Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
X-RAY CRYSTALLOGRAPHIC
INVESTIGATIONS OF THE STRUCTURES
OF ENZYMES OF MEDICAL AND
BIOTECHNOLOGICAL IMPORTANCE

by

Richard Lawrence Kingston

A dissertation submitted in partial satisfaction of the requirements for the degree of

Doctor of Philosophy

in the

Department of Biochemistry

at

MASSEY UNIVERSITY, NEW ZEALAND

November, 1996
ABSTRACT

This thesis is broadly in three parts. In the first, the problem of identifying conditions under which a protein will crystallize is considered. Then structural studies on two enzymes are reported, glucose-fructose oxidoreductase from the bacterium *Zymomonas mobilis*, and the human bile salt dependent lipase (carboxyl ester hydrolase).

The ability of protein crystals to diffract X-rays provides the experimental data required to determine their three dimensional structures at atomic resolution. However the crystallization of proteins is not always straightforward. A systematic procedure to search for protein crystallization conditions has been developed. This procedure is based on the use of orthogonal arrays (matrices whose columns possess certain balancing properties). The theoretical and practical background to the problem is discussed, and the relationship of the presented procedure to other published search methods is considered.

The anaerobic Gram-negative bacterium *Zymomonas mobilis* occurs naturally in sugar-rich growth media, and has attracted much interest because of its potential for industrial ethanol production. In this organism the periplasmic enzyme glucose-fructose oxidoreductase (GFOR) is involved in a protective mechanism to counter osmotic stress. The enzyme is unusual in that it contains tightly associated NADP which is not released during its catalytic cycle. The crystal structure of *Z. mobilis* GFOR has been determined by the method of multiple isomorphous replacement, and refined by restrained least squares methods using data extending to an effective resolution of 2.7 Å. The structure determination reveals that each subunit of the tetrameric protein is folded into two domains, one of which is the classical dinucleotide binding domain, or Rossmann fold. The C-terminal domain is a nine-stranded predominantly antiparallel β-sheet around which the tetramer is constructed. Preceding the Rossmann fold there is a 30 amino acid proline rich ‘arm’ which wraps around an adjacent subunit in the tetramer. The N-terminal arm buries the adenine ring of the NADP, and may also be involved in stabilization of the quaternary structure of the enzyme. The tight association of NADP is accounted for by the structure. An unsuspected structural relationship has been discovered between GFOR and the cytoplasmic enzyme glucose-6-phosphate dehydrogenase (G6PD). It is proposed that GFOR and G6PD derive from an common ancestral gene, and GFOR has evolved to allow it to function in the bacterial periplasm where it is required.

The human bile salt dependent lipase (BSDL) is secreted by the pancreas into the digestive tract, and by the lactating mammary gland into human milk, and is integral to the effective absorption of dietary lipids. It is markedly non-specific, and as its name implies is only active against water-insoluble substrates in the presence of primary bile salts. This differentiates the
enzyme from conventional lipases. Diffraction data has been collected from crystals of native BSDL (isolated from human milk), and from crystals of recombinant BSDL (including a truncated variant which lacks a C-terminal heavily glycosylated tandem repeat region found in the native enzyme). The structure of the truncated variant has been partially determined at 3.5 Å resolution, by the method of molecular replacement. The recent collection of a higher resolution (2.8 Å) data set should allow the completion of the structure. The current status of the crystallographic investigations of the human bile salt dependent lipase are reported.
ACKNOWLEDGMENTS

I thank my principal supervisor, Professor Ted Baker for his friendship, his enthusiasm for science, and for allowing me much freedom to follow my ideas. I also thank Mrs. Heather Baker for her help and constant encouragement.

I thank my assistant supervisors, Dr. Bryan Anderson (for many discussions about crystallographic computing), and Professor Sylvia Rumball (who initiated a collaboration with Umeå University on bile salt dependent lipase).

I would like to specifically acknowledge the scientific contributions of Dr. Rick Faber, and Dr. Stanley Moore to the work presented in this thesis (when they weren't fly fishing, that is).

I would like to thank all the other friends I have made during my time at Massey. Andrew, Rosemary, Isobel, Shaun, Treena, Ross, Catherine, Alain and Anne-Gael, Mark, Michelle, Jakki and Paul, Neil and Liz, Phil, and Maria to name only some. Thanks.

The work on bile salt dependent lipase was carried out in collaboration with Professor Olle Hernell and Dr. Lars Bläckberg (Umeå University, Sweden); and Dr. Kerry Loomes (Auckland University, New Zealand). The work on glucose-fructose oxidoreductase was carried out in collaboration with Professor Robert Scopes (La Trobe University, Australia). I thank these people for their scientific contributions, and especially Kerry, for believing we could solve the structure and working so hard to overcome difficult technical problems.

For financial assistance while this work was completed I thank Massey University (through the award of a doctoral scholarship), and latterly Professor Ted Baker.

Thanks to the members of my family for encouragement and support. I owe much to my parents for supporting what I do, and helping to finance my study.

Finally I would like to thank Wendy, a very special friend, and someone whom it has been difficult to be separated from while this thesis was written
TABLE OF CONTENTS

ABSTRACT .. i
ACKNOWLEDGEMENTS ... iii
TABLE OF CONTENTS .. iv
LIST OF FIGURES .. vii
ABBREVIATIONS .. ix
RELATED PUBLICATIONS ... xi

Chapter 1
PROTEIN CRYSTALLIZATION

1.1 INTRODUCTION ... 1
 1.1.1 HISTORICAL BACKGROUND .. 1
 1.1.2 THE EXPERIMENTAL PROBLEM TODAY ... 2
 1.1.3 PHYSICAL BACKGROUND .. 2

1.2 SEARCH DESIGNS FOR PROTEIN CRYSTALLIZATION ... 4
 1.2.1 TERMS ASSOCIATED WITH EXPERIMENTAL DESIGN ... 4
 1.2.2 CURRENT APPROACHES TO SEARCHING FOR PROTEIN CRYSTALLIZATION CONDITIONS 5
 1.2.3 GENERAL CRITERIA FOR INITIAL SEARCH EXPERIMENTS ... 6
 1.2.4 ORTHOGONAL ARRAYS ... 7
 1.2.5 UNDERLYING FACTORIAL STRUCTURE FOR SEARCH EXPERIMENTS ... 13
 1.2.6 PRACTICAL IMPLEMENTATION OF ORTHOGONAL ARRAY-BASED SEARCH DESIGNS 14
 1.2.7 EXPERIMENTAL CONSIDERATIONS ... 22

1.3 PRACTICAL APPLICATION TO SEVERAL PROBLEMS ... 24
 1.3.1 BILE SALT DEPENDENT LIPASE ... 25
 1.3.2 GLUCOSE-FRUCTOSE OXIDOREDUCTASE .. 27
 1.3.3 α2β2 EMBRYONIC HEMOGLOBIN ... 28

1.4 RELATIONSHIP TO PUBLISHED SEARCH PROCEDURES .. 29

1.5 DISCUSSION AND CONCLUSION ... 31
 1.5.1 ANALYSIS USING LINEAR MODELS .. 31
 1.5.2 DISTRIBUTION PROPERTIES OF ORTHOGONAL ARRAYS ... 32
 1.5.3 DYNAMIC LIGHT SCATTERING ... 33
 1.5.4 CRYSTALLIZATION OF OTHER BIOLOGICAL MACROMOLECULES ... 34
 1.5.5 CONCLUSION ... 34
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.3</td>
<td>TIGHT ASSOCIATION WITH GFOR</td>
<td>85</td>
</tr>
<tr>
<td>3.4.4</td>
<td>EVOLUTIONARY IMPLICATIONS OF THE N-TERMINAL ARM</td>
<td>86</td>
</tr>
<tr>
<td>3.5</td>
<td>IMPLICATIONS FOR CATALYSIS</td>
<td>86</td>
</tr>
<tr>
<td>3.5.1</td>
<td>BACKGROUND</td>
<td>86</td>
</tr>
<tr>
<td>3.5.2</td>
<td>THE ACTIVE SITE OF GFOR</td>
<td>87</td>
</tr>
<tr>
<td>3.5.3</td>
<td>SEQUENCE AND STRUCTURAL SIMILARITIES</td>
<td>88</td>
</tr>
<tr>
<td>3.5.4</td>
<td>GENERAL DISCUSSION</td>
<td>90</td>
</tr>
<tr>
<td>3.6</td>
<td>GFOR AS A PERIPLASMIC ENZYME</td>
<td>91</td>
</tr>
<tr>
<td>3.7</td>
<td>CONCLUSION</td>
<td>92</td>
</tr>
</tbody>
</table>

Chapter 4

BILE SALT DEPENDENT LIPASE

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>INTRODUCTION</td>
<td>94</td>
</tr>
<tr>
<td>4.1.1</td>
<td>GENERAL BACKGROUND</td>
<td>94</td>
</tr>
<tr>
<td>4.1.2</td>
<td>LIPASES</td>
<td>94</td>
</tr>
<tr>
<td>4.1.3</td>
<td>BILE SALT DEPENDENT LIPASE</td>
<td>98</td>
</tr>
<tr>
<td>4.1.4</td>
<td>THE ROLE OF STRUCTURAL STUDIES</td>
<td>110</td>
</tr>
<tr>
<td>4.2</td>
<td>NATIVE BSDL</td>
<td>111</td>
</tr>
<tr>
<td>4.2.1</td>
<td>PROTEIN PURIFICATION AND CRYSTALLIZATION</td>
<td>111</td>
</tr>
<tr>
<td>4.2.2</td>
<td>CHARACTERIZATION OF THE CRYSTALS</td>
<td>111</td>
</tr>
<tr>
<td>4.2.3</td>
<td>ANISOTROPIC DIFFRACTION</td>
<td>114</td>
</tr>
<tr>
<td>4.2.4</td>
<td>DIFFUSE SCATTERING</td>
<td>116</td>
</tr>
<tr>
<td>4.2.5</td>
<td>ENZYMATIC DEGLYCOSYLATION</td>
<td>119</td>
</tr>
<tr>
<td>4.3</td>
<td>RECOMBINANT FULL LENGTH BSDL</td>
<td>122</td>
</tr>
<tr>
<td>4.3.1</td>
<td>EXPRESSION, PURIFICATION AND CRYSTALLIZATION</td>
<td>122</td>
</tr>
<tr>
<td>4.3.2</td>
<td>PRELIMINARY CRYSTALLOGRAPHIC INVESTIGATION</td>
<td>123</td>
</tr>
<tr>
<td>4.4</td>
<td>RECOMBINANT TRUNCATED BSDL</td>
<td>124</td>
</tr>
<tr>
<td>4.4.1</td>
<td>EXPRESSION AND PURIFICATION</td>
<td>124</td>
</tr>
<tr>
<td>4.4.2</td>
<td>CRYSTALLIZATION</td>
<td>125</td>
</tr>
<tr>
<td>4.4.3</td>
<td>DATA COLLECTION AND PROCESSING</td>
<td>127</td>
</tr>
<tr>
<td>4.4.4</td>
<td>STRUCTURE SOLUTION BY MOLECULAR REPLACEMENT</td>
<td>133</td>
</tr>
<tr>
<td>4.4.5</td>
<td>BUILDING AN INITIAL MODEL</td>
<td>136</td>
</tr>
<tr>
<td>4.4.6</td>
<td>REFINEMENT AT LOW RESOLUTION</td>
<td>138</td>
</tr>
<tr>
<td>4.4.7</td>
<td>DIFFICULTIES IN COMPLETION OF THE PARTIAL STRUCTURE</td>
<td>139</td>
</tr>
<tr>
<td>4.4.8</td>
<td>CURRENT STATUS OF THE STRUCTURE DETERMINATION</td>
<td>140</td>
</tr>
</tbody>
</table>

REFERENCES | 143 |
LIST OF FIGURES

Chapter 1

FIGURE 1.1 GEOMETRIC REPRESENTATION OF THE 2 X 2 X 2 FACTORIAL AND SOME POSSIBLE SUBSETS ... 9
FIGURE 1.2 CRYSTAL OF NATIVE BSDL ... 26
FIGURE 1.3 CRYSTAL OF ZYMOMONAS MOBILIS GFOR .. 28
FIGURE 1.4 GEOMETRIC REPRESENTATION OF TWO ORTHOGONAL ARRAYS, OA(8, 3, 2X2X4, 2) ... 33

Chapter 2

FIGURE 2.1 STEREOGRAHIC PROJECTIONS OF THE SELF-ROTATION FUNCTIONS OF THE TWO CRYSTAL FORMS OF GFOR 40
FIGURE 2.2 PATTERSON FUNCTION CALCULATED FROM THE FORM II DATA 41
FIGURE 2.3 THE RELATIONSHIP BETWEEN THE TWO CRYSTAL FORMS 42
FIGURE 2.4 DATA COLLECTION USING CRYSTALS MOUNTED IN LIQUID-FILLED CAPILLARIES 44
FIGURE 2.5 CALCULATED AND OBSERVED ELECTRON DENSITY HISTOGRAMS 53
FIGURE 2.6 ELECTRON DENSITY MAPS FOR GFOR ... 56
FIGURE 2.7 STEREVIEW OF ELECTRON DENSITY MAPS CALCULATED FROM AN ATOMIC AND A 'GLOBIC' REPRESENTATION OF AN α-HELIX AT 3.0 Å RESOLUTION 63
FIGURE 2.8 STEREVIEW OF A DIFFERENCE FOURIER SYNTHESIS WITH RESIDUES IN THE REGION CONFLICTING WITH THE PUBLISHED SEQUENCE OMITTED .. 66
FIGURE 2.9 RAMACHANDRAN PLOT FOR THE REFINED GFOR MONOMER 71
FIGURE 2.10 ELECTRON DENSITY MAP CALCULATED USING THE FORM II DATA 73

Chapter 3

FIGURE 3.1 Ca PLOT OF GFOR .. 74
FIGURE 3.2 TOPOLOGY OF GFOR ... 76
FIGURE 3.3 RIBBON DIAGRAMS OF GFOR AND G6PD ... 78
FIGURE 3.4 QUATERNARY STRUCTURE OF GFOR .. 81
FIGURE 3.5 CONFORMATION OF THE ENZYME-BOUND NADP ... 83
FIGURE 3.6 HYDROGEN-BONDI NG INTERACTIONS BETWEEN GFOR AND NADP 84
FIGURE 3.7 THE ACTIVE SITE OF GFOR ... 87
FIGURE 3.8 ALIGNMENT OF SEQUENCES WITH HOMOLOGY TO GFOR 89

Chapter 4

FIGURE 4.1 DIAGRAM SHOWING THE CONFORMATIONAL CHANGE ASSOCIATED WITH ACTIVATION IN CANDIDA RUGOSA LIPASE ... 96
FIGURE 4.2 SCHEMATIC DIAGRAM SHOWING THE CONFORMATIONAL CHANGE ASSOCIATED WITH INTERFACIAL ACTIVATION IN THE FUNGAL LIPASES 97
FIGURE 4.3 ALIGNMENT OF KNOWN BSDL SEQUENCES ... 102
FIGURE 4.4 TOPOLOGY DIAGRAM OF THE LIPASE/ESTERASE FAMILY FOLD 104
FIGURE 4.5 RIBBON DIAGRAM OF T. CALIFORNICA ACETYLCHOLINESTERASE 105
FIGURE 4.6 BILE ACID STRUCTURE ... 108
FIGURE 4.7 SPACE FILLING MODEL OF CHOLIC ACID ... 109
FIGURE 4.8 CRYSTAL OF NATIVE BSDL ... 111
FIGURE 4.9 DIFFUSE SCATTERING PATTERNS FROM NATIVE BSDL CRYSTALS (I) 117
FIGURE 4.10	DIFFUSE SCATTERING PATTERNS FROM NATIVE BSDL CRYSTALS (II)	118
FIGURE 4.11	ISOELECTRIC FOCUSING OF BSDL	120
FIGURE 4.12	CRYSTALS OF DESIALIDATED BSDL	121
FIGURE 4.13	CRYSTALS OF FULL-LENGTH RECOMBINANT BSDL	123
FIGURE 4.14	CRYSTALS OF TRUNCATED RECOMBINANT BSDL	125
FIGURE 4.15	GLASS-SLIDE MOUNTING DEVICE FOR CRYOCRYSTALLOGRAPHY	131
FIGURE 4.16	BACKGROUND SCATTER AND ABSORPTION DUE TO THE SOLID-SURFACE MOUNT	132
FIGURE 4.17	RESULTS OF PATTERSON CORRELATION REFINEMENT	135
FIGURE 4.18	ELECTRON DENSITY FOR TRUNCATED RECOMBINANT BSDL	141
ABBREVIATIONS

AChE Acetylcholinesterase
AMPSO 3-[(1,1-Dimethyl-2-hydroxyethyl)amino]2-hydroxypropanesulfonic acid
BIS-TRIS PROPA NE 1,3-bis[tris(Hydroxymethyl)-methylamino]propane
BSDL Bile salt dependent lipase
BSSL Bile salt stimulated lipase
CDL Colipase-dependent lipase
CHAPS 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate
CRL Candida rugosa lipase
dhPR Dihydridipicolinate reductase
DNA Deoxyribonucleic acid
EPPS N-[2-Hydroxyethyl]piperazine-N'[3-propanesulfonic acid]
FAD Flavin-adenine dinucleotide
FMN Flavin mononucleotide
G6PD Glucose-6-phosphate dehydrogenase
GAPDH Glyceraldehyde-3-phosphate dehydrogenase
GCL Geotrichum candidum lipase
GFOR Glucose-fructose oxidoreductase
HEPES N-[2-Hydroxyethyl]piperazine-N'-[2-ethanesulfonic acid]
IEF Isoelectric focussing
LDH Lactate dehydrogenase
MDH Malate dehydrogenase
MES 2-[N-Morpholino]ethanesulfonic acid
MIR Multiple isomorphous replacement
MOPS 3-[N-Morpholino]propanesulfonic acid
NAD Oxidized or reduced form of nicotinamide adenine dinucleotide
NADP Oxidized or reduced form of nicotinamide adenine dinucleotide phosphate
NADP+ Oxidized form of nicotinamide adenine dinucleotide phosphate
NADPH Reduced form of nicotinamide adenine dinucleotide phosphate
NAD(P) NAD or NADP
NCBI National Center for Biotechnology Information
NCS Non-crystallographic symmetry
NIST National Institute of Standards and Technology
PCR Polymerase chain reaction
PEG Polyethylene glycol
PEG-mme Polyethylene glycol monomethyl ether
ABBREVIATIONS

PIPS 1,4-Piperazinediethanesulfonic acid
PQQ Pyrrolo-quinoline quinone
RMS Root mean square
SEL Sequential elimination of levels
SIR Single isomorphous replacement
TAPS N-tris[Hydroxymethyl]methyl-3-aminopropanesulfonic acid
TcAChE *Torpedo californica* acetylcholinesterase
TRIS Tris(hydroxymethyl)aminomethane
RELATED PUBLICATIONS

Some of the material presented in this thesis has already been published, or has been accepted for publication.
