Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
DIALOGUE ACTIVATION:
AN APPROACH TO USER CENTRED CONSTRUCTIONAL
MODELLING OF
DIRECT MANIPULATION INTERFACES

A dissertation presented
in partial fulfilment of the requirements
for the degree of
Doctor of Philosophy in Computer Science
at Massey University

Paul Stuart Anderson
1995
I would like to thank my supervisors, Mark Apperley and John Hudson for many helpful discussions and suggestions over the course of this research.

I should also like to thank my family (Kathy, Christopher, Miles, Philip and Rosemary) without whose support this project would not have been possible.

Finally I should like to thank Chris Phillips for reading a draft of this thesis and giving me a great deal of useful feedback, and encouragement to finish it.

This work was funded in part by a grant from the Massey University Research Fund.
Abstract

Early stages in the development of interfaces involve the construction of models that aid interface analysis prior to construction. These behavioural models generally take a user-centred perspective. In contrast, subsequent implementation models tend to take a system-centred view of the interface. As a consequence of this change in viewpoint, the task of translating an analysis model into its implementation equivalent is extremely difficult.

This thesis proposes a constructional modelling approach for direct manipulation user interfaces (DMUI) that takes a user action viewpoint. Based on a hierarchy of dialogue groups and the notion of dialogue activation, sequence and concurrency within the interface can be described. Dialogues can be in one of two possible states, active or inactive. An active dialogue is one with which the user is able to interact. A dialogue becomes active only if its parent is active, and it receives one of a set of possible activating events. A second set of deactivating events can also exist. In this way a dialogue can be specified in terms of both a user's actions and the sequences in which those actions may be carried out. Dialogue Activation Language (DAL), a language for describing such models is developed, and shown to be applicable to a range of interaction styles. An architecture capable of implementing the dialogue activation model is proposed, and a user interface development system (PIPS), based on this architecture and using DAL is described.

It is argued that DAL takes the same view of an interface as would be used in its initial analysis, and as a consequence, facilitates the translation of these early interface models into working prototypes. In addition, it is proposed that taking the DAL approach to modelling DMUI allows great flexibility in describing interaction and encourages experimentation with entirely new interaction styles.
Chapter 1
Motivation and Scope ... 1
1.1 Introduction .. 1
1.2 The Behavioural and Constructional Domains 2
1.3 Direct Manipulation ... 6
1.3.1 A Definition of Direct Manipulation 7
1.4 Tools for User Interface Development 10
1.5 Motivation ... 12
1.6 Research Objectives ... 13
1.7 Thesis Outline .. 13

Chapter 2
Dialogue Modelling in the Behavioural Domain 15
2.1 Introduction .. 15
2.3. Dialogue Models ... 19
2.3.1 User Action Notation ... 19
2.3.2 Lean Cuisine ... 25
2.3.3 GOMS ... 29
2.3.4 Command Language Grammar .. 29
2.3.5 Notations for Comparison of Interactions 32
2.4 Summary .. 34

Chapter 3
Dialogue Modelling in the Constructional Domain 37
3.1 Introduction .. 37
3.2 Structural Models ... 37
3.2.1 Linguistic based architectures .. 38
3.2.2 Agent based architectures .. 40
3.2.3 Surface Interaction .. 43
3.3 Dialogue Models .. 43
3.3.1 Context Free Grammars .. 45
3.3.2 State Transition Networks .. 49
3.3.3 Statecharts .. 54
3.3.4.	Event Dispatch Models	57
3.3.5.	Propositional Production Systems	63
3.3.6.	Process Algebras	64
3.3.7.	Other methods	69
3.4.	Summary	69

Chapter 4

4.1.	Introduction	71
4.2.	Model Translation	71
4.3.	Translation of Lean Cuisine	72
4.4.	Conclusion	78

Chapter 5

5.1.	Introduction	83
5.2.	Dialogue Activation	83
5.3.	Specification of Events	88
5.4.	Specification of Activation & Deactivation	89
5.5.	Action Sequences	90
5.6.	Concurrency	91
5.7.	Visualisation of Concurrency	92
5.9.	Variables	97
5.10.	Guard Conditions	98
5.11.	Scope of Events	99
5.12.	Presentation and Application Attachment	101
5.12.1.	Display statements	102
5.12.2.	Application statements	104
5.13.	Object Oriented Features of DAL	106
5.14.	Dynamic Creation of dialogues	111
5.15.	Architectural Context	115

Chapter 6

6.1.	Introduction	121
6.2.	The DAL Framework	121
6.3.	System States	122
6.4.	State Transitions and Event Propagation	125
6.4.1.	Action Event Propagation	126
6.4.2. System Event Broadcasting .. 133
6.4.3. Anonymous Transitions ... 137
6.5. Variables .. 137
6.6. Concurrency ... 139
6.7. Potential System Problems ... 142
 6.7.1. Concurrency Related Faults 142
 6.7.2. DAL Specific Faults ... 147
6.8. Scope Of This Analysis .. 158

Chapter 7
The PIPS Development Environment 161
 7.1. Introduction .. 161
 7.2. Implementation Options .. 161
 7.3. The PIPS 'agent' Model .. 163
 7.4. The PIPS Architecture ... 164
 7.5. DAL Compilation .. 166
 7.5.1. Class expansion ... 166
 7.5.2. Variable and event identifier assignment 168
 7.5.3. Statement translation ... 170
 7.6. Run-Time Components ... 170
 7.6.1. Framework agents .. 171
 7.6.2. Interface agents ... 172
 7.7. Framework Agents ... 172
 7.7.1. Action event queue ... 172
 7.7.2. System event handler ... 177
 7.7.3. Template agent .. 179
 7.7.4. Interface agent ... 180
 7.8. Interface Agents ... 180
 7.8.1. Dialogue agents ... 180
 7.8.2. Widgets .. 181
 7.8.3. Application interface ... 183
 7.9. Optimisation Of The Prototype System 183
 7.10. PIPS Debugging Facilities .. 187
 7.10.1. Activation tracing ... 187
 7.10.2. Event record tracing ... 188

Chapter 8
Design Examples .. 191
 8.1. Introduction ... 191
Chapter 9
Conclusions and Further Work .. 205
 9.1. Introduction .. 205
 9.2. Contributions of this work ... 205
 9.3. Questions and answers .. 206
 9.4. Further Work ... 209
Bibliography .. 215
Appendix A
BNF Definition of DAL .. 225
Appendix B
Event Cycle Detection .. 231
Appendix C
Example Dialogues ... 241
 1. Widget and Application Classes .. 241
 2. Closebox ... 245
 3. Simple paint dialogue ... 249
 4. Pulldown Menu ... 256
 5. Pin-up Pop-up Menu ... 266
 6. Brush Shape Dialogue Box .. 275
 7. Simple Drag and Drop ... 284
 8. Drag and Drop with Multiple Destinations 289
 9. Dynamic "drag and drop" ... 295
 10. Simple Gesture Recognition .. 305
 11. Compound Gesture Recognition Tablet .. 310