Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
THE BIOSYNTHESIS OF METHYL KETONES
WITH SPECIAL REFERENCE TO THEIR
PRESENCE IN CHEDDAR CHEESE

being a thesis
presented for the Degree
of Doctor of Philosophy of the
Massey University of Manawatu

R.C. LAWRENCE
Massey University of Manawatu
1964
Grateful acknowledgement is made to The Dairy Research Institute (N.Z.) for granting leave of absence to undertake this investigation.

Particular thanks are extended to:

Dr. J.C. Hawke for his encouragement and guidance throughout the course of this work;

Dr. W.A. McGillivray, Dr. P.S. Robertson and Mr. G.M. Wallace for helpful comments on the manuscript;

Dr. F.B. Shorland of The Fats Research Laboratory, Wellington for generous gifts of radioactive milk fat samples and for making available apparatus and laboratory facilities;

Mr. T. Gerson for the isolation of fatty acids from radioactive milk fat, as described in the thesis, and for help and advice in the estimation of their specific activities;

Dr. B. Latch for the identification of the fungus Penicillium roqueforti. Thom, isolated from N.Z. Blue cheese, and for helpful discussions on the cultivation of the fungus;
Mr. H. Wenham for advice and guidance in laboratory techniques concerning the cultivation of fungi;

Miss M.G. Campbell and the Library staff;

Mr. J. Gilles for the manufacture of the experimental cheeses;

Mr. B. Le Heron for milk fat samples;

Mr. R. Toms for the photographic reproduction of the graphs;

Miss D. Jackson for typing the manuscript.

Early work on the formation of methyl ketones as artifacts during the steam distillation of Cheddar cheese and milk fat has been published (J. Dairy Research (1963). 30, 161). A note on the origin of methyl ketones using radioactive milk fat was published in co-authorship with Dr. J.C. Hawke (Nature (1963). 197, 1276). A paper will be presented to the N.Z.I.C. Conference in August 1964 on the relationship of milk fat synthesis to the methyl ketones found in steam distillates of milk fat. Early results on the oxidation of fatty acids by Penicillium roqueforti were communicated to the N.Z.I.C. Conference (August, 1963) and more recent work will be presented, in co-authorship with Dr. J.C. Hawke, at the 6th International Biochemical Congress (July, 1964) in New York.
CONTENTS

<table>
<thead>
<tr>
<th>INTRODUCTION</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical nature of cheese flavour</td>
<td>1</td>
</tr>
<tr>
<td>Importance of milk fat in Cheddar flavour formation</td>
<td>2</td>
</tr>
<tr>
<td>Flavourful substances in Cheddar cheese</td>
<td>3</td>
</tr>
<tr>
<td>Flavourful substances in Blue cheese</td>
<td>5</td>
</tr>
<tr>
<td>Simulation of Cheddar flavour</td>
<td>9</td>
</tr>
<tr>
<td>Mechanisms of methyl ketone formation</td>
<td>10</td>
</tr>
<tr>
<td>Biosynthesis of fatty acids in milk lipids</td>
<td>11</td>
</tr>
<tr>
<td>Micro-organisms in Cheddar cheese</td>
<td>13</td>
</tr>
<tr>
<td>Fatty acid oxidation</td>
<td>20</td>
</tr>
<tr>
<td>Oxidation of fatty acids by fungi</td>
<td>21</td>
</tr>
<tr>
<td>Toxicity of fatty acids towards fungi</td>
<td>26</td>
</tr>
<tr>
<td>Oxidation of triglycerides by fungi</td>
<td>32</td>
</tr>
<tr>
<td>Formation of methyl carbinols by fungi</td>
<td>35</td>
</tr>
</tbody>
</table>

AIMS OF THE PRESENT INVESTIGATION 4.0

PART I. THE ORIGIN OF METHYL KETONES IN STEAM DISTILLATES FROM CHEDDAR CHEESE AND MILK FAT 4.4

MATERIALS 4.5

METHODS 4.6

<table>
<thead>
<tr>
<th>Method</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolation of radioactive fatty acids</td>
<td>4.6</td>
</tr>
<tr>
<td>Determination of specific activities</td>
<td>4.7</td>
</tr>
<tr>
<td>Collection of methyl ketones</td>
<td>4.9</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Purification of radioactive methyl ketones</td>
<td>50</td>
</tr>
<tr>
<td>Chromatographic separation and identification of 2,4-Dinitrophenylhydrazones</td>
<td>52</td>
</tr>
<tr>
<td>EXPERIMENTAL</td>
<td></td>
</tr>
<tr>
<td>Methyl ketone patterns in steam distillates of cheeses manufactured under controlled bacteriological conditions</td>
<td>54</td>
</tr>
<tr>
<td>Isolation of methyl ketones from Cheddar cheese and milk fat by steam distillation at atmospheric pressure</td>
<td>56</td>
</tr>
<tr>
<td>Identification of methyl ketones with an even number of carbon atoms</td>
<td>59</td>
</tr>
<tr>
<td>Exhaustive steam distillation of cheese and milk fat</td>
<td>59</td>
</tr>
<tr>
<td>Isolation of methyl ketones by steam distillation under reduced pressure</td>
<td>60</td>
</tr>
<tr>
<td>Isolation of methyl ketones by stripping cheese extracts with nitrogen</td>
<td>64</td>
</tr>
<tr>
<td>Isolation of carbonyls from coconut oil</td>
<td>66</td>
</tr>
<tr>
<td>Comparison of radioactivities in methyl ketones and fatty acids from radioactive milk fat</td>
<td>67</td>
</tr>
</tbody>
</table>

PART II. METHYL KETONES FOUND IN STEAM DISTILLATES FROM CHEESE CONTAINING SYNTHETIC TRIGLYCERIDES

DISCUSSION OF PARTS I AND II

77
PART III. THE OXIDATION OF FATTY ACIDS AND TRIGLYCERIDES BY PENICILLIUM ROQUEFORTI

CULTURES

MATERIALS

METHODS

Growth of mycelium
Composition of synthetic growth medium and subsequent oxygen uptake in the presence of fatty acids
Estimation of micro-quantities of methyl ketones as 2,4-DNP hydrazones
Instability of 2,4-DNP hydrazones of methyl ketones
Estimation of methyl carbinols
Identification of free fatty acids
Measurement of radioactive carbon dioxide
Synthesis of non-available substrates

EXPERIMENTAL

CONDITIONS AFFECTING THE OXIDATION OF FATTY ACIDS
Endogenous respiration
Oxidative assimilation of fatty acids by mycelium
Pre-starving mycelium in buffer
Inter-relationship between pH and concentration of fatty acid substrate
Purity of acid 121
Effect of inorganic ions (Mg$^{2+}$, Ca$^{2+}$, PO$_4^{3-}$) 124
Suitability of CO$_2$ formation as a measure of fatty acid oxidation 128
Oxygen balance sheets 131
Comparative rates of formation of methyl ketones by mycelium and spores 131
Metabolism of octanoic acid over long periods 135
Effect of malonate and diethyl malonate on oxidation of fatty acids by mycelium 137

SUMMARY OF PRELIMINARY EXPERIMENTS 138

OXIDATION OF FATTY ACIDS WITH AN EVEN NUMBER OF CARBON ATOMS BY MYCELIIUM 140

OXIDATION OF FATTY ACIDS WITH AN ODD NUMBER OF CARBON ATOMS BY MYCELIIUM 143

OXIDATION OF FATTY ACIDS BY SPORES 144

OXIDATION OF OCTANOIC ACID AND ITS METABOLIC PRODUCTS 145
Oxidation of 1-14C and 2-14C octanoic acids by spores 145
Oxidation of 1-14C and 2-14C octanoic acids by mycelium 149
Metabolism of 2-heptanone by mycelium 151
Metabolism of 2-heptanone by spores 153
Formation of methyl carbinols from fatty acids by mycelium and spores 156
Formation of methyl carbinols from triglycerides by spores 158

INHIBITION OF RESPIRATION OF MYCELIUM BY FATTY ACIDS 159
Pre-incubation with a non-toxic acid followed by a toxic acid 160
Pre-incubation with a toxic acid followed by a non-toxic acid 163
Reversibility of toxicity of octanoic acid at low pH 166
Effect of -CO.CH₂.CO- grouping and of glutathione on oxidation of fatty acids 169

OXIDATION OF TRIGLYCERIDES 172
Oxidation of triglycerides by mycelium 172
Effect of concentration of triglyceride on methyl ketone formation by spores 172
Induction of lipolytic activity in spores 173
Effect of pH on methyl ketone formation 178

OXIDATION OF FATTY ACIDS BY CELL FREE EXTRACTS PREPARED FROM MYCELIUM 181
Preparation of cell free extracts 182
Succinic dehydrogenase activity 183
Oxidation of octanoic acid by cell free extracts from the Hughes Press 184
Activity of mycelial debris from Hughes Press 186
DISCUSSION OF PART III

REFERENCES

ABSTRACT
INTRODUCTION
Investigations during the past 60 years have led to a fairly detailed knowledge of the chemical substances produced during the ripening of various cheeses but, apart from the established importance for flavour of the methyl ketones in mould ripened cheese (Morgan & Anderson 1956) no major advance in understanding the relationship between composition and flavour has been made. This is particularly true of Cheddar cheese since there exists a range of modifications of the basic Cheddar cheese flavour which appeal to observers in different ways.

The chemical nature of Cheddar cheese flavour has been investigated for many years. Although a large number of compounds have been reported disagreement still prevails concerning the significance of any given compound or class of compounds (carbonyls, fatty acids, hydrogen sulphide etc.) to the flavour. The concept held by the earliest investigators into the flavour of Cheddar cheese e.g., Suzuki, Hastings & Hart (1910), was that a single compound is responsible for the typical flavour of Cheddar cheese. Dacre (1955) also came to this conclusion in his investigations although he was unable to identify the individual flavour principle. Similarly Patton (1961) put forward the view that there is a single compound which, as such, has cheeselike character. Thus according to Patton all cheeses (Cheddar, Blue, etc.), have a basic cheesiness, the distinctive flavour of the various varieties of cheese being due to compounds giving overtones of flavour. Mulder (1952) and Kosikowski & Mocquet (1958) suggested, however, that Cheddar flavour is due to a mixture of compounds derived from degradation of fat, protein and lactose. Individually these components have
flavour but not necessarily cheese flavour. Collectively, when in an appropriate balance, the resulting flavour is that of typical cheese flavour. Support for this "component balance" hypothesis has been given by Harper (1959), Mabbitt (1961) and McGugan (1963) in recent reviews on the chemistry of Cheddar cheese flavour. They conclude that characteristic flavour development in Cheddar cheese is related to simultaneous proteolytic and lipolytic activities which must proceed interdependently at definite rates for optimum flavour formation.

Failure of attempts to attribute the characteristic Cheddar flavour to any of the major constituents of ripe cheese, such as amino acids, and the conclusion of Dacre (1955) that the components of typical flavour are volatile and are present in Cheddar in concentrations of only a few p.p.m., have led investigators recently to examine more closely the minor volatile components of cheese, particularly fatty acids and carbonyl compounds that might originate from the fat phase.

THE IMPORTANCE OF MILK FAT IN CHEDDAR FLAVOUR FORMATION

Mabbitt and Zielinska (1956) observed that no typical flavour develops in "Cheddar" cheese made from skim milk, suggesting that milk fat is the substrate for typical cheese flavour. They found that the typical Cheddar flavour was soluble in fat solvents and was concentrated in the fat phase of cheese. These observations have been confirmed by a number of investigators (Sjoström 1958; McGugan, 1963; Patton 1963).
It has also been found that increasing lipolysis in the cheese by the addition of enzymes or by homogenisation can improve the flavour (Babel & Hammer, 1945). Of especial interest is the improvement obtained in the flavour of pasteurised milk cheese by inoculation of the cheese milk with Geotrichum candidum 18 hours before cheesemaking, the improvement being accompanied by an increase in concentration of C$_6$ and higher acids (Irvine, Bullock & Sproule, 1954).

It follows that if lipolysis is important in cheese flavour formation, then so probably is the composition of the milk fat. This can be varied by altering the feed, plane of nutrition, environment and the stage of lactation (Jack & Smith, 1956). Thus marked seasonal variations have been found in the quantitatively important volatile fatty acids in N.Z. butterfat. Hansen & Shorland (1952) found that at the beginning of lactation the C$_8$ - C$_{14}$ acids comprised 18.6 moles % of the total fatty acids but had increased to 26.9 moles % 6 months later. Similarly Keeney (1956) showed for U.S. butterfat that there were wide fluctuations from 24.24 to 33.55 in the Reichert Meisel value (arbitrary measure of the C$_4$ and C$_6$ acids) and that the Polenske values (arbitrary measure of the volatile insoluble fatty acids) varied from 1.12 to 2.95. Such studies may explain why the quality of Cheddar cheese is highest in the Northern Hemisphere when summer milk is used (Kosikowski, 1957; Mabbitt, 1961). Similarly European Gruyère reaches finest quality when made from Autumn milk.
FLAVOURFUL SUBSTANCES IN CHEDDAR CHEESE

Free Fatty Acids

The importance of fatty acids to the flavour of Cheddar cheese is not yet established. Berridge (1953) found acetic acid but neither propionic nor butyric acids, confirming the report of Hiscox (1941) that lipolysis was not marked in Cheddar cheese made from pasteurised milk and that acetic acid constituted the major part of the volatile acids. Windlan (1955) found only acetic acid in American Cheddar in the early stages of ripening. Lawrence (1962) in a detailed investigation of N.Z. Cheddar cheese detected large but variable amounts of acetic acid, smaller amounts of butyric acid but no significant quantities of acids higher than butyric. Other workers however have presented somewhat contrary results. Peterson & Johnson (1949) reported an increase of acetic, C₆, C₈ and C₁₀ acids during Cheddar cheese ripening. Butyric acid, present in high level at the start of the ripening period, did not however further increase. Kristoffersen, Gould & Harper (1959) found that propionic, butyric and higher acids all increased during ripening.

Recently Patton (1963) has produced results that tend to confirm the hypothesis that milk fat is the source of Cheddar aroma formation and that lipolysis of the fat is the mechanism by which it occurs. Patton concludes that the volatile acids (acetic, butyric, hexanoic and octanoic) constitute the foundation or "sine qua non" of Cheddar aroma, confirming the findings and opinions of some earlier workers e.g. (Suzuki, Hastings &
Hart, 1909; Peterson & Johnson, 1949; Kristofferson & Gould, 1960). Patton found acetic acid to be the
dominant volatile acid and presumably of substantial
importance to the unique aroma of the cheese, since
in its absence the mixture of higher fatty acids (C₄ - C₈)
simply had a rancid aroma. The origin of this acetic
acid has yet to be established.

Hydrogen sulphide

Kristoffersen & Gould (1960) found a significant
statistical correlation between hydrogen sulphide
concentration and Cheddar flavour, in particular between
the characteristic flavour and the relative concentrations
of free fatty acids and hydrogen sulphide. Subsequently
however, Kristoffersen (1961) reported that the flavour
sensation provided by some Cheddar cheeses was not always
related to the level of hydrogen sulphide, particularly
in the early stages of curing. Lawrence (1963) could
find no simple relationship between hydrogen sulphide
concentration and the characteristic Cheddar flavour of
N.Z. Cheese. He considered that it was possible, however,
that hydrogen sulphide combines with some other product
of ripening, perhaps with carbonyl, carboxyl or ester
groupings, with which it is known to form addition compounds
(Connor, 1943), and that it is this combination which is
responsible for the typical Cheddar flavour.

Methional

One hypothesis of Cheddar cheese flavour formation
put forward by Keeney and Day (1957) suggests that a slow
chemical interaction, over the long period of ripening, between amino acids and dicarboxyl compounds (Strecker degradation) could lead to the production of flavourful aldehydes containing one carbon atom less than the original amino acid. Thus methionine would give rise to methional (3-methylthiopropanol) which was claimed to have a cheese-like odour. Other investigations (Oró, Guidry & Zlatkis, 1959; Jackson, 1958; Keeney, 1961) have stressed the importance of methional in Cheddar cheese flavour, but this has been disputed in turn by Witting & Batzer (1957), Walker & Harvey (1959) and Kosikowski (1961). The subject of methional was discussed at length at a symposium on flavour chemistry sponsored by the Campbell Soup Company (1961) but no agreement could be reached on its importance in Cheddar flavour.

Methyl Ketones

The significance of methyl ketones in relation to the flavour or aroma of cheeses has been investigated by a number of workers. It appears that these substances are important constituents of the flavour of mould-ripened cheeses but their contribution to the flavour of other types of cheese is not so clearly established. Harvey and Walker (1960) isolated a range of methyl ketones with odd numbers of carbon atoms from \(C_3 \) to \(C_{11} \) by steam distillation of Cheddar cheese at atmospheric pressure and considered that their time of first appearance and increase in concentration were correlated with the increase in intensity of the Cheddar flavour as the cheeses matured. Similarly Jackson (1958), using steam distillation at atmospheric pressure to concentrate the
Cheddar flavour, found 2-heptanone, 2-nonanone, butyraldehyde and diacetyl by subsequent gas chromatographic examination. The peaks corresponding to these carbonyls seemed, however, to have no relation to cheese aroma. Other workers (Day, Bassette & Keeney, 1960; Patton, Wong & Forss, 1958; Day & Keeney, 1958) isolated a range of odd-numbered methyl ketones, as well as other carbonyls, from Cheddar cheese by distillation under reduced pressure at a temperature between 40° and 50°.

In contrast, however, to the above findings it is significant that when the extraction of carbonyls was carried out at room temperature (Bassett & Harper, 1958; Kristoffersen & Gould, 1959) no trace of methyl ketones other than acetone was obtained. Bassett & Harper (1958) further observed that the yield of 2-nonanone from Blue cheese was increased by heating the cheese slurry for 10 min. at 100°. This suggests that the methyl ketones isolated by other workers might have been artifacts produced by the elevated extraction temperatures. This is a criticism which could apply to all extraction methods involving heating of the cheese slurry since if methyl ketones were being formed as artifacts at 100°, it was also probable that a similar breakdown occurred to some extent at the lower temperatures (40-50°) employed by some workers.

Carbinols

In a gas chromatographic study McGugan & Howsham (1962) found that the major components of the neutral volatiles from Cheddar cheese were 50% 2-butanol, 9% isopropyl alcohol, 5% pentanone, 4% acetone with smaller amounts of some 40 to 50 volatile components. One
cheese with a slightly fruity flavour showed over 80 components, Scarpellino (1961) also reported the presence in Cheddar cheese of 2-butanone, 2-butanol and ethyl alcohol in relatively large amounts confirming that carbinols are major metabolic products of cheese ripening.

FLAVOURFUL SUBSTANCES IN BLUE CHEESE

Although Currie (1914) considered that the C$_6$, C$_8$ and C$_{10}$ acids gave Blue cheese its flavour, Starkle (1924) concluded that the characteristic aroma in the ripening of cheese by fungi was due to methyl ketones. This was also the opinion of Hammer & Bryant (1937); Berridge, Hiscox & Zielinska (1953); Nesbitt (1953) and Proks, Dolezalek & Pech (1958).

Patton (1950) and Morgan & Anderson (1956) identified methyl ketones with an odd number of carbon atoms from C$_3$ to C$_{11}$ in steam distillates obtained by distillation of Blue cheese at atmospheric pressure. The possibility that part or all of these methyl ketones were artifacts of the steam distillation was examined by Schwartz & Parks (1963). However using an extraction procedure not involving heat they showed that the odd numbered methyl ketones from C$_3$ to C$_{15}$ were present in mature Blue cheese. The major contribution of methyl ketones to the flavour of Blue cheese is almost proven although Graham (1958) obtained only a fair correlation between flavour scores of Blue cheese and volatile acidity and neutral carbonyl compounds.

Methyl carbinols corresponding to the C$_5$, C$_7$ and C$_9$
methyl ketones have been identified in Blue cheese (Jackson & Hussong, 1958; Coffman, Smith & Andrews, 1960) as has also ethyl alcohol (Bavisotto, Rock & Lesniewski, 1960). Since the addition of ethyl alcohol to homogenised milk impregnated with \textit{P. roqueforti} caused an intensification of Roquefort aroma (Sjöström & Malm, 1952) it is possible that these alcohols combine with the free acids found in cheese to form esters, which may contribute to the flavour.

It does not necessarily follow that because both Cheddar and Blue cheese have been found to contain methyl ketones and some of the corresponding carbinols that these compounds are the cause of their basic cheesiness. However it would appear that certain biochemical mechanisms in the ripening of both Cheddar and Blue cheese are similar.

The flavour of Blue has been no easier to reproduce than the more delicate flavour of Cheddar cheese and the fact that no satisfactory cheese flavour concentrate (natural or synthetic) has yet been reported shows the need for continued investigation. A full understanding of any one cheese flavour might be of great help in elucidating the flavour of all varieties.

SIMULATION OF CHEDDAR FLAVOUR

Generally it is considered positive proof that a compound is a part of cheese flavour if its addition to cheese or to a synthetic bland base will reproduce or
enhance the flavour. Silverman & Kosikowski (1953) found that the addition to a bland cheese of a balanced quantity of pure fatty acids normally found in cheese resulted in a distinct butyric-rancid sensation. When however amines and amino acids were added as well as fatty acids, a Cheddar-like flavour resulted although it was not a complete Cheddar flavour. Day, Bassette & Keeney (1960) added various mixtures of ketones and fatty acids to bland cheese curd but the flavours produced were sharp and musty. Walker (1961) confirmed this finding but found that addition of thioacetamide, a source of hydrogen sulphide, much improved the flavour. This observation has not yet however been confirmed in other laboratories. The view of Mabbutt (1961) that the metabolism of sulphur compounds in Cheese may be significant in flavour formation has been strengthened by the recent observation of Scarpellino (1961) that an aqueous solution of 2-butanone, butyric acid, acetic acid and methionine gave an aroma akin to that of Cheddar cheese.

MECHANISMS OF METHYL KETONE FORMATION

An appraisal of previous investigations into the chemical compounds contributing to cheese flavour led to the conclusion that a study of methyl ketones from lipids, and in particular their mode of formation, was the most promising avenue of approach.

The first hypotheses to be advanced to explain the detection of methyl ketones in steam distillates of dairy
products containing milk fat were those of Wong, Patton & Forss (1958). They considered that 2-pentanone and 2-heptanone found in steam distillates from evaporated milk could possibly result from the decarboxylation of the corresponding β-keto acids. These β-keto acids might occur in milk as:

(1) Intermediates in the synthesis of fatty acids from acetate by the mammary gland.

(2) Degradation products of fatty acids by β-oxidation.

(3) Deterioration of the milk lipids through attack by atmospheric oxygen.

They considered the last possibility to be remote in evaporated milk or heated cream which contain a wealth of reducing substances.

Although a considerable amount of research has been carried out on the oxidation of milk fat (e.g. Forss, Dunstone & Stark, 1960; Day & Lillard, 1960), a clear distinction has not always been made between the effect of heating and the effect of oxidation. The first study on thermal degradation of milk fat was that of Patton & Tharp (1959), in which they stripped the fat with steam for a period of 3 hr, holding it at a temperature of 200°C and a pressure of 0.1 - 0.25 mm Hg. They identified an homologous series of methyl ketones containing the n-alkyl members with odd numbers of carbons from C₃ to C₁₅, which suggested that methyl ketones found in steam distillates of dairy products containing milk fat were artifacts. Nawar, Cancel & Fagerson (1962)
thought that some form of oxidation might be involved since bleaching of color was observed in milk fat upon heating. However, the loss of colour by heat appeared to proceed via a different mechanism than the bleaching normally produced by intensive oxidation of milk fat. No oxidized flavour was detected when the fat was heated to the point of discolouration in the absence of oxygen and moisture. Gas chromatographic patterns of the heated fat were markedly different from those of milk fat oxidized at low temperatures which indicated that aldehydes predominated as products of oxidative mechanisms, whereas ketones were the major components formed by heat.

The origin of methyl ketones in cheese

The weight of opinion up to 1962, despite the work of Patton and his coworkers, was that the methyl ketones detected in steam distillates from Cheddar cheese were derived by β-oxidation of the C_4 to C_{14} fatty acids of milk fat (Sjöström, 1959; Harvey & Walker, 1960; Mabbutt, 1961). For example the possibility of artifact formation was considered by Harvey & Walker (1960) but they concluded that the methyl ketones obtained in their work were not artifacts formed during the distillation but were present as such in Cheddar cheese.

THE BIOSYNTHESIS OF THE FATTY ACIDS OF MILK LIPIDS

The possibility however that precursors of methyl ketones might arise as intermediates in milk fat synthesis led to a study of the factors involved in the biosynthesis
of fatty acids in the mammary gland. The two main problems of milk fat secretion are its origin and its difference in composition from body fats. Whereas ox depot fatty acids consist chiefly of stearic, palmitic and oleic acids, cow's milk fat contains about 10% of the C₄ to C₁₂ acids (see Hilditch, 1956).

For some years it has been appreciated that the fatty acids of milk triglycerides arise from two distinct sources - from blood plasma lipids and by direct synthesis in the mammary gland. Since cow's blood contains about 0.3% total lipids the earliest work consisted of attempts to find what fraction of the blood lipids gives rise to milk fat. Graham, Jones & Kay (1936) found that there was sufficient arterio-venous difference in total blood fatty acids (i.e. free and combined) to account for all the fat in milk and this conclusion was confirmed by other workers, e.g. Shaw, Powell & Knodt (1942). Riis, Luick & Kleiber (1960), considered that some 50% of the fatty acids of the milk came from colloidal fatty material in the plasma which was supported by the finding of Hardwick, Linzell & Mepham (1963) that about 30% only of the non-volatile fatty acids could be synthesised from acetate by isolated perfused goat udder. Barry, Bartley, Linzell & Robinson (1963) concluded that the fatty acids taken up by the goat mammary gland from the blood were principally palmitic and stearic acid.

If the blood is accepted as the source of milk fat there remains its peculiar fatty acid composition to be accounted for. Achaya & Hilditch (1950) suggested that the short chain acids are formed in the udder by degradation, from the omega end of the molecule, of oleic or other unsaturated acids combined in triglycerides. However
the function of acetate in the formation of milk fat was directly demonstrated by the finding of Popják & Beeckmans (1950) that acetate carbon was incorporated into the mammary fat of pregnant rabbits. This led to an experiment (Popják, French & Folley 1951) on the metabolism of $1-^{14}C$ acetate by the lactating goat when about 10% of the dose was secreted into the milk in the form of fatty acids, the short-chain acids having the highest specific activity. Cowie et al (1951) considered that the decrease of specific activity of the milk and udder fatty acids with increasing chain length indicated that the short chain acids could not have arisen to any considerable extent by the direct degradation of long chain acids as required by the theory of Hilditch. However, as Glascock (1958) pointed out, although the weight of evidence is now against this theory it was not disproved. Many substances have more than one precursor and the specific activity data of Popják et al (1951) does not appear to exclude their being formed in part from long chain acids by some mechanism other than that postulated by Hilditch.

The conclusion of Popják et al (1951) that milk-fatty acids arise both from acetate and from a circulating C_4-compound agrees with the finding of Shaw & Knodt (1941) that β-hydroxybutyrate is taken up by the lactating udder. Popják et al considered that fatty acids are formed in part by a conversion of β-hydroxybutyrate to butyrate followed by condensation with acetate. Support for this hypothesis was given by Kumar, Lakshmanan & Shaw (1959) who found that in the milk secreted by an isolated udder perfused with $1-^{14}C-\beta$-hydroxybutyrate all the acids up to capric (C_{10}) were labelled. The specific activity
of these acids increased with increasing chain length up to C₈ acid, whereas lauric and longer chain acids had negligible specific activity. In the presence of an adequate supply of acetate, butyrate should therefore be as good a precursor of milk fatty acids as either β-hydroxybutyrate or acetate itself. Black, Kleiber & Brown (1961) found however that much less labelled butyrate than acetate was incorporated into milk fatty acids by the living cow but that there was substantial incorporation of butyrate into lactose. Thus while Kumar, Lakshmanan & Shaw (1959) have demonstrated that β-hydroxybutyrate can undoubtedly be metabolised to yield fatty acids of chain length up to 10 carbon atoms, the intermediary pathway is not clear and, as Glascock (1958) has pointed out, is unlikely to involve butyrate. Indeed recent work by Annison, Leng, Lindsay & White (1963) has shown a high incorporation of butyrate carbon, after its infusion into the portal veins of sheep, into β-hydroxybutyrate of the blood.

Propionate is not apparently incorporated to any great extent into milk fatty acids, though propionate can be the precursor of the odd-numbered fatty acids in milk fat and, following its degradation, to even-numbered fatty acids. (James, Peeters & Lauryssens, 1956).

Hilditch (1956) in view of the work of Popjak et al (1951) put forward an alternate pathway, without experimental evidence, that envisioned milk fat synthesis as a process of fatty acid transacylation onto preformed triglyceride molecules which were previously absorbed from the blood. More recently McCarthy et al (1960) have proposed that two mechanisms might be involved in milk fat synthesis: alteration of pre-existing triglyceride molecules and
supplemental synthesis from non-lipid precursors. Luićk (1961) put forward the hypothesis that milk fat is synthesised "de novo" within the mammary gland from pools of free fatty acid and glycerol but emphasised that this did not exclude the simultaneous formation of milk fat from plasma glyceride via mechanisms involving fatty acid exchange, substitution or rearrangement within the mammary gland. The conclusions of Luićk & Lucas (1962) and of Patton et al (1962) that plasma lipids are hydrolysed in the udder to provide such a pool of free fatty acids provides additional support for this hypothesis.

Following the early work of Popjak, Folley and their collaborators from 1950 onwards, it was generally considered that the synthesis of saturated fatty acids from acetate was probably a reversal of β-oxidation. The studies of Wakil, Brady and their coworkers since 1958 however showed that a source of CO₂ was of fundamental importance in fatty acid synthesis by particulate-free preparation of pigeon liver and chicken liver. This work and other related studies (reviewed by Wakil, 1961) showed that this biosynthetic pathway was different from a reversal of β-oxidation. Fatty acid chains of up to 16 carbon atoms are now known to be elaborated from acetyl CoA which condenses with HCO₃⁻ ion to yield malonyl CoA in the presence of ATP, Mn⁴⁺ ions and acetyl CoA carboxylase (a biotin-containing enzyme).

\[
\text{CO}_2 + \text{CH}_3\text{CO.SCoA} + \text{ATP} \rightarrow \text{CH}_2<\begin{array}{c}\text{CO.SCoA} \\ \text{COOH} \end{array} + \text{ADP} + \text{P}_i
\]
Malonyl CoA condenses in turn with acetyl CoA to yield by reaction with reduced triphosphopyridine nucleotide (TPNH), CO₂, CoA and a saturated fatty acid. Thus successive condensations yield palmitic acid, the stoichiometry being expressed as follows:

\[
\text{CH}_3\text{CO.SCoA} + 7\text{HOOCC.CH}_2\text{CO.SCoA} + 14\text{TPNH} + 14\text{H}^+ \\
\longrightarrow \text{CH}_3(\text{CH}_2)_{14}\text{CO.SCoA} + 7\text{CO}_2 + 7\text{CoA} + 14\text{TPN}^+
\]

The malonyl CoA system has now been characterised in a variety of animal tissues and microorganisms. Usually long chain fatty acids are formed in these systems, a notable exception being preparations from mammary tissue. Ganguly (1960) found that such extracts synthesised both the long and short chain acids, the relative proportions of C₄, C₆ and (collectively) the C₈ - C₁₆ acids synthesised by the mammary gland system being similar to those present in cows' milk fat.

Although none of the intermediates in the biosynthetic sequence has been definitely identified, the interaction between acyl CoA and malonyl CoA as a concerted condensation-decarboxylation has been proposed by Vagelos and Alberts, (1960) since decarboxylation at this point would pull the reaction in favour of condensation. This hypothesis was initially based on the observation that CO₂ can exchange with a carboxyl group of malonyl CoA in the presence of saturated acyl CoA. The acyl intermediates are considered to be enzyme bound (Lynen, 1961).
Dils & Popjak (1962) showed the malonyl CoA route to be of major importance in fatty acid synthesis by soluble preparations of lactating rat mammary gland. Several intermediates of the citric acid cycle, formerly thought necessary to stimulate fatty acid synthesis, were no longer required. The principal products of synthesis were the saturated n-fatty acids C\textsubscript{8} - C\textsubscript{18}, together with a small proportion of oleic acid, although, compared with milk fatty acids, a somewhat
greater proportion of lauric and myristic acids was produced. Abraham, Matthes & Chaikoff (1961) carried out similar work with lactating rat mammary gland but found an absolute requirement for citrate, the stimulating effect of free malonate being observed only in the presence of citrate. The fatty acids synthesised were qualitatively similar to those obtained by Dils & Popják although the proportion of C_8 - C_12 acids produced was much greater.

MICRO-ORGANISMS IN CHEDDAR CHEESE

The alternative hypothesis put forward by Wong et al (1958) to explain the presence of β-keto acids in dairy products containing milk fat was a degradation of fatty acids by β-oxidation. If methyl ketones are formed by micro-organisms in cheese and are contributing to the flavour it seemed logical to examine any relationships reported between flavour and these micro-organisms.

Numerous attempts by earlier workers to find a correlation between the composition of the microflora of cheese and the time of appearance of flavour have not been entirely successful (e.g. Sherwood, 1939). Robertson (1961) in an investigation of Cheddar cheese from 4 different countries has shown that apart from quite large differences between individual cheese, the flora of the cheese of one country tends to be quite different from that of another. Certain features such as the proportion of *L. casei* in the flora are uniform
from one country to another but even with this species
the distribution of the strains which are unable to
ferment melezitose show a country to country variation.

Possible reasons for the differences in flora
between the cheese of different countries are the
composition of the milk, its flora and the type of
bacteria gaining admission during cheesemaking. These
variables in turn depend on such complex factors as
the type of pasture, climate, standards of hygiene and
methods of manufacture. A more tangible influence is
the presence or absence and degree of heat treatment
of the milk used for cheesemaking. Many investigators
have found that the rate of flavour development in
pasteurized milk Cheddar cheese is slower and the final
flavour is milkyder than in raw milk cheese, e.g.,
Kristoffersen & Cole, 1960. This effect has usually
been attributed to the decrease in numbers of micro-
organisms and inactivation of milk enzymes as a result
of the heat treatment.

Notwithstanding marked variations in the bacterial
flora found in the cheese examined from 4 different
countries. Robertson (1961) concluded that all the
cheese examined had what could be described as a basic
Cheddar flavour. It would seem therefore that the
enzymes responsible for this basic flavour must be
common to all cheese. They could originate from the
rennet, milk or micro-organisms.

The inoculation of cheese milk with certain cultures,
particularly lipolytic organisms such as certain strains
of lactobacilli (Sherwood, 1939), pseudomonads,
achromobacteria and flavobacteria (Stadhouders & Mulder,
1957) and micrococci (Robertson & Perry, 1962) have been
found to enhance flavour production in Cheddar cheese.

It has recently been demonstrated that bacteria which are present in relatively small numbers may nevertheless be of importance in cheese ripening. Stadhouders & Mulder (1957) have shown that bacteria, which may multiply in the milk during storage but which do not grow in the cheese, can produce lipolysis of the cheese fat. Furthermore this lipolysis may still occur, though on a reduced scale, even if the cheese milk is pasteurised, since the lipolytic enzymes are sufficiently heat stable to retain some activity (Stadhouders, de Vries & Mulder, 1959).

In view of the above findings of Robertson (1961) the bacterial flora actually present in the cheeses appear not to make the major contribution to flavour production. However, organisms that are present in the original milk flora or fall into the vat during cheesemaking could after death leave active enzyme systems that contribute to flavour production. This is substantiated by the work of Perry & McGillivray (1964). They successfully designed an apparatus to exclude bacteria from the vat during cheesemaking and by using initially bacteria free milk were able to assess the overall importance of streptococci and strains of lactobacillus and micrococcus in cheese ripening. It was significant that when "aseptic" cheeses were manufactured under controlled conditions, no flavour developed in the cheeses except in the control cheeses when the lid of the "aseptic" vat was opened and adventitious bacteria from the atmosphere allowed to fall in.
Presumably the organisms producing Cheddar cheese flavour are natural components of the microbiological flora in the factory. Olson & Hammer (1934) found that up to 50% of the microbial flora of a cheese factory examined were fungi and yeasts. These have also been isolated from Cheddar cheese in a viable state (Robertson, 1964). They would be present in milk churns and pipe lines despite average cleanliness and would be able to grow in milk during storage. Pasteurization might destroy the growing organisms and spores but lipolytic enzymes have been shown to be very resistant to heat (Stadhouders, de Vries & Mulder, 1959). The fungi and yeasts which also fall into the vat during cheesemaking may be important, particularly in view of the work of Stadhouders & Mulder (1957) reported above.

The high proteolytic activity of fungi and yeasts (Proks, Dolezalek & Pech, 1959) is possibly also of importance since their ability to degrade the protein-phospholipid complex in the so-called membrane of milk fat globules might allow the globules themselves to be attacked more readily.

Although the microbiological flora of Cheddar cheese is predominately bacterial a study of the β-oxidation of fatty acids by any of the numerically important bacterial species isolated from Cheddar cheese did not seem logical. The microbiological species responsible for Cheddar flavour are not known, although the indications are that they are lipolytic. However no lipolytic bacterium has been reported capable of oxidising fatty acids to methyl ketones. Since on the other hand fungi are in general more lipolytic than bacteria and are known to form methyl ketones from lipids, a detailed investigation
of the oxidation of lipids by Penicillium roqueforti (a fungus known to be responsible in part for the flavour of Blue cheese) was undertaken. While it is unlikely that fungi would grow in the anaerobic environment and high local concentration of carbon dioxide (Robertson, 1957) to be found in the interior of ripening Cheddar cheese it was thought possible that viable spores might secrete extracellular enzymes capable of oxidising fatty acids derived from milk fat triglycerides to β-keto acids and by decarboxylation give the corresponding methyl ketone.

FATTY ACID OXIDATION

Several workers (e.g. Green, 1954) have demonstrated that fatty acids are oxidized via a pathway very similar to the β-oxidation scheme first postulated by Knoop in 1904. There are five basic steps in this cycle:

1. Esterification of the fatty acid to a thiol ester of Coenzyme A:

 \[R.CH_2.CH_2.COOH \rightarrow R.CH_2.CH_2.CO.SCoA + H_2O \]

2. α-β Dehydrogenation of the CoA ester of the fatty acid:

 \[R.CH_2.CH_2.CO.SCoA \rightarrow^{2H} R.CH = CH.CO.SCoA \]

3. Addition of water across the double bond of the unsaturated acyl CoA ester:

 \[R.CH = CH.CO.SCoA + H_2O \rightarrow R.CH(OH).CH_2.CO.SCoA \]
4. Oxidation of the β-hydroxyacyl CoA ester to the corresponding β-ketoacyl CoA derivative:

$$R\cdot CHOH\cdot CH_2\cdot CO\cdot SCoA \rightarrow^{2H} R\cdot CO\cdot CH_2\cdot CO\cdot SCoA$$

5. Thiolysis by CoASH of the β-ketoacyl CoA ester to acetyl CoA and a new fatty acyl CoA ester:

$$R\cdot CO\cdot CH_2\cdot CO\cdot SCoA + CoASH \rightarrow R\cdot CO\cdot SCoA + CH_3\cdot CO\cdot SCoA$$

The net result of these five steps is the splitting out of acetic acid in the form of its Coenzyme A ester and the formation of a new fatty acyl CoA ester with two carbon atoms fewer than the parent ester. The cycle then repeats itself until the fatty acid chain is entirely degraded to units of acetic acid.

The β-oxidation cycle refers to this sequence of five steps which is repeated as many times as the number of paired carbon atoms in the chain. Since in general fatty acids of biological origin contain an even number of carbon atoms and have a straight chain, β-oxidation leads to the scission of the fatty acid to the appropriate number of acetic acid residues.

The condensation of acetyl Coenzyme A, the end product of the β-oxidation sequence, with oxalacetate to form citrate (Stern & Ochoa, 1951) is of considerable significance.

$$CH_3\cdot CO\cdot SCoA + COOH\cdot CH_2\cdot CO\cdot COOH \rightarrow COOH\cdot CH_2\cdot CHOH\cdot COOH + CoASH$$

First, it leads to the release of Coenzyme A which is then made available for a repeat of the β-oxidation cycle. The concentration of coenzyme in vivo is limited and unless the coenzyme is being turned over the cycle would
stop. Second, the citric acid formed can be oxidized to \(\text{CO}_2 \) and \(\text{H}_2\text{O} \) through the citric acid cycle. By means of this cyclical oxidation sequence the fatty acid oxidation cycle is channelled into the main mitochondrial stream.

Oxidation of Fatty Acids with an Odd Number of Carbon Atoms

The mitochondrial system oxidizes fatty acids with odd or even numbered carbon atoms at a similar initial rate (Grafflin & Green, 1948), and this has been confirmed by studies with the isolated enzymes of the fatty acid oxidation cycle (Mii & Green, 1954). The end products of the oxidation of odd numbered fatty acids are acetyl \(\text{CoA} \) and propionyl \(\text{CoA} \). If the mitochondria like those of the liver are capable of oxidizing propionate to \(\text{CO}_2 \) and \(\text{H}_2\text{O} \), the odd numbered fatty acids pose no problem. However, where this is not the case as for heart mitochondria, the oxidation of the odd numbered acids proceeds with great difficulty (Grafflin & Green, 1948). This could be largely the consequence of the immobilization of \(\text{CoA} \) in the form of propionyl \(\text{CoA} \) which is metabolically inert.

OXIDATION OF FATTY ACIDS BY FUNGI

The enzymes responsible for the oxidation of fatty acids in mamalian and plant tissues have been thoroughly investigated (Green, 1954; Lynen, 1955; Stumpf & Broadbear, 1959). In the case of fungi, in which a
variety of effects of fatty acids on growth and metabolism have been observed, the knowledge of enzymatic processes is still comparatively undeveloped. Although it has generally been assumed that the same enzyme systems occur in fungi as in animal and plants tissues, there is little experimental evidence to support this assumption. This paucity of information may be due in part to certain technical difficulties that might be encountered in work with fatty acids.

(a) In low concentrations (i.e. up to 10 μmoles per ml) it is difficult to analyse for suspected intermediates that might accumulate in small amounts.

(b) Toxicity and low solubility, on the other hand, put an upper limit on the concentrations that may be used.

In animal and plant tissues, oxidation of fatty acids to CO₂ and H₂O (i.e. complete oxidation) is a function reserved exclusively for mitochondria. Since the enzymatic principles which underlie the basic mitochondrial functions have generally applicability regardless of the source of the mitochondria, it would be anticipated that the pattern of fatty acid oxidation to CO₂ and H₂O would be much the same in all animal and plant tissues. Although there is insufficient evidence of the invariant link of fatty acid oxidation to organized particles in microorganisms, wherever the process has been studied it has been found to correspond closely with the equivalent process in animal and plant tissues. Some steps of β-oxidation were confirmed substantially for _P. glauccum_ by Thaler and co-workers who obtained methyl ketones from α-β unsaturated acids (Thaler & Eisenlohr, 1941), from β-hydroxy acids (Thaler & Geist, 1939), and from β-keto acids (Thaler & Stahlin, 1945).
Mukherjee (1951) found that fatty acid dehydrogenase activity of Penicillia and Aspergilli increased from C₄ to C₁₀ with C₁₆ and C₁₈ acids showing no dehydrogenase activity. Contradictory results were obtained however by Franke & Heinen (1958) who isolated a constitutive dehydrogenase enzyme with maximum activity for C₁₆ and C₁₈ fatty acids and very low activity for C₆ and C₈ acids.

The ability of Penicillia to oxidise C₈ and C₁₀ acids to methyl ketones was first noted by Starkle (1924). In 1951 Mukherjee claimed that only the genera Penicillia and Aspergilli were able to form methyl ketones from fatty acids but Franke & Heinen (1958) later showed that the methyl ketone forming ability of fungi was general if not ubiquitous. Of 39 fungi tested, 2 Phycomycetes, 1 Ascomycetes and 6 Fungi Imperfecti did not give methyl ketones. Not all species of the same fungus however formed methyl ketones.

Saturated fatty acids are utilised by some fungi without any trace of ketone formation, and furthermore when ketone is formed the yields are not quantitative. The immediate precursors of the ketones are believed to be the corresponding β-keto acids. Two mechanisms thus compete for the β-keto acid in fatty acid oxidation (a) oxidation to CO₂ and H₂O (b) decarboxylation to methyl ketone.

In methyl ketone formation it is considered that the thiolase reaction is inhibited, the β-ketoacyl-Coenzyme A ester being deacylated to the free β-keto acid which is subsequently decarboxylated.
Thus:

\[-\text{CO-CH}_2\text{-CO-SCoA} \rightarrow \text{-CO.CH}_2\text{-COOH} + \text{CoASH}\]

\[\downarrow\]

\[-\text{COCH}_3 + \text{CO}_2\]

The oxidation of fatty acids of medium chain length to methyl ketones of one less carbon atom by fungi has been studied in some detail. Starkle (1924) identified C\textsubscript{7} and C\textsubscript{9} methyl ketones organoleptically when C\textsubscript{8} and C\textsubscript{10} acids respectively were oxidised by Penicillia. This was confirmed for Aspergilli by DeRx (1925), for \textit{P. palitans} by Stokoe (1928), for \textit{P. glaucum} by Acklin (1929) and for \textit{P. roqueforti} by Hammer & Bryant (1937) and Sjöström & Malm (1952). These early investigations are open however to the objection that the fatty acid used was not the sole source of carbon, and the results are complicated by the many reactions growing cultures.

Thaler & Geist (1939) showed that methyl ketone formation depended not only on the fungus used but also on the pH, time of reaction, concentration and chain length of the acid. Fatty acids from C\textsubscript{4} to C\textsubscript{12} and possibly C\textsubscript{14} formed methyl ketones in low yields, approximately 0.5% of the acid supplied being oxidised to methyl ketone. The course of formation was "zig-zag", i.e. reaching a maximum yield and then decreasing again. This was possibly due to the presence of ammonium salts in the culture medium which allowed the mould to utilise the fatty acid for growth. Frank & Heinen (1958) used the same incubation medium as Thaler & Geist (1939) but did not get the "zig-zag" formation of methyl ketones with \textit{P. camemberti}. Maximum amounts of methyl ketones were formed from C\textsubscript{4} and C\textsubscript{12} acids. They confirmed the
conclusion of Thaler & Geist that the yield of methyl ketone reached a maximum just before visible mycelium appeared. Apart from the complications due to culture growth the above investigations were also not carried out in shaken cultures. Under such conditions abnormal respiratory conditions are certain to exist (Foster, 1949).

Gehrig & Knight (1963), using a medium not containing a nitrogen source and with $3-C^{14}$ octanoic acid as sole carbon substrate, found that spores oxidised low concentrations (1 μ mole) without formation of methyl ketone although small amounts of radioactive 2-heptanone were detected when large amounts of substrate (20 μ moles) were used. No quantitative details of the oxidation were given.

Methyl Ketone Formation from Mycelium

Although it is generally agreed (e.g. Berridge, Hiscox & Zielinska, 1953; Franke & Heinen, 1958) that a decline in methyl ketone formation occurs as spores germinate to mycelium, the innate ability of the mycelium to form ketones is still not completely proven. Knight and co-workers have published somewhat conflicting evidence. In 1955 Girolami & Knight obtained methyl ketones from the C$_4$ to C$_9$ fatty acids, and also considerable oxygen uptake, using mycelium of *P. roqueforti*. In 1958 Gehrig & Knight considered however that only spores and not mycelial cells were able to form methyl ketones from fatty acids. Later Haidle & Knight (1961) were unable to show for certain whether the mycelium of *P. roqueforti* had the ability to produce ketones or not as they were not able to obtain mycelium completely devoid of spores.
They found that during germination the ketone-producing activity decreased markedly but never disappeared completely. More recently Gehrig & Knight (1963) claimed that spores which had germinated were completely unable to take up oxygen when incubated with fatty acids, a surprising conclusion in view of the results of other workers who have investigated oxygen uptake during the oxidation of fatty acids by fungal mycelium.

Methyl Ketone Formation using Cell-free Extracts

Karrer & Haab (1948) were unable to isolate the β-keto acid decarboxylase but dried mycelial powders from various Penicillia were able to decarboxylate β-keto acids. They considered the decarboxylase to be highly unstable. More recently however, Franke, Platzeck & Eichhorn (1961) isolated a constitutive and highly stable β-keto acid decarboxylase from *Aspergillus niger*. Optimum decarboxylase activity at C_{12} corresponded to one of the two optima of methyl ketone formation from fatty acids by washed mycelium (Franke & Heinen, 1958). There was however no corresponding decarboxylase activity for the other methyl ketone optimum at C_4.

Haidle & Knight (1961) failed to obtain the methyl ketone forming system in the cell free state from spores. No activity was observed after sonic oscillation for prolonged periods in either the supernatant fraction, the broken spore wall fraction or a combination of both fractions.
TOXICITY OF FATTY ACIDS TOWARDS FUNGI

The marked effect of saturated fatty acids on the growth of fungi was first reported by Laxa (1902), who found that *P. glaucum* could grow in a medium containing 0.24% hexanoic acid but not in the same concentration of octanoic acid. Levine & Novak (1949) showed that the oxygen uptake of *Blastomyces dermatitidis* was stimulated by fatty acids up to C8 acid but inhibited by higher acids. Webley & de Kock (1952) found that high concentrations (1% w/v) of the C8 - C12 acids completely inhibited oxygen uptake of *Proactinomyces opacus* at pH 7.0 but that low concentrations (0.0012M) were rapidly oxidised. Wyss, Ludwig & Joiner (1945) investigating the fungistatic action of fatty acids found that the optimum chain length varied with different organisms and with the solubility of the fatty acid in question. Thus for *A. niger* the optimum chain length was C11 but was C13 for the more sensitive *T. interdigitale*. Rigler & Greathouse (1940) found C11 to be the acid most toxic to the growth of *Phymatotrichum omnivorum*.

Girolami & Knight (1955) showed that resting cell suspensions of *P. roqueforti* were capable of oxidising fatty acids in low substrate concentration (1.5 μ moles/ml). The acids became increasingly toxic as the carbon chain lengthened. Acids with more than 10 carbon atoms were oxidised at pH 7.3 only slowly, if at all, even at low substrate concentration. Rolinson (1954) found, on the other hand, that at pH 6.4 *P. chrysogenum* readily oxidised long chain fatty acids (C16 - C18) but that the intermediate C8 - C10 acids were toxic.
Thornton (1963) demonstrated that the C₉ - C₁₁ fatty acids showed greatest activity in inhibiting spore germination of *Pithomyces chartarum*. Vinze & Ghosh (1962) found that low concentrations (less than 2 μ moles/ml) of C₈ and C₁₀ acids stimulated mycelium of *P.chrysogenum* but were toxic at higher concentrations.

In general, considering the effect of homologous series, the toxicity on a molar basis rises with molecular weight but at some point the trend is reversed and higher members of the series are less toxic. The exact point of maximum toxicity depends upon the series and on the organism. The sharp decrease in toxicity with increased molecular weight is probably a reflection of insolubility of and micelle formation by the higher members of the series (Badger, 1946).

The toxicity of fatty acids, and of weak acids in general, has been found to be dependent on pH (Turner & Hanly, 1947; Beevers & Simon, 1949; Simon, 1950; Simon & Beevers, 1951), toxicity increasing as the concentration of undissociated molecules increases. When dissociated such substances may either be non-toxic or even result in an increase in oxygen uptake.

Webley & De Kock (1952) considered the toxic effect of the C₈ - C₁₂ acids on *Proactinomyces opacus* at pH 7.0 to be connected with their detergent properties. The biological activity of soaps arises from their power of concentrating at the biological surface, leading to an alteration in permeability and sometimes to lysis with the escape of cell contents. Similarly Nieman (1954) suggested that the toxic action of fatty acids is due to an accumulation of the active material in a peripheral layer or zone outside the semi-permeable
membrane. However it is now believed (Cochrane, 1959), although no experimental proof has been offered, that the primary inhibitory effect is not at this stage but later after some of the toxic substance has penetrated the protoplasm proper. Cochrane has proposed that toxicity is due to the differential accumulation of a toxic material by the organism, i.e., some materials which are perhaps equally toxic to all organisms may be accumulated selectively by a fungus.

The physiological importance of methyl ketone formation is not clear. Stokoe (1928) postulated that the abnormal oxidation of fatty acids to methyl ketones was a result of the poisonous or narcotic effect of the acid on the fungus. However the methyl ketones produced from toxic fatty acids are themselves inhibitory to the growth of fungi. Stokoe found that growth of *P. palitans* was inhibited by 0.2% 2-heptanone whereas, according to Girolami & Knight (1955), 0.1% 2-heptanone inhibited the growth of *P. roqueforti* and was a possible factor in preventing excessive fungal development in Blue cheese. Reduction of 2-heptanone to the less toxic 2-heptanol would be a further stage in detoxification of the acid. Franke, Platzeck & Eichhorn (1962) considered that the ability of fungi to form methyl ketones might serve to act as a non-specific inhibitor against sensitive competitors for "Lebensraum" during germination.

Detoxification of fungicidal agents has been observed and may be a potential mechanism of resistance. Fawcett, Spencer & Wair (1955) demonstrated the importance of β-oxidation in the plant growth-regulating activity of the phenoxyalkyl carbosylic acids. Both β-oxidation of the fatty acid side chain and nuclear hydroxylation
in the 6-position accompanied detoxification of \textit{A. niger} with higher members of the \(\omega \)-(2-naphthoxy)-n-carboxylic acids (Byrde & Woodcock, 1956) and of \textit{Nocardia opaca} with \(\omega \)-phenyl substituted fatty acids (Webly, Duff & Farmer, 1955).

\textbf{OXIDATION OF TRIGLYCERIDES TO METHYL KETONES BY FUNGI}

In cheese the source of fatty acids, and thus possibly of the methyl ketones, is the triglycerides. The oxidation of triglycerides however by fungi has not been investigated in detail, particularly at the pH's to be found in Blue cheese. 24 hours after manufacture the pH of Blue cheese is approximately 4.6 rising to about pH 6.5 after 3-6 months, followed by a further fall to pH 5.5 after 9 months. (Coulter, 1938; Morris, Jezeski, Combs & Kuremoto, 1963).

Acklin (1925) found that \textit{P. glaucum} oxidised trihexanoin in buffered solutions to give up to 10% of the theoretically possible amount of 2-pentanone. Thaler & Eisenlohr (1941) showed that the yields of methyl ketones (about 10-15%) from synthetic triglycerides containing \(C_4 \) \(-\ C_{12} \) acids were greater than from the acids themselves. They found the formation of methyl ketones to be dependent on pH and followed a zig-zag course during prolonged incubation.

\textbf{Mycelial lipases}

The hydrolysis of the triglyceride is probably the
first step and this is known to be pH dependent. Thibodeau & Macy (1942) obtained maximum lipase activity of \textit{P. roqueforti} between pH 5.3 and 7.5 and showed the optimum temperature for lipolysis to lie in the range 30 - 35°. These results have been confirmed generally by a large number of workers (Fodar & Chari, 1949; Parmelee & Nelson, 1949; Shipe, 1951; Wilson, Nelson & Wood, 1955; Imamura & Tsugo, 1953). Mycelium has been shown to possess both extracellular and intracellular lipases (Morris & Jezeski, 1953). Kirsch (1935) considered the lipases of \textit{P. oxalicum} to be highly non-specific whereas Shipe (1951) found that C\textsubscript{4} and C\textsubscript{8} acids were released from tributyrin and tricaprylin in the ratio 3:1. Similarly Morris & Jezeski (1953) found that the activity of the lipases decreased as the molecular weight of the triglyceride increased.

Bacterial lipases are considered to be adaptive (Cutchins, Doetsch & Pelezar (1952) and similarly the lipolytic activity of \textit{P. roqueforti} is greatly stimulated by adding fat to the growth medium (Nelson & Babel, 1946). Imamura & Tsugo (1953) however found that the lipolytic enzymes of \textit{P. roqueforti} were not produced in any quantity until after 20 days incubation in the presence of butterfat.

\textbf{Spore lipases}

The lipolytic activity of spores appears not to have been studied. Since spores in general and certain strains of \textit{Aspergillus} and \textit{Penicillia} in particular have high lipid content, spores might be expected to contain lipases. A feature of fungal lipids however is
the usually high proportion of free fatty acids (up to 88% of the total lipids, according to Raveux, 1948).

FORMATION OF METHYL CARBINOLS

In 1910 Haller & Lassieur detected in rancid coconut oil both methyl carbinols and methyl ketones and these Stokoe (1928) later showed were formed by oxidation of the oil by Penicillia. Neuberg & Lewite (1918) observed that yeasts gave up to a 10% yield of methyl carbinol when incubated with C₄ and C₅ methyl ketones. Acklin (1925) found carbinols in ripe bananas and cheeses as well as rancid fats and postulated that an intermediate methyl ketone was hydrogenated to the methyl carbinol. Stokoe (1928) on the other hand found that fungi oxidised methyl carbinols to methyl ketones far more readily than the latter were reduced to carbinols. He therefore postulated that the carbinols as well as the β-keto acids might be the precursors of the methyl ketones, basing his hypothesis on the assumption that decarboxylation of either the β-keto acid or the β-hydroxy acid could yield ketone, represented thus:

\[
\begin{align*}
R \cdot CH₂ \cdot CH₂ \cdot COOH & \quad \xrightarrow{\text{H}} \quad R \cdot CH=CH \cdot COOH \\
R \cdot CHOH \cdot CH₂ \cdot COOH & \quad \xrightarrow{\text{H}} \quad R \cdot CO \cdot CH₂ \cdot COOH & \quad \rightarrow \quad CO₂ + H₂O \\
R \cdot CHOH \cdot CH₃ & \quad \xrightarrow{\text{H}} \quad R \cdot CO \cdot CH₃
\end{align*}
\]
It is however generally assumed (e.g. Foster 1947; Wood, 1961) that methyl ketones are intermediates in methyl carbinol formation rather than vice versa, although evidence to support this view is limited. Thus in the fermentation of glucose by *Clostridium butylicum* to acetone and isopropanol, Osburn, Brown & Werkman, (1937) considered acetone to be the precursor because its addition enhanced the production of isopropanol. Similarly several groups of organisms (e.g. species of aerobacter, serratia, bacillus) produce acetoin and butanediol in glucose fermentations. De Moss, Bard, & Gunslaus, (1951) found that in *Leuconostoc mesenteroides* the reduction of acetoin is reversibly catalysed by butanediol dehydrogenase with the equilibrium in the direction of reduction:

\[
\text{acetoin} + \text{DPNH} + H^+ \rightleftharpoons 2,3\text{-butanediol} + \text{DPN}^+
\]

They concluded that the balance between acetoin and 2,3-butanediol was determined by the amount of available hydrogen. Similarly Seitz, Sandine, Elliker & Day (1963) obtained evidence for a reversible 2,3-butanediol dehydrogenase in cell-free extracts of *Streptococcus diacetilactis*, the equilibrium probably favouring the reduction of acetoin to 2,3-butanediol.

Jackson & Hussong (1958) found that mycelium of *P. roqueforti* reduced 2-heptanone to 2-heptanol and vice versa. Unlike Stokoe (1928), however, they found the reduction to carbinol to proceed more readily than the oxidation to ketone. Similar results were obtained by Franke, Platzeck & Eichhorn (1962) who found that when *Aspergillus niger* oxidised C\textsubscript{12} acid, the C\textsubscript{11} methyl...
ketone concentration built up to a maximum but was further metabolised on longer incubation. The amount of C_{11} methyl carbinol found at the end of the experiment corresponded to the maximum amount of C_{11} methyl ketone obtained. However, they also confirmed the earlier findings of Stokoe (1928) and Jackson & Hussong (1958) that mycelium also oxidises secondary alcohols to methyl ketones. Bassett & Harper (1956) isolated the C_8 and C_{10} β-keto acids from Blue cheese which suggests that these are more likely precursors of methyl ketones than secondary alcohols. Jackson & Hussong (1958) also established that methyl ketones appear much sooner and in larger amounts than the secondary alcohols during the ripening of Blue cheese.

There is to date not enough evidence to justify deciding between the two pathways originally postulated by Stokoe (1928) although it would seem more likely that carbinols are reduction products of the ketones.
AIMS OF THE PRESENT INVESTIGATION

Since attention has recently been centred on the contribution of methyl ketones to the characteristic flavour of cheeses it was considered important to examine more precisely their formation in cheese, with particular reference to the possible mechanisms by which they, and related compounds such as methyl carbinols, could be formed.

Wong, Patton & Forss (1958) considered β-keto acids to be the precursors of methyl ketones found in steam distillates of evaporated milk and put forward, without experimental evidence, two alternative hypotheses to account for their origin:

(1) as intermediates in the synthesis of fatty acids from acetate in the mammary gland
(2) as degradation products of fatty acids by β-oxidation.

The first hypothesis implies that methyl ketones could be formed as artifacts during steam distillation of products containing milk fat. This possibility was considered by Harvey & Walker (1960) but they concluded that the methyl ketones obtained in their work were not formed as artifacts during the distillation but were present as such in Cheddar cheese. The point did not, however, seem to be clearly established and one object of the present investigation was to determine whether, and if so to what extent, methyl ketones were formed as artifacts during distillation.

As the work developed it became clear that bound precursors in milk fat could account for most, if not all,
the methyl ketones to be found in Cheddar cheese. Studies with radioactive milk fat allowed further investigation of the origin of methyl ketones and their precursors.

The second hypothesis of Wong et al. (1958) suggests that the precursors of the methyl ketones are, in the first instance, triglycerides and fatty acids and that the agents of β-oxidation are microbiological. The hypothesis, as it applied to Cheddar cheese, was tested directly by adding synthetic triglycerides, containing fatty acids that are present in trace amounts only in milk fat, and determining the extent of methyl ketone formation.

For reasons outlined in the Introduction it was considered desirable to make a detailed study of the oxidation of fatty acids and triglycerides by the fungus *Penicillium roqueforti*, chosen as a general representative of lipolytic organisms that might be of importance in producing Cheddar flavour, and on account of its known ability to oxidise triglycerides and fatty acids to methyl ketones. Reports in the literature of β-oxidation by fungi were fragmentary and to some extent conflicting and it was hoped that a detailed study of the one organism might clarify the situation. No complete investigation of the oxidation of the homologous series of fatty acids over a wide range of pH has been reported for resting cells of fungi. In particular it was necessary to ascertain the relative abilities of spores and mycelium to form methyl ketones. It became evident that the toxicity of fatty acids towards fungi and the formation of methyl ketones were inter-related and the scope of the investigation was widened in an
attempt to understand the mechanism of toxicity.

This thesis has for convenience been presented in three parts. Part I contains the investigation into the formation of methyl ketones in steam distillates from Cheddar cheese and milk fat. Part II is an account of the formation of methyl ketones from cheeses to which synthetic triglycerides containing fatty acids, normally present in trace amounts only in milk fat, had been added. Part III is a study of the oxidation of fatty acids and triglycerides by the fungus *Penicillium roqueforti*.
Part I. THE ORIGIN OF METHYL KETONES IN CHEDDAR CHEESE AND IN MILK FAT
MATERIALS

The cheeses used were manufactured in the Dairy Research Institute (N.Z.) factory by normal New Zealand commercial methods. They were kept at 13° for 2 weeks and then at 7° for the remainder of the ripening period.

Cheese-fat was obtained by grating the cheese, placing it in centrifuge tubes and melting it in a 60° waterbath. The melted cheese was centrifuged for 5 min. at 2,000 r.p.m. and the cheese-oil then poured off. Milk fat was prepared by melting fresh butter in centrifuge tubes and centrifuging as for cheese-oil.

Radioactive milk fat. A lactating dairy cow, after milking, was injected in the jugular vein with 5.0 mc sodium [carboxy-14C] acetate. The cow was milked 3, 9 and 22 hours after injection, the milk yields and activities of the milk fats being shown in Table 1. The milk fats were stored at -10° until required for analysis.

Table I. Milk yield and milk fat radioactivity after the injection of carboxy-14C acetate

<table>
<thead>
<tr>
<th>Milk Sample</th>
<th>Time after injection (hr.)</th>
<th>Milk yield (oz)</th>
<th>Activity of milk fat (uc/g atom C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>24</td>
<td>2.27</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>88</td>
<td>12.00</td>
</tr>
<tr>
<td>3</td>
<td>22</td>
<td>88</td>
<td>4.92</td>
</tr>
</tbody>
</table>

Carbonyl free solvents. Solvents were rendered carbonyl-free by passing them down a celite column impregnated with 2,4-DNP hydrazine (throughout this thesis 2,4-DNP
denotes 2,4-Dinitrophenyl), phosphoric acid and water, according to the method of Schwartz & Parks (1961). After passage through the column the solvents were distilled at atmospheric pressure.

METHODS

Isolation of radioactive fatty acids. The milk fat was saponified by the method of Henry & Kon (1942) and the soaps converted into free fatty acids with 40% (v/v) H$_2$SO$_4$ (10% excess) and steam distilled. The steam-volatile fatty acids were neutralized with KOH and evaporated to dryness. The non-volatile fatty acids were extracted with diethyl ether, washed with water until neutral to Congo red and dried "in vacuo" on a water bath. The acids were then separated into "solids" and "liquids" by crystallization three times from 15 vol. of acetone at -38°. The "solids" and "liquids" respectively were converted into methyl esters and fractionated in a spiral column (Shorland, 1952).

Carbon 14 counting. Counts were usually made at 2 amplitudes (normally 80 v and 150 v) since the ratio of counts at the 2 amplitudes for each sample should remain the same. Only samples giving considerably more than 3 standard deviations over the background count were reported as being radioactive, the standard deviation being the value of the square root of the total number of counts made at any one time.
Determination of specific activities

(a) **Radioactive steam volatile fatty acids.** These were resolved into their components by gas liquid chromatography (Aerograph Autoprep A.700, Wilkins Instrument Co.) using a column packing of 60% (w/w) diethylene glycol adipate and 2% phosphoric acid (85% H₃PO₄) on 30 - 80 mesh "Celite 545" (Metcalf, 1960). The acids were washed from the Autoprep collecting bottles with 4 ml toluene into a counting vial. Two aliquots of 1 ml were transferred to 100 ml round bottomed flasks, 1 ml of N/10 alcoholic KOH added to each and the excess alkali back titrated with N/100 sulphuric acid, using phenolphthalein as an indicator. 1ml scintillation fluid (0.05% 2,5 diphenylloxazole + 0.03% 1,4-di-[2-(5-phenyloxazolyl)] - benzene in toluene) was added to the remaining 2 ml and counted at room temperature in a liquid scintillation system (NE 8301, Nuclear Enterprises (G.B.), Lté., Edinburgh).

(b) **Methyl esters of radioactive fatty acids.** The "liquid esters" and "solid esters" were resolved into their components using a column packing of 60% (w/w) diethylene glycol adipate in the Autoprep. The esters were washed from the collecting bottles with 4 ml petroleum ether (40° - 60° fraction) into counting vials. A suitable aliquot was removed from each vial, the petroleum ether carefully evaporated off under reduced pressure at room temperature, and the concentration of the ester determined by the method of Morgan & Kingsbury (1959). This is based on the formation of hydroxamic acids which react with ferric chloride to form a coloured
complex having an absorption maximum at 515 m\textmu. A very small correction had to be made for a trace of adipate that leaked off the column during the collection of each ester.

The petroleum ether was carefully removed at room temperature under reduced pressure, 3 ml of scintillation fluid added and the vials counted as above.

(c) 2,4-DNP hydrazones of radioactive methyl ketones. Suitable aliquots of each of the 2,4-DNP hydrazones (less than 0.2 mg) were dissolved in 3 ml scintillation fluid and counted as above.

Quenching corrections. These were established by the use of 14C-n-hexadecane as an internal standard. Quenching curves were prepared for the 2,4-DNP hydrazones of the methyl ketones from C$_3$ to C$_{15}$, that for 2-heptanone (Fig. 1) being typical for the quenching of a high initial count and that for 2-undecanone (Fig. 2) for a lower count. In all cases the quenching of radioactivity was found to be proportional to the amount of 2,4-DNP hydrazone added up to a maximum of 0.2 mg. The corrections necessary to compensate for quenching were calculated from the quenching curves and, also as a check, by adding a known aliquot of the standard 14C-n-hexadecane dissolved in toluene to the vial containing the radioactive 2,4 DNP hydrazone.

In an attempt to overcome quenching of the hydrazones, the less volatile methyl ketones from C$_7$ to C$_{15}$ were regenerated from the corresponding 2,4 DNP hydrazones with laevulinic acid (Keeney, 1957). Much less quenching was encountered and the correction factors
Mgs 2,4-DNP hydrazone

Fig. 2. The quenching effect on 14C-n hexadecane of the 2,4-DNP hydrazone of 2-undecanone.

Mgs 2,4-DNP hydrazone

Fig. 1. The quenching effect on 14C-n hexadecane of the 2,4-DNP hydrazone of 2-heptanone.
needed, as determined by the use of $^{14}\text{C-n-hexadecane}$, were correspondingly smaller. Thus the correction factor determined after regeneration of 2-undecanone was 1.15 compared to the factor 1.45 needed when the radioactivity of its 2,4 DNP hydrazone was determined directly. Since the above method was not suitable for the regeneration of acetone and 2-pentanone, specific activities for methyl ketones recorded in these investigations are those calculated from radioactivity measurements on the 2,4 DNP hydrazones directly.

 Corrections necessary for quenching by the steam volatile fatty acids and methyl esters were very small, never greater than 1.1.

Collection of methyl ketones

Steam distillation at atmospheric pressure. For experiments with cheeses 1 Kg portions (except in preliminary experiments when 500 g were used) were coarsely grated, covered with a litre of distilled water and steam distilled at atmospheric pressure. Preliminary experiments showed that the yield of carbonyls from a cheese was dependent upon the rate of distillation and in an attempt to standardize the procedure it was therefore arranged that the rate of distillation was uniform. The distillate was led directly into 100 ml of 2,4 DNP hydrazine in 2N-HCl and the distillate-reagent mixture was then held at room temperature for 24 hours. The 2,4 DNP hydrazones were extracted with carbonyl-free chloroform and the
extract evaporated to dryness. The hydrazones were taken up again in the minimum quantity of petroleum ether or hexane for subsequent column chromatography.

Methyl ketones were similarly isolated as 2,4-DNP hydrazones from steam distillates of 400 g cheese fat and milk fat and of 1 kg cream, the quantities of fat thus being approximately the same in all the materials used. For experiments with radioactive milk fat 20 g only of the milk fat from each of the three milkings were steam distilled.

Steam distillation under reduced pressure. This was carried out as described above except that the pressure throughout the apparatus was reduced to keep the temperature of distillation at approximately 40°.

Continuous stripping of volatiles from cheese extract with nitrogen at room temperature. 1 Kg of the cheese was blended with 1500 ml of carbonyl-free benzene. The benzene filtrate was placed in a flask in a closed circuit including a trapping solution of 2,4-DNP hydrazine and a sealed pump (Reciprotor). The apparatus was flushed with nitrogen to displace air and the system was sealed. The nitrogen was circulated continuously for 2 weeks by means of the pump.

Purification of radioactive methyl ketones

The 2,4-DNP hydrazones were subjected to a series of chromatographic procedures to remove neutral fat, fatty acids, alkanals and alkenals, which as trace contaminants
would contribute radioactivity to the 2,4-DNP hydrazones of the methyl ketones.

Removal of neutral fat. A hexane solution of the 2,4-DNP hydrazones of the methyl ketones, containing also the 2,4-DNP hydrazones of contaminating alkanals and alkenals, was added to a column of activated magnesia (Seasorb 43) : celite 545 (1:1). Traces of fat were first eluted with hexane (Schwartz, Haller & Keeney, 1963), the 2,4-DNP hydrazones then being eluted with nitromethane : chloroform (1:3) and evaporated to dryness.

Removal of fatty acids. The dry residue from the magnesia : celite column dissolved in a minimum of chloroform was added to an alumina column (2 g packed in about 4 ml. chloroform). Collection of the effluent was begun immediately, chloroform being added until the effluent became colourless. Any contaminant fatty acids remained on the column.

Removal of 2,4-DNP hydrazones of alkanals and alkenals.

Naturally occurring alkanals and alkenals have been reported in milk fat (Parks, Keeney & Schwartz, 1961) and were isolated in steam distillates. In the investigation with radioactive milk fat small amounts of alk-2,4-dienals were also detected, indicating chemical deterioration during storage, although precautions were taken to prevent autoxidation. The concentration of carbonyls other than methyl ketones varied between 5 and 10% of the total carbonyls obtained, but were not radioactive. No methyl ketones have however been reported as products of the autoxidation of fats.
To separate the 2,4 DNP hydrazones of the methyl ketones from those of other carbonyls the dry residue from the alumina column was taken up in 15% chloroform in hexane, added to a column of magnesia 2665 : celite (1 : 1) and the 2,4-DNP hydrazones of the methyl ketones eluted with more 15% chloroform in hexane, according to the procedure of Schwartz, Parks & Keeney (1962).

Chromatographic separation of 2,4 DNP hydrazones. Initial separation of the 2,4 DNP hydrazones was carried out in preliminary experiments by the method of Monty (1958) but the column partition chromatography method of Day et al. (1960) was subsequently found to be more suitable and was employed for all later work.

Identification of 2,4 DNP hydrazones

Tentative identification of the 2,4 DNP hydrazones was accomplished by comparing retention volumes of the unknown derivatives with those reported by Monty (1958) and Day et al. (1960) for known derivatives. The fractions from the column were collected separately and evaporated to dryness for subsequent paper chromatographic analysis. The method of Huelin (1952) was used to identify carbonyls up to C₇ and that of Klein & de Jong (1956) for carbonyls from C₅ to C₁₅. The method of Lynn, Steele & Staple (1956) was used to confirm the identification of the intermediate carbonyls from C₄ to C₉.
Further identification of the 2,4 DNP hydrazones was possible by measurement of their light absorption maxima in ethanol and particularly by fading studies of their spectra in alkaline ethanolic solution according to Jones, Holmes & Seligman (1956). Particular attention was paid to the subsidiary peak in the 520 μm region which disappeared with saturated aliphatic aldehydes but persisted with saturated aliphatic ketones. For this purpose a suitable aliquot of the 2,4 DNP hydrazone of an unknown carbonyl from the column, or spot eluted from a paper chromatogram, was mixed with 0.25 N ethanolic sodium hydroxide and the absorption spectrum in the 500 to 540 μm region was measured immediately and again after an interval of 90 min.

By these methods it was possible not only to identify the methyl ketones present but also to obtain quantitative comparisons of their concentration. In preliminary experiments, methyl ketones not normally found in cheese distillates were added in known concentrations to cheeses of various ages and to milk fat, and recovery experiments carried out as reported later. The 2,4-DNP hydrazones of the methyl ketones found in the steam distillates could thus be compared directly against markers of known concentration.

For more accurate quantitative estimations, known weights of the 2,4-DNP hydrazones of each of the methyl ketones with odd numbers of carbon atoms from C3 to C15 were dissolved in alcohol and standard curves prepared relating absorption at 362μm to original concentration of methyl ketones. Having identified a methyl ketone it was thus possible to obtain a measure of the quantity present in the distillate. However, as
pointed out by Wong, Patton & Forss (1958), a difficulty in the estimation of methyl ketones in this type of investigation is the non-quantitative nature of the reaction of carbonyls with the 2,4-DNP hydrazine reagent. It was not found possible to standardize completely the procedure of steam distillation at atmospheric pressure and reproducibility for the same sample of cheese or of milk fat was found to be about ± 5% for C₇ and C₉ and ± 15% for the other methyl ketones. Nevertheless 2,4-DNP hydrazine at present continues to be the most satisfactory reagent available for the isolation and identification of carbonyl compounds.

EXPERIMENTAL

Methyl ketone patterns found in steam distillates of cheeses manufactured under controlled bacteriological conditions in "aseptic" vats.

Perry & McGillivray (1964) designed an apparatus that successfully excluded bacteria from the vat during cheesemaking. This enabled cheeses to be made that contained no bacteria or only starter bacteria, micrococci, lactobacilli (or combinations of these organisms) and allowed the overall importance of these bacteria in cheese ripening to be assessed. None of these cheeses made "aseptically" developed typical
Cheddar flavour although control cheeses, manufactured under the same conditions but with the lid of the vat off, were normal in flavour.

After bacteriological examination the cheeses (30 "aseptic" and 8 controls) were chemically analysed. Steam distillations of cheese slurries were carried out according to the method described by Harvey & Walker (1960), except that 1 litre of distillate was collected. Despite the wide variations in flavour found in the cheeses and the very different bacterial populations present, the pattern of methyl ketone formation did not differ significantly. 2-alkanones with odd numbers of carbon atoms from \(C_3 \) to \(C_{15} \) were identified in approximately the same total and relative concentrations in each of the cheeses irrespective of flavour and bacterial flora. In general the relative concentrations were

\[
2\text{-heptanone} > \text{acetone} > 2\text{-pentanone} > 2\text{-nonanone} > 2\text{-undecanone} > 2\text{-tridecanone} > 2\text{-pentadecanone}.
\]

Since approximately the same concentrations of methyl ketones were found in the steam distillates from cheese with absolutely no Cheddar flavour as from control cheese with typically characteristic flavour, it seemed highly probable that either there was no correlation between flavour and methyl ketone concentration or that the methyl ketones were being formed as artifacts during the steam distillation.

A detailed investigation was therefore undertaken in an attempt to determine whether, and if so to what extent, methyl ketones were formed as artifacts during distillation of Cheddar cheese.
Isolation of methyl ketones from Cheddar cheese and milk fat by steam distillation at atmospheric pressure

A range of methyl ketones with odd numbers of carbon atoms from C_3 to C_{15} was obtained from cheeses of all ages with no indication of significant differences in methyl ketone pattern with increasing maturity of the cheeses (Table 2). It was, however, noted that considerably larger quantities of methyl ketones could be obtained by continuing the distillation for longer periods and that the concentration of methyl ketones in successive 200 ml fractions of distillate did not decrease appreciably until at least 1000 ml of distillate had been collected.

In contrast to this persistence of methyl ketones with odd numbers of carbon atoms, recovery trials in which known amounts of 2-hexanone, 2-octanone and 2-decanone, even carbon numbered methyl ketones present normally only in trace amounts in cheeses, were added to water, milk fat or cheese slurries resulted in the anticipated decreasing concentrations of these substances in successive 200 ml fractions of distillate. Traces of these ketones were present in the fourth 200 ml fraction collected but they were not detected in subsequent distillates. Recoveries were almost quantitative from water or milk fat and approximately 85% from cheese slurries.

These findings suggested that part at least of the methyl ketones obtainable from cheese by steam distillation at atmospheric pressure were not present as such in the cheese but were being formed as artifacts during the distillation. Any methyl ketones present in the
Table 2. Variation in concentration of methyl ketones found in 1000 ml steam distillates at atmospheric pressure from cheese, cheese-oil, milk fat and cream (fat content of each sample approximately 400 g)

<table>
<thead>
<tr>
<th>Age</th>
<th>Methyl ketones (concentration in mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C_3</td>
</tr>
<tr>
<td>Cheese E</td>
<td>1 day</td>
</tr>
<tr>
<td>Cheese F</td>
<td>1 month</td>
</tr>
<tr>
<td>Oil from Cheese F</td>
<td>1 "</td>
</tr>
<tr>
<td>Cheese G</td>
<td>9 months</td>
</tr>
<tr>
<td>Cheese H</td>
<td>9 "</td>
</tr>
<tr>
<td>Oil from Cheese H</td>
<td>9 "</td>
</tr>
<tr>
<td>Cheese D</td>
<td>13 months</td>
</tr>
<tr>
<td>Milk fat</td>
<td>1 day</td>
</tr>
<tr>
<td>Cream</td>
<td>Fresh</td>
</tr>
</tbody>
</table>
free state in cheese, at least up to C_{11}, would be expected to distil over in the first 1000 ml of distillate collected and experiments were therefore carried out in which cheeses of various ages from 1 day to 13 months were distilled, 1 litre of distillate being collected and analysed for methyl ketones. As the results shown in Table 2 indicate, the same range of 2-alkanones with odd numbers of carbon atoms from C_3 to C_{15} were identified in approximately the same total and relative concentrations in each of the cheeses irrespective of age. In addition to the 5 cheeses reported in Table 2, nine other cheeses aged between 1 day and 9 months were examined and showed little variation from this general pattern. There were however, significantly higher concentrations of 2-butanone found in mature cheese than in young cheese. That the methyl ketones, or their precursors, were associated with the fat fraction of the cheese was shown by "oiling off" samples of cheese and steam distilling the cheese-fat obtained. These cheese-fats yielded the same range and relative concentrations of methyl ketones as did the cheeses from which they had been prepared (Table 2). The association of methyl ketones or their precursors with the fat phase was further demonstrated by the steam distillation at atmospheric pressure of fresh cream (40% fat) and also of fresh milk fat obtained by oiling off the butter from similar cream. As Table 2 shows, the same range and relative concentrations of methyl ketones from C_3 to C_{15} were obtained as before. Furthermore successive 200 ml fractions of distillate from cream and milk fat showed the same pattern of methyl ketone persistence as did
comparable fractions from cheeses indicating that the same type of precursor breakdown was probably occurring in cream and milk fat as in the cheeses.

Identification of methyl ketones with an even number of carbon atoms

Trace amounts of methyl ketones with an even number of carbon atoms from C₄ to C₁₆ were also detected in the steam distillates of both cheese and milk fat. Only 2-hexanone and 2-octanone were isolated in significant amounts and these were less than 2% of the concentration of 2-heptanone. Traces only of 2-butanone were found in distillates from milk fat and young cheese but comparatively large concentrations were found in some mature cheese (Table 2).

Exhaustive steam distillation of cheese and milk fat

As shown in Tables 3 and 4, exhaustive steam distillation of cheese or milk fat resulted in a slow decrease in concentration of the C₃ to C₁₁ methyl ketones in successive litre fractions of distillate. Individual methyl ketones, however, varied markedly in their persistence and the close similarity between the two tables afforded further evidence of the identity of the precursors of the methyl ketones in milk fat and in cheese. Thus the 10 l of distillate collected
contained all the 2-heptanone and 2-nonanone, present as such or formed as artifacts during heat treatment, and most of the 2-pentanone and 2-undecanone, but recovery of acetone, 2-tridecanone and 2-pentadecanone was still incomplete. Further experiments were therefore carried out in which smaller quantities (10 g) of milk fat were exhaustively distilled until no further methyl ketones could be detected in 2 l fractions of distillate. In using these smaller quantities of milk fat the dimensions of the apparatus were correspondingly reduced to ensure effective steam distillation. It was found necessary to collect 10 l of distillate. Total concentrations of methyl ketones so obtained from two separate samples of milk fat are shown in Table 5.

Isolation of methyl ketones from cheese and milk fat by steam distillation under reduced pressure

The preceding experiments indicated that extraction procedures involving high temperatures were of doubtful value for the estimation of preformed methyl ketones in dairy products containing milk-fat. Alternative methods of extraction involving less drastic heat treatment were therefore investigated.

Experiments were carried out in which cheeses, cream and milk fat were steam distilled at 40°C under reduced pressure. Under these conditions the same range of methyl ketones with odd numbers of carbon atoms from C₃ to C₁₅ was obtained but the yields were very considerably
Table 3. Variation in concentration of methyl ketones found in successive 1000 ml fractions of steam distillate at atmospheric pressure of 1 Kg of a 7 month old Cheddar cheese

<table>
<thead>
<tr>
<th>Fraction</th>
<th>C_3</th>
<th>C_5</th>
<th>C_7</th>
<th>C_9</th>
<th>C_{11}</th>
<th>C_{13}</th>
<th>C_{15}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.3</td>
<td>2.1</td>
<td>4.8</td>
<td>2.0</td>
<td>1.4</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>2.5</td>
<td>1.0</td>
<td>2.1</td>
<td>1.2</td>
<td>1.4</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>3</td>
<td>2.0</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>1.3</td>
<td>0.6</td>
<td>0.3</td>
</tr>
<tr>
<td>4</td>
<td>2.1</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.6</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>5</td>
<td>1.3</td>
<td>Tr</td>
<td>Tr</td>
<td>0.1</td>
<td>0.4</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>6</td>
<td>1.1</td>
<td>Tr</td>
<td>-</td>
<td>Tr</td>
<td>0.2</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>7</td>
<td>1.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Tr</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>8</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Tr</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>9</td>
<td>0.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Tr</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>10</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Tr</td>
<td>0.3</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Tr = Trace, i.e. less than 0.1 mg
Table 4. Variation in concentration of methyl ketones found in successive 1000 ml fraction of steam distillate at atmospheric pressure of 400g fresh butter-oil

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Methyl ketones (concentration in mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C_3</td>
</tr>
<tr>
<td>1</td>
<td>2.8</td>
</tr>
<tr>
<td>2</td>
<td>2.1</td>
</tr>
<tr>
<td>3</td>
<td>2.0</td>
</tr>
<tr>
<td>4</td>
<td>1.2</td>
</tr>
<tr>
<td>5</td>
<td>1.4</td>
</tr>
<tr>
<td>6</td>
<td>1.0</td>
</tr>
<tr>
<td>7</td>
<td>0.6</td>
</tr>
<tr>
<td>8</td>
<td>0.6</td>
</tr>
<tr>
<td>9</td>
<td>0.7</td>
</tr>
<tr>
<td>10</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Tr = trace, i.e. less than 0.1 mg
Table 5. Concentration of methyl ketones (p.p.m.) obtained from milk fat samples by exhaustive steam distillation at atmospheric pressure.

<table>
<thead>
<tr>
<th>Sample</th>
<th>100°</th>
<th>180° (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>C₃</td>
<td>45</td>
<td>39</td>
</tr>
<tr>
<td>C₅</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>C₇</td>
<td>28</td>
<td>22</td>
</tr>
<tr>
<td>C₉</td>
<td>20</td>
<td>12</td>
</tr>
<tr>
<td>C₁₁</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>C₁₃</td>
<td>28</td>
<td>20</td>
</tr>
<tr>
<td>C₁₅</td>
<td>51</td>
<td>41</td>
</tr>
</tbody>
</table>

* As reported by Boldingh & Taylor (1962)
lower than from corresponding samples steam distilled at atmospheric pressure. At 40°, however, there was still evidence of the formation of methyl ketones as artifacts. Thus in recovery trials in which 2 mg 2-octanone were added to milk fat and cheese, it was found that all the recoverable 2-octanone came over in the first three 250 ml fractions of distillate. In contrast acetone, 2-pentanone and 2-heptanone were present in the fourth 250 ml fraction in approximately the same concentrations as in each of the first three 250 ml fraction indicating, as is the case of steam distillation at 100°, that they were being formed as artifacts during distillation. However, the concentrations of methyl ketones found in low temperature distillates from mature cheeses were greater than those obtained under the same conditions from young cheeses, cream or milk fat, particularly the methyl ketones from C₇ to C₁₅. Since the quantities of fat were approximately the same in all samples it is probable that not all of the methyl ketones obtained from mature cheese were formed as artifacts during distillation and that some at least were present as such in the cheeses.

Continuous stripping of volatiles from cheese extracts with nitrogen at room temperature

Further evidence indicating that free methyl ketones do exist in mature cheese was provided by passing nitrogen continuously through benzene extracts of the cheese for two weeks at room temperature. The homologous series
of methyl ketones with odd numbers of carbon atoms from C₃ to C₉ was found in a 6 month old cheese and from C₃ to C₁₁ in a 9 month old cheese. 2-butanone also was found in both cheeses and 2-hexanone in the 9 month old cheese. The amounts of methyl ketones obtained were very small. They were of the order of 5% of those obtained by steam distillation at atmospheric pressure. When, however, a further Kg of the same 9 month old cheese containing 2 mg of added 2-heptanone was extracted with benzene approximately 40% of the 2-heptanone was recovered by passage of nitrogen continuously through the apparatus for 2 weeks. This method of extraction was thus shown to be capable of stripping free methyl ketones from the benzene extract of cheese when they were present. This was further evidence that a considerable portion of the methyl ketones found in distillates at atmospheric pressure are artifacts.

The low yields of methyl ketones isolated by this method and also by steam distillation under reduced pressure were not explained until much later in the investigation when the high volatility of the methyl ketones in aqueous solution and the consequent instability of the 2,4-DNP hydrazones became apparent (Part 3, page 105).
Isolation of carbonyls from coconut oil by steam distillation at atmospheric pressure

To determine if there were any connection between the relatively large proportions of short chain (C₄ to C₁₄) fatty acids and the presence of β-keto acids in milk fat, it was of interest to see if methyl ketones could be detected in steam distillates of a lipid such as coconut oil, which also contains a high proportion of short chain fatty acids. The triglyceride composition of coconut endosperm is characterised by a high proportion of C₈-C₁₆ saturated fatty acids (91% by weight) of which C₁₂ acid constitutes 51% by weight (Hilditch, 1956).

10 g fresh dried coconut oil were steam distilled exhaustively, the carbonyls in the distillate being isolated as the 2,4-DNP hydrazones which were extracted and separated on a celite/nitromethane column. The identity of the various 2,4-DNP hydrazones was determined by their separation into classes (alkanals, 2-alkanones, alk-2-enals) by thin layer chromatography (Urbach, 1963) and further characterised by paper chromatography. Very small amounts (less than 5 p.p.m.) of C₉ and C₁₄ n-alkanals were detected. No methyl ketones except acetone (25 p.p.m.) were found suggesting that any C₆ to C₁₆ β-keto acids incorporated into the triglycerides of coconut oil are presumably reduced in situ and that the presence of β-keto acids in the triglycerides of milk fat is a result of their rapid removal from the site of synthesis.
Comparison of radioactivities in methyl ketones and fatty acids from milk fat after injection of carboxy-14C acetate

The evidence up to this point in the investigation suggested a possible relationship between methyl ketone precursors and fatty acid synthesis. An examination of fatty acids from the milk fat of a cow which had been injected with [carboxy-14C] acetate and of methyl ketones obtained by steam distillation of the same radioactive fat allowed a direct comparison of the two classes of compounds to be made. Popják, French, Hunter & Martin (1951) had analysed the fatty acids obtained from milk fat of a goat after intravenous injection of 5 mc [carboxy-14C] acetate but no similar experiment had been conducted on a cow. It seemed possible that different results might be obtained since the fatty acid composition of goat milk fat is very different to that of the cow, the C$_4$ - C$_{12}$ acids in goat milk fat representing about 36 moles % of total acids and only about 22 moles % for the cow. The relative amounts of the individual acids are also different, C$_{10}$ and C$_4$ acids representing 11.7 and 6.6 moles % of total acids in goat milk fat (Hilditch, 1956), and 1.4 and 9.1 moles in cow milk fat (Hawke, 1957).

Table 6 shows the yields of methyl ketones obtained by steam distillation of radioactive fat from each of the three milkings. Only the fat from the second milking was steam distilled exhaustively but no significant difference was apparent except for the greater yield of C$_{15}$ methyl ketone. No methyl ketones with carbon number greater than C$_{15}$ were detected in
Table 6. Yields of methyl ketones (p.p.m.) obtained by steam distillation at 100° of milk fats from a cow milked 3, 9 and 22 hr. after intravenous injection of carboxy-^{14}C acetate

<table>
<thead>
<tr>
<th>Methyl ketone</th>
<th>1st milking p.p.m.</th>
<th>2nd milking p.p.m.</th>
<th>3rd milking p.p.m.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C$_{15}$</td>
<td>20</td>
<td>38</td>
<td>21</td>
</tr>
<tr>
<td>C$_{13}$</td>
<td>17</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>C$_{11}$</td>
<td>10</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>C$_{9}$</td>
<td>11</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>C$_{7}$</td>
<td>14</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>C$_{5}$</td>
<td>6</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>C$_{3}$</td>
<td>18</td>
<td>20</td>
<td>16</td>
</tr>
</tbody>
</table>

* 6 litres distillate collected

** 10 " " "
any of the distillates. The atypical yields of C_7 and C_9 methyl ketones obtained from the fat of the third milking can possibly be attributed to the fact that 1 litre of blood was drawn from the cow between the second and third milking. This would probably affect the milk fat composition (Munford, 1964).

14C labelling patterns of methyl ketones

Figures 3 - 5 show the relationship between the specific activities of the individual methyl ketones obtained from milk fats from the three milkings and the chain length of the methyl ketones. The methyl ketones obtained from the fat from the first milking had relatively low specific activities decreasing from $2.6 \ \mu c/g$ atom C for 2-pentanone to $0.5 \ \mu c/g$ atom C for 2-pentadecanone. The low activities detected in the first milking, between 3 and 10 counts only above background, necessitated long counting times. The specific activities of the methyl ketones obtained from the fat of the second milkings were considerably higher than those from the first milking, a peak value of $22.5 \ \mu c/g$ atom C being reached for 2-undecanone. At the third milking, 22 hours after injection of the acetate, the specific activity of all the methyl ketones had decreased from the values of the second milking, the highest values being found in the C_{11}, C_{13} and C_{15} methyl ketones. Peak activity was again obtained at C_{11} ($12.5 \ \mu c/g$ atom C).
Fig. 3. Relationship between specific activity and chain length of (a) glyceride fatty acids from milk fat of cow injected with 5 mc of carboxy-\(^{14}\)C acetate 3 hours previously (b) methyl ketones found in steam distillates from same milk fat.
Fig. 4. Relationship between specific activity and chain length of (a) glyceride fatty acids from milk fat of cow injected with 5 mc of carboxy-14C acetate 9 hours previously (b) methyl ketones found in steam distillates from same milk fat.
Fig. 5. Relationship between specific activity and chain length of (a) glyceride fatty acids from milk fat of cow injected with 5 mc of carboxy-14C acetate 22 hours previously (b) methyl ketones found in steam distillates from same milk fat.
Although appreciable proportions of acetone were obtained in the steam distillates of each milking, radioactivity was detected only in the acetone from the second milking and even in this sample the acetone had a very low activity. It was noteworthy that, in all 3 milkings, the only fatty acid with a specific activity greater than the corresponding methyl ketone was butyric acid.

The relative activities of the methyl ketones were confirmed qualitatively by preparing autoradiographs of the paper chromatograms used to separate and identify the 2,4-DNP hydrazones obtained from the 2nd and 3rd milkings.

14C labelling patterns of fatty acids

The fatty acid composition of the milk fat as shown by relative peak areas on gas chromatograms fell within the range normally found (e.g. Hawke, 1957). In addition propionic acid and a C$_5$ acid, assumed to be valeric acid, were also detected in trace amounts but their activities were not determined.

Figs. 3 - 5 show the distribution of 14C among the fatty acids of milk fat obtained from the three milkings. The fatty acids from the fat of the first milking (3 hours after injection) had low specific activities, the C$_6$ - C$_{12}$ acids showing maximum activity (about 0.85 μC/g atom C). The most radioactive fatty acids were recovered from the second milk sample 9 hours after injection, peak activity being
found at C_{10} (12.9 μC/g atom C).

The pattern of labelling of the fatty acids from the third milking, 22 hours after injection, was almost identical to the 2nd milking, with peak activity again at C_{10} acid (2.94 μC/g atom C). The specific activities were however 3 to 4 times lower than in the second milking whereas the decrease in specific activities of the methyl ketones from the 2nd to the 3rd milking was only 2 to 3 times.

In all 3 milking the "odd" numbered fatty acids C_{15} and C_{17} n-saturated acids had specific activities very similar to those of the C_{14} and C_{16} acids (Table 7). On the other hand oleic and stearic acids had extremely low activities indicating that they were not synthesised to any significant extent from acetate. The activity of oleic acid from all 3 milkings was higher than that of stearic acid (Table 7), the reverse of expectation if the hypothesis that oleic acid is formed solely from stearic acid were true. On the other hand the C_{16} unsaturated acid had a lower specific activity than the C_{16} saturated acid in all 3 milkings in accord with recent theory of the formation of unsaturated acids in milk fat (Bloomfield & Bloch, 1960).
Table 7. The 14C-labelling (µcuries/g atom C) of fatty acids of milk fats from a cow milked 3, 9 and 22 hr. after intravenous injection of carboxy-14C acetate

<table>
<thead>
<tr>
<th>Acid</th>
<th>Moles*</th>
<th>1st Milking</th>
<th>2nd Milking</th>
<th>3rd Milking</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₂</td>
<td>0.3</td>
<td>0.03</td>
<td>1.13</td>
<td>--</td>
</tr>
<tr>
<td>C₄</td>
<td>9.1</td>
<td>0.69</td>
<td>4.18</td>
<td>1.49</td>
</tr>
<tr>
<td>C₆</td>
<td>3.9</td>
<td>0.83</td>
<td>5.81</td>
<td>2.15</td>
</tr>
<tr>
<td>C₈</td>
<td>1.8</td>
<td>0.85</td>
<td>8.56</td>
<td>2.14</td>
</tr>
<tr>
<td>C₁₀</td>
<td>2.7</td>
<td>0.86</td>
<td>12.90</td>
<td>2.94</td>
</tr>
<tr>
<td>C₁₂</td>
<td>2.9</td>
<td>0.87</td>
<td>6.89</td>
<td>1.69</td>
</tr>
<tr>
<td>C₁₄</td>
<td>9.6</td>
<td>0.58</td>
<td>4.68</td>
<td>1.27</td>
</tr>
<tr>
<td>C₁₅</td>
<td>1.1</td>
<td>0.18</td>
<td>1.10</td>
<td>--</td>
</tr>
<tr>
<td>C₁₆</td>
<td>23.1</td>
<td>0.05</td>
<td>1.80</td>
<td>0.48</td>
</tr>
<tr>
<td>C₁₆:1</td>
<td>1.7</td>
<td>--</td>
<td>1.75</td>
<td>0.29</td>
</tr>
<tr>
<td>C₁₇</td>
<td>0.8</td>
<td>--</td>
<td>0.97</td>
<td>--</td>
</tr>
<tr>
<td>C₁₈</td>
<td>13.9</td>
<td>0.002</td>
<td>0.04</td>
<td>0.02</td>
</tr>
<tr>
<td>C₁₈:1</td>
<td>26.6</td>
<td>0.06</td>
<td>0.08</td>
<td>0.03</td>
</tr>
</tbody>
</table>

* Hawke (1957)
-- Not determined
Part II. METHYL KETONES FOUND IN STEAM DISTILLATES

FROM CHEESE CONTAINING SYNTHETIC TRIGLYCERIDES
The possibility existed that methyl ketones were being formed in Cheddar cheese from both a slow breakdown of bound β-keto acids in the milk fat and also from the β-oxidation of free fatty acids. An attempt was made to obtain evidence for the latter mechanism by incorporating into Cheddar cheese synthetic triglycerides containing fatty acids (heptanoic, nonanoic and undecanoic) which do not normally occur in milk fat in more than trace amounts. The assumption was made that the added synthetic triglycerides would be as susceptible to hydrolysis as the natural triglycerides in cheese fat since there is evidence for the non-specific nature of lipases in cheese (Stadhouders, 1956). If fatty acids were degraded to methyl ketones by β-oxidation, ketones with six, eight and ten carbon atoms respectively would be expected in the experimental cheeses in addition to the normal range of methyl ketones with an odd number of carbon atoms from \(C_3 \) to \(C_{15} \).

The micro-organisms considered most likely to be responsible for the breakdown of milk fat to methyl ketones are fungi and yeasts. Preliminary experiments were carried out to ensure that *Penicillium roqueforti* (chosen as a general representative of lipolytic organisms that might be of importance in producing Cheddar flavour) was able to oxidise triglycerides containing fatty acids with an odd number of carbon atoms, at the pH's to be normally found in Cheddar cheese, as readily as those containing the even-numbered fatty acids.
Manufacture of cheeses containing synthetic triglycerides. Triheptanoin, trinonanoin, and triundecanoin were prepared by the method of Malkin & Bevan (1957), emulsified separately in 1 litre skim milk and added to different vats of milk. From these "atypical" milks, three 40 lb cheeses were manufactured, each containing one of the above synthetic triglycerides. Two further 40 lb cheeses without added triglyceride were also made to serve as controls. The 5 cheeses were all manufactured from the same supply of milk.

The percentage amount of each "abnormal" fatty acid incorporated with the cheeses was determined by extracting samples of fat from each of the five cheeses when 14 days old. The methyl esters of the fatty acids were prepared by the method of Roper & Ma (1957) and analysed by vapour phase chromatography.

Isolation of carbonyl compounds

After 9 months ripening the five cheeses were analysed for methyl ketones. The experimental and the control cheeses were then judged to possess typical Cheddar flavour, although a superimposed "fatty" flavour was noted in the experimental cheeses.

The heptanoic, nonanoic and undecanoic acids incorporated into the 3 experimental cheeses as triglycerides were comparable in quantity (1.9, 1.2 and 1.3 moles % respectively) to the quantities of fatty acids of similar molecular weights normally present in cheese fat (e.g., octanoic 1.8 and decanoic 2.7 moles %). Thus if
methyl ketones are produced in Cheddar cheese by the enzymic oxidation of fatty acids, it was anticipated that the experimental cheeses would at maturity contain respectively C_6, C_8 or C_{10} methyl ketones in quantities comparable to the "odd-numbered" ketones to be expected in both the experimental and the control cheeses. Analysis of the steam distillates at atmospheric pressure, however, showed no differences in methyl ketone pattern, the yields of 2-hexanone, 2-octanone and 2-decanone (approximately 0.01 mg per Kg cheese) obtained from cheeses containing trihexanoin, trioctanoin and tridecanoin respectively being no greater than from the control cheeses.
DISCUSSION OF

PARTS I and II
The results obtained in the present investigation show that methyl ketones are readily produced as artifacts during extraction procedures which involve the heating of dairy products containing milk fat. Thus on steam distillation at atmospheric pressure, cream, milk fat, cheese-oil and Cheddar cheeses from one day to 13 months old all gave the same range of methyl ketones with odd numbers of carbon atoms from C₃ to C₁₅. The persistence during distillation of these substances indicated that they were mainly being formed as artifacts.

Patton & Keeney (1958) identified 2-pentadecanone and possibly 2-tridecanone in the high melting glyceride fraction of milk fat, associated with the protein-phospholipid complex in the so-called membrane of milk fat globules. However, in general the rate at which the methyl ketones distil (Tables 3 and 4) would appear to suggest that they are not present in the free state since, as distillation proceeds, one would expect the exponential decrease in the concentrations of the methyl ketones that normally obtains for simple distillation procedures (Scott, 1955). This is approximately true only of 2-heptanone and not at all for the other methyl ketones.

While the present investigation was in progress, Boldingh & Taylor (1962) also obtained a range of methyl ketones with an odd number of carbon atoms from C₇ to C₁₅ by the steam distillation at 180° of milk fat from which volatile carbonyls had been removed completely by high vacuum degassing. Nawar, Cancel & Fagerson (1962) similarly detected the C₃ to C₁₁ methyl ketones from milk fat that had been heated for 3 hours at 130°. As shown in Table 5 the concentrations of methyl ketones obtained by exhaustive steam
distillation of milk fat at 100° were in fair agreement with those given by Boldingh & Taylor (1962) for distillation of milk fat at 180°. These appeared to be the maximum concentrations of the methyl ketones obtainable by distillation and indicated that the precursors were present in relatively small amounts in milk fat. The average values given in Table 5 were also confirmed by totalling concentrations of methyl ketones found in the successive distillate fractions from cheese and milk fat (Tables 3 and 4). The close similarity of the values for cheese and milk fat suggested that the precursors of the methyl ketones in both products were identical.

The average yields of methyl ketones up to C₁₁ obtained by exhaustive steam distillation of different milk fat samples were C₇ (25 p.p.m.) > C₉ (16 p.p.m.) > C₁₁ (14 p.p.m.) > C₅ (13 p.p.m.). The radioactive milk fat samples in this investigation gave a lower yield of C₇ methyl ketone (14 p.p.m.) which was however still significantly higher than that of the C₉ (10 p.p.m.), C₁₁ (10 p.p.m.), and C₅ (9 p.p.m.) methyl ketones (Table 6). These results were similar to those of Parks, Keeney, Katz & Schwartz (1964) who obtained a yield of 2-heptanone (17 p.p.m.) which was roughly twice that of the C₅, C₉ or C₁₁ methyl ketones. Despite differences in total amount the relative abundance of the methyl ketones was much the same from all milk fats. Since the rates of formation of β-keto acids and their rates of conversion to fatty acids might be expected to determine the relative quantities of methyl ketones found, it is interesting to note that 2-heptanone was the most abundant of the C₅ to C₁₁ methyl ketones and the corresponding C₈ acid the least abundant of the C₆ to C₁₂ fatty acids. This inverse relationship may however be coincidental.
The detection in steam distillates of cheese and milk fat of traces of "even-numbered" methyl ketones from C₄ to C₁₆ was in agreement with the isolation from milk fat of small quantities (about 2.1% of the total fatty acids) of the "odd-numbered" fatty acids from C₁₁ to C₁₇ (see Shorland, 1963). In this investigation the presence of C₃ and C₅ fatty acids was also noted. The two "even-numbered" methyl ketones present in greatest amount (C₆ and C₈) were presumably derived from intermediates in the synthesis of C₇ and C₉ fatty acids. Neither of these fatty acids has yet been isolated from milk fat.

The variation in yields of methyl ketones from different samples of milk fat was not unexpected since the fatty acid composition (particularly of the C₆ - C₁₄ acids) of different milk fats varies considerably, being dependent upon such factors as feed and plane of nutrition (Hansen & Shorland, 1952; Jack & Smith, 1956). If the methyl ketones and fatty acids have a common precursor such as β-keto acid it seems probable that the precursor and hence the yield of methyl ketones will also show a similar variation.

There appears to be no connection between the presence of β-keto acids and the large proportions of short chain (C₄ - C₁₄) fatty acids in milk fat. The steam distillation of coconut oil, which is a lipid containing a much higher proportion of C₈ - C₁₄ fatty acids (Hilditch, 1956), did not lead to the formation of any methyl ketones other than acetone. It must be assumed therefore that if any intermediates such as the β-keto acids are incorporated into the triglycerides of coconut oil, they are reduced in situ. The presence of
81

8-keto acids in milk fat might result therefore from their incorporation into the glyceride molecule and subsequent rapid removal from the site of synthesis.

The use of radioactive milk fat from a lactating cow which had been injected intravenously with carboxy-14C acetate allowed a direct comparison to be made between the labelling patterns of the fatty acids and the corresponding methyl ketones from the same milk source. The advantage of such a comparison was that two points on the biosynthetic pathway of milk fat (β-keto acid and the corresponding fatty acid) could be examined at the same time.

A very significant finding from all three milkings was the extremely low activity of C_{18} acid. This was in direct agreement with the fact that no C_{17} methyl ketone was detected in any of the numerous steam distillations of milk fat or cheese. Similarly little activity was found in C_{18} acid by Popjak et al (1951) in milk fat from a goat after injection of labelled acetate, although Gerson, Hawke, Shorland & Melhuish (1960) found the specific activity of C_{18} acid to be almost as high as that of C_{16} acid in milk fat from a lactating cow which had been injected with carboxy-14C valerate. In the present investigation both C_{15} and C_{17} fatty acids had specific activities that were of the same order as those of the C_{14} and C_{16} acids (Table 7), in agreement with the detection of traces of the corresponding methyl ketones (C_{14} and C_{16}) in steam distillates from milk fat.

The generally accepted view (e.g. Folley & McNaught, 1961) is that, in the biosynthesis of milk fat (Dils & Popjak, 1962) and other lipids (Wakil, 1961), the fatty acids up to and including palmitic acid are synthesised from an acetate pool whereas C_{18} acids and above are
synthesised by less direct pathways or from the blood triglycerides. The distribution of specific activities of fatty acids and methyl ketones from the radioactive milk fat used in this investigation was consistent with the origin of the milk fat from both sources. The similarity in labelling patterns together with the very low radioactivity found in the unsaturated \(\text{C}_{18} \) fatty acids would appear to exclude the possibility, suggested by Wong et al (1958), that the methyl ketones are products of the autoxidation of milk fat.

Specific activities of both acids and methyl ketones from the fat of the first milking were low, confirming the observation of Rogers & Kleiber (1957) that a delay of several hours occurs between synthesis and secretion of milk fat. They suggest that this is more likely to be a delay in actual secretion of fat than either slow rate of actual synthesis or of slow transport of fat to the udder from other synthetic sites. Hardwick, Linzell & Mepham (1963) also observed the relatively slow rate of secretion of fat and fat precursors in the alveoli after its synthesis in the cells.

Specific activities of both fatty acids and methyl ketones from the second milking increased approximately to ten times the values in the first milking, the \(\text{C}_{10} \) acid and \(\text{C}_{11} \) methyl ketone respectively having the highest specific activities. This may be a reflection of the earlier formation of \(\beta \)-keto acids in the synthesis of fatty acids and suggests that they may be incorporated more rapidly than the corresponding fatty acids.

The fatty acids and methyl ketones from the fat of
the third milking had specific activities lower than those from the second milking, although the patterns of labelling were almost identical. The C\textsubscript{11} to C\textsubscript{15} methyl ketones contained the major part of the activity of the ketones and the C\textsubscript{4} to C\textsubscript{10} fatty acids were the most active acids in both the second and third milkings.

The decline in specific activities following the maximum at C\textsubscript{10} for the fatty acids and that at C\textsubscript{11} for the methyl ketones, and also the general decrease of the extent of labelling of the fatty acids and methyl ketones with time, can be explained by the replacement of labelled by unlabelled acetate and D-\(\beta\)-hydroxybutyrate during the course of synthesis (Popják, French & Folley, 1951). The dilution of \(^{14}\text{C}\) acetate with inactive acetate was supported in this investigation by the low specific activity of the acetate isolated from the milk fat.

The \(^{14}\text{C}\) labelling pattern of the fatty acids from the second milking was almost identical to that obtained by Popják et al (1951) in goat-milk fat during the 12 hr. period after injection of labelled acetate. The pattern from the third milking however differed from that found by Popják et al in goat-milk fat from milkings taken in the 12 - 48 hr. period after injection. The difference in species and the times of sampling presumably have contributed to these conflicting results.

While it is difficult to draw precise conclusions as to the origin of components of milk fat collected at a few points in time from the cow, the data obtained in this investigation would appear to support the conclusion of Patton & McCarthy (1963) that the supply of fatty acids in milk fat synthesis comes from at least two sources, which may and probably do intermingle to
a substantial degree; namely fatty acids transferred to the mammary gland from blood lipids (predominately \(C_{12} - C_{18}\) acids) and the \(C_4\) to \(C_{16}\) acids synthesised from acetate and D-\(\beta\)-hydroxybutyrate in the mammary tissue. Part at least of the blood lipids can be synthesised by the blood cells, whose ability to convert labelled acetate into all the common saturated and unsaturated long chain fatty acids (mainly \(C_{12}\) and above) was demonstrated by James, Lovelock & Webb (1959). They recovered labelled acids from both neutral fat and phospholipids of the plasma showing that, after synthesising these lipids, the cells secreted them into the plasma where they were incorporated into lipoproteins.

McCarthy, Patton & Evans (1960) concluded that the blood triglycerides could provide all the oleate, linoleate, stearate, palmitoleate, myristoleate, 50% of the palmitate, 25% of the myristate and all the \(C_{10}\) fatty acid necessary for milk fat.

Gerson et al (1960) postulated two sites of fatty acid synthesis in the cow, the udder predominately synthesising the \(C_4\) to \(C_{10}\) fatty acids while the \(C_4\) and above were synthesised at other sites from separate pools containing \(^{14}\)C acetate. If this is true it is possible that the fatty acids from the various sites of synthesis enter the fatty acid pool at different rates. Fatty acids synthesised for instance in the blood or the liver may be transferred to body depot fats containing predominately long chain fatty acids (\(C_{12}\) upwards), which will turn over comparatively slowly into the blood stream and thence into the mammary gland. The \(C_{12} - C_{16}\) fatty acids may possibly therefore be contributing to the fatty acid labelling pattern in milk fat in two ways: firstly by direct incorporation into
the triglyceride and secondly by degradation in the mammary gland to acetate and re-synthesis of short chain fatty acids. The degradation of long chain fatty acids in the mammary gland, an hypothesis postulated by Hilditch in 1937 but which fell into disrepute after the experiments of Popjak et al (1951), might therefore be of particular importance since each degradative step would yield a 2-C fragment, which presumably would enrich the acetate pool from which fatty acid synthesis is occurring.

The similarity of the labelling patterns of the fatty acids and the corresponding methyl ketones with one less carbon atom, particularly in the 2nd and 3rd milkings, suggests that the C_6 to C_{16} β-keto acids and the corresponding fatty acids have a common precursor (or that one is the precursor of the other) and are together incorporated into the triglycerides. There does not appear, however, to be a simple explanation for the finding that the specific activities of the fatty acids in all three milkings were significantly lower (2 to 5 times) than the activities of the corresponding methyl ketones. However, if the conversion from β-keto acids to fatty acids is rate limiting or, alternatively, if there is a greater rate of incorporation of the β-keto acids than the fatty acids into the triglycerides, the β-keto acids would be expected to have the higher specific activities. There is no ready explanation as to why the C_{11} to C_{15} methyl ketones in the second and third milkings have specific activities that
are relatively much higher than both the corresponding
C\textsubscript{12} to C\textsubscript{16} fatty acids and the C\textsubscript{5} to C\textsubscript{9} methyl ketones.

Singh & Kumar (1963) have recently obtained
evidence that the biosynthetic pathway of butyric
acid in the lactating mammary gland of rabbits is
independent of the acetyl-CoA carboxylase reaction,
unlike the biosynthesis of the C\textsubscript{6} - C\textsubscript{16} fatty acids.

Popjak \textit{et al.}, (1951) on the basis of earlier
studies by Shaw & Knodt (1941) suggested that D-β-hydroxy-
butyrate might be the direct precursor of the butyrate
moiety of milk fat and concluded that 40\% of the C\textsubscript{4}
acid was synthesised in the udder from acetate and
60\% (presumably derived from D-β-hydroxybutyric
acid) was absorbed from the blood stream. While Kumar
\textit{et al} (1959) have supported this view, others (e.g.
see Garton, 1963) have doubted that the contribution
of D-β-hydroxybutyrate to fatty acid synthesis proceeds
via butyrate. The finding in the present investigation
that only butyric acid of the C\textsubscript{4} to C\textsubscript{16} fatty acids,
in all three milkings, had a higher specific activity
than the corresponding methyl ketone suggests
that the acetone found in steam distillates of
milk fat is formed from a compound derived almost
entirely from a precursor other than acetate.

The quantitative abundance of acetone in all mixtures
of methyl ketones obtained by steam distillation
of milk fat and its accompanying low or undetectable
radioactivity in the present investigation may have
particular significance in any consideration of
rumen fermentation products as milk fat precursors. The low activity in the 2,4-DNP hydrazone of acetone can be explained by assuming that most of the acetone precursor, presumably acetoacetate, was derived from the oxidation of a non-isotopic source such as D-β-hydroxybutyrate. This would be in agreement with the finding of Black, Kleiber & Brown (1961) that the cow can metabolise butyrate via the classical β-oxidation pathway and the TCA cycle.

The presence of unlabelled acetoacetate but labelled higher β-keto acids in milk triglycerides following injection of labelled acetate could be explained by the pathway, based upon the mechanism proposed by Bressler & Wakil (1962), outlined in Scheme 1. Small amounts of β-keto acids in triglycerides with similar specific activity to fatty acids of the same carbon number implies that some dissociation of β-ketoacyl-enzyme occurs in the mammary gland which is similar to the dissociation of acyl-enzyme prior to incorporation into triglycerides. The quantitative importance of acetone in the mixed methyl ketones from milk fat suggests that more acetoacetate than any of the higher β-ketoacids is present in the metabolic pool.

The hypothesis that bound β-keto acids in the triglyceride molecules of milk fat are the precursors of methyl ketones would appear to have been established unequivocally by two other groups of workers. Van der Ven, Haverkamp Begemann & Schogt (1963) found that milk fat
yielded a series of six pyrazalones, corresponding to six even-numbered β-keto acids (C₆ up to and including C₁₆), when treated with Girard-T reagent. They estimated that non-volatile β-keto acid esters were present in a concentration of approximately 0.03% in milk fat. Parks et al (1964) confirmed this work by direct isolation from milk fat of the methyl ketone precursors which they demonstrated were triglycerides containing one β-keto acid and two fatty acid moieties. They concluded that these glycerides accounted for 0.045% of the milk fat.

The possibility that methyl ketones were being formed in Cheddar cheese from the β-oxidation of free fatty acids as well as from a slow breakdown of bound β-keto acids in the milk fat was shown to be improbable. Synthetic triglycerides of fatty acids (undecanoic, nonanoic, and heptanoic), which occur normally only in traces in milk fat, were incorporated in Cheddar cheeses. On steam distillation of these cheeses when mature, no significant amounts of methyl ketones with one less carbon atom than the fatty acids of the synthetic triglycerides were detected although the "odd-numbered" C₃ - C₁₅ methyl ketones to be found in distillates of normal cheese were obtained. Since also P. roqueforti was unable to oxidise C₁₄ and C₁₆ fatty acids to the corresponding methyl ketones, the C₁₃ and C₁₅ methyl ketones detected probably originated from the C₁₄ and C₁₆ β-keto acids respectively of milk fat. This agreed with the earlier finding that the maximum yield of methyl ketones obtained by exhaustive steam distillation of mature Cheddar cheese was not greater than that obtainable from a comparable weight of fresh milk fat. It is perhaps also significant that
Bassett & Harper (1958) did not isolate free β-keto acids from Cheddar cheese, although such intermediates in fatty acid oxidation were found in Blue cheese. The evidence generally suggests, therefore, that methyl ketones found in Cheddar cheese are not formed by oxidation of fatty acids to β-keto acids and subsequent decarboxylation, but only by the breakdown of β-keto acids already present in the triglyceride molecule.

Although the chemical nature of Cheddar cheese flavour is still unknown there is evidence to suggest that methyl ketones are partly responsible (e.g. Walker, 1961) either in free form or possibly combined with other flavourful compounds such as hydrogen sulphide. It is also not known whether the natural enzymes in milk, the rennet enzymes or the bacterial flora are responsible for the development of Cheddar flavour. If methyl ketones are responsible, at least in part, for the development of Cheddar flavour, one can explain the retarding of the flavour development through pasteurisation as the partial destruction of natural milk lipases or microbial lipases capable of hydrolysing the β-keto acid moiety of milk fat. The addition of cultures of lipolytic bacteria such as micrococci to pasteurised cheese milk considerably enhanced the flavour of the Cheddar cheese made from it (Robertson & Perry, 1962), which would be expected by the above theory. The addition to cheese milk of less strongly lipolytic bacteria such as lactobacilli has a lesser effect, although a positive one, on Cheddar flavour development. Similarly the limited amount of β-keto acid precursor available might explain the observation of Robertson & Perry (1962) that there appeared to be
a limiting concentration of flavour forming substrate since increasing the size of the inoculum of micrococcus culture from 2% to 10% did not accelerate the rate of or extent of flavour formation.

It has been suggested (Harvey & Walker, 1960) that the time of first appearance of certain methyl ketones above C$_5$ coincided with the appearance of the typical Cheddar flavour. Since such ketones were found not only in distillates from cheese of any age but also from fresh milk fat it is evident that this is not the case. The present investigation has shown that it is unlikely that a homologous series of methyl ketones is formed by microbiological action during Cheddar cheese ripening. Since, however, methyl ketones are obtained from mature cheese at room temperature, the breakdown of precursors which occurs rapidly on heating of milk fat may also take place slowly at ripening temperature, either by enzyme action or by a purely physico-chemical process. This would result in the formation of relatively small quantities of a range of methyl ketones as cheese matures.

It is evident, however, that new methods will have to be employed in the quantitative examination of cheese in order to differentiate between methyl ketones present as such in ripening cheese and those formed as artifacts during the extraction. The further question of whether they play any part in cheese flavour then has still to be answered.
A hypothetical mechanism for the formation and incorporation of β-keto acids into milk fat
Part III THE OXIDATION OF FATTY ACIDS AND

TRIGLYCERIDES BY PENICILLIUM ROQUEFORTI
There are two aspects to the study of the physiological and biochemical properties of fungal mycelium (1) that connected with the effect of cultivation and growth and (2) that concerned with the biochemical activities of the cell material under conditions where growth, in the common sense of the term, does not take place. The latter utilises pre-formed cell material and is merely a logical extension of growth experiments. Of previous investigations into the uptake of oxygen by Penicillia in the presence of fatty acids, only two (Rolinson, 1954; Girolami & Knight, 1955) have made use of pre-formed cell material. The interpretation of the results of other workers has been made difficult by the complicating effects of growth.

It is well known that fungi are particularly sensitive to imposed environmental conditions which can lead to very marked alteration in metabolism. Much evidence has accumulated since the original study of Kluyver & Perquin (1933) to show that the biochemical behaviour of fungal cell material directly depends on the environmental conditions of the organism during its growth phase. It was shown for example that glucose oxidase activity in *Aspergillus niger* was considerably higher in media with low phosphate concentration (Mann 1944). Horiuchi, Horiuchi & Mizuno (1959) and Torriani (1960) have also demonstrated that certain phosphatases are formed only in measurable amount when inorganic phosphate becomes limiting. Darby & Goddard (1950) have pointed out that the wide differences existing between the results dealing with fungal respiration from various workers are possibly more to be ascribed to environmental differences rather than to real differences in physiology of the organisms concerned.
Meyers & Knight (1958) developed a synthetic medium for growth of *P. roqueforti* but growth was extremely poor unless the initial pH was adjusted to 4. The medium contained both acetate and oleate and was thus not suitable for the growth of mycelium to be used subsequently in fatty acid studies. It was therefore necessary to develop a new synthetic medium in which fatty acids were not required for growth.

As Foster (1949) has pointed out, a characteristic of fungal metabolism is the inconstancy of the metabolic activities of fungi. A true biochemical evaluation of a particular fungus can be secured only by study of its metabolism under different conditions, the extremes and one intermediate of any one factor usually being sufficient to picture the fungus as a metabolic entity. In this investigation therefore the oxidation of the homologous series of fatty acids over a range of pH by both mycelium and spores of *P. roqueforti* was studied.
CULTURES

Two strains of *Penicillium roqueforti* were used throughout these studies. The first (6989) was obtained from the American Type Culture Collection, Washington. A second strain, isolated from N.Z. Blue cheese, was identified by Dr. Barbara Latch of Massey University as *Penicillium roqueforti* Thom.

The fungus was usually sporulated on slopes of Czapek-Dox agar for 4 - 14 days, although in preliminary experiments potato dextrose agar and malt agar slopes were used. To harvest the spores, distilled water or buffer was added to each tube and the spores suspended in the liquid as they were carefully scraped from the surface of the slope with a sterile needle. The spore suspension was used immediately.

Standardisation of spore suspension

A spore suspension was standardised in a haemocytometer to a concentration of 1×10^7 spores per ml. The turbidity of each spore suspension subsequently used was measured against this standard in a Beckman DU spectrophotometer at 325 μm and diluted to the concentration of the standard.
MATERIALS

Acids. Fatty acids with an even number of carbon atoms (99.8 ±% pure) were obtained from Applied Science Laboratories, Inc., State College, Pa; acids with an odd number of carbon atoms from L. Light & Co. Ltd., England; the synthetic triglycerides from Eastman Organic Chemicals, Rochester, N.Y. The salts of the fatty acids were made by the addition of potassium hydroxide to pH 7.3 and making up to the required concentration with distilled water. Salts of acids with more than 12 carbon atoms were warmed to 45° before addition to the side arm of a Warburg flask to ensure that all the material was in solution.

METHODS

It was found that reproducible results were obtained only by standardising the method of growing the mycelium and using it under controlled and defined conditions.

Growth of mycelium

The spores were grown on slopes of Czapek–Dox agar (Oxoid preparation) at 22°C. After 5-6 days growth the spores were transferred to 100 ml of the growth medium in
500 ml Erlenmeyer flasks. The spores were allowed to germinate, without shaking, overnight followed by shaking for 48 hours at 20° on a microid flask shaker (Griffen & George Ltd.). This prevented the clumping together of large individual colonies and resulted in a uniform and homogeneously suspended type of culture. In such a situation all cells have comparable nutritional conditions and equal access to oxygen. It was possible to duplicate experiments and to obtain reasonable agreement by following the above procedures which gave results comparable with the re-inoculation method of Foster (1949) with considerably less chance of contamination. The cells were harvested by filtration on a Buchner funnel, resuspended several times in about 2 litres of distilled water and refiltered. The mycelium was finally suspended in phosphate buffer and, in most experiments with whole cells, blended gently in a "Polytron" homogenizer (Mobil Aaran A.G, Aahran, Switzerland).

Gently blended mycelium resulted in a slightly greater oxygen uptake than whole cells, in contrast to the decrease reported by Darby & Goddard (1950) working with Myrothecium verrucaria, and was used in all experiments reported unless otherwise stated.

After shaking for 48 hours the pH fell to about 2.5, being accompanied on occasions by spore formation. For this reason the growth period was seldom continued after 48 hours. Spore formation in submerged culture is very unusual (Cochrane, 1958) but both strains of *P. roqueforti* demonstrated this phenomenon.

The concentration of blended cells was adjusted to approximately 10 mg (dry weight) per ml, the exact concentration being determined by dry weight
measurement. The rates of oxygen uptake were usually calculated on 10 mg dry weight. Oxygen uptake measurements were made manometrically at 27°C in a standard Warburg apparatus (Braun, Model "V8"). 0.2 ml 20% KOH was used in the inner cell of the Warburg flasks unless otherwise stated.

Oxygen uptake by spores

The measurements were made with spores suspended in water or buffer after removal from their parent cultures. The spores were never observed to germinate in water or buffer although very slight mycelial growth was usually noted after about 6 hours when incubating spores with fatty acids in buffer. Care had therefore to be taken when interpreting oxygen uptakes, particularly as the endogenous respiratory activity of the spores was fairly close to the lower limits of sensitivity of the standard Warburg techniques.

At the completion of the oxygen uptake experiment 1 ml of the contents of the Warburg flask was pipetted into 1 ml of 2,4-DNP hydrazine (2 g in 1 litre of 2N HCl) in a stoppered test tube. Methyl ketones were identified and their concentrations determined as described below.
THE COMPOSITION OF THE SYNTHETIC GROWTH MEDIUM AND SUBSEQUENT OXYGEN UPTAKE OF THE MYCELIUM IN THE PRESENCE OF FATTY ACIDS

A synthetic growth medium was developed that would lead to extensive growth of a mycelium which was capable of good oxygen uptake and methyl ketone formation when incubated with fatty acids as sole carbon substrates. These initial experiments were carried out with octanoic acid.

Effect of phosphate concentration. Reported optimum phosphate concentrations for other fungi have been of the order of 0.001 M. It was found however that the growing mycelium rapidly utilised the phosphate with consequent loss of buffering capacity, the pH falling below pH 3.0. The phosphate concentration was increased to 0.03 M but even this concentration failed to hold the pH steady for more than 48 hours.

Effect of magnesium. Varying the concentration of magnesium in the growth medium had little effect on mycelial growth or its subsequent biochemical performance. Spores concentrate magnesium from the medium on which they are grown (Foster, 1949) and presumably contain sufficient for mycelial growth.

Effect of calcium. The presence of calcium in the growth medium did not lead to a significant increase in oxidative ability of the mycelium. Since also calcium is not considered to be an essential element for mycelial growth (Cochrane, 1959), it was not
included in the final growth medium.

Nature of a nitrogen source. In early experiments ammonium sulphate was used but it was found subsequently that ammonium nitrate gave better growth of mycelium and higher oxidising ability. Some fungi, e.g. certain strains of *Aspergillus niger*, have been shown to selectively utilise NO₃ at pH's below 4.0 (Cochrane, 1958).

Effect of initial pH of growth medium

Oxygen uptake by mycelium in the presence of fatty acids at pH 6.3 was a maximum when the mycelium had been grown in a medium which had an initial pH of about 6.3 (Table 8).

Growth medium finally adopted. After further preliminary trials the following synthetic medium was used to grow mycelium from spores: 2 g ammonium nitrate; 0.15 g magnesium sulphate (MgSO₄·7H₂O); 0.25 g potassium chloride; 0.0125 g ferrous sulphate (FeSO₄·7H₂O). These 4 components were dissolved in 400 ml water and autoclaved for 20 min. at 12 p.s.i. The resultant brown precipitate was allowed to settle, the supernatant being decanted after 24 hours. A solution of 10 g glucose, 0.6 g potassium dihydrogen phosphate and 0.4 g di-potassium hydrogen phosphate in 100 ml water (Seitz filtered in preference to autoclaving to safeguard against heat decomposition) was added. 1 ml of a trace element supplement solution (containing per litre:
Table 8. The effect of the initial pH of the growth medium on subsequent ability of mycelium to oxidise octanoic acid (1.5 μmoles)

<table>
<thead>
<tr>
<th>Initial pH of growth medium</th>
<th>Oxygen Uptake (ul)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Endogenous</td>
</tr>
<tr>
<td></td>
<td>Octanoic acid</td>
</tr>
<tr>
<td>4.1</td>
<td>80</td>
</tr>
<tr>
<td>4.5</td>
<td>83</td>
</tr>
<tr>
<td>5.3</td>
<td>120</td>
</tr>
<tr>
<td>5.8</td>
<td>135</td>
</tr>
<tr>
<td>6.3</td>
<td>102</td>
</tr>
<tr>
<td>6.7</td>
<td>110</td>
</tr>
</tbody>
</table>

(Each Warburg flask contained approximately 10 mg blended mycelium, 48 hours old, 30 μmoles phosphate buffer pH 6.3, distilled water to 3 ml. Period of incubation 120 minutes).
180 mg zinc sulphate (ZnSO₄·7H₂O); 15 mg copper nitrate, Cu (NO₃)₂·6H₂O; 80 mg manganese nitrate, Mn (NO₃)₂·6H₂O, and 10 mg ammonium molybdate, (NH₄)₆Mo₇O₂₄·4H₂O, was also added. The pH of the final growth medium was 6.5.

Effect of carbon and nitrogen sources in growth medium on ability of mycelium to oxidise fatty acids

The synthetic medium described was compared with a variant in which the glucose and ammonium nitrate were replaced by casamino acids. In an attempt to determine whether specific β-keto acid decarboxylases were inducible, C₁₂ acid was also added to two batches of growth media. The four media compared were thus:

Medium A. Synthetic medium as described above
" A + C₁₂ " + C₁₂ acid (2 μmoles/ml)
" B " but glucose and ammonium nitrate replaced by casamino acids (3g/500ml)
" B + C₁₂ As medium B + C₁₂ acid (2 μmoles/ml)

Growth of mycelium was stronger in the media to which C₁₂ acid had been added. As the results in Table 9 show however the addition of C₁₂ acid to the growth medium did not induce a specific β-keto lauryl acid decarboxylase. On the contrary such mycelium showed less ability to oxidise C₁₂ acid to 2-undecanone, and to a lesser extent C₈ acid to 2-heptanone, than mycelium which had been grown in absence of C₁₂ acid. The fact
Table 9. The effect of composition of growth medium on the ability of mycelium to oxidise fatty acids

<table>
<thead>
<tr>
<th>Medium*</th>
<th>Oxygen Uptake (μl)</th>
<th></th>
<th></th>
<th>μmoles 2-heptanone from C₈ acid</th>
<th>μmoles 2-undecanone from C₁₂ acid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Endogenous</td>
<td>3 μmoles C₈ acid</td>
<td>3 μmoles C₁₂ acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>293</td>
<td>496</td>
<td>253</td>
<td>1.8</td>
<td>0.40</td>
</tr>
<tr>
<td>A + C₁₂ acid</td>
<td>373</td>
<td>653</td>
<td>176</td>
<td>1.0</td>
<td>0.10</td>
</tr>
<tr>
<td>B</td>
<td>414</td>
<td>609</td>
<td>51</td>
<td>1.1</td>
<td>0.15</td>
</tr>
<tr>
<td>B + C₁₂ acid</td>
<td>270</td>
<td>350</td>
<td>20</td>
<td>0.92</td>
<td>0.08</td>
</tr>
</tbody>
</table>

(Bach Warburg contained approximately 10 mg mycelium, 50 hours old, 50 μmoles phosphate buffer pH 5.2. Period of incubation 135 minutes.

* Medium A contained glucose and ammonium nitrate
 " B " casamino acids.)
that methyl ketones were formed in two very different growth media would indicate that the β-keto acid decarboxylases are constitutive enzymes. The presence of C₁₂ acid in the growth media did not prevent the mycelium from oxidising C₈ acid readily although it was unable to oxidise C₁₂ acid.

Mycelium grown in casamino acid media was much more sensitive to subsequent addition of C₁₂ acid than that grown in a glucose/ammonium nitrate medium. The highest yield of ketone was obtained in the latter medium. Since the main aim of the investigation was to examine methyl ketone formation this medium was used in all subsequent work unless otherwise stated.

Estimation of micro quantities of methyl ketones as 2,4-DNP hydrazones

In Part I mention was made of the difficulties involved in the estimation of methyl ketones as 2,4-DNP hydrazones because of the apparent non-quantitative nature of the reaction with 2,4-DNP hydrazine reagent. In estimating methyl ketones as products of the oxidation of fatty acids by *P. roqueforti*, the quantities involved were much smaller, of the order 0.1 μmoles upwards. A colorimetric assay for small quantities of 2-heptanone has been reported (Haidle & Knight, 1960), in which the ketone was steam distilled and reacted with 2,4-DNP hydrazine reagent, NaOH added and the coloured complex that developed measured spectrophotometrically. Knight (1963) however stated that the method was not entirely satisfactory.
In view of the large number of methyl ketone estimations to be carried out it was necessary to determine the reasons for the low recoveries of methyl ketones as their 2,4-DNP hydrazones and then to devise a method that was not only more quantitative but much less time consuming than the above steam distillation method.

Instability of 2,4-DNP hydrazones

The 2,4-DNP hydrazones of methyl ketones were found to decompose slowly in air after their formation, the equilibrium

\[
\text{methyl ketone + 2,4-DNP hydrazine} \rightleftharpoons 2,4\text{-DNP hydrazone}
\]

presumably moving to the left with time on account of evaporation of the volatile ketones. The stabilities of the 2,4-DNP hydrazones were determined by adding 1 ml aliquots of standard ketone solutions (0.75 µmoles per ml) to 1 ml 2,4-DNP hydrazine reagent in a number of 50 ml beakers. At the same time the reaction was carried out in stoppered test tubes. At intervals the 2,4-DNP hydrazones were extracted with carbonyl-free hexane as detailed later. In all cases the yield of 2,4-DNP hydrazones determined in the test tubes was virtually quantitative and of the order of 30% higher than that calculated from the first beaker which had been standing in the air for 30 minutes (Table 10). The yield of 2,4-DNP hydrazone from the beakers further slowly decreased with time, those of the C₃ to C₇ methyl ketones being the least stable.
Table 10. Recoveries of methyl ketones (0.75 μmoles) as the 2,4-DNP hydrazones from stoppered test tubes and from open beakers

<table>
<thead>
<tr>
<th>Stoppered Test tubes</th>
<th>C₃</th>
<th>C₄</th>
<th>C₅</th>
<th>C₆</th>
<th>C₇</th>
<th>C₈</th>
<th>C₉</th>
<th>C₁₀</th>
<th>C₁₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 min.</td>
<td>0.71</td>
<td>0.73</td>
<td>0.72</td>
<td>0.75</td>
<td>0.74</td>
<td>0.71</td>
<td>0.72</td>
<td>0.75</td>
<td>0.65</td>
</tr>
<tr>
<td>20 hrs.</td>
<td>0.69</td>
<td>0.71</td>
<td>0.72</td>
<td>0.75</td>
<td>0.70</td>
<td>0.71</td>
<td>0.72</td>
<td>0.75</td>
<td>0.68</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beakers</th>
<th>C₃</th>
<th>C₄</th>
<th>C₅</th>
<th>C₆</th>
<th>C₇</th>
<th>C₈</th>
<th>C₉</th>
<th>C₁₀</th>
<th>C₁₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 min.</td>
<td>0.38</td>
<td>0.45</td>
<td>0.54</td>
<td>0.59</td>
<td>0.58</td>
<td>0.51</td>
<td>0.61</td>
<td>0.68</td>
<td>0.58</td>
</tr>
<tr>
<td>3 hrs.</td>
<td>0.17</td>
<td>0.24</td>
<td>0.48</td>
<td>0.51</td>
<td>0.48</td>
<td>0.47</td>
<td>0.54</td>
<td>0.64</td>
<td>0.56</td>
</tr>
<tr>
<td>5 hrs.</td>
<td>0.09</td>
<td>0.12</td>
<td>0.45</td>
<td>0.47</td>
<td>0.42</td>
<td>0.43</td>
<td>0.50</td>
<td>0.63</td>
<td>0.56</td>
</tr>
<tr>
<td>20 hrs.</td>
<td>Nil</td>
<td>Nil</td>
<td>0.23</td>
<td>0.25</td>
<td>0.23</td>
<td>0.28</td>
<td>0.34</td>
<td>0.53</td>
<td>0.48</td>
</tr>
</tbody>
</table>

| % decrease in 19½ hrs. | 100 | 100 | 58 | 58 | 60 | 45 | 44 | 22 | 18 |

(1 ml standard ketone solution added to 1 ml 2,4-DNP hydrazine reagent. Details of extraction given in text.)
Since it was apparent that the low recoveries of methyl ketones obtained in Part I were a result of their volatility the following method of estimation was developed which cut down the number of operations (detailed in Part I) leading to the final determination of the 2,4-DNP hydrazones in a spectrophotometer.

Method of estimation finally adopted

It was found that if 1 ml of the standard ketone solution were reacted with 1 ml of 2,4-DNP hydrazine in a stoppered test tube and allowed to stand for 30 minutes, 10 ml of carbonyl-free hexane extracted the ketone virtually quantitatively as its 2,4-DNP hydrazone. After vigorous shaking in the test tube the aqueous and hexane layers were allowed to settle, the upper hexane layer poured directly into the Beckman cell and its absorption read at 345 m\(\mu\). A "blank" was obtained by shaking 1 ml of 2,4-DNP hydrazine reagent with 1 ml of water and 10 ml carbonyl free hexane. After subtracting the "blank" from the reading of the test solution, the concentration of the methyl ketones could be obtained directly from standard curves prepared relating absorption at 345 m\(\mu\) to the concentration of 2,4-DNP hydrazone.

Before the estimation was applied to the oxidation of fatty acids and triglycerides by spores and mycelium it was demonstrated that no carbonyls other than methyl ketones were formed in detectable amounts.

A natural corollary to the above observations on the volatility of methyl ketones in aqueous solution
was the need to carry out all incubations in stoppered vessels. The observation by Thaler (1949) that the formation of methyl ketones was "zig-zag" was confirmed both in plugged flasks and with stoppered bottles. However the recovery of methyl ketones from stoppered bottles was invariably greater and it is possible that part of the variation and low yields of other investigators resulted from evaporation of methyl ketone as it was formed.

Quantitative estimation of methyl carbinols in the presence of methyl ketones

At appropriate time intervals 1 ml of the medium was analysed for methyl ketone by the method described above using 2,4-DNP hydrazine reagent. At the same time 10 ml of medium were withdrawn, made alkaline until red to phenolphthalein, and extracted with diethyl ether. The extract was concentrated to approximately 0.5 ml by carefully removing the ether in a stream of air. 1 μl of the concentrate was analysed in a gas chromatograph (Aerograph Hy-Fi, Model A-600-B, Wilkins Instrument & Research, Inc.). Columns normally used were either 20% UCON 50 HB 2000 or 20% Carbowax 1540 on Chromosorb W (Mesh 30-60), although initially 20% diethylene-glycolsuccinate (DEGS) on Firebrick was used.

Identification of the peaks was accomplished by co-chromatography with authentic samples of 2-heptanol and 2-heptanone. The retention times of 2-heptanol compared to that of 2-heptanone were 1.45 on the DEGS column (115°), 1.78 with Carbowax (90°) and 2.02 with
UCON (100°) columns. Quantitative measurements were made by measuring the areas under the curves on the chromatograms with a planimeter. Since the concentration of 2-heptanone was known accurately that of 2-heptanol could also be determined. Recovery trials of known amounts of 2-heptanone and 2-heptanol carried out using the procedure above were quantitative (± 5%) over a range of concentrations of the alcohol and ketone from 0.25 - 10 µmoles per ml.

Further characterization of any 2-heptanol formed in these investigations was accomplished by forming the 3,5 dinitrobenzoate of the alcohol following the procedure of Holley & Holley (1952). The alcohol was identified by co-chromatography with the authentic 3,5 dinitrobenzoate of 2-heptanol using a modification of the paper chromatographic method of Sundt & Winter (1957). The 3,5 dinitrobenzoates were easily detectable as violet spots after 10 minutes irradiation under ultra violet light. The yield of 3,5 dinitrobenzoate from the secondary alcohol was however low and could not be used as a quantitative method.

Identification of free fatty acids

A modification of the method of Harper (1953) was used to determine the formation of free fatty acids in the incubation medium during the oxidation of triglycerides by spores.

A silica gel column was prepared in two sections using a chromatographic column, 35 mm I.D. by 250 mm in length with a perforated glass disc.
Bottom section. 5 g dry silicic acid (Mallinckrodt No. 2487) were mixed thoroughly with 3 ml of 2M K$_2$HPO$_4$ - KH$_2$PO$_4$ buffer (pH 6.5) and slurried with 20 ml washed chloroform.

Top section. The sample, normally 10 ml, was acidified to pH 1.8 - 2.0 (pre-determined with 20% (v/v) H$_2$SO$_4$), 5 g silicic acid being added for every 3 ml medium. The mixture was ground thoroughly, slurried with 5% butanol in chloroform and transferred quantitatively on top of the bottom section.

Estimation of acids. The acids in the eluate were titrated with 0.02N NaOH after the addition of 10 ml neutral absolute alcohol and 0.1 ml of phenol red indicator. Standard colours were used to facilitate detection of the end point.

The reliability of the method was established by determining the recovery of known acids (butyric, hexanoic and octanoic) added individually to the medium prior to acidification. Two trials were made in which the concentration of added acids was 10 and 60 microequivalents. All the acids were quantitatively recovered by elution with 100 ml of the 5% butanol in chloroform solvent.

Blanks. The free fatty acid content of the commercial samples of triglycerides used was determined by running aliquots of the incubation media, before the addition of spores, down the column. Trihexanoin contained no free fatty acid, tributyrin and trioctanoin sufficient to account for only a very small percentage
of the ketones formed from them.

Measurement of $^{14}\text{CO}_2$ during respiration in Warburg flasks

The advantages of using liquid scintillation techniques over other methods for the measurement of radioactive carbon dioxide have been discussed by Rapkin (1962).

The hydroxide of Hyamine 10-X, (p-di-isobutyl-cresoxyethoxy-ethyl)-dimethyl benzyl ammonium hydroxide, was the first (Passman, Radin & Cooper, 1956) and is still the most widely used trapping agent for $^{14}\text{CO}_2$. More recently Wakil (1962) has used Hyamine impregnated filter paper directly in his Warburg vessels, which traps the liberated carbon dioxide. The paper is then removed, dried, transferred to a counting vial and counted with scintillation solvent without any additional manipulation. Similarly Chiriboga and Ray (1962) have described the same technique using KOH rather than Hyamine.

Efficiency of trapping agents.

Preliminary experiments with Whatman No. 50 paper impregnated with 0.05 ml 20% KOH showed reproducibility of $^{14}\text{CO}_2$ recoveries to be fair only. It was considered that the use of DEAE-cellulose paper (Whatman DE 20, free base form), impregnated with 20% KOH, might more
firmly absorb the 14CO$_2$, the method being adapted from that of Sherman (1963) for enzyme assays. A comparison of the recovery of 14CO$_2$, liberated from a standard NaH$_2^{14}$CO$_3$ solution by 10% H$_2$SO$_4$, showed that the Whatman DE 20 paper gave consistently higher and more reproducible results than the Whatman 50 paper (Table 11).

<table>
<thead>
<tr>
<th>Trial</th>
<th>Theoretical Counts</th>
<th>14CO$_2$ (c.p.m.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>What.50</td>
</tr>
<tr>
<td>1</td>
<td>22,800</td>
<td>21,860</td>
</tr>
<tr>
<td></td>
<td>45,600</td>
<td>41,320</td>
</tr>
<tr>
<td></td>
<td>68,400</td>
<td>56,420</td>
</tr>
<tr>
<td>2</td>
<td>4,560</td>
<td>3,185</td>
</tr>
<tr>
<td></td>
<td>9,120</td>
<td>6,095</td>
</tr>
<tr>
<td></td>
<td>13,680</td>
<td>8,165</td>
</tr>
<tr>
<td></td>
<td>"</td>
<td>10,620</td>
</tr>
<tr>
<td></td>
<td>"</td>
<td>10,060</td>
</tr>
</tbody>
</table>
Synthesis of non-available substrates

2-C^{14} octanoic acid, 2-heptanone-1-C^{14} and 2-heptanol were not available from commercial sources and had to be synthesised.

Synthesis of 2-C^{14} octanoic acid. The method used was a micro adaptation of that of Reid & Ruhoff (1944) for the synthesis of nonanoic acid. 0.3 g clean sodium was slowly dissolved in 7 ml butanol which had been dried over solid K$_2$CO$_3$. 0.2 mc of 2-C^{14} diethyl malonate, diluted to 2 ml with cold diethyl malonate, were added and the solution heated to 80-90°C. 2 ml of 1-bromohexane were added slowly, refluxed for 2 hours, followed by 2 g KOH in 2 ml H$_2$O and the solution refluxed for a further 5 hours. The contents of the flask were then steam distilled and 20 ml of distillate containing the butanol were collected. 3.5 ml of conc. hydrochloric acid were added to the residue and the mixture refluxed for 1 hour. After cooling, the aqueous layer was removed with a pipette. The residue was now refluxed in an oil bath at 180°C for 2 hours until CO$_2$ evolution had ceased. The octanoic acid was decanted from the solid residue and dried over anhydrous Na$_2$SO$_4$, the yield being approximately 15% (0.3 g).

The purity of the acid was checked directly by co-chromatography with a pure sample of octanoic acid on a gas chromatograph using a column packing of 20% (w/w) diethylene glycol succinate and 2% H$_3$PO$_4$ (85% H$_3$PO$_4$) on 60-80 mesh, acid washed "Celite 545". (Metcalf, 1960). The homologous series of fatty acids from C$_6$ to C$_{10}$ were run on the column to ensure that the octanoic
acid was completely resolved from any other acids on the column.

The total radioactivity of the synthesised acid was 0.0275 mc, approximately 14% of the initial radioactivity used (0.2 mc), which is in agreement with the percentage recovery obtained above.

Biosynthesis of 2-heptanone-1-C14. 25 ml of a solution of the potassium salt of 2-C14 octanoic acid (approximately 750 µmoles) were incubated with 80 ml potassium phosphate buffer, pH 6.0 (50 µmoles phosphate per ml) and 10 ml spore suspension (strain 6989, harvested 6 days after inoculation). Incubation was continued until the methyl ketone concentration reached a maximum. 50 ml of 2,4-DNP hydrazine reagent were then added and the mixture left for 24 hours. The 2,4-DNP hydrazine of 2-heptanone-1-C14 was extracted and purified as described in Part I. The weight of pure 2,4-DNP hydrazone was 0.205 g, the equivalent of 0.07 g 2-heptanone-1-C14, representing 68% conversion of acid to ketone.

The free 2-heptanone-1-C14 was liberated from the hydrazone with laevulinic acid as described in Part I. The solution of ketone in petroleum ether was evaporated carefully in a stream of air, the activity of the solution being measured during the evaporation with a portable transistorized monitor (Phillips type FW 4012). Evaporation was continued until the activity reached a maximum when it was assumed that all the petroleum ether had evaporated. The residue was shaken up in 100 ml water. 1 ml of this solution contained 1.95 µmoles heptanone, the percentage recovery of heptanone from its 2,4-DNP hydrazone thus being approximately 32%.
10 ml of the solution were extracted with 2 x 25 ml diethyl ether. The extract was dried with anhydrous Na$_2$SO$_4$ and evaporated down cautiously in air to 0.5 ml. This concentrated ethereal solution was shown to contain only 2-heptanone-1-14C by co-chromatography with a pure sample of 2-heptanone on a gas chromatograph using a column packing of 20% (w/w) carbowax 1540/chromosorb W (30-60 mesh).

Preparation of 2-heptanol. 2-heptanol was prepared by reducing 2-heptanone with sodium/ethanol. (Whitmore & Otterbacher, 1944). It was purified from unchanged 2-heptanone by shaking with 2,4-DNP hydrazine/HCl reagent and fractionally distilling under reduced pressure. This distillation was repeated 3 times before the alcohol was completely free of ketone, the purity being checked by gas chromatography using a 20% diethylene glycol succinate/chromosorb W (30-60 mesh) column.
EXPERIMENTAL CONDITIONS AFFECTING THE OXIDATION OF FATTY ACIDS

The effect of age of mycelium on oxygen uptake in presence of fatty acids

The optimum age of mycelium for maximum oxygen uptake and methyl ketone formation in the presence of fatty acids was shown to be between 48 and 60 hours. The oxidation of fatty acids by mycelium used when about 30 hours old was markedly slower. This confirms similar observations on oxygen uptake by fungi by Cochrane & Peck (1953) and Vinze & Ghosh (1961). It was also observed that mycelium older than 72 hours consistently gave low yields of methyl ketone.

Endogenous respiration of mycelium. The interpretation of oxygen uptake during the oxidation of added substrate is difficult since it has to be decided whether endogenous respiration is proceeding at the same time. In this study it was concluded that endogenous respiration was not suppressed during the exogenous respiration of non-toxic concentrations of fatty acids (in agreement with the findings of Blumenthal (1963) with other Penicillia) for the following reasons:

1. In the course of most experiments a change in the rate of oxygen consumption could be clearly shown and unambiguously interpreted as a transition from the breakdown of the substrate to respiration of cell materials (endogenous respiration). The rates of
oxygen uptake due to endogenous respiration before and after the addition of substrate were not significantly different.

(2) In many experiments quantitative balances were obtained by assuming that endogenous respiration was proceeding simultaneously and subtracting its value from the oxygen uptake in the presence of substrate.

(3) Oxidative assimilation of part of the substrate could not be demonstrated by the use of 2,4 dinitrophenol.

Oxidative assimilation of fatty acids by mycelium

2,4 dinitrophenol is known to prevent oxidative phosphorylation and therefore oxidative assimilation, i.e. the ability to convert a portion of the substrate into complex material within the cell. It was thought therefore that its addition in this investigation might enhance the complete oxidation of the octanoic acid by the mycelium. A range of concentrations of 2,4 dinitrophenol was tried but did not effect the oxygen uptake in any systematic way. The results in Table 12, using two different batches of mycelium and a final concentration in the reaction flask of 1×10^{-3} M 2,4 dinitrophenol were typical.

The effect of pre-starving mycelium in buffer

Although endogenous respiration of mycelium was not usually markedly decreased by shaking in buffer, pre-starving in buffer enabled the mycelium to oxidise
Table 12. The effect of 2,4-Dinitrophenol (2,4-DNP in this table) on the oxidation of octanoic acid by mycelium

<table>
<thead>
<tr>
<th>Expt.</th>
<th>Concentration</th>
<th>Oxygen Uptake (μl)</th>
<th>2-heptanone (μmoles)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Octanoic acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Endogenous</td>
<td>75</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1 μmole</td>
<td>157</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>1 μmole + 10^{-3}M 2,4 DNP</td>
<td>160</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>3 μmoles</td>
<td>184</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>3 μmoles + 10^{-3}M 2,4 DNP</td>
<td>206</td>
<td>0.35</td>
</tr>
<tr>
<td>2</td>
<td>Endogenous</td>
<td>254</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1 μmole</td>
<td>384</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>1 μmole + 10^{-3}M 2,4 DNP</td>
<td>332</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>2 μmoles</td>
<td>420</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>2 μmoles + 10^{-3}M 2,4 DNP</td>
<td>443</td>
<td>0.50</td>
</tr>
</tbody>
</table>

(Each Warburg contained 3 mg mycelium, 4.8 hours old, 50 μmoles phosphate pH 6.0; period of incubation 150 minutes).
Table 13. **The effect of pre-starving mycelium in buffer on its ability to oxidise octanoic acid at pH 2.5**

<table>
<thead>
<tr>
<th>Concentration C₈ acid</th>
<th>Oxygen Uptake (µl)</th>
<th>2-heptanone (µmoles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mycelium, fresh</td>
<td>155 285 22</td>
<td>0.45 0.32</td>
</tr>
<tr>
<td>" pre-starved 15 hrs</td>
<td>140 351 104</td>
<td>0.19 0.50</td>
</tr>
<tr>
<td>" 20 "</td>
<td>145 350 150</td>
<td>0.14 0.70</td>
</tr>
</tbody>
</table>

(Each Warburg flask contained about 10 mg mycelium, grown for 65 hours, 50 µmoles phosphate pH 2.5 and distilled water to 3 ml. Period of incubation 120 minutes).
concentrations of fatty acid which inhibited the oxygen uptake of fresh mycelium (Table 13).

The oxygen uptake by pre-starved mycelium in the presence of non-toxic* concentrations of octanoic acid (1 μmole) was also higher than with fresh mycelium but at the expense of methyl ketone formation.

Inter-relationship between pH and concentration of fatty acid substrate

At any one pH it was found that there was an optimum concentration of acid for maximum oxygen uptake and optimum conversion to methyl ketone. Fig. 6a shows the variation of oxygen uptake and methyl ketone formation with concentration of octanoic acid at pH 6.5, maximum uptake occurring with 3.5 μmoles. The results also show clearly that the toxic effect of octanoic acid at this pH becomes more pronounced with increasing substrate concentration.

The oxidation of any one concentration of fatty acid is dependent upon the pH of the incubation medium. Thus the results of Table 14 show that whereas 3 μmoles of

* Throughout this thesis the term "toxic" acid is defined as one that suppresses the oxygen uptake of mycelium relative to endogenous. It does not necessarily mean complete inhibition. Similarly a "non-toxic" acid is, in this context, one whose presence enhances or at least does not inhibit oxygen uptake by mycelium.
Fig. 6a. Variation of oxygen uptake by mycelium with concentration of octanoic acid at pH 6.5. Each flask contained about 4 mg mycelium (dry weight) and 50 μmoles phosphate buffer.

Fig. 6b. The effect of pH on the oxygen uptake by mycelium in the presence of 3 μmoles octanoic acid. Each flask contained about 4 mg mycelium (dry weight) and 50 μmoles phosphate buffer. Period of incubation 180 min.
octanoic acid inhibited oxygen uptake at pH 2.6, forming little methyl ketone, the same concentration of acid at pH 5.0 and 6.3 was rapidly oxidised with high yields of 2-heptanone.

Oxygen uptake and methyl ketone formation during the oxidation of different concentrations of octanoic acid were obtained at various pH's in order to ascertain optimum conditions. With increasing concentration of octanoic acid, the pH at which oxygen uptake was a maximum also increased. Optimum pH's for the oxidation of 1, 3 and 25 μmoles of acid were pH 5.0, 5.5 and 6.0 respectively (Figs. 6b, 7 and 8). Similarly the formation of 2-heptanone from 1 μmole of acid was a maximum at pH 3.0 (Fig. 7) but was optimum at pH 6.5 with 25 μmoles (Fig. 8). The correlation between pH and the concentration of the acid being oxidised is also illustrated in Table 14.

Effect of purity of acid

Gas chromatographic analysis showed that redistilled octanoic acid contained up to 10% butyric and hexanoic acids as impurities and that decanoic acid contained approximately 10% lauric acid. The impurities affected the oxygen uptake as the comparison between very pure octanoic (99.8%) and technical (BDH) octanoic acid showed (Table 15). This was confirmed by using equal amounts of both pure and technical acids in the Warburg flask when the oxygen uptake was intermediate between the two.
The effect of pH on (a) oxygen uptake and (b) methyl ketone formation by mycelium in the presence of 1 µmole and 25 µmoles octanoic acid. (Figs. 7 and 8). Each flask contained about 4 mg mycelium, 50 µmoles phosphate buffer. Period of incubation 180 min.
Table 14. The combined effect of pH and concentration on the oxidation of octanoic acid by mycelium

<table>
<thead>
<tr>
<th>pH</th>
<th>Endogenous</th>
<th>3 μmoles acid</th>
<th>20 μmoles acid</th>
<th>3 μmoles acid</th>
<th>20 μmoles acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6</td>
<td>335</td>
<td>202</td>
<td>34</td>
<td>0.32</td>
<td>nil</td>
</tr>
<tr>
<td>5.0</td>
<td>338</td>
<td>570</td>
<td>448</td>
<td>1.8</td>
<td>1.08</td>
</tr>
<tr>
<td>6.3</td>
<td>317</td>
<td>606</td>
<td>500</td>
<td>1.7</td>
<td>1.2</td>
</tr>
<tr>
<td>7.5</td>
<td>320</td>
<td>533</td>
<td>440</td>
<td>1.2</td>
<td>0.9</td>
</tr>
</tbody>
</table>

(Each Warburg contained approximately 10 mg. mycelium, 60 hours old, 50 μmoles phosphate buffer. Period of incubation 150 minutes).
Table 15. **The effect of purity of octanoic acid on oxygen uptake by mycelium**

<table>
<thead>
<tr>
<th>pH</th>
<th>Pure acid</th>
<th>Technical acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>276</td>
<td>208</td>
</tr>
<tr>
<td>6.5</td>
<td>275</td>
<td>177</td>
</tr>
<tr>
<td>7</td>
<td>196</td>
<td>110</td>
</tr>
</tbody>
</table>

(Each Warburg flask contained approximately 3 mg mycelium, 48 hours old, 50 μmoles phosphate buffer, 3 μmoles octanoic acid. Period of incubation 180 minutes. * Endogenous respiration deducted.)
Consequently pure fatty acids, obtained by means of a preparative gas chromatography column, were used in all but the initial stages of this investigation.

Effect of inorganic ions

(a) **Magnesium and calcium ions.** Since magnesium ion is reported as being generally required by oxidative systems (Lardy, 1951) its effect was given special attention. Stimulation of oxygen uptake was variable (Table 16) but tended to be slightly enhanced with decreased methyl ketone formation. Similarly addition of calcium ion gave no consistent pattern of oxygen uptake and methyl ketone formation.

(b) **Phosphate concentration.** An optimum phosphate concentration for oxygen uptake by fresh mycelium was found to be about 10 μmoles/ml (Table 17), which confirms similar results obtained by Girolami & Knight (1955). Increasing phosphate concentration decreased oxygen uptake but increased the formation of methyl ketones. The complete absence of phosphate in the flask inhibited not only oxidation in the presence of acid but also the endogenous respiration.

Shaking the mycelium in phosphate buffer for 36 hours gave somewhat different results (Table 18), possibly a reflection of the observed decrease in toxicity of fatty acids towards pre-starved mycelium. Both oxygen uptake and methyl ketone formation reached a maximum at a phosphate concentration of 30-35 μmoles/ml, concentrations greater than this resulting in a lowering of both.
Table 16. The effect of magnesium ion on the oxidation of 1 µmole octanoic acid

<table>
<thead>
<tr>
<th>Magnesium Concentration (µmoles)</th>
<th>Oxygen Uptake (µl)</th>
<th>2-heptanone (µmoles)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Endogenous</td>
<td>Octanoic acid</td>
</tr>
<tr>
<td>0</td>
<td>110</td>
<td>300</td>
</tr>
<tr>
<td>0.1</td>
<td>134</td>
<td>373</td>
</tr>
<tr>
<td>0.5</td>
<td>126</td>
<td>331</td>
</tr>
<tr>
<td>1.0</td>
<td>130</td>
<td>332</td>
</tr>
</tbody>
</table>

(Each Warburg contained approximately 10 mg mycelium, 62 hours old, 50 µmoles phosphate buffer, pH 5.5. Period of incubation 150 minutes).
Table 17. The effect of phosphate concentration upon oxygen uptake by fresh mycelium in the presence of octanoic acid (1 μmole)

<table>
<thead>
<tr>
<th>Phosphate buffer (μmoles), pH 6.0</th>
<th>Oxygen Uptake (μl)</th>
<th>Endogenous Octanoic acid (μmoles)</th>
<th>2-heptanone (μmoles)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>74</td>
<td>61</td>
<td>nil</td>
</tr>
<tr>
<td>25</td>
<td>215</td>
<td>413</td>
<td>0.04</td>
</tr>
<tr>
<td>50</td>
<td>232</td>
<td>363</td>
<td>0.08</td>
</tr>
<tr>
<td>100</td>
<td>212</td>
<td>328</td>
<td>0.11</td>
</tr>
<tr>
<td>200</td>
<td>204</td>
<td>311</td>
<td>0.14</td>
</tr>
</tbody>
</table>

(Each Warburg flask contained 10 mg fresh mycelium, 60 hours old, Period of incubation 120 minutes).
Table 18. The effect of phosphate concentration upon the oxidation of octanoic acid (3 μmoles) by pre-starved mycelium

<table>
<thead>
<tr>
<th>Phosphate buffer (μmoles), pH 6.0</th>
<th>Oxygen Uptake (μl)</th>
<th>2-heptanone (μmoles)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Endogenous Octanoic acid</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>90 nil</td>
</tr>
<tr>
<td>25</td>
<td>328</td>
<td>416 0.70</td>
</tr>
<tr>
<td>50</td>
<td>-</td>
<td>430 0.71</td>
</tr>
<tr>
<td>75</td>
<td>-</td>
<td>434 1.01</td>
</tr>
<tr>
<td>125</td>
<td>302</td>
<td>387 0.91</td>
</tr>
<tr>
<td>150</td>
<td>-</td>
<td>346 0.82</td>
</tr>
<tr>
<td>225</td>
<td>302</td>
<td>365 0.75</td>
</tr>
</tbody>
</table>

(Each Warburg contained 10 mg mycelium, grown for 60 hours and then shaken in buffer for 36 hours. Period of incubation 120 minutes).
Suitability of CO$_2$ formation as a measure of fatty acid oxidation

The method most widely used for determining respiration - the absorption of any CO$_2$ formed by alkali - is valid only if the cells respire at the same rate, to the same extent and follow the same pathways in the presence or absence of CO$_2$ (Dixon 1951). Since the formation of methyl ketones in the oxidation of fatty acids by the fungus almost certainly involved a decarboxylation, the effect of removing the carbon dioxide as it was formed was investigated.

Between pH 5.2 and 6.5 it was invariably found that the absence of KOH in the inner well of the Warburg flask increased the yield of methyl ketone, usually by about 5% when fresh mycelium was incubated with fatty acids but up to 50% with mycelium that had been pre-starved in buffer (Table 19). The effect was even more marked with spores, the formation of methyl ketones being enhanced by up to 100% (Table 20) when CO$_2$ was not absorbed.

The addition of comparatively large amounts of bicarbonate (10-100 μmoles) however reduced ketone formation almost completely. Neither was ketone detected when the spores were incubated in either an atmosphere of carbon dioxide or of nitrogen.
Table 19. **Effect of absorbing CO₂ on the formation of methyl ketones from fatty acids by mycelium pre-starved for 12 hours in buffer**

<table>
<thead>
<tr>
<th>Fatty Acid</th>
<th>Methyl Ketone (µmoles)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+ KOH</td>
</tr>
<tr>
<td>Hexanoic</td>
<td>1.30</td>
</tr>
<tr>
<td>Octanoic</td>
<td>1.56</td>
</tr>
</tbody>
</table>

(Each Warburg flask contained 10 mg pre-starved mycelium, 48 hours old, 50 µmoles phosphate, pH 6.0. Period of incubation 180 minutes).
Table 20. The effect of absorbing CO₂ on the formation of methyl ketones from fatty acids by spores

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>Methyl Ketones (μmoles)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6 hours</td>
</tr>
<tr>
<td></td>
<td>+ KOH</td>
</tr>
<tr>
<td></td>
<td>(3 μmoles)</td>
</tr>
<tr>
<td>C₄</td>
<td>Nil</td>
</tr>
<tr>
<td>C₆</td>
<td>Nil</td>
</tr>
<tr>
<td>C₈</td>
<td>0.70</td>
</tr>
<tr>
<td>C₁₀</td>
<td>0.15</td>
</tr>
<tr>
<td>C₁₂</td>
<td>0.10</td>
</tr>
<tr>
<td>C₁₄</td>
<td>Nil</td>
</tr>
</tbody>
</table>

(Each Warburg flask contained 1 x 10⁷ spores, 4 days old, 50 μmoles phosphate buffer pH 6.25).
Oxygen balances for the oxidation of octanoic acid by mycelium

Theoretically the complete oxidation of 1 µmole octanoic acid to CO₂ and H₂O needs 11 µmoles oxygen (246 µl). If allowance were made for the considerable amounts of 2-heptanone formed (1 µmole octanoic acid needs 1 µmole oxygen, i.e. 22.4 µl, for complete oxidation to 2-heptanone) oxygen uptakes were almost quantitative (Table 21).

Comparative rates of formation of methyl ketones by mycelium and spores

In view of the claim by Gehrig & Knight (1963) that the spores of *P. roqueforti* and not the mycelial cells were responsible for formation of methyl ketones from fatty acids it was of interest to compare the rates of formation of methyl ketone by both mycelium and spores.

Mycelium not containing spores was obtained by blending every 24 hours and re-inoculating in fresh medium, any spores enveloped initially in the medium being released by the blending. A portion of the same batch of mycelium was also pre-starved in phosphate buffer, pH 5.2, for 24 hours. Fresh and pre-starved mycelium, and also 4 day old and 9 day old spores, were incubated with octanoic acid (3 µmoles), the flasks being analysed for methyl ketones at hourly intervals. The pattern of oxidation was almost the same (compare Figures 10a & 10b), a lag period of approximately 1 hour
Table 21. **Oxygen balances obtained during the oxidation of octanoic acid by different batches of mycelium**

<table>
<thead>
<tr>
<th>Concentration octanoic acid (µmoles)</th>
<th>pH</th>
<th>2-heptanone (µmoles)</th>
<th>Oxygen Uptake (µlitres)</th>
<th>% Observed Theoretical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Observed</td>
<td>Theoretical</td>
</tr>
<tr>
<td>1</td>
<td>6.2</td>
<td>0.18</td>
<td>19.4</td>
<td>20.5</td>
</tr>
<tr>
<td>1</td>
<td>6.2</td>
<td>0.26</td>
<td>19.0</td>
<td>18.8</td>
</tr>
<tr>
<td>2</td>
<td>6.3</td>
<td>0.70</td>
<td>34.1</td>
<td>33.1</td>
</tr>
<tr>
<td>2</td>
<td>6.2</td>
<td>0.79</td>
<td>27.9</td>
<td>29.7</td>
</tr>
<tr>
<td>2</td>
<td>6.0</td>
<td>0.80</td>
<td>30.0</td>
<td>29.5</td>
</tr>
<tr>
<td>3</td>
<td>5.5</td>
<td>1.70</td>
<td>31.2</td>
<td>32.0</td>
</tr>
<tr>
<td>3</td>
<td>5.2</td>
<td>1.61</td>
<td>27.2</td>
<td>30.2</td>
</tr>
<tr>
<td>1</td>
<td>2.9</td>
<td>0.45</td>
<td>13.0</td>
<td>14.5</td>
</tr>
<tr>
<td>1</td>
<td>2.9</td>
<td>0.19</td>
<td>21.1</td>
<td>19.9</td>
</tr>
</tbody>
</table>

(Each flask contained approximately 10 mg mycelium, 50 µmoles phosphate buffer and distilled water to 3 ml. Oxygen uptake was measured until all substrate had been oxidised after 2 to 3 hours incubation).
Rates of oxygen uptake and methyl ketone formation by mycelium (Fig. 10a) at pH 5.2, and by spores (Fig. 10b) at pH 2.5 and 5.5, in the presence of 3 μmoles octanoic acid and 50 μmoles phosphate buffer.
occurring in each case before methyl ketone formation was detected. Maximum ketone formation was observed after 3 to 4 hours and then slowly decreased. Both fresh and pre-starved mycelium formed more methyl ketone than the spores (Table 22), although the reverse was more usual.

Relationship between methyl ketone formation and growth medium of spores

The cultural background of spores have a marked influence on their enzyme pattern and physiological properties (Darby & Mandels, 1955; McCormick & Halvorson, 1963). The ability of spores to oxidise fatty acids to the corresponding methyl ketone however was not significantly dependent in the present study upon the medium (Czepek-Dox, potato-dextrose and malt agars were tested) on which the spores were grown.

The effect of age on the ability of spores to metabolise fatty acids

At pH 5.2, 4 day old spores oxidised about 40% and 9 day old spores about 50% of the octanoic acid (3 μmoles) to 2-heptanone. A lag of 1 hour occurred before any ketone was detected with 4 day old spores and one of about 2 hours for the 9 day old spores (Fig. 9). The yield of ketone reached a maximum after 6 hours for 4 day old spores and after 7 hours for 9 day old spores. Between the 7th and 21st hours of incubation,
Table 22. Comparison of ability of fresh and pre-starved mycelium and spores to form 2-heptanone from octanoic acid (3 μmoles)

<table>
<thead>
<tr>
<th>Time (hours)</th>
<th>Fresh Mycelium</th>
<th>Pre-starved Mycelium</th>
<th>4 day old spores</th>
<th>9 day old spores</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1.20</td>
<td>1.72</td>
<td>0.96</td>
<td>0.12</td>
</tr>
<tr>
<td>4</td>
<td>1.60</td>
<td>1.70</td>
<td>1.10</td>
<td>0.41</td>
</tr>
<tr>
<td>6</td>
<td>1.58</td>
<td>1.52</td>
<td>1.19</td>
<td>1.36</td>
</tr>
</tbody>
</table>

(Each Warburg flask contained either 10 mg mycelium, 60 hours old, or 1 x 10^7 spores, 4 or 9 days old; 50 μmoles phosphate buffer pH 5.2).
Fig. 9. Oxygen uptake and methyl ketone formation by 4 day old spores (Curves A₁ and A₂ respectively) and 9 day old spores (Curves B₁ and B₂) in the presence of 3 μmoles octanoic acid and 50 μmoles phosphate buffer, pH 5.2.
0.42 μmoles of 2-heptanone were metabolised by the 4 day old spores. The observed oxygen uptake in excess of the endogenous respiration over the same period was 112 μl whereas theoretically 96 μl would be needed for the complete oxidation of the 2-heptanone to CO₂ and H₂O. The 9 day old spores metabolised the 2-heptanone at about the same rate as the younger spores.

At pH 6.2 the oxygen uptakes during the oxidation of fatty acids were about 3 times greater with 4 day old than with 9 day old spores. The latter however were significantly more efficient than the young spores in oxidising C₁₀ and C₁₂ acids to the corresponding methyl ketones (Table 23). In general, older spores (9-14 days) formed greater amounts of methyl ketone than younger spores and were therefore used in most experiments.

Metabolism of octanoic acid over long periods

0.1% octanoic acid (approximately 9.5 μmoles/ml) in 40 ml of phosphate buffer, pH 6.0, was incubated at 22° with sporeless mycelium, 72 hours old. As Fig. 11 shows, the yield of ketone reached a maximum after 1½ days (when 36% of the acid had been oxidised to 2-heptanone) and thereafter was metabolised slowly but completely after 10 days. The very slow rate of metabolism of methyl ketone established that the percentage lost by further metabolism in respiration experiments was not significant. As long as fatty acid was available, it appeared that any methyl ketone formed
Table 23. **Amounts of methyl ketone formed during the oxidation of various fatty acids by 4 and 9 day old spores**

<table>
<thead>
<tr>
<th>Fatty Acid (3 µmoles)</th>
<th>Methyl Ketone (µmoles) 4 day old spores</th>
<th>Methyl Ketone (µmoles) 9 day old spores</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₈</td>
<td>2.30</td>
<td>2.02</td>
</tr>
<tr>
<td>C₁₀</td>
<td>0.63</td>
<td>1.40</td>
</tr>
<tr>
<td>C₁₂</td>
<td>0.27</td>
<td>0.56</td>
</tr>
<tr>
<td>C₁₄</td>
<td>Nil</td>
<td>Nil</td>
</tr>
</tbody>
</table>

(Each Warburg flask contained 1 x 10⁷ spores, 50 µmoles phosphate buffer pH 6.2. Period of incubation 6 hours).
Fig. 11. The formation of 2-heptanone from octanoic acid (8.5 μmoles/ml) by mycelium, 72 hours old, at pH 6.0 (50 μmoles phosphate buffer/ml).
as a by-product was not utilised by the fungus.

The same experiment was carried out with spores instead of mycelium. The relatively high concentration of acid was only slowly oxidised, a maximum yield (10%) of 2-heptanone being reached after 35 days (Fig. 12). It should be noted that there was no correlation in this instance between age of spores and the formation of 2-heptanone from octanoic acid.

Effect of malonate and diethyl malonate on the oxidation of fatty acids by mycelium

It was expected that the addition of malonate, a competitive inhibitor of succinate oxidation and thus of the TCA cycle, would result in an accumulation of β-keto acid and thereby in an increase in yield of methyl ketone. However mycelium was not only able to oxidise fatty acids readily in the presence of up to 100 μmoles of malonate per 3 ml medium but also malonate itself at pH's > 5.0.

Since it was considered that the lack of inhibition at these pH's might be due to the absence of a sufficient concentration of undissociated molecules in the cells, the malonate was replaced by diethylmalonate. Its effect was to suppress the endogenous respiration of fresh mycelium and also both oxygen uptake and methyl ketone formation in the presence of fatty acids (Table 24). Diethyl malonate was inhibitory only below pH 5.5, in reasonable agreement with the conclusion of Bier (1955) that esters of dicarboxylic acids were not hydrolysed above a pH of about 5.0.
Fig. 12. The formation of 2-heptanone from octanoic acid (8.5 μmoles/ml) by 6 and 18 day old spores (labelled 12/3 and 28/2 respectively above) at pH 6.0 (50 μmoles phosphate buffer/ml).
Table 24. The effect of diethylmalonate (DEM) on the oxidation of fatty acids by fresh mycelium.

<table>
<thead>
<tr>
<th></th>
<th>Oxygen Uptake (µl)</th>
<th>Methyl Ketone (µmoles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mycelium, endogenous</td>
<td>525</td>
<td>-</td>
</tr>
<tr>
<td>" + 100 µmoles DEM</td>
<td>141</td>
<td>-</td>
</tr>
<tr>
<td>" + 4 µmoles C₁₀ acid</td>
<td>82</td>
<td>0.04</td>
</tr>
<tr>
<td>"</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>" + 3 µmoles C₈ acid</td>
<td>694</td>
<td>1.25</td>
</tr>
<tr>
<td>"</td>
<td>185</td>
<td>0.16</td>
</tr>
</tbody>
</table>

(Each Warburg flask contained approximately 10 mg mycelium, 4.2 hours old, 50 µmoles phosphate buffer pH 5.2. Period of incubation 180 minutes).
SUMMARY OF PRELIMINARY EXPERIMENTS

1. The endogenous respiration of mycelium appeared to proceed simultaneously with the oxidation of added fatty acid (in non-toxic concentrations).

2. Concentrations of fatty acid that inhibited oxygen uptake by fresh mycelium were usually readily oxidised by mycelium that had been pre-starved in buffer.

3. The ability to form methyl ketones from fatty acids was an intrinsic property of both spores and mycelium. 48 to 60 hours old mycelium and spores about 14 days old formed maximum amounts of methyl ketones.

4. Metabolism of the C₆ to C₁₀ fatty acids led to the formation of the corresponding methyl ketone with one less carbon atom. Thus only 2-pentanone was formed from hexanoic acid, 2-heptanone from octanoic acid and so forth.

5. The metabolism of 2-heptanone was slow and not significant in short term experiments (up to 3 hours).

6. At any one pH there was an optimum concentration of fatty acid for maximum oxygen uptake and formation of methyl ketone.

7. The ability of octanoic acid at any one pH to inhibit mycelial respiration became more pronounced with increasing substrate concentration.

8. The absence of KOH in the inner cell of the Warburg flasks invariably increased the yield of methyl ketones from fatty acid by both spores and mycelium. It was
not valid therefore to measure the CO$_2$ evolved by the "direct" manometric technique of comparing oxygen uptake in the presence and absence of KOH.

9. If allowance were made for the considerable amounts of 2-heptanone formed, oxygen balances for the oxidation of octanoic acid by mycelium were almost quantitative.

10. Oxidative assimilation appeared not to be of importance in the oxidation of fatty acids by mycelium.

11. Both oxygen uptake and methyl ketone formation from fatty acids were inhibited by the addition of diethyl malonate at pH's below 5.5.
OXIDATION OF FATTY ACIDS WITH AN EVEN NUMBER OF CARBON ATOMS FROM C₄ TO C₁₈ BY MYCELIUM

Using the optimum conditions determined above, the rate of oxidation of a range of fatty acids (1 μmole/ml) by mycelium (fresh and pre-starved) was investigated.

Oxidation of fatty acids at pH 2.5

Increase in oxygen uptake over endogenous respiration by fresh mycelium in the presence of fatty acid substrate was small and limited to a few acids. Maximum increase was obtained with C₄ acid, the most toxic acid being C₁₀ (Fig. 13). Methyl ketone formation from C₆ and C₈ acids was high even although both acids partially inhibited endogenous respiration. The C₁₂ and C₁₄ acids formed a small amount of ketone at this pH but subsequent analysis showed that this was a mixture of acetone and 2-undecanone for C₁₂ acid and that only acetone was formed in the oxidation of C₁₄ acid.

Shaking the mycelium in buffer for 48 hours considerably increased the ability of the mycelium to subsequently oxidise added fatty acids, particularly the C₄ - C₁₂ acids. Thus whereas the C₆ to C₁₂ acids suppressed the uptake of oxygen by fresh mycelium, C₆ was rapidly oxidised by pre-starved mycelium and the C₈ - C₁₂ acids were considerably less toxic.
Relationship between the chain length of "even-numbered" fatty acids and (a) the oxygen uptake and (b) methyl ketone formation by mycelium (66 hours old) at pH 2.5 (Fig. 13) and at pH 5.2 (Fig. 14). Each flask contained about 10 mg mycelium (dry weight), 3 μmoles of acid, 50 μmoles phosphate buffer and distilled water to 3 ml.
Oxidation of fatty acids at pH 5.2

The pattern of oxygen uptake (Fig. 14) was essentially the same as at pH 2.5 except that C_{12} acid was the most toxic of the acids and that C_{10} acid was less toxic than previously. Oxidation of C_{6} and C_{8} acids again gave the maximum yields of the corresponding methyl ketone, small amounts only being formed from the other acids up to C_{14}. Pre-starving the mycelium in buffer for 48 hours decreased the toxic action of all acids uniformly, the pattern of oxygen uptake remaining the same as with fresh mycelium.

Oxidation of fatty acids at pH 6.0

With fresh mycelium both oxygen uptake and ketone formation were a maximum when C_{8} acid was used as substrate (Fig. 15). C_{10} acid no longer inhibited oxygen uptake, the rate of uptake being greater for C_{10} than for the C_{12} and higher acids. Formation of 2-pentanone from C_{6} acid was considerably lower at pH 6.0 than at pH 2.5 or 5.0. No corresponding methyl ketones were formed using C_{14} to C_{18} as substrates but very small amounts of acetone were detected.

The inhibition of oxygen uptake by fresh mycelium in the presence of C_{12} and C_{14} acids was overcome by shaking the mycelium in pH 6.0 buffer for 30 hours, although C_{12} acid remained the least readily oxidised of the acids. The pattern of formation of methyl ketone was unaltered by pre-starving the mycelium in buffer.
Relationship between the chain length of "even-numbered" fatty acids and (a) the oxygen uptake and (b) methyl ketone formation by mycelium (66 hours old) at pH 6.0 (Fig. 15) and at pH 6.8 (Fig. 16). Each flask contained about 10 mg mycelium (dry weight), 3 μmoles of acid, 50 μmoles phosphate buffer and distilled water to 3 ml.
Oxidation of fatty acids at pH 6.8

All fatty acids tested were oxidised by fresh mycelium, maximum oxygen uptakes being obtained with C₈ and C₁₀ acids as substrates. The yields of corresponding methyl ketone were similar to those found at pH 6.0 (Fig. 16). As at other pH’s however the higher fatty acids (C₁₄ - C₁₈) were not oxidised to any significant extent, either by fresh or by pre-starved mycelium.

Contrary to the findings of Rolinson (1954) and Vinze & Ghosh (1962), increasing the concentration of C₁₆ acid from 3 umoles to 20 umoles did not increase the oxygen uptake.

Oxidation of fatty acids at pH 8.0

Increase of oxygen uptake over endogenous respiration was very small except when using C₈ and C₁₀ acids as substrates (Fig. 17). Rates were lowest for the higher fatty acids (C₁₄ - C₁₈), C₁₄ acid actually inhibiting oxygen uptake by fresh mycelium. Yields of the corresponding methyl ketones were also low, being most readily formed with C₁₀ acid as substrate.

Oxidation of oleic acid

Oleic acid was readily oxidised in the pH range 2.5 to 8.0 (Figs. 18-20) although no methyl ketone formation was detected.
Fig. 17. Relationship between the chain length of "even-numbered" fatty acids and (a) the oxygen uptake and (b) methyl ketone formation by mycelium (66 hours old) at pH 8.0. Each flask contained about 10 mg mycelium (dry weight) 3 μmoles of acid, 50 μmoles phosphate buffer, and distilled water to 3 ml.
OXIDATION OF FATTY ACIDS WITH AN ODD NUMBER OF CARBON
ATOMS BY MYCELIUM

The pattern of oxygen uptake and of methyl ketone formation was very similar to that obtained with fatty acids containing an even number of carbon atoms, suggesting that the oxidative pathway for all fatty acids is similar. Figures 18-20 show the rate of oxidation of the acids at different pH's. A number of acids with an even number of carbon atoms were included to enable comparison to be made with the previous experiments.

At pH 2.5 the oxygen uptake increased with the number of carbon atoms in the molecule from C₁ to C₅ acids. The higher fatty acids from C₇ to C₉ acids suppressed the uptake of oxygen by fresh mycelium (Fig. 18). The extent of oxygen uptake over endogenous respiration using C₁ and C₃ acids as substrates was sufficient to account for the complete oxidation of the acids to CO₂ and H₂O. A quantitative oxygen balance was obtained for C₅ acid when the yield of 2-butanone was also taken into account. The pattern of methyl ketone formation was very similar (Fig. 21A) to that from "even-numbered" fatty acids at pH 2.5.

At pH 5.2 rates of oxygen uptake were highest when C₅ and C₇ acids were used as substrates (Fig. 19). C₉, C₁₀ and C₁₁ acids inhibited oxygen uptake by fresh mycelium and formed only small amounts of methyl ketone (Fig. 21B). The greatest yield of methyl ketone was obtained from C₅.

At pH 8.0 a similar pattern was found as for the oxidation of acids with an even number of carbon atoms. C₃ and C₅ acids were barely oxidised whereas C₉, C₁₀ and C₁₁ acids were those most readily oxidised (Fig. 20).
Relationship between the chain length of "odd-numbered" fatty acids and oxygen uptake by mycelium (66 hours old) at pH 2.5 (Fig. 18) and at pH 5.2 (Fig. 19). Each flask contained about 10 mg mycelium (dry weight), 3 μmoles of acid and 50 μmoles phosphate buffer. E = endogenous respiration.
Fig. 20. Relationship between the chain length of "odd-numbered" fatty acids and oxygen uptake by mycelium (66 hours old) at pH 8.0. Each flask contained about 10 mg mycelium (dry weight), 3 μmoles of acid and 50 μmoles phosphate buffer. E = Endogenous respiration.
Relationship between chain length of "odd-numbered" fatty acids and methyl ketone formation by mycelium at pH 2.5 (Fig. 21a), pH 5.2 (Fig. 21b), and pH 8.0 (Fig. 21c). Conditions otherwise as for Fig. 20.
The greatest yield of the corresponding methyl ketone was obtained from C₉ acid (Fig. 21C).

OXIDATION OF FATTY ACIDS BY SPORES

The rate of oxygen uptake and the formation of methyl ketones by spores followed the same pattern of dependency upon pH as did mycelium. At pH 2.6 with octanoic acid as substrate the uptake of oxygen by 4 day old spores was low in comparison to that at pH 5.5 (Fig. 10B). Similarly the uptake of oxygen by 9 day old spores at pH 5.2 was low using C₁₀ and C₁₂ acids as substrate whereas oxygen uptake at pH 6.2 in the presence of these acids was greater than for C₈ acid (Fig. 22). The corresponding methyl ketones were formed in somewhat greater amounts than in experiments with mycelium. Maximum ketone formation for the C₁₀ and C₁₂ acids between pH 6.0 and 6.5 was consistent with the finding of Frank, Platzeck & Eichhorn (1961) that β-keto lauryl decarboxylase activity was optimum at pH 6.0. The oxygen uptake by spores at pH 6.2 using the C₄ to C₁₄ fatty acids as substrates followed the same pattern as that in Fig. 9, slowly increasing after the first hour and declining after about 6 hours.
Fig. 22. Relationship between chain length of "even-numbered" fatty acids and (a) oxygen uptake (b) formation of corresponding methyl ketones, by spores at pH 6.2. Each flask contained about 1×10^7 spores, 3 μmoles of acid, 50 μmoles phosphate buffer and distilled water to 3 ml.
OXIDATION OF OCTANOIC ACID AND ITS METABOLIC PRODUCTS

Since a higher percentage of octanoic acid than the other "even-numbered" acids was oxidised to the corresponding methyl ketone at pH 5.2 and above, its metabolism was investigated in greater detail.

Oxidation of 1-C14 and 2-C14 octanoic acids by spores

The radioactivity of the 2-heptanone formed during the oxidation of labelled octanoic acids was measured, after isolation from the medium, as the 2,4-DNP hydrazone. Radioactive carbon dioxide was absorbed in the inner cells of the Warburg cells with Whatman DE 20 paper impregnated with 0.05 ml 20% KOH. The counts were obtained as detailed in the Methods section of Part II.

The question of making a correction for any fatty acid vapour that might be absorbed on the alkali impregnated paper had to be considered. At acid pH's fatty acids will exist as undissociated molecules both in solution and as vapour in the flask. The acid will however be absorbed fairly rapidly by the spores and will not then be available to volatilise from the solution. A fatty acid "blank" (i.e. a Warburg flask containing no mycelium but merely radioactive fatty acid in the phosphate medium) subtracted from the readings possibly introduces as great an error as if no correction were made. In practice "blanks" were recorded but not usually subtracted from sample counts.
Duplicate flasks containing initially 1.5 μmoles and 3 μmoles 2-14C octanoic acid were taken off after 6 hours and 20 hours. Blank values obtained with flasks containing acid in buffer but no spores are included in Table 25 but have not been subtracted from the sample counts. The rate of appearance of 14C in respiratory CO\textsubscript{2} was very slow, less than 1% of the original activity of the acid (1.5 μmoles of 2-14C octanoic acid had count of 44,750 c.p.m.) appearing as CO\textsubscript{2} after 6 hours incubation with spores.

2-heptanone from 1-14C octanoic was not radioactive, showing that the carbon atom from the carboxyl group was lost during the decarboxylation. 2-heptanone from 2-14C octanoic acid was radioactive, the specific activity of the 2,4-DNP hydrazone being very similar to that of 2-14C octanoic acid itself. Both these findings afford strong evidence for a β-oxidation mechanism.

Oxidation of 2-14C octanoic acid by spores in the presence of ammonium ion

The low rate of appearance of 14CO\textsubscript{2} prompted the question whether the enzymes required for metabolism of the acid to CO\textsubscript{2} were constitutive or adaptive. If the latter were the case it seemed possible that enzyme formation could be hastened by adding ammonium ion to the system. However, the presence of ammonium ion actually slightly decreased oxygen uptake both after 6 and after 20 hours (Table 26). This was unusual since aerobic oxidation of exogenous substrate is generally markedly increased if a source of nitrogen is provided.
Table 25. The oxidation of $2-C^{14}$ octanoic acid† by spores

<table>
<thead>
<tr>
<th>Concentration (µmoles)</th>
<th>Time (hrs)</th>
<th>Oxygen uptake (µl)</th>
<th>2-heptanone (µmoles)</th>
<th>2-heptanone</th>
<th>CO$_2$</th>
<th>Acid Blank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>6</td>
<td>40</td>
<td>0.48</td>
<td>13610</td>
<td>380</td>
<td>195</td>
</tr>
<tr>
<td>"</td>
<td>6</td>
<td>43</td>
<td>0.41</td>
<td>11445</td>
<td>345</td>
<td>165</td>
</tr>
<tr>
<td>"</td>
<td>20</td>
<td>48</td>
<td>0.80</td>
<td>26110</td>
<td>935</td>
<td>600</td>
</tr>
<tr>
<td>"</td>
<td>20</td>
<td>58</td>
<td>0.95</td>
<td>35540</td>
<td>760</td>
<td>505</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>56</td>
<td>0.95</td>
<td>28280</td>
<td>540</td>
<td>220</td>
</tr>
<tr>
<td>"</td>
<td>6</td>
<td>60</td>
<td>0.90</td>
<td>27145</td>
<td>565</td>
<td>210</td>
</tr>
<tr>
<td>"</td>
<td>20</td>
<td>146</td>
<td>2.10</td>
<td>71760</td>
<td>1685</td>
<td>730</td>
</tr>
<tr>
<td>"</td>
<td>20</td>
<td>140</td>
<td>2.01</td>
<td>66140</td>
<td>1830</td>
<td>710</td>
</tr>
</tbody>
</table>

(Each Warburg flask contained 1×10^7 spores, 12 days old, 50 µmoles phosphate buffer, pH 6.0.

* Endogenous respiration subtracted

† 1.5 µmoles $2-C^{14}$ octanoic acid had activity of 44,750 c.p.m.).
Table 26. Oxidation of $2-C^{14}$ octanoic acid by spores in the presence of ammonium ion

<table>
<thead>
<tr>
<th>Time (Hrs)</th>
<th>Conca acid (μmoles)</th>
<th>Conca NH$_4^+$ (μmoles)</th>
<th>Oxygen* uptake (μl)</th>
<th>2-heptanone (μmoles)</th>
<th>$^{14}CO_2$† (C.p.m.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1.5</td>
<td>-</td>
<td>8</td>
<td>0.17</td>
<td>24.0</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>11</td>
<td>0.15</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>3</td>
<td>0.14</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>7</td>
<td>0.12</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>11</td>
<td>0.61</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>11</td>
<td>0.54</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>11</td>
<td>0.22</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>6</td>
<td>0.19</td>
<td>520</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1.5</td>
<td>-</td>
<td>44</td>
<td>0.83</td>
<td>34.5</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>55</td>
<td>0.84</td>
<td>290</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>36</td>
<td>0.70</td>
<td>355</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>39</td>
<td>0.68</td>
<td>380</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>121</td>
<td>1.95</td>
<td>104.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>131</td>
<td>1.82</td>
<td>1120</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>123</td>
<td>1.45</td>
<td>654.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>102</td>
<td>1.30</td>
<td>3255</td>
<td></td>
</tr>
</tbody>
</table>

(Each Warburg flask contained 1×10^7 spores, 8 days old, 50 μmoles phosphate buffer pH 6.1. 1.5 μmoles $2-C^{14}$ octanoic acid had activity of 44,750 c.p.m.
* Endogenous respiration subtracted.
† Acid blanks subtracted)
(Cochrane, 1958). The yield of methyl ketone in flasks containing ammonium ion was also decreased. In the oxidation of 1.5 μmoles 2-\(^{14}\)C octanoic acid, flasks without ammonium ion contained approximately 20% more 2-heptanone after both 6 hours and after 20 hours. The absence or presence of ammonium ion made no difference to the amount of \(^{14}\)CO\(_2\) detected after 6 or 20 hours.

In the oxidation of 3 μmoles acid, flasks without ammonium ion contained almost 3 times more 2-heptanone after 6 hours and 40% more after 20 hours. There was no difference in \(^{14}\)CO\(_2\) detected after 6 hours but a significant increase (3 to 5 times) after 20 hours with ammonium ion present.

Rates of formation of \(^{14}\)CO\(_2\) during the oxidation of 1-\(^{14}\)C and 2-\(^{14}\)C octanoic acids by mycelium

Radioactive carbon dioxide was absorbed in the inner cells of the Warburg flasks by DE 20 paper impregnated with 0.05 ml 20% KOH. Duplicate flasks of each acid were analysed every 30 minutes and the counts averaged. A correction was made for any \(^{14}\)CO\(_2\) absorbed, as a result of the decarboxylation of \(\beta\)-keto octanoic-1-\(^{14}\)C acid, by measuring the quantity of 2-heptanone formed. 1 μmole of 2-heptanone is equivalent to 1 μmole of \(^{14}\)CO\(_2\), the specific activity of which would be that of the 1-\(^{14}\)C octanoic acid used. In this particular experiment however no methyl ketone was detected in the first 120 min. and only 0.05 μmoles after 150 min.
The rate of appearance of C^{14} in respiratory CO_2 was faster with mycelium than with spores. Less than 1% of the original activity of $2-C^{14}$ octanoic acid appeared as $^{14}CO_2$ after 6 hours incubation with spores (Table 25) whereas mycelium oxidised 7% of $2-C^{14}$ octanoic acid, and over 21% of $1-C^{14}$ octanoic acid, to $^{14}CO_2$ in 150 min. (Table 27).

Table 27. The effect of odd versus even carbon labelling in octanoic acid on the rate of appearance of C^{14} in respiratory CO_2

<table>
<thead>
<tr>
<th>Time (mins)</th>
<th>Octanoic acid-$1-C^{14}$ $^{14}CO_2$ found</th>
<th>Octanoic acid-$2-C^{14}$ $^{14}CO_2$ found</th>
<th>Ratio Odd/even</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C.p.m. % total C^{14}</td>
<td>C.p.m. % total C^{14}</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1150 2.7</td>
<td>500 1.1</td>
<td>2.45</td>
</tr>
<tr>
<td>60</td>
<td>1955 4.5</td>
<td>1495 3.3</td>
<td>1.7</td>
</tr>
<tr>
<td>90</td>
<td>4380 10.1</td>
<td>2235 5.0</td>
<td>2.0</td>
</tr>
<tr>
<td>120</td>
<td>6365 14.7</td>
<td>2575 5.7</td>
<td>2.6</td>
</tr>
<tr>
<td>150</td>
<td>9130 21.7</td>
<td>3185 7.0</td>
<td>3.1</td>
</tr>
</tbody>
</table>

(Each Warburg flask contained approximately 10 mg mycelium, 4.8 hours old, 50 μmoles phosphate pH 6.0, 1.5 μmoles of both $1-C^{14}$ octanoic acid (43,500 c.p.m.) and $2-C^{14}$ octanoic acid (44,750 c.p.m.) were used).
Metabolism of 2-heptanone by mycelium

The rates at which three different batches of mycelium metabolised 2-heptanone appeared to depend upon the length of time for which the mycelium had been grown (Table 28). In Expt. 1 the oxygen uptake in excess of endogenous respiration by 48 hours old mycelium incubated with 0.2 and 0.4 μmoles of 2-heptanone was very small. The same concentrations of 2-heptanone in Expt. 2 were more rapidly metabolised by 63 hours old mycelium and a greater uptake of oxygen was recorded. In Expt. 3, 72 hours old mycelium almost completely metabolised 0.66 μmoles of 2-heptanone in 4 hours. Blank runs, i.e. shaking heptanone in the flasks without mycelium for the duration of the experiment, showed that no significant loss of ketone occurred through volatilisation.

An acceptable oxygen balance was only obtained in Expt. 2, an oxygen uptake of 60 μl being recorded during the oxidation of 0.26 μmoles of heptanone when theoretically 58 μl would be expected for complete oxidation to CO₂ and H₂O. It was thought possible that when non-quantitative oxygen balances were obtained part of the loss might be due to reduction of 2-heptanone to 2-heptanol by DPN (diphosphopyridinenucleotide) linked reductase (Franke, Platzeck & Eichhorn, 1962). The addition of malate, which was expected to regenerate the reduced coenzyme, made no appreciable difference to the rate of metabolism of the 2-heptanone (Table 28).
Table 28. The metabolism of 2-heptanone by mycelium

<table>
<thead>
<tr>
<th>Experiment 1</th>
<th>Mycelium, endogenous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mycelium</td>
<td>+ 0.1 μmoles heptanone</td>
</tr>
<tr>
<td>4.8 hours old</td>
<td>+ 0.2 μmoles malate</td>
</tr>
<tr>
<td>Period of incubation</td>
<td>114</td>
</tr>
<tr>
<td>18 hours,</td>
<td>+ 0.2 μmoles malate</td>
</tr>
<tr>
<td>No mycelium + 0.1 μmoles heptanone</td>
<td>113</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Experiment 2</th>
<th>Mycelium, endogenous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mycelium</td>
<td>+ 0.1 μmoles heptanone</td>
</tr>
<tr>
<td>63 hours old</td>
<td>+ 0.2 μmoles malate</td>
</tr>
<tr>
<td>Period of incubation</td>
<td>216</td>
</tr>
<tr>
<td>7½ hours</td>
<td>+ 0.1 heptanone (No KOH)</td>
</tr>
<tr>
<td>+ 0.2 μmoles malate (no KOH)</td>
<td>213</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Experiment 3</th>
<th>Mycelium, endogenous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mycelium</td>
<td>+ 0.33 μmoles heptanone</td>
</tr>
<tr>
<td>72 hours old</td>
<td>+ 0.66</td>
</tr>
<tr>
<td>Period of incubation</td>
<td>411</td>
</tr>
<tr>
<td>4 hours</td>
<td>+ 0.33</td>
</tr>
</tbody>
</table>

(Oxygen uptake 2-heptanone (μmoles) Initial Final)

107 - -
128 0.4 0.25
114 0.4 0.22
116 0.2 0.12
113 - 0.34
216 0.4 0.17
309 0.4 0.17
329 0.4 0.14
213 - 0.11
388 - -
411 0.66 0.06
414 0.33 0.28
416 - 0.59

(Each Warburg flask contained 3 mg fresh mycelium, 50 μmoles phosphate buffer pH 6.0).
The metabolism of 2-heptanone-1-C^{14} by mycelium

No significant percentage of the radioactivity of the 2-heptanone-1-C^{14} that was metabolised appeared as 14CO$_2$ after $3\frac{1}{2}$ hours (Table 29). Blanks were obtained by shaking 2-heptanone-1-C^{14} in the absence of mycelium.

The observed oxygen uptake was greater than that theoretically necessary to account for the complete oxidation to CO$_2$ and H$_2$O of the heptanone metabolised by the mycelium. Since however no 14CO$_2$ was detected the increased oxygen uptake was presumably due to stimulation of endogenous respiration in the presence of 2-heptanone.

The metabolism of 2-heptanone-1-C^{14} by spores

Triplicate flasks of the radioactive 2-heptanone were analysed after incubation with spores for 8 hours. Approximately 40% of the radioactivity of the 2-heptanone-1-C^{14} that was metabolised appeared as 14CO$_2$ (Table 30).

In flask 1 the uptake of oxygen over endogenous respiration was approximately the amount that was needed for complete oxidation of the methyl ketone that disappeared. Since however only about 4.0% of the radioactivity of the 2-heptanone-1-C^{14} metabolised re-appeared as 14CO$_2$, it would seem that the other 60% was assimilated into endogenous material.
Table 29. The metabolism of 2-heptanone-1-C\(^{14}\)
by mycelium

<table>
<thead>
<tr>
<th>Warburg flask</th>
<th>2-heptanone-1-C(^{14}) (µmoles)</th>
<th>Oxygen uptake (µl)</th>
<th>(^{14})CO(_2) C.p.m.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial</td>
<td>Final</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.34</td>
<td>0.15</td>
<td>43</td>
</tr>
<tr>
<td>2</td>
<td>"</td>
<td>0.18</td>
<td>36</td>
</tr>
<tr>
<td>3</td>
<td>0.19</td>
<td>0.12</td>
<td>49</td>
</tr>
<tr>
<td>4</td>
<td>"</td>
<td>0.10</td>
<td>53</td>
</tr>
<tr>
<td>5</td>
<td>0.34</td>
<td>0.30</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>0.19</td>
<td>0.18</td>
<td>-</td>
</tr>
</tbody>
</table>

(Each Warburg flask contained approximately 10 mg mycelium, 40 hours old, 50 µmoles phosphate buffer pH 6.0. Period of incubation 3.5 hours. Flasks 5 and 6 contained no mycelium. * Endogenous respiration deducted.)
Table 30. The metabolism of 2-heptanone-1-14C by spores

<table>
<thead>
<tr>
<th>Warburg flask</th>
<th>2-heptanone-1-14C (µmoles)</th>
<th>Oxygen uptake (µl)</th>
<th>14CO$_2$ C.p.m.</th>
<th>14CO$_2$ as % ketone metabolised</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.25</td>
<td>0.17</td>
<td>18</td>
<td>1730</td>
</tr>
<tr>
<td>2</td>
<td>"</td>
<td>0.16</td>
<td>15</td>
<td>1735</td>
</tr>
<tr>
<td>3</td>
<td>"</td>
<td>0.13</td>
<td>15</td>
<td>1685</td>
</tr>
<tr>
<td>4</td>
<td>"</td>
<td>0.23</td>
<td>-</td>
<td>180</td>
</tr>
<tr>
<td>5</td>
<td>"</td>
<td>0.22</td>
<td>-</td>
<td>155</td>
</tr>
</tbody>
</table>

(Each Warburg flask contained 1 x 10^7 spores, 6 days old, 50 µmoles phosphate buffer pH 6.1. Period of incubation 8 hours. Flasks 4 and 5 contained no spores.
* Endogenous respiration deducted.)
Formation of methyl carbinols during the oxidation of fatty acids

Since the question of whether methyl ketones were formed from, or converted to, methyl carbinols had yet to be resolved, it was thought desirable to re-investigate the problem using both mycelium and spores.

Octanoic acid (10 μmoles/ml) was incubated with spores at room temperature, samples being withdrawn every 24 hr. to determine whether the methyl ketone or the methyl carbinol accumulated preferentially. 2-heptanone was detected initially in greater concentration (maximum yield 1.83 μmoles/ml after 2 days) than 2-heptanol but decreased slowly to zero after 5 days (Table 31). At 28°, 2-heptanol was again detected initially in greater concentration (maximum yield 0.5 μmoles after 2 days), decreasing to zero after 4 days incubation.

Mycelium grown from the same batch of spores formed a small amount of 2-heptanol at room temperature (Table 31) but none was detected at 28°.

These experiments did not confirm the finding of Franke, Platzeck & Eichhorn (1962) that methyl carbinols accumulate during the oxidation of fatty acids by fungal spores at the same rate as the yield of methyl ketone decreases.

The relationship between the metabolism of 2-heptanone and 2-heptanol by mycelium

Fresh mycelium was shaken at 28° in two Warburg flasks, each containing 80 ml of phosphate buffer, pH 6.4
Table 31. Rates of formation of 2-heptanone and 2-heptanol during oxidation of octanoic acid (10 μmoles/ml) by spores and mycelium at room temperature.

<table>
<thead>
<tr>
<th>Incubation Period (days)</th>
<th>2-heptanone (μmoles/ml)</th>
<th>2-heptanol (μmoles/ml)</th>
<th>2-heptanone 2-heptanol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spores</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.31</td>
<td>0.63</td>
<td>0.51</td>
</tr>
<tr>
<td>2</td>
<td>1.02</td>
<td>1.83</td>
<td>0.56</td>
</tr>
<tr>
<td>3</td>
<td>1.7</td>
<td>0.43</td>
<td>4.0</td>
</tr>
<tr>
<td>4</td>
<td>2.0</td>
<td>0.09</td>
<td>23.0</td>
</tr>
<tr>
<td>5</td>
<td>2.0</td>
<td>Nil</td>
<td>-</td>
</tr>
<tr>
<td>Mycelium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Nil</td>
<td>Nil</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>0.05</td>
<td>Nil</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>0.22</td>
<td>0.03</td>
<td>7.0</td>
</tr>
</tbody>
</table>

(Each Warburg flask contained either 1 x 10⁸ spores, 9 days old, or 100 mg mycelium, 4.8 hours old; 5000 μmoles phosphate buffer (pH 6.1) per 100 ml. * Grown from same batch of spores.)
and 0.55 μmoles/ml of either 2-heptanol or 2-heptanone. At intervals 10 ml of medium were withdrawn for ether extraction and analysis by gas chromatography as previously described and 1 ml was withdrawn for the determination of the concentration of 2-heptanone.

The rate of disappearance of the 2-heptanol from the medium was slow initially, 2% only of the 2-heptanol having been metabolised after 4 hours and 5% after 8 hours. However 75% had disappeared after 24 hours and 89% after 32 hours (Fig. 23). The yield of ketone obtained did not correspond exactly to the amount of carbinol that disappeared, the ketone presumably being slowly further metabolised by the mycelium.

The ketone (0.55 μmoles/ml initially) was slowly metabolised, the concentration falling by 25% to 0.41 μmoles/ml after 24 hours and by 44% to 0.31 μmoles/ml after 32 hours (Fig. 23). However, the concentration of 2-heptanol formed (5% of the initial 2-heptanone) did not increase to any significant extent between the first analysis (4 hours) and the last (32 hours).

In a second experiment a lower concentration of 2-heptanone (0.14 μmoles/ml) was used. The rate of disappearance of ketone (35% in 2 days) and formation of 2-heptanol (less than 5%) was however almost identical to the first experiment.

In view of the poor yield of 2-heptanol obtained above, its formation was confirmed using 2-heptanone-1-C14 as substrate. 25 μmoles of 2-heptanone-1-C14 (750,000 c.p.m.) in 100 ml of buffer pH 6.1 were shaken with mycelium for 24 hours at 28°. The 2-heptanol-1-C14 was extracted as the 3,5 dinitrobenzoate and chromatographed as described in the Methods section. The derivative was detected under U.V. light, dried,
The oxidation of 2-heptanol by mycelium at pH 6.1 (50 μmoles phosphate buffer/ml). Curve A shows the increase in 2-heptanone and Curve B the decrease in 2-heptanol with time.
cut out and counted directly. 1400 c.p.m. above background were obtained, which was approximately 0.2% of the original radioactivity. Although this low recovery could be partly attributed to the low yield of 3,5 dinitrobenzoate of 2-heptanol and quenching of the derivative in the scintillation fluid, it confirmed that the reduction of ketone to carbinol by mycelium occurred to a limited extent only.

Oxidation of triglycerides to methyl carbinols by spores

In contrast to the oxidation of fatty acids by spores, the oxidation of triglycerides led to a marked accumulation of both methyl carbinols and methyl ketones. For example flask C (Fig. 29) contained approximately 10 μmoles 2-heptanone and 2 μmoles 2-heptanol after 12 day old spores had been incubated with trioctanoin and ammonium sulphate for 38 days. Flask D, in which there was no source of nitrogen and only traces of mycelium were detected, contained 11 μmoles 2-heptanone and 3.5 μmoles 2-heptanol.

Younger spores (5 days old) incubated at 30° under identical conditions to the above experiment did not however give such large quantities of carbinol. One flask contained, after 40 days incubation, 4.5 μmoles 2-heptanone and 0.25 μmoles 2-heptanol.
INHIBITION OF RESPIRATION OF MYCELIUM BY FATTY ACIDS

In the present investigation it has been shown that the ability of fatty acids to inhibit mycelial respiration depended upon

1. the chain length of the acid.
2. the concentration of acid.
3. the pH at which the activity was measured.
4. whether fresh or pre-starved mycelium was used.

There appeared to be no simple explanation available as to why the C₈ to C₁₂ acids should be more toxic than other acids. A number of supplementary experiments were therefore carried out to determine the mechanism of toxicity, particularly with reference to a possible relationship existing between toxicity and the fact that only one methyl ketone was formed in the oxidation of a fatty acid.

The combined effect of adding toxic and non-toxic acids on methyl ketone formation by mycelium

When toxic and non-toxic (e.g., C₆ and C₅) acids were added simultaneously, endogenous respiration was inhibited. However both corresponding methyl ketones were formed showing that the acids were oxidised as far as the β-keto acids (Table 34).

When a non-toxic acid, e.g., C₅, was first shaken with the mycelium for 30 minutes and oxidation was
occurring normally, the addition of a toxic acid such as C_{11} suppressed oxygen uptake by the mycelium markedly. The toxic acid was not immediately effective in inhibiting oxygen uptake, C_{11} acid taking 30 minutes and the less toxic C_{10} acid 45 minutes to reduce the oxygen uptake to a minimum (Fig. 24). The addition of the toxic acid however in most cases markedly increased the formation of C_4 methyl ketone from C_5 acid (Table 34), the more toxic acid (C_{11}) being more effective than the less toxic (C_{10}).

Effect of concentration of toxic acid added

The preliminary experiments had shown that although the oxygen uptake by mycelium in the presence of a non-toxic acid could be inhibited by the addition of a toxic acid, methyl ketone formation from the non-toxic acid was actually enhanced in most cases. It was of interest therefore to determine the relationship between methyl ketone formation from the non-toxic acid and the concentration of toxic acid added.

Pre-incubation with non-toxic acid (C_8) followed by toxic acid (C_{10})

2 μmoles of C_8 acid were shaken with mycelium in Warburg flasks for 30 min, varying concentrations of C_{10} acid then being added. At the same time, identical concentrations of C_{10} acid were added to fresh mycelium
The inhibition of oxygen uptake by mycelium in the presence of a non-toxic acid (C₅) by the addition of a toxic acid (C₁₀ or C₁₁).

Each flask contained about 10 mg mycelium, 50 µmoles of phosphate buffer, pH 5.2, 3 µmoles of each acid and distilled water to 3 ml.
Table 34. The combined effect of adding toxic and non-toxic acids on methyl ketone formation by mycelium

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Mycelium, 60 hrs. old</th>
<th></th>
<th></th>
<th>Methyl ketone (µmoles)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C₄</td>
<td>C₉</td>
<td>C₁₀</td>
</tr>
<tr>
<td>C₅ only</td>
<td></td>
<td>0.19</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C₁₀ "</td>
<td></td>
<td>-</td>
<td>0.40</td>
<td>-</td>
</tr>
<tr>
<td>C₁₁ "</td>
<td></td>
<td>-</td>
<td>-</td>
<td>0.16</td>
</tr>
<tr>
<td>C₅ & C₁₀ together</td>
<td></td>
<td>0.39</td>
<td>0.37</td>
<td>-</td>
</tr>
<tr>
<td>C₅ followed by C₁₀</td>
<td></td>
<td>0.39</td>
<td>0.35</td>
<td>-</td>
</tr>
<tr>
<td>C₅ " " " C₁₁</td>
<td></td>
<td>0.90</td>
<td>-</td>
<td>0.20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Mycelium, 48 hrs. old</th>
<th></th>
<th></th>
<th>Methyl ketone (µmoles)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C₄</td>
<td>C₉</td>
<td>C₁₀</td>
</tr>
<tr>
<td>C₅ only</td>
<td></td>
<td>0.26</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C₁₁ "</td>
<td></td>
<td>-</td>
<td>-</td>
<td>0.30</td>
</tr>
<tr>
<td>C₅ followed by C₁₁</td>
<td></td>
<td>0.90</td>
<td>-</td>
<td>0.25</td>
</tr>
<tr>
<td>C₁₁ " " " C₅</td>
<td></td>
<td>0.18</td>
<td>-</td>
<td>0.20</td>
</tr>
<tr>
<td>C₅ & C₁₁ together</td>
<td></td>
<td>0.15</td>
<td>-</td>
<td>0.15</td>
</tr>
</tbody>
</table>

(Each Warburg flask contained 10 mg mycelium, 50 µmoles phosphate buffer pH 5.2. 3 µmoles of each acid were used, the second of any pair of acids being added 30 min. after the first and incubation continued for a further 160 min.)
Table 35. The effect of C₁₀ acid on the ability of mycelium to oxidise C₈ acid to 2-heptanone

<table>
<thead>
<tr>
<th></th>
<th>2-heptanone (μmoles)</th>
<th>2-nonanone (μmoles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mycelium, control</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>" + 2 μmoles C₈</td>
<td>0.05</td>
<td>Nil</td>
</tr>
<tr>
<td>" + " followed by 2 μmoles C₁₀</td>
<td>0.46</td>
<td>0.08</td>
</tr>
<tr>
<td>" + " " 4 " " 6 " "</td>
<td>0.18</td>
<td>0.06</td>
</tr>
<tr>
<td>" + " " 6 " "</td>
<td>0.05</td>
<td>0.08</td>
</tr>
<tr>
<td>Mycelium, shaken,</td>
<td>" 2 " " 4 " " 6 " "</td>
<td>-</td>
</tr>
<tr>
<td>" " " " " "</td>
<td>-</td>
<td>0.10</td>
</tr>
<tr>
<td>" " " " " "</td>
<td>-</td>
<td>0.10</td>
</tr>
<tr>
<td>Mycelium + 2 μmoles C₁₀ " 2 " " C₈</td>
<td>0.80</td>
<td>0.07</td>
</tr>
<tr>
<td>" + 3 " " 2 " "</td>
<td>0.92</td>
<td>0.09</td>
</tr>
</tbody>
</table>

(Each Warburg flask contained 10 mg mycelium, 48 hours old, 50 μmoles phosphate buffer pH 5.2. The second acid was added 30 minutes after the first, incubation being continued for a further 120 min.).
as controls. As the results in Table 35 show the production of 2-heptanone was markedly increased by adding 2 μmoles C_{10} acid, but the addition of higher concentrations of C_{10} acid resulted in smaller increases of 2-heptanone from octanoic acid.

Pre-incubation with toxic acid followed by non-toxic acid

Mycelium from the above experiment was used to investigate the effect of shaking for 30 minutes with a toxic (C_{10}) acid followed by a non-toxic (C_8) acid. A considerably higher yield of 2-heptanone was obtained than with the reverse order of acids (Table 35). In view of these results mycelium was pre-incubated with different concentrations of C_{10} acid for varying times to determine whether the duration of contact of the C_{10} acid with the mycelium influenced its ability to subsequently oxidise C_8 acid to 2-heptanone.

Pre-incubation of mycelium with C_{10} acid for 3 hours.

Mycelium suspended in phosphate buffer (pH 5.2) was shaken for 3 hours with two different concentrations of C_{10} acid (4 μmoles and 10 μmoles). The mycelium was collected on a Millipore Filter, washed with 100 ml of 0.05 M phosphate buffer (pH 7.0) and with 50 ml of distilled water. The mycelium was then resuspended in 3 ml of phosphate buffer (pH 5.2). 2 μmoles of C_8 acid were added to the washed mycelium and oxidation allowed to proceed for 3 hours. The mycelium pretreated with 4 μmoles C_{10} gave an almost quantitative yield of 2-heptanone. Oxygen uptake over endogenous
respiration was very slow, the observed uptake of 42 μl being almost that theoretically needed for the formation of 1.86 μmoles of 2-heptanone from C₈ acid (Table 36, Expt. 1). Pre-incubation of the mycelium with 10 μmoles C₁₀ acid however completely inhibited its ability subsequently to oxidise octanoic acid to 2-heptanone.

Two controls were obtained by shaking mycelium in phosphate buffer, washing as described above and resuspending in pH 5.2 buffer. To one control 2 μmoles C₈ acid were added, oxygen uptake being rapid and almost quantitative after 3 hours, indicating that the mycelium was unaffected by the washing procedure. The second control showed the endogenous respiration of the washed mycelium to be the same as that before washing.

To demonstrate that the washing procedure had not removed the inhibitory effect of the C₁₀ acid, mycelium pre-incubated with C₁₀ acid was washed and resuspended as above. The oxygen uptake by these washed cells (Table 36) remained very low.

Pre-incubation of mycelium with C₁₀ acid for 40 min. and 10 min. Different batches of mycelium were pre-incubated for 40 min. and 10 min. respectively with varying concentrations of C₁₀ acid. The time for which the C₁₀ acid was in contact with the mycelium did not appear to be important since in all cases the pattern of subsequent oxidation of octanoic acid to 2-heptanone by the mycelium was the same (Table 36, Expts. 2 and 3).
<table>
<thead>
<tr>
<th>Experiment</th>
<th>Pre-incubation with C₁₀ acid for 3 hours</th>
<th>2-heptanone (µmoles)</th>
<th>Oxygen uptake (µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mycelium washed, control</td>
<td>Nil</td>
<td>259</td>
</tr>
<tr>
<td></td>
<td>" + 4 µmoles C₁₀</td>
<td>Nil</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>" +10 "</td>
<td>Nil</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mycelium control, + 2 µmoles C₈ acid</td>
<td>0.81</td>
<td>578</td>
</tr>
<tr>
<td></td>
<td>" + 4 µmoles C₁₀</td>
<td>1.86</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>" +10 "</td>
<td>Nil</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Mycelium washed, control</td>
<td>Nil</td>
<td>202</td>
</tr>
<tr>
<td></td>
<td>" + 2 µmoles C₁₀</td>
<td>Nil</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>" + 3 "</td>
<td>Nil</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mycelium</td>
<td>+ 2 µmoles C₈ acid</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>" + 2 µmoles C₁₀</td>
<td>1.30</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>" + 3 "</td>
<td>1.02</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>" + 6 "</td>
<td>0.24</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>" + 10 "</td>
<td>0.12</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Pre-incubation with C₁₀ acid for 10 minutes</th>
<th>2-heptanone (µmoles)</th>
<th>Oxygen uptake (µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mycelium washed, control</td>
<td>Nil</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>" + 2 µmoles C₈ acid</td>
<td>0.27</td>
<td>1.14</td>
</tr>
<tr>
<td></td>
<td>" + 2 µmoles C₁₀</td>
<td>1.53</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>" + 3 "</td>
<td>0.50</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>" + 6 "</td>
<td>0.21</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>" + 8 "</td>
<td>0.10</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>" + 10 "</td>
<td>0.09</td>
<td>36</td>
</tr>
</tbody>
</table>

(Each Warburg flask contained 10 mg washed* mycelium, 4.6 hours old, 50 µmoles phosphate buffer pH 5.2. Period of incubation 3 hours. * see text for details).
The use of $2-C^{14}$ octanoic acid to show the extent of toxicity exerted by C_{10} acid

To investigate further the toxic action of C_{10} acid on mycelium, experiments were carried out using $2-C^{14}$ octanoic acid. The mycelium was shaken for 1 hour with 6 μmoles of C_{10} acid, washed with pH 7.0 buffer as outlined in the previous experiments and re-suspended in buffer (pH 5.2). 1 μmole of $2-C^{14}$ octanoic acid was then incubated with the washed mycelium for 2 hours. An acid blank, i.e. 1 μmole $2-C^{14}$ octanoic acid in 3 ml buffer (pH 5.2) without added mycelium, was also included.

Mycelium washed with buffer as above was able to oxidise octanoic acid to carbon dioxide. In 2 hours 5 to 10% of the initial radioactivity of the acid appeared as radioactive CO$_2$ (Table 37). Mycelium that had been pre-treated with C_{10} acid formed no significant amounts of radioactive CO$_2$ when incubated with $2-C^{14}$ octanoic acid. A greater yield of 2-heptanone-1-C^{14} was obtained after using mycelium pre-treated with C_{10} acid than with fresh mycelium.

Reversibility of toxicity of octanoic acid at low pH

The dependence of the toxic effect of acids upon pH has been amply demonstrated in the previous experiments. The results in Fig. 25 show that the toxic effect of C_8 on mycelium at pH 2.5 could be reversed slowly by the addition after 1 hour of sufficient KOH (30 μmoles) to bring the contents of the Warburg cell to pH 5.5, at which pH C_8 acid is normally oxidised.
Table 37. The use of octanoic-2-C\(^{14}\) acid to demonstrate the extent of toxicity exerted by C\(_{10}\)-acid

<table>
<thead>
<tr>
<th></th>
<th>Oxygen uptake ((\mu l))</th>
<th>(14^C)(CO_2) C.p.m</th>
<th>2-heptanone -1-C(^{14}) ((\mu)moles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mycelium, washed. Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>314</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>"</td>
<td>312</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>" + 1 (\mu)mole octanoic-2-C(^{14}) acid</td>
<td>388</td>
<td>2400</td>
<td>0.05</td>
</tr>
<tr>
<td>"</td>
<td>445</td>
<td>2120</td>
<td>0.12</td>
</tr>
<tr>
<td>" + 6 (\mu)moles C(_{10}) acid, washed. Control</td>
<td>40</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>"</td>
<td>445</td>
<td>2120</td>
<td>0.12</td>
</tr>
<tr>
<td>" + 1 (\mu)mole octanoic-2-C(^{14}) acid</td>
<td>74</td>
<td>230</td>
<td>0.31</td>
</tr>
<tr>
<td>"</td>
<td>64</td>
<td>225</td>
<td>0.28</td>
</tr>
<tr>
<td>No mycelium + 1 (\mu)mole octanoic-2-C(^{14}) acid (blank)</td>
<td>-</td>
<td>215</td>
<td>-</td>
</tr>
</tbody>
</table>

(Each Warburg flask contained 10 mg washed mycelium, 60 hours old, 50 \(\mu\)moles phosphate buffer pH 5.2. Period of incubation 2 hours).
Table 38. The reversibility of the toxicity of octanoic acid at pH 2.6 towards mycelium by addition of alkali

<table>
<thead>
<tr>
<th>Octanoic acid µmoles</th>
<th>pH</th>
<th>2-heptanone µmoles</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2.6</td>
<td>0.12</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>0.03</td>
</tr>
<tr>
<td>4</td>
<td>5.5</td>
<td>2.61</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>2.65</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>2.38</td>
</tr>
<tr>
<td>4</td>
<td>2.6 → 5.5</td>
<td>2.33</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>1.80</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>0.62</td>
</tr>
</tbody>
</table>

(Each Warburg flask contained 10 mg mycelium, 48 hours old, 50 µmoles phosphate buffer. Incubation period 6 hours. * 30 µmoles KOH added after 1 hour to raise pH from 2.6 to 5.5).
Fig. 25. The reversibility of the toxic effect of octanoic acid (4, 6 and 8 μmoles) towards mycelium at pH 2.6 by raising the pH to 5.5. Each flask contained about 10 mg mycelium (dry weight), 50 μmoles phosphate buffer and distilled water to 3 ml. 30 μmoles KOH added after 1 hour to raise pH to 5.5.
readily. The oxygen uptake and yield of 2-heptanone slowly increased after the addition of alkali. The yield of 2-heptanone obtained from 4 μmoles octanoic acid at pH 5.5 was not significantly higher than that when the acid was first added at pH 2.6 and the pH then raised after 1 hour to 5.5 (Table 38).

The time taken to overcome the toxicity at pH 2.6 depended upon the concentration of toxic acid added initially (Fig. 25). This was also shown by the relatively low yield of 2-heptanone obtained when the pH of the flask containing 8 μmoles of octanoic acid was raised from 2.6 to 5.5 (Table 38).

Effect of -CO-CH₂-CO grouping on oxidation of fatty acids

A working hypothesis considered was that the β-keto acids themselves were toxic to the oxidising enzymes. Both -NH₂ and -SH groups might be expected to add readily on to the β-keto group in the -CO.CH₂-COOH grouping since the β-keto group will be activated by the proximity of the -COOH group. The only readily available compound containing a -CO-CH₂-CO grouping was ethyl acetoacetate. This was rapidly oxidised by mycelium at pH 5.8 and its presence was also unable to prevent the oxidation of octanoic acid to any significant extent. However the presence of acetoacetate partly inhibited the oxidation of C₁₀ acid (Table 39), the oxygen uptake was approximately halved and the formation of methyl ketone decreased by one third.
Table 39. **The effect of ethyl acetoacetate** (EtAcAc) **and glutathione** (GSH) **on the oxidation of fatty acids by mycelium**

<table>
<thead>
<tr>
<th>Mycelium, Endogenous</th>
<th>Oxygen uptake (µl)</th>
<th>Methyl ketone (µmoles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>" + 3 µmoles C_{10} acid</td>
<td>351</td>
<td>0.31</td>
</tr>
<tr>
<td>" + " + 100 µmoles EtAcAc</td>
<td>192</td>
<td>0.19</td>
</tr>
<tr>
<td>" + " + 100 " GSH</td>
<td>25</td>
<td>0.26</td>
</tr>
<tr>
<td>" + 100 µmoles EtAcAc</td>
<td>450</td>
<td>-</td>
</tr>
<tr>
<td>" + 100 " GSH</td>
<td>93</td>
<td>-</td>
</tr>
<tr>
<td>" + 2 µmoles C_{8} acid</td>
<td>295</td>
<td>1.07</td>
</tr>
<tr>
<td>" " + 25 µmoles GSH</td>
<td>265</td>
<td>0.56</td>
</tr>
<tr>
<td>" " 50 " "</td>
<td>216</td>
<td>0.40</td>
</tr>
<tr>
<td>" " 100 " "</td>
<td>200</td>
<td>0.38</td>
</tr>
<tr>
<td>" " 100 " EtAcAc</td>
<td>300</td>
<td>0.94</td>
</tr>
</tbody>
</table>

(Each Warburg flask contained 10 mg mycelium, 48 hours old, 50 µmoles phosphate buffer, pH 5.8. Incubation period 4 hours).
Effect of glutathione

An attempt was also made to determine if the toxicity of fatty acids towards mycelium was a consequence of the deactivation of the thiol groups of the oxidising enzymes. The presence of glutathione was expected to protect such enzymes. An unexpected result was that the glutathione, although somewhat stimulatory to the control, both suppressed the oxygen uptake during the oxidation of C₈ and C₁₀ acids and lowered the yield of methyl ketone (Table 39).
OXIDATION OF TRIGLYCERIDES

Oxidation of triglycerides by mycelium

Mycelium oxidised triglycerides slowly, after an initial lag period of about 1 hour (Fig. 26). This lag period was possibly caused by the necessity for the cells to synthesise lipases, after which accelerated oxidation took place. High lipase activity might not be expected in mycelium grown with the glucose-ammonium nitrate medium since many workers (e.g. Thibodeau & Macy, 1938; Peters & Nelson, 1948) have shown glucose to inhibit lipase formation. This was confirmed by growing the mycelium with casamino acids as the sole source of carbon. In this case oxidation was rapid and commenced immediately (Fig. 26). Methyl ketones were not detected as oxidation products of fatty acids incubated for 5 hr. with mycelium grown on either medium.

Effect of shaking on lipolytic activity. Since aeration has been found to deactivate other lipases (Nelson, 1952) it was possible that shaking the Warburg flasks was influencing lipase activity. However, no difference in activity was observed between flasks shaken and those that were not.

Oxidation of triglycerides by spores

Small quantities of free fatty acids (1 μmole/ml) were oxidised by spores to yield up to 60% of the corresponding methyl ketone after 6 hours but only small amounts of methyl ketone were obtained from equivalent quantities
Fig. 26. Comparison of the rates of oxidation of triglycerides by mycelium grown on casamino acids (o – o) and on glucose – ammonium nitrate (Δ – Δ). Each flask contained about 10 mg mycelium, 1 μmole of triglyceride and 50 μmoles phosphate buffer, pH 5.2. Endogenous respiration deducted.
of triglycerides (Fig. 27) in the same period. Similarly the oxygen uptake was much higher for the free acids than for the triglycerides, trilaurin not being oxidised at all. These preliminary experiments indicated that the lipolytic activity of the spores was comparatively low. Over a period of weeks however spores were found to oxidise slowly large concentrations of triglyceride to methyl ketone whereas equivalent concentrations of free fatty acid were not oxidised. 0.2 ml trioctanoin, i.e. 44 μmoles "available" octanoic acid per ml, was oxidised to 10.1 μmoles 2-heptanone after 9 days and 0.3 ml trioctanoin to 6.6 μmoles after 14 days (Table 4.0). Above these concentrations however the formation of 2-heptanone was markedly decreased. Thus 0.14 ml trioctanoin yielded only 0.6 μmoles 2-heptanone after 14 days.

The effect of age of spores on methyl ketone formation.
No correlation was observed between the age of spores and methyl ketone formation from triglycerides (Fig. 28), a result similar to that obtained in the oxidation of free fatty acids by spores.

Induction of lipolytic activity in germinating spores

The preliminary step in the oxidation of triglycerides to methyl ketones is presumably hydrolysis of the triglyceride to free acid. Spores grown on Czapek-Dox agar gave considerably higher yields of 2-heptanone from trioctanoin than either spores grown on potato dextrose agar (Fig. 28) or spores grown on malt agar.
A comparison of the oxygen uptake and methyl ketone formation by 4 day old spores in the presence of (a) fatty acids and (b) triglycerides. Each flask contained either 3 μmoles of fatty acid or 1 μmole of the corresponding triglyceride, about 1 x 10⁷ spores, 50 μmoles phosphate buffer, pH 6.2 and distilled water to 3 ml. Incubation period 6 hours. E = endogenous respiration. TG = triglyceride.
Table 40. The effect of concentration of trioctanoin on the formation of methyl ketones by 15 day old spores at 30°

<table>
<thead>
<tr>
<th>Concentration of trioctanoin (ml)</th>
<th>"Available" octanoic acid (μmoles/ml)</th>
<th>Yield of methyl ketone (μmoles/ml) at Days of incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>22</td>
<td>1.6 2.6 3.1 3.6 3.2 3.1</td>
</tr>
<tr>
<td>0.2</td>
<td>44</td>
<td>3.1 4.6 10.1 6.3 6.0 6.0</td>
</tr>
<tr>
<td>0.3</td>
<td>66</td>
<td>1.3 4.2 4.8 6.6 5.9 4.1</td>
</tr>
<tr>
<td>0.4</td>
<td>88</td>
<td>0.2 0.3 0.4 0.6 0.5 0.7</td>
</tr>
<tr>
<td>0.5</td>
<td>110</td>
<td>0.05 0.05 0.08 0.08 0.09 0.07</td>
</tr>
</tbody>
</table>

(Each flask contained 25 ml phosphate buffer pH 6.6; 7 ml spore suspension (1 x 10⁶ spores per ml).
Fig. 28. Comparison of 2-heptanone formation from trioctanoin by spores grown on (a) Czapek-Dox agar (E, F, G, H) (b) Potato-dextrose agar (E₁, J, K, R). Spores used in flasks E, E₁, F and R were 6 days old; those in G and J were 13 days old and in H and K were 20 days old. Flasks E and E₁ contained ammonium sulphate (50 μmoles/ml).
These three media contain different concentrations of sugar (and, in the case of malt agar, maltose instead of glucose) which may have affected the relative lipolytic behaviour of the spores. Glucose is known to inhibit lipase formation in mycelium (e.g. Thibodeau & Macy, 1938) and could reasonably be expected to inhibit their formation in spores also. Attempts were made to increase the lipolytic activity of spores by growing them on glucose-free media, whose carbon source was casamino acids, peptone, neopeptone or tryptone, but the mycelium did not sporulate.

Effect of nitrogen source on lipolytic activity. Since bacterial lipase production is markedly affected by the source of nitrogen in the growth medium (Cutchins, Doetsch & Pelczar, 1952), it was thought that lipases might be induced by adding various sources of nitrogen to the incubation medium. The ability of spores to oxidise triglycerides to methyl ketones in a medium containing no source of nitrogen was compared with their ability to do so in media containing various sources of nitrogen. Although spores can germinate in absence of nitrogen there is little or no post-germinative development (Levinson & Hyatt, 1963) and thus these experiments allowed a comparison to be made between germinative and post-germinative influence on methyl ketone formation.

(a) **Casamino acids (3g/500 ml).** The oxidation of triglycerides to methyl ketones by spores was much less marked in the presence of casamino acids than in experiments with ammonium ion reported below. The presence of casamino acids resulted in extensive mycelial
growth which appeared to be correlated with the low yields of methyl ketones obtained.

(b) **Ammonium sulphate (1g/500 ml).** At pH 6.3 spores oxidised samples of trioctanoin (22 μmoles/ml) more rapidly in the presence of ammonium ion than those in its absence (Fig. 29).

Formation of methyl ketone in the latter was however still increasing after 36 days whereas those with ammonium ion had reached a maximum after 10-20 days. All flasks containing ammonium ion formed some mycelium but further metabolism of the 2-heptanone was very slow.

A similar series of experiments was carried out at the same time with the strain of *P. roqueforti* isolated from N.Z. Blue cheese. Although the maximum yield of ketone (12 μmoles/ml) was not as high as obtained with strain 6989, the pattern of ketone formation was similar.

Although in general the presence of ammonium ion initially accelerated the formation of methyl ketones from triglycerides it was found that far more consistent results were obtained, if rather more slowly, by spores in the absence of a source of nitrogen (see, for example, Fig. 28). A feature of the experiments concerned with the metabolism of triglycerides in the presence of ammonium ion was the difficulty of exactly reproducing results in different trials employing comparable cultures.

Effect of calcium, magnesium and chloride ions. Addition of 0.02% (w/v) calcium chloride, frequently added as an activator in lipase systems (Bier, 1955), sometimes greatly enhanced, and at other times repressed, methyl ketone formation (Figs. 29, 30, 32). Similarly inconsistent
Fig. 29. A comparison of the formation of 2-heptanone from trioctanoin by 12 day old spores at pH 6.3 (50 μmoles phosphate buffer/ml) in the presence or absence of ammonium sulphate (50 μmoles/ml) and 0.02% (w/v) calcium chloride. Flasks, A, B, C and F contained ammonium ion: flasks A, E, F, calcium chloride and flask D neither ammonium ion nor calcium chloride.
results were obtained when magnesium ion was added.

Bier (1955) reported halogen ions to be inhibitory but in this investigation the presence of chloride ion did not significantly alter the amount of methyl ketone formed.

Effect of emulsification of triglycerides. Many workers, e.g., Kirsch, 1935; have stated that emulsification is a pre-requisite for lipolysis of triglycerides. Trioctanoin was therefore emulsified with 0.2% solutions of gum acacia, agar or polyvinyl alcohol, prepared according to methods given by Bier (1955). Emulsification did not however enhance ketone formation (Fig. 30).

The formation of 2-undecanone from Tween 20 by spores

The solubility in water of Tween 20 (polyoxyethylene sorbitan monolaurate), which contains approximately 60% lauric acid (Archibald, 1946), was utilised to determine if the low rate of formation of 2-undecanone from trilaurin was due to the insolubility of the triglyceride. Formation of 2-undecanone from Tween 20 was linear but very slow for about 10 days and then stopped completely (Fig. 31). This experiment would appear to confirm that emulsification or solubility of the substrate triglyceride is not critical.
Fig. 30. Effect of emulsifying 0.2% trioctanoin with gum acacia or polyvinyl alcohol on subsequent formation of 2-heptanone by spores. All flasks contained phosphate buffer pH 6.5 (50 μmoles/ml) and ammonium sulphate (50 μmoles/ml); flasks 2, 4, 6 and B contained 0.2% CaC12. In flasks 3 and 4 the trioctanoin was emulsified with 0.2% gum acacia and in flasks 5 and 6 with 0.2% polyvinyl alcohol.
Fig. 31. The formation of 2-undecanone from Tween 20 (polyoxylethylene sorbitan monolaurate) by 10 day old spores at pH 6.5 (M/10 phosphate buffer).
Effect of pH of incubation medium. Since both the initial lipolysis of the triglyceride and the further oxidation of free acid to methyl ketone are pH dependent, it was of interest to determine the effect of pH on the oxidation of triglycerides by spores in media with and without ammonium ion.

In the presence of ammonium ion the highest yields of corresponding methyl ketones formed at pH 2.5 and 5.2 were from tributyrin, and at pH 6.5 from trihexanoin (Table 41). At pH 2.5 the ketones formed were not further metabolised but at pH 5.2 and 6.5 the yields of corresponding methyl ketones rose to a maximum after about 8 days and then decreased.

In the absence of ammonium ion at pH 5.2, all triglycerides but trilaurin were oxidised to the corresponding methyl ketones to about the same extent. At pH 6.5 the highest yield of ketone was formed from trioctanoin. In all cases the yield of ketone continued to increase after 34 days (Table 41). In another experiment, with a different batch of spores, ketone formation increased slowly for 50 days (Fig. 28).

At all pH's, in the presence and absence of ammonium ion, trilaurin was not oxidised by spores to 2-undecanone to any significant extent.

Methyl ketone formation in a medium weakly buffered at pH 5.2 and containing ammonium ion

The medium used in the previous experiment at pH 5.2 was fairly heavily buffered (100 μmoles phosphate per ml). The effect of using a medium containing ammonium ion but
Table 41. The effect of pH on methyl ketone formation from triglycerides by spores in the absence and presence of ammonium ion (25 μmoles/ml)

<table>
<thead>
<tr>
<th>pH</th>
<th>Substrate*</th>
<th>NH₄⁺</th>
<th>Mycelial Growth after 8 days</th>
<th>Percentage yield of methyl ketone</th>
<th>Days of incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>Tributyrin</td>
<td>+</td>
<td>Slight</td>
<td>Tr</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>Trihexanoïn</td>
<td>+</td>
<td>"</td>
<td>Tr</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td>Trioctanoin</td>
<td>+</td>
<td>"</td>
<td>3.3</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td>Trilaurin</td>
<td>+</td>
<td>None</td>
<td>Nil</td>
<td>Tr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tr</td>
</tr>
<tr>
<td>5.2</td>
<td>Tributyrin</td>
<td>+</td>
<td>Extensive</td>
<td>Nil</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.0</td>
</tr>
<tr>
<td></td>
<td>Trihexanoïn</td>
<td>+</td>
<td>"</td>
<td>3.0</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>Trioctanoin</td>
<td>+</td>
<td>"</td>
<td>3.3</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>Trilaurin</td>
<td>+</td>
<td>"</td>
<td>Tr</td>
<td>Tr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tr</td>
</tr>
<tr>
<td>6.5</td>
<td>Tributyrin</td>
<td>+</td>
<td>Extensive</td>
<td>Nil</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.8</td>
</tr>
<tr>
<td></td>
<td>Trihexanoïn</td>
<td>+</td>
<td>"</td>
<td>0.3</td>
<td>23.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23.8</td>
</tr>
<tr>
<td></td>
<td>Trioctanoin</td>
<td>+</td>
<td>"</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>Trilaurin</td>
<td>+</td>
<td>"</td>
<td>Tr</td>
<td>Tr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tr</td>
</tr>
<tr>
<td>5.2</td>
<td>Tributyrin</td>
<td>-</td>
<td>Slight</td>
<td>Nil</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>Trihexanoïn</td>
<td>-</td>
<td>"</td>
<td>1.5</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.2</td>
</tr>
<tr>
<td></td>
<td>Trioctanoin</td>
<td>-</td>
<td>None</td>
<td>2.4</td>
<td>9.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.4</td>
</tr>
<tr>
<td></td>
<td>Trilaurin</td>
<td>-</td>
<td>"</td>
<td>Tr</td>
<td>Tr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tr</td>
</tr>
<tr>
<td>6.5</td>
<td>Tributyrin</td>
<td>-</td>
<td>None</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>Trihexanoïn</td>
<td>-</td>
<td>"</td>
<td>Tr</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>Trioctanoin</td>
<td>-</td>
<td>"</td>
<td>3.5</td>
<td>12.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21.1</td>
</tr>
<tr>
<td></td>
<td>Trilaurin</td>
<td>-</td>
<td>"</td>
<td>Tr</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.2</td>
</tr>
</tbody>
</table>

Tr = trace = less than 0.05% yield
* 0.1 ml of each triglyceride added to 30 ml medium, each ml containing 100 μmoles phosphate buffer and approximately 1 x 10⁶ spores, 14 days old.
les s buffer (30 μmoles phosphate per ml) was also determined. As expected tributyrin and trihexanoin were oxidised to the corresponding methyl ketones in greater amounts than when the pH was kept at pH 5.0 - pH 5.2. There was a lag period of 6 days during which time the yield of ketones from tributyrin and trihexanoin was low (Fig. 32). In this time the pH of the medium fell to pH 3.5 and thereafter the yield of ketone rapidly increased. In 20 days 22% of the tributyrin was oxidised to acetone and 15% of the trihexanoin to 2-pentanone.

Free fatty acids in incubation media

No significant amounts of free fatty acids were detected in any of the media examined at any stage of the incubation. Since appreciable breakdown of the triglycerides to methyl ketones occurred, even at pH's < 3 at which lipolytic activity by fungi had never been reported, it can only be assumed that either the spores metabolised the fatty acids as soon as they were liberated or that the methyl ketones were formed by a pathway not involving free fatty acid.
Fig. 32. The formation of methyl ketones from triglycerides by 14 day old spores in a medium weakly buffered initially at pH 5.2. Each flask contained 0.1 ml triglyceride, about 1 x 10^5 spores/ml, phosphate buffer (30 μmoles/ml) and ammonium sulphate (25 μmoles/ml). Flasks 2 and 6 contained 0.2% CaCl₂.
Metabolic studies with mycelium were complicated by the high rate of endogenous respiratory activity of the intact cells. It was considered desirable as a concurrent approach to study fatty acid oxidation by cell free extracts. Such preparations eliminate permeability effects as well as high endogenous respiration but, as pointed out by Casida & Knight (1954), introduce the problem of phosphatase action on co-factors. They found that of the dehydrogenases of the T.C.A. cycle isolated from *P. chrysogenum* only the succinic dehydrogenase, which required no phosphorylated co-factors, functioned in cell-free preparations. Although fatty acid dehydrogenases (Mukherjee, 1951; Franke & Heinen, 1958) and T.C.A. cycle dehydrogenases (Casida & Knight, 1954) had been isolated from fungi, a complete fatty acid oxidising system had not been prepared. Such systems isolated from rat liver were shown by Munoz & Leloir (1943) to need Mg^{++}, PO_{4}^{3-}, ATP and cytochrome C. They also recognised that fatty acid oxidation could not be sustained unless some citric acid cycle oxidation was proceeding. The end product of fatty acid oxidation is acetyl CoA, which undergoes no further change unless oxalacetate is present. The conversion of the fatty acid to its thiol ester with Coenzyme A in an ATP-dependent reaction and thus the supply both of ATP and of oxalacetate is guaranteed by the operation of the citric acid cycle.

Cantino (1953) demonstrated that succinic acid dehydrogenase activity could be obtained from aquatic phycomycetes by simple disintegration of the mycelium.
in a mechanical blender. Casida & Knight (1954) and Godzeski & Stone (1955) obtained TCA cycle dehydrogenases by grinding the mycelium of *P. chrysogenum* with sand. Some investigators have used methods of obtaining enzyme preparations which contain also the enzymes otherwise left behind in the cell fragments. Thus Knight (1948) successfully obtained acetone powders with amino acid oxidase activity from *P. chrysogenum* and Karrer & Haab (1948) found that dried mycelial powders from various Penicillia were capable of decarboxylating β-keto acids to the corresponding methyl ketone.

Preparation of cell free extracts

Attempts to obtain preparations capable of oxidising octanoic acid, using the above methods of Karrer & Haab (1948) Knight (1948) and Godzeski & Stone (1955), were unsuccessful. In other experiments mycelium was washed with dilute ethanol or acetone (10-12%) to increase the permeability of the cell walls, but such cells were completely inactive.

Extracts with slight activity were obtained by disintegration of the cells with a Polytron homogeniser. More active extracts were obtained by drastic disintegration with a Hughes Press. In this technique the mycelium was blended in a modified Krebs-Ringer buffer (Krebs & Eggleston, 1944), 5ml of the suspension being put through the press. This applied instantaneously pressure of about 15 tons per square inch. The cells were pre-cooled to -20° to -30°, the ice crystals formed serving as an abrasive. The frozen extract and broken
cells were allowed to warm, resuspended using the Polytron homogeniser and centrifuged at 1000 g for 20 min. The supernatant was decanted, leaving behind uncrushed cells and cell debris. The extracts remained active for at least 24 hours in a refrigerator.

Factors affecting the activity of cell-free extracts

(1) Composition of buffer solution. Since other workers, e.g. Lehninger (1945), have found the composition of the buffer used in the preparation of cell free extracts to be of great importance, different phosphate buffers were used to obtain extracts from the Hughes Press. Little difference in activity was however observed (Fig. 33) and in most experiments Krebs-Ringer buffer, modified to give a pH of approximately 6.0, was used.

(2) Rate of spinning down of debris. An active extract was not obtained after blending (or after using the Hughes Press) if the suspension was centrifuged at speeds greater than 3000 g. Since the supernatants obtained by centrifuging at 1000 g for 20 min. occasionally contained spores, they were decanted and recentrifuged at 2000 g for a further 10 min.

Succinic dehydrogenase activity. In preliminary experiments it was found that a correlation existed between the ability of a cell free extract to oxidise fatty acids and its succinic dehydrogenase activity. The latter was therefore routinely checked in a Thunberg
tube to ensure that at least part of the respiratory system was present.

1 ml of supernatant was added to a mixture of 2 ml 0.2M sodium succinate, 2 ml 0.1M phosphate buffer (pH 6.1) and 0.5 ml 0.02%, 2,6-dichlorophenol-indophenol. With extracts from the Hughes Press the colour disappeared within 30 minutes at 30°C. Extracts obtained by homogenisation took longer (up to 45 minutes) to decolourise the dye.

Oxidation of octanoic acid by cell-free extracts from the Hughes Press

The pattern of oxygen uptake during the oxidation of octanoic acid by the extracts was usually similar to that shown in Fig. 33. Oxygen uptake increased rapidly after a lag period of 1 to 2 hours and was normally complete after 6 hours. Little difference in activity was observed in the presence of added magnesium ion. On one occasion addition of 0.15 μmoles magnesium ion eliminated the lag phase, but this effect could not be repeated with other cell free preparations. The enzyme preparations were only able to oxidise low concentrations of octanoic acid (less than 1 μmole/ml). Thus one extract was able to oxidise 0.5 μmoles C₈ acid but not 2 μmoles. Such results are similar to those of Stumpf & Barber (1956) who found that high concentrations of butyric acid (5 and 10 x 10⁻³M) inhibited the respiratory system of the peanut mitochondrion although lower concentrations were readily oxidised.
Fig.33. The oxidation of octanoic acid at pH 6.0 by cell free preparations extracted from 4 day old mycelium in the Hughes Press with modified Krebs Ringer buffer (flasks A and B) and with M/60 potassium phosphate buffer (pH 6.0) + M/15 KCl (flasks C and D). Flask A contained 1 μmole and flasks B, C and D 0.75 μmoles octanoic acid. 0.5 μmoles Mg^{++} were added to flask D.
The possibility was considered that the oxygen uptakes observed were due to contamination of the extracts by bacteria or spores but none was however detectable under the microscope. Spores also invariably partially oxidised added acid substrate to methyl ketone yet none was isolated when cell free extracts were incubated with fatty acids.

Addition of co-factors, inhibitors and TCA cycle intermediates

Attempts to eliminate the lag phase by supplementing the cell-free preparations with 10^{-3}M adenosine triphosphate (ATP) were not successful. Indeed in higher concentrations (10^{-2}M) ATP was inhibitory. Mcgilvery (1957) also observed the toxic effect of commercial ATP samples and suggested that heavy metal contamination was responsible. In an attempt to overcome possible heavy metal effects, EDTA (ethylene diaminotetraacetic acid) was added (0.25 ml of a 1/6 solution) with ATP but this did not enhance oxygen uptake. Glucose, added as a potential source of ATP, was not oxidised by the extracts.

According to Hunter (1955) the addition of sodium fluoride (0.01M) to reduce ATPase and phosphatase activity was essential in broken cell preparations. It tends however also to inhibit Mg^{2+} dependent enzymes and it was found in this investigation that oxygen uptake was faster in extracts not supplemented with NaF.

During the preparation of cell-free extracts the terminal respiratory system is usually disrupted
(Cochrane, 1958) but neither cytochrome C (10^{-4}M) nor methylene blue (10^{-3}M) enhanced oxygen uptake. Methylene blue was intended to serve as an artificial hydrogen carrier in order to replace the still unknown terminal electron system.

Other supplements which had no effect upon the oxidation of octanoic acid by the cell-free extracts were 10^{-3}M adenosine diphosphate (ADP), 10^{-3}M diphosphopyridine nucleotide (DPN), 10^{-6}M flavin adenine dinucleotide (FAD) and TCA cycle intermediates (1 μmole each of succinate, oxalacetate and fumarate).

Activity of mycelial debris from the Hughes Press

In order to determine to what extent, if any, the oxidative enzymes were destroyed by homogenisation or by passage through the Hughes Press, the ability of debris after such treatments to oxidise fatty acids was compared with oxidation by whole cells and blended suspensions. Debris for this comparison was obtained as follows:

(a) Mycelium was blended at top speed in phosphate buffer, pH 6.0, for 2 min, the debris being centrifuged for 20 min. at 1000 g.

(b) Mycelium was put through the Hughes press, the debris being washed in buffer and the suspension centrifuged at 1000 g for 20 min. The debris was again washed in buffer and re-centrifuged for a further 20 min.

The rate of oxygen uptake by the debris from the Hughes press in the presence of octanoic acid was about
25% of that by the whole mycelium. On the other hand oxygen uptake by debris obtained after blending mycelium at high speed was slightly higher than that of whole cells. Endogenous respiration of debris from the Hughes Press was also very much lower than with whole cells (Table 42). It would appear that certain enzymes or cofactors are common to both endogenous respiration and the oxidation of exogenous fatty acid. This was confirmed by combining the debris from the Hughes Press with the supernatant obtained by centrifuging. The resultant suspension was still unable to oxidise the fatty acid at the normal rate showing that partial damage had been done to the oxidising system.

Since no cell-free extract examined possessed the ability to form methyl ketones from fatty acids, the finding that the debris from the Hughes Press was as active as whole cells in forming methyl ketones was not surprising. This is also in agreement with Karrer & Haab (1948) who concluded that the β-keto acid decarboxylases of Penicillia were bound very firmly to the cell.
Table 42. **A comparison of the ability of mycelial whole cells and debris to oxidise octanoic acid**

<table>
<thead>
<tr>
<th></th>
<th>Oxygen uptake (µl)</th>
<th>Yield 2-heptanone (µmoles)</th>
<th>Time for complete oxidation (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole mycelium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endogenous</td>
<td>140</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1 µmole C₈ acid</td>
<td>294</td>
<td>0.16</td>
<td>1.75</td>
</tr>
<tr>
<td>2 µmoles " "</td>
<td>440</td>
<td>0.80</td>
<td>2.0</td>
</tr>
<tr>
<td>Debris from vigorously blended mycelium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endogenous</td>
<td>130</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1 µmole C₈ acid</td>
<td>308</td>
<td>0.15</td>
<td>1.5</td>
</tr>
<tr>
<td>2 µmoles " "</td>
<td>471</td>
<td>0.70</td>
<td>1.75</td>
</tr>
<tr>
<td>Debris from Hughes Press</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endogenous</td>
<td>51</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1 µmole C₈ acid</td>
<td>116</td>
<td>0.24</td>
<td>3.5</td>
</tr>
<tr>
<td>2 µmoles " "</td>
<td>156</td>
<td>0.77</td>
<td>3.5</td>
</tr>
<tr>
<td>Suspension from Hughes Press</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endogenous</td>
<td>88</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1 µmole C₈ acid</td>
<td>207</td>
<td>0.20</td>
<td>3.5</td>
</tr>
<tr>
<td>2 µmoles " "</td>
<td>260</td>
<td>0.65</td>
<td>3.5</td>
</tr>
</tbody>
</table>

(Each Warburg flask contained 10 mg mycelium or debris, 50 µmoles phosphate buffer, pH 6.0.)
DISCUSSION OF

PART III
Considerable emphasis has been placed recently on the biochemical uniformity of biological systems and yet the oxidation of fatty acids to the corresponding methyl ketones with one carbon atom less has only been reported with fungi. Many of the dissimilation products of fungal metabolism are never present in more than traces in other biological systems (animal tissues, bacteria, yeast), being formed and transformed so quickly that they never accumulate. The mechanism of formation of methyl ketones, i.e. deacylation followed by decarboxylation, has however an analogy in animal tissues, the ketogenic activity of animals on high fat diets for instance being well known (Campbell & Best, 1956). Similarly, isolated liver mitochondria have been shown to accumulate acetoacetate almost quantitatively during fatty acid oxidation in the presence of malonate. This accumulation appears to be a consequence of two circumstances - the deacylation of acetoacetyl CoA to acetoacetate and the absence in liver of a thiokinase for converting acetoacetate back to acetoacetyl CoA (Green, 1963).

The demonstration by Butts, Cutler, Hallman & Deuel (1935) that the excretion of acetone bodies from rats was significantly greater after the administration of C₈ acid than other acids was similar to the finding in this investigation that some acids, particularly C₈ acid, were more readily oxidised than others to methyl ketones. Kennedy & Lehninger (1950) found a fundamental difference in the metabolism of short and long chain fatty acids by isolated rat liver mitochondria. Those with an even number of carbon atoms > C₁₂ gave CO₂ as the main
product and those with an even number $< C_{12}$ gave primarily acetoacetate. These findings were similar to those in the present study where only the C_4 to C_{12} acids were oxidised to the corresponding methyl ketone. The pattern of oxidation of "even and odd numbered" fatty acids in this investigation was identical, in agreement with the conclusion of Mii & Green (1954) that isolated enzymes of the fatty acid oxidation cycle from liver made no distinction between the odd and even numbered acids.

Although the higher ($C_{14} - C_{18}$) fatty acids were not oxidised by fungi to the corresponding methyl ketones, small quantities of acetone were formed, a similar situation occurring under certain conditions in animal tissues such as the liver. The presence of acetoacetic decarboxylase in fungi was not unexpected since the enzyme has been found, for instance, in *Clostridium acetobutylicum* (Wood, 1961).

The mechanism of β-oxidation of fatty acids by fungi has some unexplained facets. The oxidation of octanoic acid by the classical pathway (Fig. 34) would allow the formation of β-keto octanoyl CoA, β-keto hexanoyl CoA and β-keto butanoyl CoA and the subsequent formation of the corresponding methyl ketones. However only 2-heptanone was detected (when octanoic acid was oxidised) although the same batch of mycelium was shown to be quite capable of oxidising hexanoic acid to β-keto hexanoyl CoA since 2-pentanone was formed. Since the free $-\text{SH}$ and $-\text{NH}_2$ groups of sulphydryl enzymes or cofactors such as glutathione might be expected to add readily across the active β-keto group of the $-\text{CO} \cdot \text{CH}_2 \cdot \text{COOH}$ moiety, it is possible that the first β-keto acid formed is toxic to some enzymes of the fatty acid oxidation
Fig. 34. The β-oxidation helical scheme (Conn & Stumpf, 1963).
cycle. The inhibition of the action of thiolase upon the first \(\beta \)-ketoacyl Coenzyme A formed would explain the subsequent detection of only one methyl ketone.

Franke, Platzeck & Eichhorn (1961) concluded from their studies that the \(\beta \)-keto acid decarboxylases were constitutive enzymes. They considered that the removal of \(\beta \)-keto acids was important to fungal cells and that this property (to give methyl ketones) served as a non-specific inhibitor against sensitive competitors for the "Lebensraum" during germination. The present investigation however throws some doubt on this conclusion since the rate of methyl ketone formation (Figs. 10a and 10b) suggests the synthesis of adaptive decarboxylases after a lag period of 1 to 2 hours. The accumulation of a toxic \(\beta \)-keto acid in the cells might be expected to induce the synthesis of a \(\beta \)-keto acid decarboxylase, with subsequent formation of methyl ketone, since this would aid the removal of a toxic metabolite.

An hypothesis based upon the possible toxicity of the C\(_6\) to C\(_{12}\) \(\beta \)-keto acids does explain a number of the experimental results:

1. Only one methyl ketone and thus presumably only one \(\beta \)-keto acid was formed.
2. The most toxic acids, C\(_{10}\), C\(_{11}\) and C\(_{12}\) acids, were those which gave the least amount of methyl ketone.
3. Concentrations of the C\(_8\) to C\(_{12}\) fatty acids that markedly inhibited the respiration of mycelium were nevertheless oxidised to considerable quantities of the corresponding methyl ketone. It would appear that the enzymes responsible for the oxidation of the fatty acids to \(\beta \)-keto acids are less sensitive to high concentrations
of the acids than those enzymes responsible for the further oxidation of the β-keto acids.

4. Cells shaken in a low concentration (2 to 4 μmoles) of C₁₀ acid, and then thoroughly washed, were subsequently able to oxidise C₈ acid to 2-heptanone but not, as shown by the use of 2-C₁₄ octanoic acid, to carbon dioxide and water. If the C₁₀ acid almost completely inhibited the enzymes responsible for the oxidation of β-keto acids, C₈ β-keto acid might then be expected to accumulate, resulting in a greater formation of 2-heptanone.

5. Increased yields of 2-heptanone were also obtained if the C₁₀ acid were added after the C₈ acid, although the yield was lower than with the reverse order. If the C₈ had already been slowly oxidised by the cell, up to and including the C₈ β-keto acid, the addition of the C₁₀ acid presumably prevented its further oxidation and hence decarboxylation occurred to a greater extent.

The toxicity of octanoic acid at pH 2.6 was shown to be reversible since raising the pH to 5.5 with alkali allowed the mycelium to rapidly oxidise the acid. The activity was not restored immediately, lag period being dependent upon the concentration of octanoic acid initially added. The enzymes do not themselves appear to be pH dependent since they readily oxidised non-toxic concentrations of C₈ acid (e.g., 1 μmole) at pH 2.5.

In direct contrast to the numerous experiments carried out in this investigation, Stadtman & Barker (1949) found that the rate of butyrate oxidation by Clostridium kluveri was unaffected by the addition of a toxic concentration of C₁₀ acid. They concluded, from one experiment only at an unspecified pH, that the bacterial enzymes were specific for fatty acids of eight or fewer carbon atoms.
These studies of the metabolism of fatty acids by fungi have allowed inferences to be made concerning an intermediate (the β-keto acid) which are not possible in other biological systems. For example, if the suggestion of Nieman (1954) that fatty acids are toxic because of their adsorption on the cell wall were true, then increased inhibition of oxidation with increasing chain length as well as with increasing concentration would be strictly physical. Since cells shaken in a toxic concentration of C_{10} acid, and then thoroughly washed with pH 7.0 buffer, were unable subsequently to oxidise octanoic acid to CO_2, the toxic action of the C_{10} acid must be intracellular. Similarly the fact that the C_{6} - C_{12} fatty acids were able to inhibit endogenous respiration of mycelium at pH's below 6.0 and yet be oxidised to methyl ketones suggests that the acids must actually enter the cell, supporting the hypothesis of Cochrane (1958) that the primary inhibitory effect of toxic compounds occurs after they have penetrated the cell wall.

It has been generally observed (e.g. Cochrane, 1958) that toxicity does not continue to increase above a certain chain length, the actual length depending on the homologous series and on the test organism. The present investigation confirmed this but also added the new dimension of pH. The chain length of the most toxic fatty acid increased with pH, being C_{10} acid at pH 2.5 and C_{12} acid at pH's 5.2 and 6.0. At pH 6.8 none of the acids from C_{4} to C_{18} inhibited oxygen uptake but C_{14} acid was the most toxic at pH 8.0. It seems likely however that this toxicity at pH 8.0 is probably a detergent effect on the surface of the mycelium and distinct from the toxicity observed at pH 6.0 and below. The relationship between
optimum chain length and the toxic action of fatty acids is thus very dependent upon pH. This conclusion allows a ready explanation of the apparent contradiction between the results of Rolinson (1955) who reported that C₈ and C₁₀ acids were toxic to *P. chrysogenum* at pH 6.3 and those of Girolami & Knight (1955) who found that at pH 7.3 these 2 acids stimulated oxygen uptake by *P. roqueforti* to a greater extent than other acids. Similarly in this investigation the C₉ and C₁₀ acids more actively inhibited the respiration of mycelium at pH 2.5 than other acids but were the most rapidly oxidised at pH 8.0. Conversely those acids (C₃, C₄, C₅ and C₁₄ acids) most readily oxidised at pH 2.5 were those which were the least rapidly oxidised at pH 8.0.

The observed variation with pH of the inhibitory effect of fatty acids upon oxygen uptake by mycelium is most easily explained by assuming that only undissociated molecules of fatty acids are oxidised and that in high concentrations they or their oxidation products are toxic. Permeability effects prevent dissociated fatty acids from penetrating the cell wall and being oxidised. The relatively low concentrations of undissociated acid present above pH 7.0 would explain the slower oxidation of acids obtained at pH 8.0 in this investigation.

In general four patterns of fatty acid oxidation by mycelium were distinguishable: (a) The short chain acids from C₁ to C₆ were readily oxidised only at pH's below 5.5, the C₅ and C₆ acids giving high yields (up to 75%) of the corresponding methyl ketone. Acetone formation was never observed (apart from butyric acid). (b) The C₇ and C₈ acids were toxic below pH 5.2 but were readily oxidised above this pH. Both formed the corresponding ketones readily, up to 70% in the pH range
5.0 to 6.5. No acetone formation was detected.

(c) The C_9 - C_{12} acids were toxic below pH 6.0 but were readily oxidised above this pH. Only small amounts of the corresponding methyl ketone (optimum about 25% at pH 8.0) were detected. Below pH 6.0 approximately equal proportions of acetone and the corresponding methyl ketone were formed.

(d) The long chain fatty acids (C_{11} - C_{18}) were oxidised only very slowly in acid conditions and even less readily in alkaline. They formed no corresponding methyl ketone but, at pH 5.2 and below, very small amounts of acetone were detected.

Differences in oxygen uptake and methyl ketone formation were observed with the same concentration of acid but with different batches of mycelium. It was, however, possible in all the experiments to show significant trends and no results were obtained significantly at variance with each other. The acid which was oxidised to methyl ketone in high yield most consistently over a wide range of pH was C_8 acid. This was contrary to the finding of Franke & Heinen (1958) that fungi, including P. roqueforti, oxidised C_{14} and C_{12} acids most readily to the corresponding methyl ketones. The experimental conditions described by these workers were simulated but the maximum yield of ketone was still obtained from C_8 acid. They also reported the oxidation of C_{14} acid to 2-tridecanone in higher yields than that of 2-heptanone from octanoic acid. No 2-tridecanone at all was detected from C_{14} acid with the two strains of P. roqueforti used in this investigation, although small amounts of acetone were obtained.
The toxicity of any particular fatty acid to mycelium was markedly altered when the cells were pre-starved by shaking them in phosphate buffer for at least 2½ hours. The respiration of fresh mycelium was almost completely inhibited by 3 μmoles octanoic acid at pH 2.5 whereas the same mycelium shaken for 48 hours in buffer was able to oxidise the acid rapidly. The cells used in this study were grown with glucose which is known to inhibit the synthesis of many constitutive enzymes of fungi (Magasanik 1957). It has been suggested (Neidhardt, 1960; Magasanik, 1961) that this repression by glucose results from the high intracellular concentration of intermediates of glucose catabolism which prevents the synthesis of those enzymes whose products would only augment the already large metabolic pools. When cells are shaken in buffer it is possible that these intermediates are used for respiratory purposes, thus removing the repression governing the synthesis of enzymes whose function is to supply energy, in this case by the oxidation of fatty acids.

The fact that there was no definite increase in respiration in this investigation when 2,4 dinitrophenol was added shows that little oxidative assimilation occurred between pH 5.5 and pH 6.5. This was confirmed by the virtually quantitative oxygen balances obtained in many experiments. These results were unusual since fungi in general are characterised by their high oxidative assimilation (Foster, 1949). It is possible, however, that fatty acids themselves (and in particular long chain fatty acids) are to some extent "decouplers" since Borst, Loos, Christ & Slater (1962) have shown that long-chain fatty acids can stimulate the latent
ATP-ase activity of fresh rat-liver mitochondria in presence of Mg++. It is interesting to note that the fatty acids in their experiments were scarcely stimulatory above pH 8 and in the present study also the oxygen uptake and methyl ketone formation with saturated fatty acids were minimal at pH 8.

The lipid content of Penicillia is generally very high and can constitute up to 50\% of the dry mycelium. The free fatty acid content ranges from 8 to 70\% of the fat (Cochrane, 1958), and this may be related to the ease with which both spores and mycelium oxidised fatty acids in this study. The general belief that the normal metabolism of spores is a fat metabolism during the first stages of germination was supported by Farkas & Ledingham (1959) who found that resting rust uredospores were able to utilise fatty acids about 10 to 20 times more readily than carbohydrates and amino acids. They observed that a 50 to 100\% increase in oxygen uptake in the presence of fatty acids was further stimulated by the presence of carbon dioxide, which was shown to be incorporated into the Krebs cycle. Similarly in the present investigation the formation of methyl ketone was stimulated by the small amounts of metabolic CO\textsubscript{2} evolved.

The contention of Berridge, Hiscox & Zielinska (1953) and Gehrig & Knight (1963) that spores but not mycelium are able to metabolise fatty acids to methyl ketones was not confirmed. Gehrig & Knight used relatively high concentrations of C\textsubscript{8} acid (20 \textmu moles/3ml) which were conceivably toxic to the mycelium used but not to the spores. They detected no methyl ketones when low concentrations (not specified) of octanoic acid were oxidised by spores. This inability to form methyl ketones would appear to be specific to the strain of
P. rogueforti they used since the 2 strains employed in this investigation, were both able to oxidise between 40 and 75% of added octanoic acid to 2-heptanone, even with concentrations as low as 0.25 μmolcs/ml.

In this investigation there did not appear to be a sharp dividing line between the metabolic activity, with respect to fatty acids, of spores and mycelium. The results obtained support the conclusion of Cochrane (1958) that there is as yet no reason to believe that spore respiration differs fundamentally from that of mycelium. Mycelium oxidised fatty acids rapidly giving varying amounts of methyl ketone but considerably more CO₂ than spores. The latent ability of mycelium to form ketones was shown by pre-incubation with a low concentration of C₁₀ acid when the yield of 2-heptanone from octanoic acid subsequently added was increased greatly. In general ungerminated spores formed higher amounts of methyl ketones than mycelium but showed also a slight but definite ability to form CO₂ from octanoic acid, which was greatly enhanced by incubating the spores for a short period with ammonium ion.

CO₂ formation at the expense of methyl ketone formation in the presence of ammonium ion may be due to the drawing off of intermediates for the synthesis of amino acids. If, for example, glutamic acid were formed from α-keto glutarate, an increased formation of glutamic acid, and its subsequent removal for protein synthesis, might accelerate the entire sequence of reactions leading from octanoic acid via acetyl CoA to intermediates of the tricarboxylic acid cycle. Such a mechanism for the alternative utilisation of β-keto acid formed from fatty acid could account for both the increased formation of labelled CO₂ and decreased
formation of 2-heptanone from $2-{\text{C}}^{14}$ octanoic acid in the presence of ammonium ion.

The low rate of conversion of $2-{\text{C}}^{14}$ octanoic acid to $^{14}\text{CO}_2$ by spores (Table 25) may be a result of the assimilation of part of the utilised carbon into reserve material of the cell. Clifton (1963) put forward the hypothesis that endogenous pools are a major source of energy in glucose metabolism and that exogenous substrate in part at least serves to replenish the supply of endogenous reserves. This is also the opinion of Blumenthal (1963) who considered it likely that there is an interplay between exogenous and endogenous substrates and that the question as to when the substrate ceases to be exogenous and becomes endogenous is difficult to define. If the newly-assimilated fatty acid "pooled" rapidly with the endogenous reserve, the recovery of radioactive carbon as $^{14}\text{CO}_2$ might be expected to be low since the carbon of the added fatty acid would serve in part to replenish the endogenous reserves being oxidised.

The 2-heptanone formed during the oxidation of $1-{\text{C}}^{14}$ octanoic acid was not radioactive showing that the carbon atom from the carboxyl group was lost during the decarboxylation. 2-heptanone from $2-{\text{C}}^{14}$ octanoic acid was radioactive, its specific activity being almost identical to that of the original acid. Both these findings afford strong evidence for a β-oxidation mechanism.

The significance of a T.C.A. cycle in fungal respiration has however yet to be clearly established, large differences in the ability of fungi to oxidise TCA intermediates apparently existing even between strains of the same species (Ajl, 1951). Although evidence is
generally in favour of a TCA cycle operating, Cleland & Johnson (1953) have claimed findings to the contrary.

It was therefore of interest to examine, as a function of time, the extent of labelling of the respiratory CO$_2$ from octanoic acid-1-14C and octanoic acid-2-14C. The results summarised in Table 25 support the hypothesis that the mycelium was oxidising fatty acids primarily through the β-oxidative pathway, since the rate of appearance of 14C in respiratory carbon dioxide was 1.5 to 3 times greater for 1-14C octanoic acid than for 2-14C octanoic acid. As citrate is handled asymmetrically by the enzymes of the TCA cycle, at least 3 turns of the cycle are required before an even numbered carbon atom of a fatty acid (the methyl group of the active acetate unit) appears in the respiratory CO$_2$. On the other hand, an odd numbered carbon atom of a fatty acid (the carboxyl group of the active acetate unit) appears in respiratory CO$_2$ as soon as the second turn of the cycle is completed (Katz & Chaikoff, 1955).

The evidence indicated a rather slow movement of compounds through the TCA cycle under the experimental conditions. Since methyl ketone formation was also slow, none being detected until 1 to 2 hours after addition of acid, it is possible that the rate of fatty acid oxidation is determined by the initial reactions leading to β-keto acid.

High concentrations of triglycerides were readily oxidised by spores to methyl ketones when equivalent concentrations of the free acid (up to 66 μmoles/ml) were barely oxidised. It would appear that the slow hydrolysis of the triglycerides resulted in the incorporation of the fatty acids at a sufficiently low rate to prevent a toxic concentration of the acid (or an oxidation product such
as β-keto acid) accumulating but which allowed high methyl ketone formation. With increasing concentration of triglyceride the amount of free acid available presumably reached a point where it was toxic to the cell, the yield of methyl ketone being correspondingly very low (Table 40).

No free fatty acids accumulated in the medium during the incubation which indicated that the lipolytic step was rate governing and not the incorporation of the acid into the spores and its subsequent oxidation to methyl ketone. Attempts to increase lipase activity by the addition of ammonium ion usually resulted in a much greater yield of methyl ketone initially but the extensive mycelium also formed was generally accompanied by a slow decrease in the amount of methyl ketone detected (Fig. 29). More consistent results were obtained by using spores without an external source of nitrogen, the rates of formation of methyl ketone being lower but eventually giving higher yields. Lipases in spores of *P. roqueforti* do not appear to be adaptive enzymes since, unlike bacterial lipases, they were produced in media devoid of materials that ordinarily serve as substrates for lipase formation.

Weinstein & Wynne (1936) found that 3.7×10^{-3} M 2-octanone (i.e. 3.7 μmoles/ml) decreased the rate of hydrolysis by pancreatic lipase by 80% in 15 minutes. Since in this investigation up to 17 μmoles 2-heptanone per ml were formed, it seems probable that the very slow formation of methyl ketone was due to the inhibitory effect of the ketones themselves on the lipases. This might account for the finding that emulsification or the addition of known lipase activators such as calcium salts had no consistent effect on methyl ketone formation from triglycerides.
This investigation supported the suggestion of Foster (1947) that accumulated products of fungal metabolism (in this case mainly 2-heptanone) are not further metabolised until the organism exhausts the more easily attacked and preferred energy source. Spores were found to be as capable as mycelium of metabolising methyl ketones, contrary to the hypothesis of Berridge et al. (1953). Methyl carbinols were not detected in significant amounts as products of the metabolism of methyl ketones, evidence being obtained, on the contrary, that the carbinols were possibly precursors of the ketones during the oxidation of fatty acids by spores. Thus 2-heptanol was initially present in greater concentration than 2-heptanone during the oxidation of octanoic acid by spores (Table 31) but only 2-heptanone was detected after 4 days. This may be related to the finding that mycelium oxidised 2-heptanol readily and virtually quantitatively to 2-heptanone whereas it was difficult to demonstrate that the reduction of 2-heptanone to 2-heptanol occurred at all. These results did not confirm the finding of Franke, Platzeck & Eichhorn (1962) that methyl carbinols accumulate during the oxidation of fatty acids by fungal spores at the same rate as the yield of methyl ketone decreases. Substantial amounts of methyl carbinols accumulated however on incubating triglycerides with spores, up to 10% of trioctanoin being metabolised to 2-heptanol after 50 days. To what extent, if any, this was a consequence of the presence of free glycerol in the medium has yet to be determined.

Cell free extracts obtained from mycelium were able to oxidise low concentrations of octanoic acid (0.5 µmoles/ml or less) after a lag of up to 3 hours. A
possible explanation for the time lag might be the absence of some key intermediate, which only slowly accumulated during the oxidation. Thus, for instance, the absence of oxalacetate would prevent the formation of citric acid from acetyl CoA and the consequent release of Coenzyme A. The concentration of Coenzyme A in vivo is limited and must be regenerated for a repeat of the \(\beta \)-oxidation cycle. The supplementation of the cell free extracts with several coenzymes, known to be associated with fatty acid oxidation, or with TCA cycle intermediates were unable, however, to decrease the lag before oxidation started.

The activity of different preparations varied widely, which was perhaps to be expected in view of the number of factors involved in this system and the somewhat crude extraction methods used. No methyl ketones were detected after the oxidation of fatty acids by cell-free extracts but were formed when cell debris from the Hughes Press was used. This suggests that the \(\beta \)-keto acid decarboxylases were tightly bound to the cell walls.
REFERENCES

Knoop, F. (1904). Beitr. chem. Physiol. Path. 6, 150.

The similarity of the pattern of methyl ketones obtained from the steam distillates at atmospheric pressure of cheeses made under controlled aseptic conditions, despite the wide differences in bacterial flora, led to the suspicion that the methyl ketones were being formed as artifacts. This was confirmed by steam distilling cheeses from 1 day to 13 months old when the qualitative patterns and quantitative amounts differed little with the age of the cheese. Evidence was produced to show that the greater part of these methyl ketones must be formed during the heat treatment of milk fat. The maximum quantities of methyl ketones obtainable from cheese and from milk fat, determined by exhaustive steam distillation at atmospheric pressure, averaged from 14 p.p.m. for 2-undecanone to 46 p.p.m. for 2-pentadecanone. Some artifact formation of methyl ketones also occurred, although to a greatly reduced extent, when dairy products containing milk fat were steam distilled under reduced pressure at 40°C. As methyl ketones in low concentrations could be extracted from mature cheese at room temperature by solvents or by flushing cheese suspension with nitrogen, milk fat appears to contain precursors which break down to methyl ketones slowly during cheese ripening, this breakdown being accelerated at higher temperatures.

Two possible modes of formation of the methyl ketones with an odd number of carbon atoms, found in limiting quantity in the steam distillates of Cheddar cheese, were considered:
(a) From precursors, probably β-keto acids, bound in milk fat.

(b) The β-oxidation of free fatty acids, formed by the lipolysis of milk triglycerides, and subsequent decarboxylation of the β-keto acids formed.

The use of radioactive milk fat from a lactating cow which had been injected intravenously with carboxy-14C acetate allowed a direct comparison to be made between the labelling patterns of fatty acids and the corresponding methyl ketones from the same milk source. The similarity of the labelling patterns suggests that the C_6 to C_{16} β-keto acids and the corresponding fatty acids have a common precursor (or that one is the precursor of the other) and are together incorporated into the triglycerides. Only butyric acid of the C_4 to C_{16} fatty acids in all 3 milkings had a higher specific activity than the corresponding methyl ketone. This suggests that the acetone found in steam distillates of milk fat is formed from a compound (probably D-β-hydroxybutyrate), derived almost entirely from a precursor other than acetate.

The finding that the saturated C_{18} acid in all 3 samples of radioactive milk fat had an extremely low activity was in agreement with the fact that no C_{17} methyl ketone was detected in any of the numerous steam distillates from milk fat or cheese. This supports the generally accepted view that, in the biosynthesis of milk fat, the fatty acids up to C_{16} acid are synthesised from an acetate pool, whereas C_{18} acids and above are obtained from the blood triglycerides.
The possibility that methyl ketones were being formed in Cheddar cheese from the β-oxidation of free fatty acids, as well as from a slow breakdown of bound β-keto acids in milk fat, was shown to be improbable. Triglycerides of acids (undecanoic, nonanoic, and heptanoic), which occur normally only in traces in milk fat, were synthesised and incorporated in Cheddar cheeses. On steam distillation of these cheeses when mature, no methyl ketones corresponding to the acids in the added triglycerides were obtained, although the normal range of methyl ketones with an odd number of carbon atoms was found in the distillates.

A detailed study of the metabolism of fatty acids and synthetic triglycerides by spores and mycelium of Penicillium roqueforti was undertaken, this fungus being chosen as a general representative of lipolytic organisms that might be of importance in producing Cheddar flavour. The effect of the growth medium, pH of solution, concentration of acid and inorganic ions on both oxygen uptake and methyl ketone formation was determined.

The rate of methyl ketone formation suggested the synthesis of adaptive β-keto acid decarboxylases after a lag period of 1 to 2 hours. An hypothesis based upon the possible toxicity of the C₆ to C₁₂ β-keto acids can explain a number of the experimental results:

(1) Only one methyl ketone was formed

(2) The most toxic acids were those which gave the least amount of methyl ketone
(3) Concentrations of the C_8 to C_{12} fatty acids that markedly inhibited the respiration of mycelium were nevertheless oxidised to considerable quantities of the corresponding methyl ketone.

The relationship between the toxic action of fatty acids and chain length was found to be dependent upon pH. The chain length of the most toxic acid increased with pH, being C_{10} acid at pH 2.5 and C_{12} at pH's 5.2 and 6.0. At pH 6.8 none of the acids from C_4 to C_{18} inhibited oxygen uptake but C_{14} acid was the most toxic acid at pH 8.0.

There appeared to be no sharp dividing line between the metabolic activity, with respect to fatty acids, of spores and mycelium. Mycelium oxidised fatty acids rapidly giving varying amounts of methyl ketone but considerably more CO$_2$ than spores. In general spores formed higher amounts of methyl ketones than mycelium but showed also a slight but definite ability to form CO$_2$ from octanoic acid.

Evidence for a β-oxidation mechanism in the fungal metabolism of fatty acids was obtained by the use of $1-C_{14}$ and $2-C_{14}$ octanoic acids. A relatively slow movement of intermediates through the T.C.A. cycle was also indicated.

High concentrations of triglycerides were oxidised slowly by spores to methyl ketones when equivalent concentrations of the free acid (up to 66 μmoles/ml) inhibited methyl ketone formation. It seems probable that the very slow rate of formation of methyl ketones is due to the inhibitory effect of the ketones themselves on the lipases.

Methyl carbinols were not detected in significant amounts as products of the metabolism of methyl ketones,
evidence being obtained on the contrary that the carbinols were possibly precursors of the ketones during the oxidation of fatty acids by spores.

Cell free extracts obtained from mycelium were able to oxidise low concentrations of octanoic acid (0.5 μmoles/ml or less) after a lag of up to 3 hours. The supplementation of the extracts with several coenzymes, known to be associated with fatty acid oxidation, or with T.C.A. cycle intermediates were unable, however, to decrease the lag before oxidation started. No methyl ketones were detected after the oxidation of fatty acids by cell-free extracts but were formed when cell debris from the Hughes Press was used. This suggests that the β-keto acid decarboxylases were tightly bound to the cell walls.