

v

ABSTRACT

vii

ACKNOWLEDGEMENTS

viii

1. INTRODUCTION

1

2. A HISTORY OF THE INDUSTRY

5

2.1 The Data Processing (DP) Era: 1950s - 1970s

7

2.2 The Management Information Systems (MIS) Era: 1970s

11

2.3 The Era of Strategic Information Systems (SIS): 1980s - 1990s

21

2.4 Chapter Summary

29

3. THE SKILLS INVENTORY FOR IS PROFESSIONALS

32

3.1 Application Programmer, Systems Programmer, Data Base Designer

34

3.2 Programmer/analyst or Analyst/programmer

37

3.3 Systems analyst

38

3.4 Project Manager

42

3.5 Data Communications Specialist

42

3.6 Director/executive, Middle Manager of IS

43

3.7 Consultant

47

3.8 Two studies of skill inventories changing over time

47
Tables and Figures

FIGURES

<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>Ward’s Three Era Model Superimposed on Anthony’s Hierarchy of Management</td>
<td>6</td>
</tr>
<tr>
<td>2-2</td>
<td>Stages of Growth (after Nolan)</td>
<td>20</td>
</tr>
<tr>
<td>2-3</td>
<td>The Impact of Technology (after Sullivan)</td>
<td>23</td>
</tr>
<tr>
<td>2-4</td>
<td>Career Trajectory Map: summary of major roles</td>
<td>25</td>
</tr>
<tr>
<td>2-5</td>
<td>People-oriented IS Experience Curves(after Primozic et al. 1991:51)</td>
<td>26</td>
</tr>
<tr>
<td>2-6</td>
<td>Mix of Technology and Managerial/Organisational Skills by Era</td>
<td>30</td>
</tr>
<tr>
<td>4-1</td>
<td>Strategic Triangle (after Walton, 1989:54)</td>
<td>55</td>
</tr>
<tr>
<td>5-1</td>
<td>Skills Inventory Model</td>
<td>59</td>
</tr>
<tr>
<td>5-2</td>
<td>Retrospective panel design. Source: de Vaus, 1991:39</td>
<td>61</td>
</tr>
<tr>
<td>5-3</td>
<td>Skills Inventory Nomenclature Shift</td>
<td>65</td>
</tr>
<tr>
<td>5-4</td>
<td>Years Experience of Pilot Respondents</td>
<td>70</td>
</tr>
<tr>
<td>5-5</td>
<td>Pre-test Responses</td>
<td>70</td>
</tr>
<tr>
<td>5-6</td>
<td>Pilot questionnaire to Pre-test KSAs</td>
<td>72</td>
</tr>
<tr>
<td>6-1</td>
<td>Questionnaire - Section A</td>
<td>82</td>
</tr>
<tr>
<td>6-2</td>
<td>An example of Survey Instrument Likert Scale</td>
<td>84</td>
</tr>
<tr>
<td>6-3</td>
<td>Questionnaire Schema - Section B</td>
<td>85</td>
</tr>
<tr>
<td>6-4</td>
<td>Questionnaire Instructions for All Respondents</td>
<td>86</td>
</tr>
<tr>
<td>6-5</td>
<td>Questionnaire Instructions for Managers and/or Consultants</td>
<td>87</td>
</tr>
<tr>
<td>7-1</td>
<td>Age Distribution of IS Personnel in NZ: 1978 & 1993</td>
<td>99</td>
</tr>
<tr>
<td>7-2</td>
<td>Years in the Computer Field: 1978 & 1993</td>
<td>99</td>
</tr>
<tr>
<td>8-1</td>
<td>Total Sample Group Means of KSAs Classified into B(useless) & T(chnology)</td>
<td>103</td>
</tr>
<tr>
<td>8-2</td>
<td>Total Number of Ranked Task Descriptors</td>
<td>113</td>
</tr>
<tr>
<td>10-1</td>
<td>Task Descriptors categorised by Components for All Respondents’ Current Jobs</td>
<td>146</td>
</tr>
</tbody>
</table>
TABLES

Table 3-1: Classification of IS Knowledge/Skills after Todd et al. 1995:6 50
Table 5-1: Rationale for New KSAs 27-35
Table 5-2: Preliminary Job Categorisation of NZCS Members 76
Table 7-1: Task Descriptors Assigned to KSA Names and Additional Codes 91
Table 7-2: Task Descriptor Codes Collapsed into KSAs 94
Table 7-3: Respondents by Job Designation 98
Table 7-4: Respondents by Years in Their Current Job Designation 98
Table 8-1: Business-related and Technology-related KSAs 102
Table 8-2: For All Respondents - Mean Scores and Changes in the Importance of KSAs 106
Table 8-3: Repeated Measures ANOVA of Top 10 Start Means 109
Table 8-4: Repeated Measures ANOVA of Top 10 Now Means 110
Table 8-5: Content Category Count: Business-related and Technology-related Task Descriptors 112
Table 8-6: Current Job KSAs: Comparing the Rankings of Means and Task Descriptor Ranked Scores 114
Table 9-1: For Self-selecting Practising Managers (n = 145) - Mean Scores and Changes in the Importance of KSAs 118
Table 9-2: For non-managing respondents (n = 288) - Mean Scores and Changes in the Importance of KSAs 119
Table 9-3: Top 10 t-values of KSAs in Tables 8-2, 9-1 and 9-2, ranked and compared 121
Table 9-4: Top 10 Start Means Ranked 122
Table 9-5: Top 10 Now Means Ranked 123
Table 9-6: Differences in Perceived Importance of KSA: Mean difference scores, Job Category within Years of Experience 126
Table 9-7: Differences in Perceived Importance of KSA: Mean difference scores, Years of Experience within Job Category 128
Table 10-1: Component Pattern Matrix, including α reliability analysis, for Items Measuring: 137
Table 10-2: Repeated Measures ANOVA of Skill Components Ranked by Means: 143
Abstract

Based on a survey of 443 members of the New Zealand Computer Society in 1993, this study examines whether the skills requirements for information systems (IS) professionals have changed in the turbulent economic environment New Zealand has experienced since the mid-1980s. Respondents to the questionnaire were asked to rate the importance of thirty-five skill items during the period they have been working under their present job designation.

The research instrument is based on an extensive review of previous research constructs and upon themes visited by academic writers during three eras of computing. The research expectations are that there has been a definite shift in the skills requirement. The focus is on the categorisation of the skills as business-related or technology-related, this being the distinction traditionally accepted by most researchers to date. The model proposed, however, accounts for more sophistication and blurring of such a dichotomy. It is based on the premises that the core skill competencies for IS professionals have essentially remained constant and that there has been an increase in the requirement for more emphasis on the business-related skills.

As assessment of the skills requirement for practising IS personnel resides in an organisational context, the design incorporates strategies to capture the management point of view. The design of the instrument also caters for textual responses about a respondent’s current job in order to validate the rating scores provided in sets of Likert scales.

In the main, the findings confirm a pronounced increase in the importance of business-related skills. Additionally, in the view of the managers this requirement needs to be focused on communications skills. There is no implication here of fewer technology-related skills, but rather more business-related skills in view of the greater demands in rapidly changing environments. According to this sample, business-related skills have always been important for them as IS personnel.
Acknowledgements

My acknowledgements need to include institutions and authors that might seem quite impersonal and remote. For access to their reference material I have to thank the New Zealand university libraries of Otago, Canterbury (my alma mater), Victoria and Auckland (especially for holding the Computer Personnel journal). Inspiration for the research instrument came from the writings of North American academics P.H. Cheney and J.D. Couger.

I am indebted to The New Zealand Computer Society for permitting me to survey their members, and in particular Ron Henry for carrying out the actual process of mailing out the questionnaire in order to retain confidentiality of members’ details.

This thesis would not have been completed without the continuous support of my chief supervisor, Professor Philip Dewe, Head of the Department of Human Resource Management, who was quick to see the inter-disciplinary nature of my topic. I am most grateful for his expertise with the SPSS software package and his ready availability throughout the four years.

My second supervisor, Professor Tony Vitalis, as my Head of Department provided the encouragement of a mentor who also applied his precise and focused Classical mind to my drafts - especially useful when one needs to keep in mind the objectives of the thesis.

It is that same academic training in the Classics that tends to induce a certain terseness and lack of explanation in my writing style. So behind the scenes has been my literary wife and partner, Nanette Monin, who has contributed with invaluable editorial and discursive support.