Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Towards a Methodology for Incorporating Human-Computer Interaction Protocols in Knowledge-Based Systems

A dissertation presented
in partial fulfilment of the requirements
for the degree of
Doctor of Philosophy in Computer Science
at Massey University

Elizabeth Angela Kemp

1995
Abstract

The research presented in this thesis describes the development of the FOCUS framework for use during the analysis stage of the knowledge-based system life cycle. The application of FOCUS (FunctiOns and Communication facilities for USers) helps the knowledge engineer to tackle the important human-computer interaction issues that arise when building knowledge-based systems.

The motivation for this research arises from the complexity of the interaction process. Firstly, the functions that users require to help them to achieve their goals have to be identified. Secondly, adequate communication facilities must be provided so that users can run the knowledge-based system, understand its problem solving capabilities and ask questions about the underlying domain. The situation is further complicated if users have little in common; their domain and/or computing backgrounds might be quite different. Analysis of the literature indicates that human-computer interaction is an issue of some importance but that detailed guidelines are often lacking.

FOCUS has been developed to assist the knowledge engineer during the analysis phase of the knowledge-based system life cycle. FOCUS has five stages: problem specification, preliminary analysis, user analysis, functional specification and detailed analysis. It recognises that the intended users of an expert system in an organisation may not all want the same problem-solving capabilities; the major user groups are identified and the functional requirements of each group specified. Communication issues can then be considered for each group. At the same time the analysis of the organisation's needs and elicitation of knowledge are not neglected.

By the end of the analysis stage, the knowledge engineer has completed the conceptual model with its three components: the model of expertise, model(s) of communication and user requirements. A comprehensive picture can be built up of the users' application, explanation and interface needs. The resulting user models together with the model of communication are the basis at the design stage for developing an interface to provide users with the desired functionality.
The FOCUS process has been evaluated using student enrolment at Massey University as the domain. The purpose of the case study is not to build a knowledge-based system but to assess the value of FOCUS. It is suggested that a framework of this kind, for the analysis phase, should be structured, focused, open and practicable. Experience with FOCUS indicated that these criteria could all be met.

In summary, FOCUS integrates principles from the area of human computer interaction with a user-centred approach to knowledge-based systems development.
Acknowledgements

I would like to thank Professor Apperley, my chief supervisor, for his guidance and support throughout this research. In particular, I am grateful to him, during his time as head of the Department of Computer Science, for giving me the opportunity to carry out this research in a reasonable time frame.

I would also like to thank Chris Phillips, my second supervisor, for his sterling efforts in reading and correcting this thesis. The assistance of Elisabeth and Arthur Todd, John Hudson and Paul Clark is also appreciated. I am indebted as well to all the staff and students at Massey University who provided the data which enabled me to test out the ideas described in this thesis.

Finally, the love and support of my family has been crucial. I would like to thank Rebecca, Stephen and, especially, my husband Raymond, who always gave generously of his time to read the various drafts of the thesis.
The following publications all relate to the research carried out for this thesis:

Table of Contents

Chapter 1 Introduction 3

1.1 The context of the research 3
1.2 Interaction issues in knowledge-based systems 4
1.3 The need for a framework 5
1.4 Objectives of this research 8
1.5 Thesis overview 9

Chapter 2 Communication Issues in Knowledge-based Systems 11

2.1 Knowledge-based systems 11
 2.1.1 Knowledge-based systems architecture 12
 2.1.2 Knowledge-based development tools 14
 2.1.3 Knowledge acquisition 14
 2.1.4 Explanation facilities in knowledge-based systems 16
2.2 Interaction issues in knowledge-based systems 22
 2.2.1 Diverse backgrounds of users 22
 2.2.2 Human-Computer communication 24
 2.2.3 Interaction issues in knowledge-based systems 37
2.3 Conclusion 43

Chapter 3 A Study of Knowledge-Based Systems Usability 45

3.1 Introduction 45
3.2 The APPLE system 46
3.3 The survey 48
3.4 Analysis of results 52
3.5 Conclusion 64

Chapter 4 A Review of Knowledge-based Systems Life Cycles 67

4.1 Software engineering paradigms 67
4.2 Life cycle issues in knowledge-based systems 68
 4.2.1 The role of prototyping 70
 4.2.2 The KADS methodology 76
 4.2.3 An alternative to KADS 82
 4.2.4 User-centred approaches 83
4.3 Conclusion 87

Chapter 5 FOCUS 91

5.1 Introduction 91
5.2 The FOCUS framework 94
Chapter 9 Conclusions and further research 199

9.1 Summary of the research 199
9.2 Review and evaluation of FOCUS 200
9.3 Contribution of FOCUS 203
9.4 Future research 206

References 209

Appendix A APPLE questionnaire 223

Appendix B APPLE questionnaire results 227

Appendix C Extract: “Communicating with a knowledge-based system” 229

Appendix D Enrolment at Massey University 235

Appendix E Enrolment questionnaire 239

Appendix F Enrolment questionnaire spreadsheet 245

Appendix G Enrolment questionnaire analysis 265

Appendix H Enrolment questionnaire - responses 269

H1 Responses to Question 8 270
H2 Responses to Question 22 278
H3 Responses to Question 31 286

Appendix I Detailed analysis 291

I1 Enrolment questionnaire - spreadsheet, 1993 292
I2 Student choice of paper 295
I3 Information from Science handbook 295
I4 Course outline for 59324 297
I5 Interview with the Dean of Science 298

Appendix J Extended model of communication 301

Appendix K Storyboards 307
Figures and Tables

Figures
Figure 2.1 Expert systems components (Harmon and King, 1985) 13
Figure 2.2 Knowledge-based system users (Kemp, 1990) 23
Figure 2.3 Information technology acceptance model (Davis, 1993) 37
Figure 2.4 The modality framework (de Greef et al., 1988) 42
Figure 3.1 Standard question and answer format (Kemp et al., 1989) 46
Figure 3.2 Graded scale for uncertain answers (Kemp et al., 1989) 47
Figure 3.3 The Clarify option (Kemp et al., 1989) 47
Figure 3.4 The Why option (Kemp et al., 1989) 48
Figure 3.5 Presentation of results in graphical form (Kemp et al., 1989) 48
Figure 3.6 Student rating of domain knowledge 49
Figure 3.7 Question 17 51
Figure 3.8 Use of English phrases and sentences to input information 52
Figure 3.9 Use of direct manipulation to input information 53
Figure 3.10 Presentation of conclusions in English phrases and sentences 54
Figure 3.11 Presentation of conclusions by numerical table 55
Figure 3.12 Indicating confidence in an answer by moving a pointer 56
Figure 3.13 Indicating confidence in an answer by numerical input 56
Figure 3.14 Helpfulness of Clarify 57
Figure 3.15 Helpfulness of Why 58
Figure 3.16 Question 12 59
Figure 3.17 Question 15 60
Figure 4.1 KADS Library of generic tasks (Hickman et al., 1989) 79
Figure 4.2 Human factors inputs to knowledge-based design 86
Figure 4.3 Components of analysis (Kemp and Kemp, 1991b) 87
Figure 5.1 Intermediate models (Wielinga et al., 1991) 92
Figure 5.2 FOCUS deliverables 94
Figure 5.3 The FOCUS framework 95
Figure 5.4 Domain knowledge versus computing background 99
Figure 5.5 Task model (Wielinga et al., 1991) 101
Figure 5.6 Components of the conceptual model 103
Figure 5.7 Domain layer for medical diagnosis (Hickman et al., 1989) 103
Figure 5.8 Inference layer for medical diagnosis (Hickman et al., 1989) 104
Figure 5.9 Task layer for medical diagnosis (Hickman et al., 1989) 104
Figure 5.10 Model of communication 106
Figure 5.11 One interface presentation style 109
Figure 5.12 Two interface presentation styles 109
Figure 5.13 Four interface presentation styles 110
Figure 6.1 Academic structure of Massey University 117
Figure 6.2 Important definitions in the lexicon 121
Figure 6.3 Concepts, attributes and relationships 122
Figure 6.4 Analysis of students by age 125
Figure 6.5 Analysis of students by faculty 125
Figure 6.6 Helpfulness of Faculty Handbook 134
Figure 6.7 Helpfulness of University Calendar
Figure 6.8 Extended domain layer
Figure 6.9 Task model
Figure 7.1 Sample course for Computer Science
Figure 7.2 Inference layer template
Figure 7.3 Textual description of enrolment inference layer (1)
Figure 7.4 Textual description of enrolment inference layer (2)
Figure 7.5 Inference structure diagram for student enrolment
Figure 7.6 Decomposition of Supply Paper Numbers
Figure 7.7 Developing the model of communication
Figure 7.8 Model of communication
Figure 8.1 Split screen interface
Figure 8.2 Top level of extended communication model
Figure 8.3 Decomposition of part of the extended communication model
Figure 8.4 System - user flows
Figure 8.5 Relationship between the two windows
Figure 8.6 Options in a pull-down menu
Figure 8.7 Extended communication model with options
Figure 8.8 “Getting started” screen
Figure 8.9 Information about the two windows
Figure 8.10 Student and degree details
Figure 8.11 Basic template for “Paper Selection”
Figure 8.12 Student confirmation
Figure 8.13 Undo paper selection dialogue box
Figure 8.14 Definition of prerequisite
Figure 8.15 Help - enter paper number
Figure 8.16 “Course check” screen
Figure 8.17 “Course check” problem
Figure 8.18 “Farewell” screen
Figure 8.19 “Advice Selection” screen
Figure 8.20 “Paper Information” screen
Figure 8.21 Timetable

Tables
Table 3.1 Analysis of each group by faculty
Table 3.2 Percentage of users satisfied with each presentation method
Table 3.3 Percentage of users satisfied with each output method
Table 3.4 Evaluation of methods for indicating confidence
Table 3.5 Usefulness of Clarify option
Table 3.6 Usefulness of Why option
Table 3.7 Evaluation of dialogue option
Table 3.8 Support for Biochemical option
Table 3.9 Support for pictorial option
Table 3.10 Percentage of each group responding at the 3-5 level
Table 4.1 Layers of a model of expertise (Hickman et al., 1989)
Table 6.1 Problem areas
Table 6.2 Analysis of problems by faculty
Table 6.3 Problems reported by students
Table 6.4 Ranking by order of usage
Table 6.5 Student assessment of sources of information 133
Table 6.6 Student assessment of sources of assistance analysed by faculty 136
Table 6.7 Analysis of computer usage 137
Table 6.8 Analysis of software experience 137
Table 6.9 Analysis of interface preference 138
Table 6.10 Analysis of computerised enrolment system 139
Table 6.11 Evaluation of proposed features 140
Table 6.12 Analysis of student suggestions 141
Table 7.1 Analysis of intended usage of a computerised system 149
Table 7.2 Comparison of enrolment system preferences 150
Table 7.3 Comparison of usage of information sources 150
Table 7.4 Comparison of assessment of information sources 151