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Abstract 

This thesis presents an investigation into current meta-CASE technology. The research 

focuses on CASE tool support for the concept of methodology, the representation of 

methodology syntax and semantics, and the support for re-use of methodology 

descriptions and software artefacts. A novel methodology representation strategy for 

meta-CASE tools is proposed and implemented with the development of a new meta­

CASE tool (MOOT- Meta Object Orientated Tool). 

The novel strategy propounded in this thesis uses an object-orientated meta-model and 

views methodology descriptions as potentially re-usable components. The coupling 

between methodology syntax and semantic descriptions is minimised so they can be re­

used independently. 

Two new modelling languages have been derived, to support the definition of syntax 

(NDL - Notation Definition Language) and semantics (SSL - Semantic Specification 

Language) of software engineering methodologies. Semantic descriptions are compiled to 

a platform independent representation (SSL-BC), which is executed on a purpose built 

virtual machine (SSL-V:M). Late binding of syntax and semantic methodology 

descriptions is implemented with the development of Notation Semantic Mapping 

(NS!vf) tables. Two libraries of re-usable methodology description components, the Core 

Knowledge Base (CKB) and the Generic Object Orientated Knowledge Base (GOOKB), 

have been derived during this research. 

Empirical results gained from applying the MOOT prototype demonstrated the 

flexibility, extensibility and potential of the novel methodology representation strategy. 

This approach permitted the implementation and modelling of UML and patterns, two 

recent advances of object technology that did not exist when the research commenced. 

The novel strategy presented in this thesis is more than an untried theory. It has been 

implemented, applied and is being evaluated. Simply, it is real and it works. 
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GLOSSARY 

The content of the glossary has been derived from a range of dictionaries 
(Collins, 199 5; Nuttals, 1902; Readers Digest, 198 8 ;  Oxford, 199 3 ; Mirriam­
Webster, 1998 ), the Dictionary of Object Technology (Firesmith and Eykholt, 
199 5) and (D'Souza and Wills, 1998 ; Jacobson et al. , 1995; Pressman 1997 ; 
Schach, 1993 , 1997 ; Somerville, 1996). 

Abstraction. Any model that includes the most important, essential, or distinguishing 
aspects of something while suppressing or ignoring less important, immaterial, or 
diversionary details. The result of removing distinctions so as to emphasise 
commonalties. 

Arity. The cardinality of something. For example the arity of a relation specifies the 
number of concepts that are involved in the relation. 

Attribute. Any named property used as a data abstraction to describe its enclosing object, 
class or extent. 

Behaviour. Anything that an organism does involving action and response to stimulation. 
The way in which someone behaves; also: an instance of such behaviour. 

Bind. To place under certain constraints. To cohere or cause to cohere. To place under 
obligation; oblige. 

Binding. Any selection of the appropriate method for an operation on receipt of a 
corresponding message. 

Browser. Any view that allows you to access hierarchically organised and indexable 
information. 

CASE Tool. A) Any computer based tool for software planning, development and 
evolution. This includes all examples of computer-based support for the managerial, 
administrative, or technical aspects of any part of a software development project. B) 
Products that assist the software engineer in developing and maintaining software. 

CASE. An acronym that stands for Computer Assisted Software Engineering. 

CKB. Core Knowledge Base. A library of methodology semantic components that 
implements a meta-model of methodology. 

Class. Any uniquely identified abstraction (i.e. a model) of a set of logically related 
instances that share the same or similar characteristics. The combination of a type 
interface and associated type implementation. 

Classification. The act of forming into a class or classes; a distribution into groups such as 
classes, orders, families, etc., according to some common relations or affinities. 
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Cohesion. The degree, to which something models a single abstraction, localising only 
features and responsibilities related to that abstraction. 

Component. A) Any standard, reusable, previously implemented unit that is used to 

enhance the programming language constructs and to develop applications. B) An 
independently deliverable unit of software that encapsulates its design and 
implementation and offers interfaces to the out-side, by which it may be composed with 
other components to form a larger whole. 

Coupling. The degree to which one thing depends on another. Low coupling is desirable 
because it produces better encapsulation, maintainability, and extendibility with fewer 
objects needlessly affected during iteration. 

Encapsulation. To enclose in or as if in a capsule; the act of enclosing in a capsule. The 
physical localisation of features. 

Engineering. The application of scientific principles to such practical ends as the design, 
construction, and operation of efficient, economical structures, equipment and systems. 
The application of science to the design, building, and use of machines, constructions etc. 

GOOKB. Generic Object Orientated Knowledge Base. A library of methodology semantic 
components that implements a meta-model of concepts germane to all object-orientated 
methodologies. 

Identity. Individuality. 

Information Hiding. The deliberate and enforced hiding of information (e.g. design 
decisions, implementation details) from clients. The limiting of scope so that some 
information is invisible outside of the boundary of the scope. 

Inheritance. The incremental construction of a new definition in terms of existing 
definitions without disturbing the original definitions and their clients. 

Instance. Anything created from or corresponding to a definition. 

Interface. The visible outside, user view of something. 

Language. Any method of communicating ideas, as by a stream of signs, symbols, gestures 
or the like. The special vocabulary and usage of a scientific professional or other group. 
The speech or expression of ideas. 

MDT. An acronym that stands for Methodology Description Table. The Methodology 
Description Table provides an index of the methodologies supported by MOOT. 

Message Send. The sending of a message to an object. 

Message. Any communication sent or received by an object. 

Meta. A Greek prefix signifying beyond, after, with, among and frequently expressing 
change. Going beyond or transcending. Used with the name of a discipline to designate a 
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new but related discipline designed to deal critically with the original one. Of a higher or 
second-order kind. 

Meta-CASE Tool. A) A meta-CASE tool is any tool that provides automated or semi­

automated support for developing CASE tools. B) ... are CASE tools which are used to 

generate other CASE tools. C) A CASE tool that operates on CASE tools. 

Meta-language. The natural language, formal language, or logical system used to discuss 
or analyse another system. A form of language used to discuss a language. 

Method. A) Mode of procedure, logical arrangement, orderly arrangement, system of 
classification. A means or manner of procedure, especially a regular and systematic way of 
accomplishing anything. The procedures and techniques characteristic of a particular 
discipline or field of knowledge. special form of procedure esp. in any branch of 

mental activity. B)  A way of carrying out a complete phase such as such as design or 

integration. C) The hidden implementation of an associated operation. 

Methodology CASE Tool. A CASE tool that supports one or more software development 
methodologies and attempts to span most of the software development life-cycle. 

Methodology. The science of scientific method of classification. From the Greek method 
and logis (science). The system of principles, practices, and procedures applied to any 
specific branch of knowledge. The science of method; a body of methods used in a 
particular branch or activity. 

ModeL A) Archetype; a description or analogy used to help visualise something that 
cannot be directly observed; a system of postulates, data, and inferences presented as a 
mathematical description of an entity or state of affairs. A preliminary pattern or 
representation of an item not yet constructed. A tentative framework of ideas describing 

something intangible and used as a testing device. B) A model clarifies- for a person or 
group of people - some aspect or perspective on a thing or event. 

MOOT. Meta Object Orientated TooL A new meta-CASE tool developed as a result of 
this research. 

NDL. Notation Definition Language. A new language used to define the syntax of a 
methodology MOOT. 

Notation. A system of characters, symbols, or abbreviated expressions used in an art or 
science or in mathematics or logic to express technical facts or quantities. 

NSM. An acronym that stands for Notation-Semantic Mapping. NSM tables are used to 
implement late binding ofNDL and SSL methodology descriptions. 

Object. Any abstraction that models a single thing. 

Operation. Any service that may be requested. 

Polymorphism. The ability of a single name to refer to different things having different 
forms. 
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Process. A) A system of operations in the production o f  something. A series of actions, 
changes or functions that bring about an end or result. A course of action or proceeding, 
esp. a series of stages in manufacture or some other operation. B) ... the way we produce 
software. It starts with concept exploration and ends when the product is finally retired. 
C) . . . the set of activities and associated results which produce a software product. 

Relation. Connection by consanguinity or affinity; kinship; relationship; as, the relation of 
parents and children; an abstraction belonging to, or characteristic of, two entities or parts 
together. 

Semantic. Of, or relating to, meaning in language. 

Software Development Life-cycle (SDLC). A process by which software engineers build 
computer applications. 

Software Engineering. A) The application of a systematic, disciplined, quantifiable 
approach to the development, operation, and maintenance of software; that is the 
application of engineering to software. B) ... is concerned with the theories, methods and 
tools that are needed to develop software for computers. C) A discipline whose aim is the 
production of quality software that satisfies the user's needs, and is delivered on time and 
within budget. 

Software Project. A software project consists of a set of models (built using a particular 
methodology) which collectively define the software being constructed. 

SSL. Semantic Specification Language. A new object-orientated language used to define 
the semantics of a methodology in MOOT. 

SSL-BC. SSL Byte Code. A platform independent, binary, representation of SSL, which is 
generated by the SSL compiler. 

SSLC. SSL compiler. 

SSL-VM. SSL Virtual Machine. 
processing of SSL. 

new virtual machine which supports efficient 

State. Any status, situation, condition, mode, or life-cycle phase of an object or class 
during which certain rules of overall behaviour (e.g. response to messages) apply. 

Syntax. The way in which linguistic elements (as words) are put together to form 
constituents (as phrases or clauses). 

Tool. A thing used in an occupation or pursuit. Any instrument of use or service. 

Type. A lower taxonomic category selected as a standard of reference for a higher 
category. The declaration of the interface of any set of instances (e.g. objects) that 
conform to this common protocol. 
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Chapter 1 

Introduction 

He that will not apply new remedies must expect new evils: for time is the 

greatest innovator, and if time of course alter things to the worse, and 

wisdom and counsel shall not alter them to the better, what shall be the end? 

1.1 Introduction 

Francis Bacon 

Edward Y ourdon once said, "CASE technology will help revolutionise the software 

industry". Unfortunately he was overly optimistic. 

There can be no doubting the potential benefits of automation during the software 

development process, yet the adoption of CASE technology can only be described as 

lethargic. If the philosophy behind CASE technology is not at fault then what is the cause 

of its languid rate of adoption? The fault can only be ascribed to its execution. 

"Vendors have been selling products for years that are supposed to promote 

reusability, promote better design, and speed time to market. The problem is 

that few commercial products actually live up to even significant portions of 

their claims." 

From the FreeCASE web site (freeCASE 1998) 

Evaluation of CASE tools has revealed a number of shortcomings in many of the existing 

tools in use today (Brough, 1992; Brown, 1997; Crozier et al. , 198 9; Gibson, 198 8; 

Isazadeh and Lamb, 1997; L.ang, 1991; Marttiin et al., 1993; Mehandjiska et al. , 1994, 

1995b, 1996a, 1997; Misra, 1990; Mosely, 1992; Nilson, 1990; Ovum, 1996; Papahristos 

and Gray, 1991; Phillips et al., 1998a; Rossi et al. , 1992; Sorenson, 198 8; Sumner, 1992; 

Vessey et al., 1992). 
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This thesis details research which aims to develop novel methods and techniques to 

address the limitations of current CASE and meta-CASE technology with respect to 

methodology representation and customisation. The research is part of a three year 

project, funded by the Foundation of Research, Science and Technology (Adams, 1998; 

Clark, 1994; Choi, 1996; Dasari et al., 1995; Gray, 1995; Griffin, 1997; Ham et al, 1994; 

Mehandjiska et al. , 1994, 1995a, b, 1996a, c, 1997; Page et al. , 1994, 1997, 1998; Phillips et 

al, 1998a-c; Yu, 1999). A new meta-CASE tool, which implements a new methodology 

representation strategy, has been developed during this research. Its prototype is 

presented in this thesis. 

The remainder of this chapter defines the scope of the research detailed in this thesis. 

Initially some essential fundamental terms are introduced. A brief history of object­

orientated software engineering methodologies is presented followed by a review of the 

current status of CASE technology. The term Methodology CASE tool is defined and the 

scope of the research is presented. The limitations of Methodology CASE tools are 

discussed from several perspectives and the objectives of the research are subsequently 

defined. Finally an overview of the research method and an outline of the remainder of 

the thesis is presented. 

1.2 Fundamental Terms 

Don't sir, accustom yourself to use big words for little matters ... The practice 

of using words of disproportionate magnitude is, no doubt, too frequent. 

Samuel J ohnson 

The following terms are germane to this thesis and are pervasive throughout: 

• 

• 

• 

• 

• 

Software Engineering Development Methodology 

Computer Aided Software Engineering (CASE) 

CASE tool 

Meta-modelling 

Meta-CASE tool 

No attempt is made to adopt, or artificially create, definitions of these fundamental terms 

for the sole purpose of this study. Rather a pragmatic overview of these fundamental 

terms is presented by adopting a holistic approach. A range of definitions are introduced 

from English dictionaries (Collins, 1995; Nuttals, 1902; Oxford, 1990; Readers Digest, 
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1988; Mirriam-Webster, 1998) and used to facilitate the rationalisation of these terms. 

The reader is directed to the glossary, which includes accepted definitions from the 

literature (D'Souza and Wills, 1998; Firesmith and Eykholt, 1995; Jacobson et aL, 1995; 

Pressman, 1997; Schach, 1993, 1997; Somerville, 1996). 

1.2.1 Software Engineering Development Methodology 

Engineering. [rdf The application of scientific principles to such practical ends 

as the design, construction, and operation of efficient, economical structures, 

equipment and systems. [ oxfj The application of science to the design, building, 

and use of machines, constructions etc. 

Software engineering is the application of scientific principles to the design and 

construction of sofuvare systems. A sofuvare engineer applies these scientific principles 

by modelling within the context of a given problem domain. Boehm (1976) proposed a 

definition for software engineering: "the practical application of scientific knowledge in 

the design and construction of computer programs and the associated documentation 

required to develop, operate and maintain them." 

Model. [web] Archetype; a description or analogy used to help visualise 

something that cannot be directly observed; a system of postulates, data, and 

inferences presented as a mathematical description of an entity or state of affairs. 

[rd) A preliminary pattern or representation of an item not yet constructed. A 

tentative framework of ideas describing something intangible and used as a testing 

device. 

A model is an abstraction of a problem domain that is built by concentrating on features 

a software engineer deems salient. Modelling is the process of deriving a model. Marttiin e! 

al. (1993) state HA model is a simplified representation of a system." A model is built by 

applying well-tested scientific principles and is expressed in a language that encapsulates 

those principles. 

Language. [rd] Any method of communicating ideas, as by a stream of signs, 

symbols, gestures or the like. The special vocabulary and usage of a scientific 

professional or other group. [nt] The speech or expression of ideas. 

( :onsisc ( )x ford l 
f\!Jrnam-\\ cbsrcr, 1998): [nt[ '\uttals Standard 
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A language that is used to express models is called a modelling language. The syntax of a 

modelling language determines the 'phrases' that may be constructed with the language. 

The semantics of a modelling language determines how valid 'phrases' are interpreted and 

understood. The procedure followed to derive a syntactically correct model, which 

communicates the desired information, is the method. 

Method. [nt] Mode of procedure, logical arrangement, orderly arrangement, 

system of classification. [rd] A means or manner of procedure; especially, a 

regular and systematic way of accomplishing anything. The procedures and 

techniques characteristic of a particular discipline or field of knowledge. [oxf] A 

special form of procedure especially in any branch of mental activity. 

Marttiin et al. (1993) state "A method is a set of steps and rules that define how a model is 

derived." Often the term language subsumes the term method, in software engineering2. 

Even in this situation the method exists and is implicitly 'do not break the rules of the 

language'. Figure 1 -1 illustrates the relations between method, modelling language, model 

and system. A modelling language is used (by following an associated method) to define a 

model, which is an abstraction of a system. 

Modelling Language Method 

!Used to def;ne 

Model 

Is an abstraction of 

System 

Figure 1 -1 - Modelling 

The meaning that can be conveyed by a model is subject to the facilities provided by the 

modelling language that is used to derive it. Smolander et aL (1991) state "A method 

embodies a set of concepts that determines what is perceived, a set of linguistic 

conventions and rules which govern how the perception is represented and 

2 The term method is also often used interchangeably with methorlololJ. Sigfried (1996) notes "... there is no well 

established practice for the use of these two concepts." 
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communicated." A software engineer investigates the many dimensions of a problem 

domain by applying a range of different methods (and hence languages) to build a 

collection of models. The set of methods and modelling languages used to describe the 

dimensions of a software system is called a methodology'. 

Methodology. [nt] The science of scientific method of classification. From the 

Greek method and logis (science). [rd] The system of principles, practices, and 

procedures applied to any specific branch of knowledge. [web] The science of 

method; a body of methods used in a particular branch or activity. 

Marttiin et al. (1993) note "a methodology is an organised collection of methods." 

software engineering methodology is a collection of methods that can be applied to build 

models of a software system such that the system is completely defined and can be built. 

Smolander et al. (1991) state "a methodology can be defined as an organised collection of 

methods and a set of rules which state whom, in what order, and in what way the 

methods are used. " The procedure that is followed, to describe the dimensions of a 

software system, is called the process. Younessi and Henderson-Sellers (1998) note "a 

methodology is not just a set of notations and modelling rules .. . a methodology must 

have a process dimension, thus implying a methodology includes or encompasses a 

process. " 4 

Process. [ rd] A system of operations in the production of something. A series of 

actions, changes or functions that bring about an end or result. [oxf] A course of 

action or proceeding, esp. a series of stages in manufacture or some other 

operation. 

A software engineering methodology promotes a set of software engineering principles 

that are deemed to be efficacious to the construction of software systems. Different 

methodologies may promote different sets of software engineering principles. It is natural 

in the development of any science that scientific principles change, evolve and are 

superseded. Naturally this is also true of software engineering methodologies. 

' The concept of i:; also discmscd in more detail in 6. 

'\\1lcthcr a a process. or is associated wtth one is an issue that open to debate. Youncssi 

and 1 lcndcr,;on-Sdlcrc; IJ9'J8) offer c>omc argument> in thi,; area. 
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1.2.2 Meta-Modelling 

Meta is a prefix that is derived from the Greek language. 

Meta. [nt] A Greek prefL'< signifying beyond, after, with, among and frequently 

expressing change. [rd] Going beyond or transcending. [web] Used with the 

name of a discipline to designate a new but related discipline designed to deal 

critically with the original one. [oxf] Of a higher or second-order kind. 

A meta-model is something 'beyond or transcending' a model. That which is beyond a 

model is the modelling language used to define it. Odell (1995) states "Basically a meta­

model is a model that is used to talk about various kinds of models we wish to build." 

Tolvanen and Lyytinen (1993) note that "meta-modelling can be defined as a modelling 

process, which takes place one level of abstraction and logic higher than the standard 

modelling process." Figure 1-2 illustrates how applying the meta prefix indicates a shift in 

context and changes the focus of attention to something at a higher level of abstraction. 

I Meta-Modelling Process j 

Modelling Process 

Modelling Language+ Method 

Used to define 

Model 

Is an abstraction of 

System 

I Model!� ProcesiJ 
Modelling Language+ Method 

Used to define 

Model 

Is an abstraction of 

System 

+Meta 
-----

Figure 1-2- Meta-modelling 

Meta-modelling is concerned with modelling a modelling process. Tolvanen and Lyytinen 

(1993) note "the meta-model captures information about the concepts, representation 

forms, and use of a method." The model derived by the modelling process on the right­

hand side of Figure 1-2 describes the application of the modelling language used in the 

6 



modelling process on the left-hand side. A modelling language is, therefore, a meta­

model. Meta-models are built using a meta-modelling language. 

Meta-language. [web] The natural language, formal language, or logical system 

used to discuss or analyse another system. [oxf] A form of language used to 

discuss a language. 

The meta-modelling process shown in Figure 1 -2 can conceptually be performed 

infinitely. Tolvanen and Lyytinen (1 993) note "Meta-modelling also uses its own tools 

which, in turn, can be described on one level higher in meta-metamodels (and so ad 

infinitum)." It is important to realise that the process of building a meta-model is 

modelling and that a meta-modelling language is a modelling language. The application of  

a number of  meta prefixes indicates the relation of  languages and derived models, to  a 

point of reference. 

1.2.3 Computer Aided Software Engineering (CASE) 

The acronym CASE also represents terms such as Computer Assisted Software 

Engineering and Computer Automated Software Engineering. 

Aid. [oxf] A person or thing that helps; promote or encourage [web] Help; 

succour; assistance; relief. 

Assist. [oxf] Help; an act of helping. [web] To lend aid; to help 

Automation. [oxf] The use of automatic equipment to save mental and manual 

labour. The automatic control of the manufacture of a product through its 

successive stages.  [web] The technique of making an apparatus, a process, or a 

system operate automatically. 

In the context of Computer Aided Software Engineering it is clear that the computer is  

used to help, promote and encourage the practice of software engineering. CASE is a 

very general, all embracing, term. 

1.2.4 CASE Tool 

Tool. [oxf] A thing used in an occupation or pursuit. [web] Any instrument of 

use or semce. 
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A CASE tool is af!) computer based system that may be used during the software 

development process. A more detailed discussion and classification of CASE tools is 

given in section 1 .4. 

1.2.5 Meta-CASE and Meta-CASE Tool 

There are many possible interpretations of the term Meta-CASE. Webster's (1\fuiam­

Webster, 1998) dictionary states that meta can be "used with the name of  a discipline to 

designate a new but related discipline designed to deal critically with the original one." 

Meta-CASE, therefore, can be interpreted as the discipline of critically dealing with 

computer aided software engineering. The meaning preferred in this study, however, is a 

higher or second-order kind o f  computer aided software engineering. A meta-CASE tool 

is therefore a higher or second-order kind of CASE tool. In the context of this thesis a 

general definition of meta-CASE tool is 'a computer based system used to assist the 

development of CASE tools.' The term meta-CASE tool encompasses all tools that are 

designed for the sole purpose of developing CASE tools. A more detailed discussion of 

meta-CASE tools is given in chapter 2. 

1.3 Object-Orientated Software Development Methodologies 

Three generations of Object-orientated methodologies have been identified. A 

multiplicity of methodologies was developed in the late 80s and early 90s. Some of the 

most prominent first generation object-orientated methodologies are given in Table 1-1. 

Methodology 

Object Oriented Analysis 

Object Oriented Analysis and Design 

Responsibility Driven Design (RDD) 

Object Oriented Analysis, Design 

Object Oriented Design (OOD) 

Object Modelling Technique (OM1) 

Object Oriented Analysis and Design 

Object Oriented Software Engineering 
(OOSE) 

Year 

1 98 8  

1 9 9 1  

1 990 

1 99 1  

1 99 1  

1 99 1  

1 993 

1 993 

8 

Metbodologist 
Shlaer and Melior, 1988 

Shlaer and Melior, 1 991  

Wirfs-Brock et al, 1 990 

Coad and Yourdon, 1 990, 1 99 1a, b 

Booch, 1 991 

Rumbaugh et al., 1 991 

Martin and Odell, 1 993 

Jacobson et al., 1 993 



These first generation methodologies generally covered the 'design' phase of software 

development and were atypically developed independently from each other. They 

extended ideas from object-orientated programming and also earlier non object­

orientated methodologies (such as information engineering and structured analysis and 

design). Many methodologies that were introduced near the end of the first generation 

also began to consider analysis. 

The first generation methodologies were applied and evaluated. The limitations that were 

identified prompted the emergence of second generation methodologies. Many first 

generation methodologies were extended to span more of the software development life­

cycle (e.g. Booch OOD (Booch, 1 991) -7 Booch OOA&D (Booch, 1 994)) . New 

methodologies were developed which simply 'borrowed the best from the rest' (Muller, 

1 997). For example Ian Graham's SOMA (Graham, 1 994) extended Coad and Yourdon 

by incorporating business rules. The Fusion method (Coleman et al., 1 993) extended 

O:MT by incorporating responsibility dtiven design (RDD) and in-house techniques 

specific to Hewlett-Packard. The Booch method (Booch, 1 994) also incorporated ideas 

from OMT and RDD. Over fifty different first and second generation object-orientated 

methodologies existed by 1 99 55 (Muller, 1 997). Some of the most well known second 

generation methodologies are given in Table 1 -2. 

Methodology ){ear �ethodolo�st 
Object Oriented Analysis and Design 1 994 Booch, 1 994 
(OOA&D) 

Semantic Object Oriented Modelling Approach 1 994 
(SOMA) 

Graham, 1 994 

Methodology for Object Oriented Software 1 994 
Engineering Systems (MOSES) 

Henderson-Sellers and 
Edwards, 1 994 

Advanced Object Modelling 

Fusion 

Object Modelling Technique (OMT) (v2) 

Business Object Notation (BOJ:\.1) 

Table 1 -2 - Second 

i This period of time has b.cen referred to as the 

1 99 5 Martin and Odell, 1 99 5 

1 993 Coleman et al., 1 993 

1 994 Rumbaugh, 1 995a, b 

1 994 Walden and Nerson, 1 995 

objccHmentatcd mcrhodolot,ncs 

wars· (f kndcrson-Scllcrs. 1 996). 
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Many comparisons of object-orientated methodologies have been published (Amold et 

aL, 1 99 1 ;  Brinkkemper et aL, 1 998; Cribbs et aL , 1 992; de Champeaux and Faure, 1 992; 

Fichman and Kemerer, 1 992; Fung et aL , 1 997; Hong et aL , 1 993; Hutt, 1994; Loy, 1 990; 

Monarchi and Puhr, 1 992; Object Agency, 1 998; Sharble and Cohen, 1 993; Taylor, 1 99 8; 

van den Goor et aL, 1 992; Yourdon and Argila, 1 996) .  These studies focused on the 

differences between methodologies rather than on identifying common aspects 

(H.enderson-Sellers, 1 996) .  

The results o f  these studies indicated that whilst many of  the methodologies propounded 

different sets of terms and notations, there was a common awareness of the goals and 

process of object-orientated modelling. Work began on identifying and quantifying the 

common aspects of object-orientated methodologies in 1 995  (Booch and Rumbaugh, 

1 995; Rational, 1 997a, b; Henderson-Sellers and Bulthuis 1 996a, b, 1 997; Henderson­

Sellers and Fire smith, 1 997 a). It was at this time that the Object Management Group 

(OMG) "re-established an OOAD working group/task force to . . .  standardise . . .  00 

methodologies" (H.enderson-Sellers, 1 996) .  

The appearance of two third generation software development approaches was one of 

the results of these developments: 

• Unified Modelling Language(' (UMI� (Booch and Rumbaugh, 1 995; Booch et al, 

1 999; Douglas, 1 998; Fowler and Scott, 1 997;  Jacobson et aL, 1 996, 1 999; Muller, 

1 997; Rational, 1 997a, b, 1 998;  Rumbaugh et aL, 1 999;  OMG, 1 997c-j; Quatrani, 1 997; 

UML-RTF, 1 998; Warmer and Kleppe, 1 999) . 

• OPEN- (COTAR, 1 998; Firesmith et al, 1 997; Firesmith and Henderson-Sellers, 

1 998a, b; Graham and l1enderson-Sellers, 1 997 ;  Graham et aL, 1997; Henderson­

Sellers, 1 996, 1 997, 1 998; Henderson-Sellers and Bulthuis, 1996a, b, 1 997; 

Henderson-Sellers and Graham, 1 996; Henderson-Sellers and Firesmith, 1 99 7  a, b; 

Henderson-Sellers et aL, 1 996, 1 997a-d; OPEN, 1 996, 1 998). 

process " '  man\' con,;iJcr tlut it i; nr Jt a . but a collection of 
intern: bred '"""'u""" l ' \ l l. i:; cbcuc;scd m 2. 
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The appearance of patterns, frameworks and component engineering in the last five years 

(Ayoma, 1 998;  Bergner et al., 1 998; Booch, 1 996; Brown, 1 997; Brown and Jaeger, 1 998 ;  

D'Souza and Wills, 1 998; Firesmith, 1 993; Fowler, 1 997; Gamma et al. , 1 995; Goldberg 

and Rubin, 1 995; Meyer, 1 995, 1 997; Pree, 1 994; Schmidt and Assmann, 1 998; Seacord et 

al., 1 998;  Short, 1 997; Sigfried, 1 996; Taylor, 1998; Webster, 1 995; Weiderman et al., 1 997; 

Wills and D'Souza, 1997) is significant and signals a new phase in the development of  

software engineering. New methodologies have been developed to address the emerging 

technology of Components Based Development (CBD) (Ayoma, 1 998; Bergner et al., 

1 998;  Brown and Jaeger, 1 998; Schmidt and Assmann, 1 998; Short, 1 997) . An example is 

Catalysis (D'Souza and Wills, 1 998; ICON, 1 998) : 

"Catalysis. 

A next-generation UML-based method for the systematic development of 

object and component based systems, using precise modelling techniques 

and frameworks, to reflect and support an adaptive enterprise." 

From the ICON computing website (ICON, 1998) 

1.4 CASE Technology 

A COmputer Aided SJftware Engineering (CASE) tool is any computer based tool for 

software planning, development and evolution. This definition includes all examples  of 

computer-based support for the managerial, administrative, or technical aspects of any 

part of  a software development project. 

The principle objective of CASE technology is to reinforce and support an engineering 

approach to software development and evolution by providing computer based 

assistance, which translates to low-defect solutions and enhanced productivity (Brough, 

1 992; H aine, 1 992; Nilsson, 1990; Quantrani, 1 997; Marttiin, 1 994; Senn, 1990; Sumner, 

1 992; Verhoef et al., 1 991 ) . Sumner (1 992) summarised the benefits of CASE as the 

introduction of enbrineering-like discipline into the system development process and the 

creation o f  a common repository of design documentation. Nilsson (1 990) notes that 

"the main benefit of CASE is that people who perform requirements gathering and 

specification need not use 'pen and paper' techniques for drawing diagrams and that the 

diagrams can be integrated with a data dictionary". Senn (1990) states that "CASE tools 
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are important because they speed development, automate tedious tasks, and enforce 

standards and procedures." 

CASE tools have been categorised in many different ways. For example they have been 

classified in terms of functionality, their relation to the software development life-cycle 

and the level of inter-tool integration that they support (Beynon-Davies, 1989; Nilsson, 

1990; Pressman, 1997; Wallnau, 1992; W allnau and Feiler, 1991; Whitten et al., 1994; 

Zarella, 1990). 

This thesis is concerned v.rith CASE tools that implement software development 

methodologies and support activities across  the entire software development life-cycle. 

Whitten et al. (1994) adopts the term 'cross life-cycle CASE' to classify tools that support 

activities across the entire software development life-cycle. The name adopted in the 

thesis for a CASE tool of this type is a Methodology CASE tool. 

Methodology CASE Tool. A CASE tool that supports one or more software 

development methodologies and attempts to span most of the software 

development life-cycle. 

Use of the term CASE tool m the remainder of the thesis specifically relates to 

Methodology CASE tools and not to C ASE tools in general (such as compilers and 

debuggers) . This thesis is concerned v.rith tools that support object-orientated software 

engineering, so its primary focus is on object-orientated Methodology CASE tools. 

Use of the term meta-CASE tool in the remainder of the thesis specifically relates to meta 

Methodology CASE tools. A meta Methodology CASE tool is a meta-CASE tool that is 

used to develop Methodology CASE tools. 

A Brief History of CASE 

Table 1-3 describes the history of CASE tools. It i s  taken from the CASE Tool home 

page at the University of Sunderland (Ferguson, 1998). 

Early CASE tools addressed mostly form and representation 1ssues of software 

development methodologies and focused on capturing a set of diagrams for the software 

engineer (Brough, 1992; Verhoef et al., 1991). As these tools evolved they supported 

completeness, correctness and consistency checking (Sorenson, 1988). These tools mainly 
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supported structured software engineering techniques (1-Iaine, 1992; Hoffman and 

Strooper, 1 995), focusing on specific phases of the software development life-cycle 

(I--Iaine, 1 992; Nilsson, 1 990) . 

Early 80s 

.Mid 80s 

Late 80s 

Early 90s 

Computer aided documentation 

Computer aided diagramming 

Analysis and design tools 

Automatic design analysis and checking 

Automated system information repository 

Automatic code generation from design specification 

Lnking design automation 

Intelligent methodology driver 

Habitable user interface reusability as a development methodology 

Table 1 - 3 - l  of  C\SE tools 1 ()08) 

Large-scale software development demanded enhanced support across the entire 

software development process from methodologies (Y ounessi and Henderson-Sellers, 

1 998) and CASE tool developers (Brown, 1 997; Haine, 1 992; Nilsson, 1 990). Assistance 

was required for the requirements definition, design and implementation phases of the 

software development life-cycle, testing, documentation and version control (Sorenson, 

1 988; Sorenson et al., 1 988) . The term front -end (or upper -CASE) tool was introduced to 

classify tools that supported phases of the software development life-cycle up to, and 

including, design (Nilsson, 1 990; Beynon-Davies, 1 989). The term back-end (or lower­

CASE) tool was introduced to classify tools that supported phases beyond design 

(Nilsson, 1 990; Beynon-Davies, 1 989). 

At this time object-orientated methodologies were attracting more attention from the 

software development industry (Behforooz and Hudson, 1 996). They were being revised 

to encompass analysis, domain and business modelling in addition to design (Y ounessi 

and Henderson-Sellers, 1 998). CASE tools had to address these developments by 

spanning more of the software development life-cycle (Brown, 1 997; Mehandjiska et al., 

1 994, 1 995, 1 996b; Page et al., 1 998). 
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1.5 Methodology CASE Tools 

The evolution of Methodology CASE tools was investigated during the inception of the 

research. Existing CASE tools were evaluated focusing on methodology support, life­

cycle support, functionality and usability. A new evaluation framework, which 

encapsulated these evaluation criteria, was derivedK as an extension of  the Software 

Engineering Institute's framework for evaluating CASE tools (.Mosely, 1 992). The central 

organising principle of the new framework is the classification hierarchy of CASE tool 

categories shown in Figure 1 -3.  

A 00 CASE Tools 

l 

C. Multi-Methodology 
CASE Tools 

Abstract CASE loo! type 

Super-type 

I 
+ 

Sub· type 

D. Tools that support more 
than one Methodology 

E. Meta CASE Tools 

1 -3 Classification 

Evaluation criteria are associated with nodes in the classification hierarchy at an 

appropriate level of abstraction and are further classified in terms of usability, 

methodology support, life-cycle support and functionality. Each evaluation criterion is 

therefore classified in two ways: a) based on the CASE tool category it is relevant to and 

b) based on the type of CASE tool property it evaluates. The structure of the 

classification hierarchy permits evaluation criteria to be specialised and refined in a 

systematic way. A classification based evaluation framework provides the necessary 

flexibility needed to cope with changing CASE and software engineering technology and 

of the cYaluation framework ;, 111 L 
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can be easily extended in the future. Some of th e  results obtained by applying the new 

evaluation framework are presented in (Choi, 1996; Gray, 1995; Phillips et al., 1998a). 

Object-orientated methodology CASE tools (node A of the hierarchy in Figure 1-3) can 

be categorised as either 'Methodology dependent CASE tools' (node B of the hierarchy in 

Figure 1-3) or 'Multi-methodology CASE tools' (node C of the hierarchy in Figure 1-3). 

L5. 1  Methodology Dependent CASE Tools 

These tools support  a single object-orientated s oftware engineering methodology. They 

are often older tools that typically support a single phase of the software life-cycle�. 

Examples of tools in this category include ObjecTool (supports Coad and Yourdon), 

ShowCASE (supports Booch'91), Objectory (supports Jacobson), OEW (supports 

Martin and Odell) (Innovative Software, 1998) and early versions of Rational Rose 

(supports Booch'91 and Booch'94) (Rational, 1998) . 

The most fundamental limitation of tools in this category is that a company is constrained 

to adopt a single software engineering methodology. This prevents software development 

companies from choosing the most suitable methodology for the problem at hand. In 

addition, companies may choose to mix and match concepts from more than one 

methodology. It is not possible for a CASE tool vendor to predict these kinds of 

decisions and demands. The limited flexibility of methodology dependent CASE tools is 

therefore a barrier to the adoption of CASE tools by indus try. 

L5.2 Multi-Methodology CASE Tools 

Tools of this category (node C of the hierarchy in Figure 1-3) attempt to address the 

deficiencies of methodology dependent CASE tools by supporting several different 

methodologies. Some tools simply attempt to implement more than one methodology 

whilst others provide some type of customisation facilities to support multiple 

methodologies. The techniques used differentiate multi-methodology CASE tools into 

two sub categories 'Tools that support more than one methodology' (node D of the 

hierarchy in Figure 1-3) and 'Meta-CASE tools' (node E of the hierarchy in Figure 1-3). 

tool,; may abo ;;upport more than a of the 
,;uch ;;upport. 

15 



1.5.3 Tools that Support More than One Methodology 

Some Object-Oriented CASE tools such as COOL:Teamwork (Sterling, 1 998) ,  

COOL:Jex (Sterling, 1 998), CASET, MacA&D and WinA&D (ExcelSoftware, 1 998) ,  

ObjecTime and System Architect (Popkin, 1 998) claim t o  support more than one 

methodology. For example Teamwork supports structured analysis and design as well as 

several object-orientated analysis and object-orientated design methodologies .  

In general, tools in  this category do not support the methodologies completely and 

support is restricted to subsets of each methodology. Usually only visualisation of the 

users' project using a range of different graphical notations is provided. The user cannot 

customise these tools; only the tool proprietor may extend or modify them. 

1.5. 4  Meta-CASE Tools 

A meta-CASE tool provides automated or semi-automated support for developing CASE 

tools (Alderson, 1 99 1 ;  ASD, 1995a, b, 1998; Coxhead and Fisher, 1 994a, b;  Coxhead et 

al., 1 994; Demetrovics et al., 1 982; Findeisen, 1 993, 1 994a-d; Gadwal et al., 1 994a, b; 

JrCASE, 1 998; Lincoln, 1 994, 1 998; Lo, 1995; Lyytinen et al., 1 994; Maokai and Scott, 

1 998;  MetaCASE consulting, 1996a, b, 1 998; Marttiin 1 994; Marttiin et al., 1 993; mip 

GmbH, 1 998a-d; Scott, 1998; Smolander et al. , 1 99 1 ;  Sorenson et al. , 1 988; Tolvanen and 

Lyytinen, 1 993; Zhuang, 1 994; Zhuang et al., 1 995). Meta-CASE tools are based on  an 

underlying meta-model, which is used to describe the languages,  concepts and relations 

propounded by a methodology. The majority of meta-CASE tools use a data model as 

their meta-model (e.g. variants of the Entity Relationship Diagram). 

Meta-CASE tools can be further classified as 'CASE tools generators' (node F o f  the 

hierarchy in Figure 1 -3) and 'Modifiable CASE Environments' (node G of  the hierarchy 

in Figure 1 -3) . More detailed analysis of  meta-CASE tools is presented in section 2.3. 

1.5.5 CASE Tool Generators 

A CASE tool generator is a meta-CASE tool that supports the construction of standalone 

CASE tools. Meta-CASE tools of this type often provide a set of libraries and a 

programmer API to support the construction of standalone tools. Some CASE tool 

generators allow individual tools to share a common repository. The tools developed by a 
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CASE tool generator often exhibit a similar look and feel in their user interface and have 

a similar structure in their repositories w. The main advantage of a CASE tool generator is 

the greatly reduced development time for an individual tool. CASE tools generated by 

these systems often suffer from poor user interfaces as CASE tool generators typically 

focus on specifying modelling languages  at the expense of  due consideration to Human 

Computer Interaction (HCI) principles .  

Paradigm+ (Platinum, 1 998), Software through Pictures (STP, 1 998), Toolbuilder 

(Lincoln, 1 998) and Meta View (Gadwal et al., 1 994a, b; Findeisen, 1 993, 1 994a-d; Lo, 

1 995; Sorenson et al., 1 988; Zhuang, 1 994; Zhuang et al., 1 99 5) are CASE tool 

Generators. 

1.5. 6  Modifiable CASE Environments 

Tools in this category attempt to combine the benefits o f  a meta-CASE tool and a multi­

methodology CASE tool. These tools allow their methodologies to be modified and may 

be extended to support new methodologies. Meta-CASE tools of this type usually 

provide a set of  methodology description languages that are used to define 

methodologies. 

A modifiable CASE environment has two types of user. Methodology engineers use a 

modifiable CASE environment to manipulate descriptions of  software engineering 

methodologies. Sofuvare engineers use a modifiable CASE environment to manipulate 

descriptions of sofuvare engineeringprqiects. 

The main problem with modifiable CASE environments is poor support for the concept 

of methodology. Often the user o f  such an environment is presented with an extremely 

large collection of methodologies (Lyytinen et al., 1 994; MetaCASE Consulting, 1 996a, b, 

1 998; Smolander et al., 1 99 1 ;  Tolvanen and Lyytinen, 1 993) . In addition the relation 

between different methodologies and methods is often not dear. 

Modifiable CASE environments do present significant possibilities for the support of re­

use amongst sofuvare development projects as these tools have detailed information 

regarding the methodologies they implement. However these tools do not consider re-use 

I" This is often consnJucncc of 
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explicitly. Any claim for the support of re-use is only ever matched by simple 

import/ export facilities or by accidental re-use 1 1  (ASD, 1 998; Lyytinen et aL , 1 994; 

MarkV, 1 998; MetaCASE Consulting, 1 996a, b, 1 998; Smolander et al , 1 99 1 ;  Tolvanen 

and Lyytinen, 1 993). Generally these tools only support accidental re-use of methodology 

descriptions. 

Modifiable CASE environments typically focus on specif)ring modelling languages at the 

expense of due consideration to Human Computer Interaction (HCI) principles and 

suffer from poor user interfaces. 

Graphical Designer (ASD, 1 998), Objectc\1aker (MarkV, 1 9 98), MetaEdit+ (Lyytinen et 

aL, 1 994; Merridaru\farketing, 1 998; MetaCASE Consulting, 1 996a, b, 1 99 8 ;  Smolander et 

aL, 1 99 1 ;  Tolvanen and Lyytinen, 1993) are examples of Modifiable CASE environments. 

1.6 Limitations of Methodology CASE Tools 

CASE tools have promised high gains in terms of enhanced productivity, lower defect 

solutions and faster time to market. Yet many organisations have not adopted CASE 

technology (Beynon-Davies, 1 989; Day, 1 998; Huff et aL, 1 992; Malmborg, 1 992; Oakes et 

aL, 1 992; Sorensen, 1 993; Vessey et aL, 1 992; Wallnau, 1 992; Wallnau and Feiler, 1 99 1 ;  

Zarella, 1 990; Zarella et aL, 1 991) .  Many of the reasons for the poor adoption o f  CASE 

tools are epitomised by the FreeCASE project (FreeCASE, 1 99 8) .  FreeCASE is a 

methodology dependent CASE tool (Figure 1 -3 - Classification hierarchy of CASE tool 

categories) that is being developed by volunteers from the free software community. 

"FreeCASE will be a first of a kind product. It will be a team orientated tool 

for object-oriented analysis and design. It will . . .  support UML 1 . 1  . . .  It will 

forward-generate and reverse engineer source code in multiple languages. It 

will support a networked repository, allowing for development over the 

Internet. It will also provide versioning and code management capabilities.  

Additionally, it  will support a client running on multiple platforms." 

From the FreeCASE website (FreeCASE, 1998) 
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Whilst the project is in its infancy and, as yet, does not appear to provide anything novel, 

it is interesting because o f  its motives: 

"Vendors have been selling products for years that are supposed to promote 

reusability, promote better design, and speed time to market. The problem is 

that few commercial products actually live up to even significant portions of 

their claims. Worse, the price of entry is  anywhere from $800 to $5000 PER 

USER! I find this to be unacceptable." 

From the FreeCASE website (FreeCASE, 1998) 

The very existence of such a project is indicative of the potential of CASE technology 

and also of the failure to deliver on that potential. 

A large body of work related to the adoption of CASE technology exists (Beynon-Davies, 

1 989; Day, 1 998; Huff et al., 1 992; Malmborg, 1 992; Mathiassen and S0rensen, 1 995; 

Oakes et al. , 1 992; Schottland, 1 996; S0rensen, 1 993; Vessey et al., 1 992; Wallnau, 1 992; 

Wallnau and Feiler, 1 99 1 ;  Zarella, 1 990; Zarella et a!., 1 991) .  Oakes et a!. (1 992) report that 

the major problems associated with the adoption of CASE tools areL' :  

• The wide variation in quality and value within a single type of tool. 

• relatively short time that many type s  of CASE tool have been 111 use m 

organisations. 

• The wide difference in the adoption practices of various organisations. 

• The general lack of detailed metric data for previous and current projects. 

• The wide range of project domains.  

• The confounding impact of changes to methods and processes that are often 

associated with the adoption of CASE tools. 

• The potential bias of organisations reporting CASE gains or losses.  

1 '  This hst i s  from technical report by the Soft'xan: 

of ( , . \Sf : took Their ddinition of C.\Sl ·: is the 
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Attsy (1 995) notes in a position paper for the OOPSLA workshop 'Meta-modelling in 

00': 

"Very few tools implementing an OOA&D method do have an explicit 

meta-model, and even fewer publish it. Without such a model, the tool's user 

cannot know precisely how accurately does the tool view or implement 

certain concepts . . .  Furthermore, even when the tool has an explicit meta­

model, but the tool is not model-driven, it is inflexible to change whenever 

the OOM evolves (and since OOMs do evolve relatively often, tools are 

becoming obsolete too s oon) ." 

The limitations of CASE tools can be considered from two perspectives. The first is from 

the point of view of companie s  adopting CASE technology (organisational perspective). 

The second is from the point of view of CASE tools themselves (CASE Tool 

perspective) 1 1 • 

1.6.1 Limitations from the Organisational Perspective 

These limitations are related to the effect the adoption of CASE technology can have 

within an organisation. 

• High cost of adoption 

The adoption of CASE technology can be a major investment for a company. The 

price of CASE tools can vary greatly depending on the functionality and features 

provided by the CASE tools. In addition the training costs associated with adopting a 

CASE tool can be prohibitive. 

High learning curve 

The learning curve associated with CASE tools can be high. CASE tools are not 

simple products to master, e specially given their emphasis on collaborative work and 

that their affect is across  the software development life-cycle. 

2. 
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• Long payback period 

The payback period for adopting CASE tools can be long (i.e., years of time). This is 

because the advantages of adopting CASE technology may not become clear until the 

first products are completed with the assistance of CASE tools. Payback is in terms 

of faster time to market, better quality products and lower maintenance costs. 

• Lack of customisation 

• 

• 

Many companies utilise in-house methodologies or processes. Their means of work 

may also be a modification or extension of a popular, accepted methodology. Such 

practices are not supported well by current CASE technology, as most CASE tools 

are rigid and do not allow customisation. 

Lack of standards 

plethora of CASE tools exist, which vary significantly in terms of quality, usability 

and functionality. This is related to the large number of object-orientated 

methodologies, the lack of industry standards and immaturity of the CASE industry. 

Culture shock 

CASE tools propound a collaborative approach to software engmeenng and 

emphasise the importance of the pre-implementation phases of the software 

development process. This can be a culture shock for many organisations. 

In addition, some people feel that CASE tools will 'de-skill' and 'constrain' them 

rather than enhance their productivity. 

• Lack of flexibility 

Companies have significant investments in legacy systems and existing software 

projects documented using different methodologies. Existing CASE tools are 

inflexible and do not allow comparues to preserve their investments in existing 

technology, systems and methodologies. 
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In addition, many CASE tools do not integrate well into the existing operation of an 

o rganisation. 'This means that changes are required to accommodate a new tool. 

People in general are resistant to change. 

1.6.2 Limitations trom the CASE Tool Perspective 

These limitations are related to the characteristics and functionality of current CASE 

tools .  

• Methodology specific 

The majority o f  CASE tools are methodology specific which makes it difficult to 

j ustify the significant investment required, in terms of time, training and resources, to 

adopt CASE technology. Use of such tools also places constraints on an organisation 

to use the methodologies they support in order to justify their initial investment. 

• Limited support for the software development life-cycle 

The support o f  the entire software development life-cycle is limited. \Xi'hilst many 

tools provide some support for reverse engineering and re-engineering, few support 

requirements gathering for example. This is also because of the limited support of the 

entire spectrum of software engineering activities by existing methodologies. 

Poor support for all aspects of a methodology 

The support o f  a methodology that is provided by a CASE tool is often limited to a 

collection of diagram editors, which correspond to the various modelling languages 

that the methodology provides. The concepts of process and method are often 

ignored. 

• Poor usability 

The usability o f  CASE tools, from a HCI perspective, is often poor. CASE tools are 

generally rigid and force users to conform to a set means of working. In addition the 

possibilities that are available with current Human-Computer-Interaction (HCI) 

techniques are generally not considered. 
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Most CASE tools are simple implementations of existing 'pen and paper' techniques 

with the addition of correctness and consistency checking. They do not support 

techniques such as logical distortion and novel interaction styles. 

• Poor support for re-use 

CASE tools do not provide support for re-use between user projects. This will 

become a more important limitation in the future as the trend toward adoption of 

object-orientated technology continues. \X!hilst it is true that object-orientated 

technology does not guarantee re-use it is accepted that one of the principle 

objectives of object-orientated technology is to enable re-use.  This should therefore 

also be a key objective of a CASE tool that supports object-orientated 

methodologies. 

• Poor support for migration of software engineering projects 

CASE tools do not allow software artefacts to be re-used, if they are built with 

different methodologies. Consequently a company cannot e ffectively make use of 

previous modelling results. 

Some CASE tools, however, do attempt to implement data interchange formats such 

as the Case Data Interchange Format (CDIF) (EIA CDIF, 1 994a-h, 1 996; Flatscher, 

1 996). CDIF is discussed in chapter 2. 

• Lack of intelligence 

The level of assistance provided by CASE tools to software engineers is limited to the 

capture and consistency checking o f  a set of diagrams. No consideration is given to 

things such as intelligent feedback on work as it is completed, auto-correction and 

quality analysis. 

1. 7 Objectives of the Research 

This research is part of the PGSF funded research project titled "Advancing information 

technologies through CASE", which aims to develop novel methods and techniques for 

addressing the limitations of current CASE and meta-CASE technology. 
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The objectives of the rese arch detailed in this thesis are: 

• Develop a novel meta-CASE tool methodology representation strategy that: 

• Uses an object-orientated meta-model. 

• Allows methodology descriptions to be re-used. 

• Minimises the coupling between methodology syntax and semantic descriptions 

such that methodology syntax and semantic descriptions can be re-used 

independently. 

• Permits software engineering projects to be re-used, even if they are built with 

different methodologies. 

Design and implement a prototype meta-CASE tool that realises the new 

methodology representation strategy via the development of: 

• Languages that support the description of syntax and semantics of a 

methodology. 

• The efficient execution strategy of syntax and semantic descriptions. 

The new CASE tool that has been developed during the research to satisfy these 

objectives is called MOOT (Meta O>ject Orientated Tool). 

1.8 Method 

The following steps summarise the approach adopted to satisfy the objectives described 

in section 1 .  7: 

A. Compare, contrast and evaluate existing CASE tools and meta-CASE tools to 

identify limitations of current CASE technology. detailed comparison of meta-

CASE tools is presented in chapter 2. 

B. Define the rationale and goals of the MOOT project based on the identified 

limitations of current CASE technology. Investigate a possible meta-systems 

approach based o n  an object-orientated meta-model. 
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C. Devise a representation scheme for methodology descriptions in MOOT. 

D. Develop a meta-model of the concept of methodology v.rith the representation 

scheme defined in C. 

E. Derive a means of processing the methodology descriptions defined in step C .  

F. Design the architecture of a meta-CASE tool based on the work in steps B - E. 

G. Realise a prototype of the system defined in step F that is suitable for assessing the 

efficacy of the representation scheme for methodology descriptions (defined in step 

C) . 

H. Validate the meta-systems approach by modelling object-orientated methodologies 

and implementing support for design patterns. 

1.9 Outline of the Thesis 

The overall outline of the thesis is illustrated in Figure 1 -4.  

The thesis is structured into nine chapters, which are grouped into three sections: 

• Literature review (chapter one and two) 

• Research description (chapter three to chapter seven) 

• Results, discussion and review (chapter eight and nine) 

Chapter two presents a review of meta-modelling and meta-CASE tools. Chapters three 

to seven cover the research undertaken. The overall architecture and design philosophy 

of a new meta-CASE tool is discussed in chapter three. Chapters four, five, six and seven 

discuss the languages and mechanisms used to represent and process methodology 

descriptions. Chapter six also outlines the facilities for re-use of methodology 

descriptions and user projects that these techniques provide. Chapter eight presents 

results o f  using the prototype meta-CASE tool. Chapter nine is a review chapter in which 

the contribution of this research is examined and further work is identified. 
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Chapter 4. 

Chapter 1 .  
Introduction 

Chapter 2. 
-�•� Meta-Modell ing and 

Meta-CASE Tools 

Chapter 3. 
Design and Philosophy of 

MOOT, a new meta-CASE tool 

Chapter 5. 

Resea,.ch Desc,.iption 

Chapter 6. 
Representing 

Methodology Syntax 

Representing 

Methodology Semantics 
Re-use of Semantic 

Descriptions 

Chapter 7. 
Realising Methodologies and 

Software Engineering Projects 

Chapter 8. 
Results of application of 

MOOT 

Results, Discussion and Review 

Chapter 9. 
Discussion, review of the 

research and future work 

Figure 1-4 - Thesis outline 
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Chapte r 2 

M eta-Modelling and Meta-CASE Tools 

There are two ways of constructing a software design. One way is to make it 

so simple there are no obvious deficiencies. And the other is to make it so 

complicated that there are no obvious deficiencies. 

2.1 Introduction 

CA R Hoare 

This chapter presents a review o f  meta-modelling and meta-CASE tools. Initially the 

meta-modelling process is discussed in relation to a four layer meta-modelling 

architecture (EIA CDIF, 1 994a; Ernst, 1 996; OMG, 1 997a, i). A review of some 

important applications of meta-modelling in software engineering is presented. The 

relation of meta-modelling to meta-CASE tools is discussed and a representative sample 

of meta-CASE tools is critically reviewed. A summary of the limitations of existing meta­

CASE tools is derived based on the review. 

2.2 Meta-Modelling 

Problems cannot be solved at the same level of awareness that created them. 

Albert Einstein 

Meta-modelling is an activity that is germane to many problem domains 

(M:etamodel.com, 1 998) .  Examples include modelling busines s  rules (Blanchard, 1 995), 

the development of databases (Demphlous and Lebastard, 1 995 ;  Sahraoui et al, 1 995) and 

the translation of architecture description languages (Barbacci and Weinstock, 1 998) .  

The generally accepted framework for meta-modeling i s  based o n  a four layer architecture 

(OMG, 1 997i). The layers, from the most abstract (left) to the least abstract (right), are: 

meta-metamodel -7 meta-model -7 model -7 user objects 
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Table 2-1 presents a description of each layer. It is taken from the UML semantics guide 

(v1 . 1 )  (OMG, 1 997i) . Similar tables may be found in (EIA CDIF, 1 994a; Emst, 1 996; 

OMG, 1997a). 

Layer 

Meta­
metamodel 

M eta-model 

Model 

User objects 
(user data) 

Description 

The infrastructure for a meta­
modelling architecture. Defines the 
language for specifying meta­
models. 

An instance of a meta-metamodel. 
Defines the language for specifying 
a model. 

An instance of a meta-model. 
Defines a language to describe an 
information domain. 

An instance of a model. Defines a 
specific information domain. 

Example 

MetaC/ass, MetaAttribute, 
MetaOperation 

Class, Attribute, Operation, 
Compon ent 

5 lockS hare, askPrice, 
se//LimitOrder, 
5 tockOrderQuoteS eroer 
<Acme_Software_Share_98789>, 
654.6, se/1_/imit_order, 
<Stock_Quote_Svr_32 123 >  

Table 2-1 - Four layer meta-modelling architecture 

Figure 2- 1 shows that two meta-modelling steps (described in section 1 .2.2) are required 

to implement the four layer architecture of Table 2-1 .  

M eta-metamodel 

Meta-model 

Model 

U�r Objects 

Model l ing 

Model l ing 

abstraction 

Model 

abstraction 

System + Meta 

Figure 2- 1 - Four layer meta-modelling process 
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Figure 2-1 also demonstrates that three languages are required to implement the four 

layer architecture. Practically, it is possible that the same language may be used more than 

once. Tolvanen and Lyytinen (1993) note "meta-modelling also uses its own methods and 

tools which, in turn, can be described on one level higher in meta-metamodels (and so ad 

infinitum)." 

The nature of the particular problem a meta-modelling approach is applied to dictates the 

choice of languages and methods used and the resulting meta-metamodel, meta-models 

and models. Examples 1 4  of the application of meta-modelling in the software engineering 

field include: 

The OMG Meta Object Facility (OMG, 1 997a, b) 

The Unified Modelling Language (Booch and Rumbaugh, 1 995; Rational, 1 997 a, b; 

OMG, 1 997c-j; UML-RTF, 1 998) 

• The Common Object Meta-Modelling Architecture (Henderson-Sellers and Bulthuis, 

1 996a, b, 1 997; Henderson-Sellers and Firesrnith, 1 997a) 

OPEN Modelling Language (Firesrnith et a!., 1 997, 1 998b;  Henderson-Sellers and 

Graham, 1 996; Henderson-Sellers et a!., 1 997a, b) 

The OOram meta model developed by Taskon A/S, Reich Technologies and 

Humans and Technology (Reenskaug et a!., 1 996; Taskon A/S, 1 997) 

• The Case Date Interchange Format family of standards 

Flatscher, 1 99 6) 

• The ISO/CDIF meta-model (ISO, 1 998b) 

CDIF, 1 994a-h, 1 996; 

• The MetaData Interchange Format Standard (MDC, 1 997, 1 998) 

2.2.1 The OMG M eta Object Facility 

The Object Management Group's (OMG) Meta OJject Facility (MOF) defines an 

object-orientated meta-metamodel (the MOF model), which is used to define meta-

of the of  arc di:-:-:cusscd in section :2.3. 
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models in various domains (OMG, 1 997a, b). Example domains include object-orientated 

analysis and design, the application development life-cycle, data warehouse management 

and business object management. 

"The main purpose of the OMG MOF is to provide a set of CORBA 

interfaces that can be used to define and manipulate a set of interoperable 

meta-models. The MOF is a key building block in the construction of 

CORBA based distributed development environments." 

From the Meta Object Faczliry (M Of') Specification (OMG, 1997 a) 

The MOF Model is  defined in terms of itself15• The MOF Model is also the meta­

metamodel of the Ul'vi.L submis sion for the Object Analysis and Design Facility 

(OA&DF) to the OMG (OMG, 1 997i) . The OMG MOF specification dearly states the 

importance of the MOF development: 

"Tbis attempt at OMG to integrate the Meta Object Facility and the Object 

Analysis and Design Facility (OA&DF) is expected to be a critical step in 

developing meta-data standards that will begin addressing the application 

development life-cycle. This standard is even more important now 

considering the profound impact that Distributed Objects and the Internet 

are having on development methodologies that favour object-oriented and 

component-based development environments. The use of repositories and 

meta-data m anagement in these environments is a well recognised industry 

trend." 

From the Meta O�ject Facility (M Of') Specification (OMG, 1 997 a) 

The OMG MOF is also being aligned with the meta-metamodels submitted for the 

OMG OA&D facility and the EIA CDIF standard. 

defined l)\ the '1101 ·  model. The l ' 'I!L st:mantlCS 

mcta-circular (( J:\1( ; ,  
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2.2.2 Unified Modelling Language 

UML is a visual object-orientated modelling language targeted toward describing object­

orientated systems. Its initial development started with the unification of three existing 

object-orientated software engineering methodologies: OMT (Rumbaugh, 1 99 1 ,  1 99 5a, 

b) , Booch (Booch, 1 99 1 ,  1 994) and OOSE 0acobson et a!. , 1 993). 

"The Unified Modelling Language (UML) is a general purpose modelling 

language that is designed to specify, visualise, construct and document the 

artefacts o f  a software system. The UML is simple and powerful. The 

language is based on a small number of core concepts that most object 

oriented developers can easily learn and apply. The core concepts can be 

combined across  a wide range of domains." 

From the UML Semantics, v1. 1 (OMG, 1991i) 

The UML consists of two parts: 

• U1\1L Semantics . meta-model that defines the abstract syntax and semantics o f  

U ML  object modelling concepts. 

Ulv1L Notation. A graphical notation for the visual representation of the UML 

semantics. 

The UML meta-model is expressed in a subset of UML. The implicit meta-metamodel 1 c' 

is the same as the OMG MOF (Meta Object Facility) model (OMG, 1 997a, b) . 

The UML started as the Unified Method in 1 995. The draft specification of the Unified 

Method (version 0.8) contains an informal meta-model that encompasses the concepts 

and associations used in object-orientated analysis and design (Booch and Rumbaugh, 

1 995). It also contains a collection of papers on specific aspects of that meta-model. The 

Unified Method was then renamed the Unified Modelling Language to reflect that the 

process was to be defined at a later stage. 

u, , l 'he l ' \  U .  ,;crnantics notes · ' I f  there not an 

associated with cn:rv mcta-mmlcl" (( l\1( ; _  
mcLH11ctamodcL there r s  an mcta-mctam< ,del 
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In January of 1 997 UML version 1 .0 was submitted to the OMG for the Object Analysis 

and Design Facility (OA&DF) (Rational, 1 997a, b). The Object Management Group 

adopted the UML version 1 . 1  as a standard for the OMG OA&DF in September of 1 997 

(OMG, 1 997c-j). 

UML is currently under revision (UML-RTF, 1 998) with a projected completion date, for 

version 1 .3, of January of  1 999. Revision 1 .4 is expected to be complete by April of 1 999. 

2.2.3 COMMA 

COM1\1A stands for G:Jmmon a:,ject Methodology Metamodel Architecture. 

Henderson-Sellers and Bulthuis initiated the project in 1 995 (Henderson-Sellers and 

Bulthuis, 1 996a, b, 1 997; Henderson-Sellers and Firesmith, 1 997a) . 

"The major goal of  the COMMA project is to highlight the commonalties of 

object-orientated methods by describing their underlying meta-models . . .  in 

order to focus on the areas of agreement." 

From the COMMA prrject: First steps (Henderson-Jellers et al., 1996h) 

The COMMA project consisted of three phases: 

Identification of the methodologies to be modelled. Derivation of an appropriate 

meta-level notation and modelling syntax1- for this purpose. 

Derivation of meta-models for a number of methodologies. 

Construction of a core meta-model. 

Fourteen different object-orientated methodologies were modelled during the COMMA. 

project. The meta-language used during the project was purpose designed 1 k. 

"When we began the COMMA project in January 1 995, we unfortunately 

found existing object-orientated meta-modelling techniques to be inadequate 

for COMMA, the notations and semantics usually being extensions of 

structured notations and not possessing object-orientated features, 

to a mcta·mctamodcL in terms of a four architecture. 

which has suppon tor roles and a notation 
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particularly inheritance; for example, OPRR and GOPRR, the notation used 

by Bulthuis and the use of ER by Eckert and Golder." 

From An Overview of the C01Y1MA Project (Henderson-Sellers and Bulthuis, 1996a) 

The COMMA project greatly influenced the development of the OPEN methodology 

and the OPEN modelling language. 

2.2.4 Open Modelling Language 

The OPEN Modelling Language (OML) is one aspect of  the larger OPEN project 

(Firesmith et aL, 1997; Firesmith and Henderson-Sellers 1 998a, b; Henderson-Sellers and 

Graham, 1 996; Henderson-Sellers et aL , 1 996, 1 997a, b). OPEN has been derived from 

object-orientated software engineering approaches of SOMA (Graham, 1 994) ,  MOSES 

(Henderson-Sellers and Edwards, 1994) , and Firesmith with contributions from a group 

of 32 researchers and methodologists, collectively known as the OPEN consortium. 

"OPEN consists o f  a full life-cycle process-centred 00 methodology with 

emphasis on inter alia, reuse, quality, organisational issues including people 

and project management . . .  It has a meta-model and notation which are 

collectively called the OPEN Modelling Language - OML has exactly the 

same scope as the UML . . .  " 

From: Evaluating Third generation 00 Software Development Approaches 

(Henderson-Sellers and Firesmith, 1997b) 

The OPEN meta-model is characterised by and emphasises responsibilities, 

unidirectional associations and the inclusion of roles (based on the work on OOram 

(Reenskaug et aL , 1 996; Taskon AIS, 1 997)) . The OPEN meta-model is based on the core 

COMMA meta-model. 

2.2.5 OOram 

The Taskon AIS I Reich Technologies I Humans and Technology OOram meta-model 

was created primarily for its submission to the Object Management Group in response to 

the request for proposals for the Object Analysis and Design Facility (Taskon AIS, 1 997). 
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"The main contributions of this proposal are its overall architecture and its 

system abstraction. The architecture is object-orientated and unifies a 

number of powerful abstractions. The system abstraction combines the 

power of use cases, responsibility driven design, and role modelling; it can be 

thought of as an extension of the UML and OMJ� object models." 

From the OOrat?J Metamodel, v 1 .0 (Iaskon A/ S, 1997) 

The main goal of the OOram meta-model was to contribute concepts that the authors 

considered were missing from mainstream object-orientated methodologies. Its primary 

focus is role modelling, class modelling, and system relations. The OOram meta-model is 

an object-orientated meta-model, which is described in terms of itself. 

2.2.6 CASE Data Interchange Fonnat 

CDIF (CDIF, 1 998) is a standards body sponsored by the EIA (EIA, 1 998) (Electronic 

Industries Association) and the ISO (ISO, 1 99 8a) (International Standards Organisation), 

whose mission is to enable data interchange between modelling tools. 

"CDIF has been developed to define the structure and content of a transfer 

that may used to exchange data between two CASE tools. The 

fundamental objectives of the CDIF Family of Standards are: to provide a 

precise, unambiguous definition of information to be transferred; to define a 

transfer that may be read and understood directly (i.e., without interpretation 

by a computer); to provide the importer with sufficient information to enable 

the importer to reproduce the transferred data consistent with the original 

" sense. 

From the CDIF CASE Data Interchange Format - Overview, Extract of Interim 

Standard (EIA CDIF, 1994a) 

The EIA initiated the development of CDIF in October o f  1 987. The goal o f  this work 

has been to permit the results of modelling work, performed with various techniques, to 

be transferred between CASE Tools. CDIF defines a series of meta-models (which are 

called subject areas) for modelling techniques, using an E ntity Relationship model (the 

meta-metamodel) (EIA CDIF, 1 994a-h, 1 996; Flatscher, 1 996) .  
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In 1 991  the EIA CDIF interim standard extended the CDIF meta-metamodel to allow 

entity types to be interpreted as 'classes' and 'sub-classed' in refined meta-models (EIA 

CDIF, 1 994a) .  The 1 994 standard supported sub-classing of relationship types as well. 

Figure 2-2 shows the current CDIF meta-metamodel taken from the 'Extract of Interim 

Standard CDIF Framework for Modelling and Extensibility' (EIA CDIF, 1 994b). Non 

directed lines indicate a sub-classing relationship among entity types, where the more 

abstract concept is placed physically above the less abstract concept. A directed line 

indicates a directed association between two entity types. 

j M etaObject j 
! 

I lsUsed l n  j..____
s

_
u b

_
i
_
ec

_
tA
_

re
_

a 
_ 

__,:�+--1-:N ___________ O_:N-1: CollectableMetaObject I 

lsLocaiMetaAttributeOf 
Attrib utableMetaObject :1+-1-:-1 -----------0-:N-1: rl '-----�-------� jo :N 

'-------' 

I 
M etaAttribute j 

H asSubtype 1,.---'-------------------------,, O:N H asSource 1 : 1  j M etaRelat ionship M etaEntity j O:N H asDest1nat1on 1 : 1 � 

2 2 - CD!F \Icta-mctamodel 

CDIF has defined subject areas for modelling techniques such as data modelling, data 

flow modelling, state event modelling and object-orientated analysis and design. Work is 

under way to integrate CDIF with the UML (Ernst, 1 996). 

2.2. 7 ISO/CDIF Meta-Model 

ISO/IEC JTC 1 / SC7/WG1 1 (ISO, 1 998b) is the international body responsible for 

standardising information such as meta-models for software engineering activities. It is 

informally known as ISO/CDIF. Much of the work performed by ISO/CDIF 

corresponds to EIA/CDIF projects. ISO/CDIF also co-ordinates with other 

organisations such as the Object Management Group. 
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2.2.8 MetaData Interchange Facility 

The MetaData Interchange Facility (MDIF) is developed by the Metadata Coalition 

�IDC) (I\IDC, 1 997, 1 998). The goal of the J\1DC is to create a vendor-independent, 

industry-defined and maintained standard access mechanism and standard application 

programming interface (API) for meta-data. 

"To enable full-scale enterprise data management, different IT tools must be 

able to freely and easily access, update, and share meta-data. The only viable 

mechanism to enable disparate tools from different vendors to exchange 

meta-data is a common meta-data interchange specification with guidelines 

to which the different vendors' tools can comply. . . . The MetaData 

Interchange Specification initiative brings industry vendors and users 

together to address a variety of problems and issues regarding the exchange, 

sharing, and management of meta-data." 

rrom the Metadata Interchange Specification version 1 . 1 (MDC, 1 997) 

The MetaData Interchange Specification uses an ER meta-metamodel to describe the 

entities and relationships that are used to represent meta-data in the MD IF. 

2.3 Meta-CASE Tools 

Two types of meta-CASE tool were identified in section 1 .5 .4. These were CASE Tool 

Generator and Modifiable CASE Emrironment. 

CASE Tool Generator 

A CASE tool generator is a meta-tool, which supports the construction of standalone 

CASE tools. Figure 2-3 shows two common CASE tool generator configuration. A tool 

description is composed of a methodology specification and a tool configuration 

definition. 
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Tooi B 

CASE Tool Generator 

Tool A Toot a Tocl C Too! A Too! B Too! C 

(a) (b) 

2-3 - C\SE tool generators 

A CASE tool generator is parameterised by a set of CASE tool descriptions. Each tool 

description in Figure 2-3 (a ) is translated into a separate standalone CASE tooL The 

generated tools are completely separate and each has an individual repository for software 

engineering projects. Figure 2-3 (b ) shows a slightly different approach, where each of the 

generated tools share a common repository. 

In both cases , the methodology specification and the software projects do not coexist 

the same repository. Moreover each generated CASE tool supports a single methodology. 

Modifiable CASE Environment 

A modifiable CASE environment allows methodology descriptions to be modified and 

may be extended to support new methodologies. Figure 2-4 shows the common 

configuration of a modifiable CASE environment. 

The key difference between a modifiable CASE environment and a CASE tool generator 

is the integration o f  methodology descriptions and software projects into one repository. 
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.Modifiable CASE EnVironment 

Modifiable-CASE Repository 

Project F 

Project C Project D. 

Project E 

2--+ - .\rchitecture of a modifiable C \SE cm-!ronment 

Both types of meta-CASE tool prov'ide a meta-model, which is used to define 

methodologies. 1bis meta-model is either: explicit and supported by a set of definition 

languages (ASD, 1 995a, b, 1 998; Coxhead and Fisher et al. , 1 994a, b; Froehlich, 1 994; 

Coxhead et al., 1 994; Findeisen, 1 993, 1 994a-d; Froehlich, 1 994; Gadwal et al., 1 994a, b;  

Lincoln, 1 994, 1 998; Lo, 1 995; Lyytinen et al., 1 994; Smolander et al., 1 99 1 ;  Tolvanen and 

Lyytinen, 1 993; MetaCASE consulting, 1 996a, b, 1 998 ;  Sorenson et al. , 1 988; Verhoef et 

al. , 1 99 1 ;  Zhuang, 1 994; Zhuang et al., 1 995) or implicit and supported by one or more 

libraries and an application programming interface O rCASE, 1 998; Maokai and Scott, 

1 998; mip GmbH, 1 998a-d; Scott, 1 998) .  Figure 2-5 illustrates the relation between the 

four layer meta-modelling architecture discussed in section 2.2 and a meta-CASE tool 

meta-model. 

A software engineer builds descriptions of software that is to be constructed. Each 

description corresponds to a software engineering project in Figure 2-5. Each project 

consists of a set of models, which collectively define the software. The software 

corresponds to the 'user objects' level of the meta-modelling architecture and the 

software project corresponds to the 'model' level. 
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Meta-metamodel Meta·CASE Tool Meta-model 

Used to Define 

Meta-model Software Engineering Methodology 

Used to Define 

Model Software Engineering Project 

Used to Define 

User Objects Software 

2-5 :.Ieta-C\SE tools and the four 
architecture 

Each model in a software engineering project is defined using a modelling language 

provided by a software engineering methodology. The modelling languages are meta­

models o f  the models in the software engineering project and thus correspond to the 

meta-model level of the meta-modelling architecture. 

Each methodology in a meta-CASE tool is defined in terms of the meta-CASE tool 

meta-model. This meta-model provides the language the methodology engineers use to 

define methodologies. The meta-CASE tool meta-model therefore corresponds to the 

meta-metamodel level of the meta-modelling architecture. 

2.3.1 Framework for Discussion of M eta-CASE Tools 

The discussion of meta-CASE tools is based on a framework, which has been designed to 

evaluate the properties o f  meta-CASE tools related to methodology representation. 

The properties considered include: 

1 .  Under!Jing meta-model (representation rf semantics) 

What is the modelling language supported? How is the modelling language 

implemented? Are there any limitations of the meta-model? 
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2. Representation of .ryntax 

How tightly coupled are the semantic and syntax descriptions? What are the 

limitations of the mechanism for describing syntax. 

3.  .Support for the concept of methodo!og)l 

Does the tool support the concept of methodology at all? Does the tool support 

the concepts of method and process? Does it o nly support the definition of 

modelling languages? 

4. .Support for re-use 

Does the tool embrace re-use of methodology descriptions? Is  re-use o f  

software projects supported? 

5. Problems and limitations 

Table 2-2 contains a non-exhaustive, representative sample of meta-CASE tools. Tools 

with a ../ next to them will be discussed with respect to the framework. These tools have 

been selected because they are widely used and referenced in the literature. 1 'j They utilise a 

range of meta-models (for example EARA/GE, GOPRR and Class based) and are 

representative of the types of meta-CASE tool. 

Research Tool 

Meta View (Meta View, 1 998) ,/ 

Meta-Edit and MetaEdit+ 
(MetaCASE consulting, 1 998) ./ 

Commercial Tool 

Alfabet (Alfabet, 1 998) ,/ 

T oolBuilder 
(Alderson, 1 99 1 ;  Lincoln, 1 998) ,/ 

CASEMaker OrCASE, 1 998; Maokai and 
Scott, 1 998; Scott, 1 998) 

Graphical Designer (ASD, 1 998) ,/ 

KOGGE Objecu\iaker (MarkV, 1 994, 1 998) 
(Sahraoui et al., 1995; Ebert et al., 1996) 

Ramatik 

MetaPlex 

Socrates (V erhoef et al., 1 991) 

I "  \ la m  mcta-( : _\S I -: toob commercial 

Paradigm Plus (Platinum, 1 998) 

Software though Pictures (STP, 1 998) 

Table 2- 2 " Icta-C \SE tools 

and detailed technical information " difficult to obtain. 
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2.3.2 M eta View 

MetaView is a CASE tool generator (Figure 1 -3 Classification hierarchy of CASE tool 

categories). It was developed at the University o f  Saskatchewan and University of Alberta, 

Canada (Gadwal et al. , 1 994a, b;  Findeisen, 1 993, 1 994a-d; Froehlich, 1 994; Lo, 1 995; 

Sorenson et al. , 1 988; Zhuang, 1 994; Zhuang et al., 1 995). 

2.3.2. 1 Under!Jing meta-model 

Meta View introduces an extension of the entity relationship (ER) data model called 

EARA/GE (Entity Aggregate Role Attribute with Graphical Extension) . The novel parts 

of this meta-model are the support for aggregates, specialisation and the graphical 

extensions (Gadwal et al. , 1 994a, b;  Findeisen, 1 993, 1994a-d; Lo, 1 995; Sorenson et al., 

1988; Zhuang, 1 994; Zhuang et al. , 1 995) .  

An aggregate is a heterogeneous collection o f  entities and relationships .  The entities and 

relationships belonging to an aggregate are called its components. EARA supports an 

aggregation relationship, which is  a special association between an entity and an 

aggregate. This relationship is also called an entity explosion and is used to represent 

hierarchical decomposition. 

Each entity, relationship and aggregate has a type. These types can be built into 

specialisation hierarchies where subtypes inherit the relationships and attributes of their 

super-types. The properties of  entities, relationships and aggregates are represented 

attributes. 

Methodologies m Meta View are defined in a specially designed language called 

Environment Definition Language (EDL) (Gadwal et al., 1 994a). EDL provides features 

that correspond to the concepts supported by EARA/ GE. 

Constraints are defined after an EARA data model, which describes  a methodology, is 

constructed. The constraints either guard the consistency of the specification (consistency 

constraints) or ensure that the software specification is complete (completeness 

constraints) . Constraints are written in a separate language called Environment 

Constraints Language (ECL) (Findeisen, 1 994d) .  
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2.3.2.2 Representation of .ryntax 

Methodology graphical notations are modelled with an extension to the EARA model 

called the Graphical Extension (GE) (Findeisen, 1 993) . 

The graphical extension is designed to support two-dimensional, non-animated 

diagramming techniques. It introduces the following graphical types: icon, edge and 

diagram as subtypes of  entity, relationship and aggregation respectively. 

The graphical extension provides the following primitives: 

Picture Pattern and Picture. A geometric figure that may appear repeatedly in a diagram. 

Picture patterns are composed of points, lines, arcs and text. A Picture is a picture 

pattern with additional constraints such as a position. 

Label Labels are used to represent attributes of entities, aggregates and relationships. 

Diagram. Diagrams are used to represent aggregates and correspond to individual 

drawing surfaces. 

• Icon. An icon is used to represent an entity. An icon is represented as a rectangular 

area. Icons have a fixed size and may be annotated by pictures and labels. 

Cluster. cluster represents a sequence of entities and is used to express  presentation 

constraints (e.g. vertical or horizontal alignment) . Clusters may be collapsed into a 

single icon. 

• Edge. Edges are used to represent relationships. Edges may be annotated with 

pictures and labels. 

• Handle. Handles are used to define the positions on an icon, where edges may be 

attached. 

2.3.2.3  Support for the concept of methodology 

Each methodology specification in Meta View defines a collection of diagram types. There 

is no support for the concept of methodology, especially in terms of process.  

2.3.2.4 Support for re-use 

Meta View does not promote re-use of methodology components, although it does 

support specialisation of entity types. Constraints are defined globally for each 
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methodology and cannot be re-used. There 1s no support for re-use o f  software 

engineering projects. 

2.3.2.5 Problems and limitations 

• An entity cannot be owned by more than one aggregate. 

• An entity cannot be involved in more than one aggregation relationship. It can only 

be exploded to one type of aggregate. 

• Correctness and completeness constraints are totally separate from the entities, 

aggregates and relationships. Constraints are also defined globally over all the entities, 

aggregates and relationships .  This implies computation overhead. 

The formal nature of the meta-model implies that partially completed models cannot 

be built. 

• The syntactic representation is totally integrated with the semantic representation. A 

change in the semantics implies a change in the graphical representation and vice 

versa. The cohesiveness of syntax and semantic descriptions is therefore reduced. 

• There is no consideration of cognitive support (auto correction, feedback etc) . 

An entity cannot be represented by more than one icon. 

• A relationship cannot be represented by more than one edge. 

An icon cannot represent more than one 

Icons and pictures are of a fixed size. 

Diagrams are only views of aggregates. 

or aggregate. 

Meta View only supports 'pen and paper' notations. The syntax description is very 

simple and does not support facilities such as logical distortion. 

There is no support for process. 

• There is no support for re-use of methodology descriptions or software projects. 

2.3.3 Meta-Edit and MetaEdit+ 

MetaEdit and MetaEdit+ are modifiable CASE environments (Figure 1 -3 Classification 

hierarchy of CASE tool categories) . These tools were developed as part of the 
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MetaPHOR project by the University of Jyvaskyla, Technical Research Centre of Finland 

(VTI) and University of Oulu (Lyytinen et al., 1 994; Merridarll\1arketing, 1 998; 

MetaCASE consulting, 1 996a, b, 1 998;  Smolander et al. , 1 991 ;  Tolvanen and Lyytinen, 

1 993) .  

2.3.3. 1 Under!Jing me/a-model 

The meta-model used in MetaEdit+ is called GOPRR (Graph, lkjects, R:operties, 

Relationships, Roles). It is an extension of the OPRR model used in MetaEdit 

(Smolander et al., 1 991  ) . The OPRR meta-model is founded on "fixed mapping rules 

between modelling constructs and their graphical behaviours" (Smolander et al., 1 991) .  

The basic OPRR modelling constructs are: 

• Objects. These are not objects in the object-orientated sense as they are passive. 

They are reminiscent of entity types. 

• Properties, which are attributes of objects, relationships and roles. 

Relationships, which are associations between objects. 

Roles, which define the ways in which objects participate in specific relationships. 

The GOPRR model adds the concept of Graph to the OPRR model. A graph denotes an 

aggregate that contains a set of objects, relationships, roles other graphs. A graph also 

has its own properties and typically appears as a window. The graph concept has also 

been extended into a modelling unit called Project. A Project is used to manage the 

relationships between the collection of  modelling languages in a particular methodology. 

Objects can be arranged into specialisation hierarchies where 'sub-objects' inherit the 

relationships and properties of their 'super-objects'. 

2.3.3.2 Representation of !Jnlax 

There is  a one to one correspondence between GOPRR types (projects, graphs, objects, 

roles and relationships) and graphical representations (which MetaEdit+ calls symbols) . 

Symbols are defined in terms of primitive shapes (ellipse, rectangle, rounded rectangle, 

line, polygon, text and bitrnap) . A symbol may have labels that correspond to the values 

of the properties of a GOPRR type. 
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2.3.3.3 Support for the concept of methodology 

A methodology is mapped to the project concept in the GOPRR meta-model. There is 

no support for process.  

2.3.3.4 Support for re-use 

The GOPRR meta-model supports inheritance of GOPRR types. MetaEdit+ also 

supports a symbol library. The definition of an existing modelling language may be 

duplicated and modified. In practice this is only accidental re-use. 

2.3.3.5 Problems and limitations 

The formal nature of the meta-model implies that partially completed models cannot 

be built. 

There is no support for the reuse o f  modelling results. 

Only accidental re-use of semantic descriptions is s upported. 

An explosion of 'methodologies'  and modelling languages.  Each time a methodology 

engineer binds a semantic definition to a different syntax a new methodology is 

created. 

There is no support for process.  

There is no consideration of cognitive support (auto correction, feedback etc) . 

Support for project (a type o f  graph) is an afterthought added to address lack of 

support of all aspects of a methodology. 

Syntax definition is a function o f  the semantic description because of the assumed 

one-to-one mapping between syntax and semantic elements. 

The syntactic representation is totally integrated with the semantic representation. A 

change in the semantics implies a change in the graphical representation and vice 

versa. The cohesiveness of syntax and semantic descriptions is therefore reduced. 

Symbols are of a fixed size and only defined in terms of primitive shapes. There are 

no facilities to describe symbols and connections that change size. 

Diagrams are only views of Graphs. 

• MetaEdit and MetaEdit+ only support 'pen and paper' notations. The syntax 

description is very simple and does not support facilities such as logical distortion .  
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2.3.4 Altabet 

Alfabet i s  a commercial modifiable CASE environment (Figure 1 -3 - Classification 

hierarchy o f  CASE tool categories) produced by mip GmbH & Co. Its primary focus is 

'business modelling' and 'data modelling', although it does provide extensions for the 

support o f UML (mip GmbH, 1 998a-d). 

"Alfabet is a database-supported meta-modelling system with a powerful 

graphical user interface that can describe any kind of information model and 

analyse it with various methods.  Alfabet offers two different user levels: The 

Developer level to develop models in a meta-modelling environment, and 

the User level to put these models into action." 

From the ALF ABET user manual (mip GmbH, 1998c) 

2.3.4. 1 Under!Jing meta-model 

The documentation for Alfabet does not make a specific reference to an underlying meta­

model. The meta-model is implicitly related to the class-based database management 

system used by Alfabet. 

"Alfabet works on a class-based technology. This is an object-orientated 

approach suitable for modelling that has been developed by rnip. This 

technology allows users to describe the deep structure of a model that is built 

from objects and their relationships (the meta-model), instead of filling 

predefined meta-models with data." 

From the Alfabet user manual (mip GmbH, 1998c) 

The implicit Alfabet  meta-model provides the following abstractions: 

Class. The Alfabet technology overview (mip GmbH, 1 998b) equates class to abstract 

data-type. Classes  contain properties and may be built into inheritance hierarchies. 

• Scalar type. Examples include string and integer. 
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• Multiple rype. Acco rding to the Alfabet technolo gy overview (mip GmbH , 1998b) a 

multiple typ e  is a list o f  classes. The instances o f  all o f  the classes a re p roperty values 

o f  the multip le type. 

• Container. Containers are defined fo r all scalar a nd a bstract typ es (cla sses) .  

• Event. I nit , Put, Get and Clear events can be defined fo r properties. 

2.3.4.2 Representation of syntax 

Alfabet p ro vides the following graphical p rimitives: 

• Node item. Node items consist o f  various simple geometric shapes. 

User item. A user item is any combination o f  Node items. 

Generator item. These are p redefined no tation t empla tes for common busin ess 

applications (such as Gantt charts) .  

Special item. These include l ines, polygons and textboxes. 

Link item. I tems that are used to connect generato r a nd node items. 

Graph ical items may be associated with instances in the repository. The Alfabet manual 

(mip GmbH , 1998c) states, "in this  case the graphical item represents a semantic 

i nsta nce". It is no t clear how graphical items that are not associated with an instance 

the reposito ry are interpreted. Semantic items are rep resented by a small set o f  simple 

graphical primitives tha t may be scaled and combined. Alfabet does appea r  to p rovide 

notation framewo rks (the generato r items) fo r commonly used data modelling notations. 

2.3.4. 3  Support for the concept of methodology 

Alfa bet does not support the concept o f  methodo lo gy at a ll. The Alfabet Frequently 

Asked Questions states "The ph ilosoph y  behind Alfabet puts great emphasis o n  th e  

integration of impo rtant method o r  no tation solutions" (mip GmbH , 1998a) . 

At best a methodolo gy corresponds to a pro ject in Alfabet. Each p ro ject is configured 

with a of set diagram types. 
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2.3.4.4 Support for re-use 

Alfabet does not claim any support for re-use of projects or modelling languages, other 

than by accidental re-use. 

2.3.4.5 Problems and limitations 

• Thls tool is database driven, not methodology driven. 

• There is no support for methodology or process. Alfabet only supports the definition 

of modelling languages and notations. 

• Alfabet claims to be object-orientated. Thls is incorrect, as it is class based. 

• Primary used to support data modelling languages, although support for U:ML is also 

claimed. 

• Implicit meta-model. 

No support for re-use of syntax and semantic definitions. 

• Alfabet only supports 'pen and paper' notations. The syntax description is very 

simple and does not support facilities such as logical distortion. 

There is no consideration of cognitive support (auto correction, feedback etc). 

2.3.5 ToolBuilder 

ToolBuilder is a commercial CASE Tool generator (Figure 1 -3 - Classification hierarchy 

of CASE tool categories) created by Lincoln software (Alderson, 1991 ; Coxhead and 

Fisher et al. , 1 994a, b; Coxhead et al., 1 994; Lincoln, 1 994, 1 998). 

ToolBuilder consists of: 

A method specification capture component called METHS. 

A run-time methods component called DEASEL. 

DEASEL is a generic CASE tool offering fully integrated graphical and textual editing of 

data stored in the 'Lincoln repository'. 

2.3.5. 1 Under!Jing meta-model 

Toolbuilder uses an extended entity relationship (EER) model as its meta-model. Entity 

types are built into specialisation hierarchies where subtypes inherit the relationships and 
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attributes of their super-types. This data model supports derived relationships and 

derived attributes .  Triggers can be associated v.rith attributes and relationships. 

2.3. 5.2 Representation of syntax 

Toolbuilder supports two-dimensional, non-animated diagramming techniques. It 

considers each diagram consists of nodes (symbols) and links (connections) . 

The support for syntax has two components: 

The frame model. This corresponds to the visual presentation of the underlying data 

model and consists of a collection of diagrams. 

• The notation for each diagram frame. 

A set of basic shapes is provided from which more complex shapes may be defined. 

These shapes may be combined with other basic shapes, to create symbols and 

connections. Symbols and connections may have text fields associated with them. 

Toolbuilder supports the definition of the formatting (e.g. alignment) of text fields. 

2.3.5.3 Support for the concept of methodology 

Toolbuilder generates standalone CASE tools. Each CASE tool supports a single 

methodology. There is no support for software process or method. 

2.3.5.4 Support for re-use 

Toolbuilder only supports the generation of bespoke CASE tools, which all have separate 

repositories. There is no support for re-use of modelling results or o f  semantic 

descriptions. 

2.3.5.5 Problems and !imitations 

• There is no support for process 

• There i s  no support for re-use of modelling results. 

• Only accidental re-use of semantic descriptions is supported. 

Toolbuilder only supports 'pen and paper' notations. The syntax description is very 

simple and does not support facilities such as logical distortion. 

49 



• A fixed mapping between syntax and semantics is implied. 

• The semantic and syntax descriptions are tightly coupled. For example an entity's 

attributes may have an associated show trigger, which defines how the attributes are 

to be presented. 

• Symbols are of  a fixed size and only defined in terms of  primitive shapes. There are 

no facilities to describe symbols and connections that change size. 

• A total of five languages are used to define a CASE tool (IL, DDL, GDL, FDL and 

EASEL) (Alderson, 1991). 

• There is no consideration of cognitive support (auto correction, feedback etc) . 

2.3.6 Graphical Designer Pro 

Graphical Designer is a modifiable CASE environment (Figure 1-3 - Classification 

hierarchy of CASE tool categories) (ASD, 1995a, b, 1998). 

Graphical Designer provides a single, function/ procedure based, scripting language that 

is used to define the syntax and semantics of a methodology. The Graphical Designer 

language is used to define all aspects of a CASE tool, including report and code 

genera non. 

2.3.6. 1 Under!Jing me/a-model 

A CASE tool is described in Graphical Designer as a set of functions that operate on 

symbols, attributes, roles and relationships. The meta-model used is the Object Property 

Role Relationship (OPRR) model, where Graphical Designer uses the terms Symbol, 

Attribute, Role and Relationship respectively. 

2.3.6.2 Rep resentation of .ryntax 

Graphical Designer has a single description language that is used to describe the syntax 

and semantics of  methodologies as well as the behaviour of Graphical Designer itself. 

There is a one to one mapping between syntax and semantic concepts. 

2.3.6.3 Support for the concept of methodology 

Graphical Designer is parameterised by a set of flies per methodology. These flles define 

the set of modelling languages available. Graphical Designer does not consider process 

or method at all. 
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2.3.6.4 Support for re-use 

The only form of re-use supported by Graphical Designer is accidental re-use. There is  

no relation between the methodology descriptions in Graphical Designer. New 

methodologies must be effectively designed from scratch. 

2.3.6.5 Problems and limitations 

• Graphical Designer provides a function based language that has a high learning curve 

associated with it. The underlying meta-model is completely obscured because th e  

scope of the language covers the syntax and semantics of methodologies a s  well as  

the behaviour of the tool itself. 

• The semantic and syntax descriptions are totally integrated. A change in the 

semantics implies a change in the graphical representation and v"i.ce versa. The 

cohesiveness of syntax and semantic descriptions is therefore reduced. 

There is no support for process. 

There is no support for re-use of modelling results. 

Only accidental re-use of semantic descriptions is supported. 

• There is no consideration of cognitive support (auto correction, feedback etc). 

• Graphical Designer only supports 'pen and paper' notations. The syntax description 

is very simple and does not support facilities such as logical distortion. 

2.4 Limitations of Current Meta-CASE Technology 

The discussion of meta-CASE tools in section 2.3 has highlighted a range of limitations. 

These include: 

• Poor support for the concept of methodology 

All meta-CASE tools interpret methodology as a collection of modelling languages.  

They make no attempt to support the concept of process  or method. 
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• Constraints are separate from the structural definition of methodology 

concepts 

Most meta-CASE tools partition the semantic definition of a methodology into two 

pans: a) a data model and b) a global set of constraints that are applied to the 

elements of the data model. O ften this can imply a significant overhead in terms of 

applying constraints, as they are evaluated for all instances. 

• Formal approach can be restrictive 

The formal approach adopted by meta-CASE tools does not allow a user project to 

be in an incomplete/inconsistent state. This is a barrier to a creative, exploratory 

approach to development that software engineers naturally apply. 

• Syntax description is primitive 

Virtually all meta-CASE tools derive syntax elements from a pre-defined set of 

graphical primitives. Notation elements are built by scaling and combining these 

primitive elements. Typically these notation elements do not resize dynamically as 

they are used. Most common symbols, with more than one compartment, are 

impossible to describe with such a strategy. 

Fixed mapping between syntax and semantics 

All meta-CASE tools assume that there is a fixed one-to-one mapping between 

syntax and semantic elements. It implies that the structure of the syntax elements is 

always the same as the structure of semantic elements. Whilst it is reasonable to 

expect a high structural homology between syntax and semantic descriptions, it is 

unnecessarily restrictive to assume the structure of each description is identical. 

Coupling of syntax and semantic descriptions constrains each other 

The coupling between the syntax description and semantic description in current 

meta-CASE tools is high. The high coupling can compromise the cohesiveness of 

the semantic and syntax descriptions. Moreover the structure of the syntax and 

semantic descriptions can affect each other. High coupling of syntax and semantic 

descriptions is also a barrier to their subsequent re-use. 
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• No support for re-use of methodology description 

The majority o f  meta-CASE tools do not give any consideration for the re-use of 

methodology descriptions. If re-use is  supported it is  only in the form of accidental 

re-use. Even those tools that support a form of specialisation do not place any 

emphasis on re-using methodology descriptions. 

• No relation between defined methodologies 

This i s  a direct consequence of no support for the re-use o f  methodology 

descriptions and can result a large collection of unrelated methodologies .  These 

m ethodologies may in fact have a lot in common. In some tools this may also mean 

that one or more methodologies are in fact semantically the same, but simply have 

different syntax. This is a barrier to re-use because the CASE tool environment 

becomes a large collection of unrelated software engineering projects. 

• No support for re-use of software engineering projects 

Meta-CASE tools do not consider the re-use of software projects developed with the 

methodologies that they support. 

For a CASE tool generator this is simply because each tool that is generated is  

considered in isolation. These tools provide some form of import/ export 

facilities, which is not sufficient to support anything other than accidental re-use.  

Modifiable CASE environments, however, have the potential to promote re-use. 

Unfortunately re-use is not even considered. The effective support for re-use, in a 

Modifiable CASE environment, is reliant on an explicit relation between the 

methodologies supported. This is currently not supported by Modifiable CASE 

environments. 

• Focus only on completeness and consistency checking 

Meta-CASE tools only focus is determining if the rules of the various modelling 

languages have been violated. For example they do not consider supporting 

assistance during the development process, quality analysis or auto-correction. This is  

also related to the poor support of the concept of methodology. 
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2.5 Summary 

1bis chapter has examined meta-modelling and meta-CASE technology. The four layer 

meta-modelling architecture has been presented and its relation to meta-CASE tools 

described. Applications of meta-modelling in software engineering field have been 

examined (OMG MOF, UML, COMMA, OML, O Oram, CDIF and MDIF). A review of 

several representative meta-CASE tools (MetaView, MetaEdit+, Alfabet, Toolbuilder and 

Graphical Designer Pro) has been presented and limitations of m eta-CASE tools, from a 

methodology representation perspective identified. 

The limitations of CASE and meta-CASE technology are the basis from which the 

research presented in the remainder of this thesis has been derived. 
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Ch a p t e r  3 

M eta Object Orientated Tool 

In our profession, precision and p erfection are not a dispensable luxury, but 

a simple necessity. 

Niklaus Wirth, 1997 

3.1 Introduction 

This chapter presents the philosophy and architecture of a new meta-case tool that has 

been developed as a result of this research, MOOT (Meta a:,ject Orientated Tool) .  The 

major goal of the MOOT research project is to build a useable, customisable CASE tool 

which provides a framework within which methodologies can be described. The sub­

systems of MOOT that are related to the representation and processing of methodology 

descriptions are identified and issues related to the overall design and architecture of the 

new meta-CASE tool are discussed. 

3.2 Method 

The following is a high level description of the steps taken to develop MOOT. 

1 .  Compare, contrast and evaluate existing CASE and meta-CASE tools to identify the 

limitations of CASE technology. The current state o f  CASE technology is outlined in 

chapter 1 .  A detailed comparison o f  meta-CASE tools is presented in chapter 2. 

2. Define the rationale and goals of the MOOT project based on the identified 

limitations of current CASE technology. 

3. Devise a representation strategy for methodology descriptions rn MOOT. This 

research includes: 
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• The development of languages for the description of the syntax and semantics of 

software engineering methodologies. 

• Devising a technique that supports late binding of syntax and semantic 

descriptions. 

4. Analyse the notations commonly used by software engineering methodologies. 

Derive a new language (NDL) for the representation of methodology syntax. 

5. Investigate a meta-systems approach based on an object-orientated meta-model. 

Derive a new language (SSL) for the representation of methodology semantics. 

6. Investigate the binding between NDL and SSL. Derive a technique that supports late 

binding o f NDL and SSL descriptions. 

7. Derive a meta-model of the concept of methodology with the representation strategy 

defined in step 3 .  Implement the meta-model, with the language defined in step 5, as 

a library of re-usable semantic description components. 

8. Derive a meta-model of concepts germane to all object-orientated methodologies 

with the representation strategy defined in step 3. Implement the meta-model, with 

the language defined in step 5, as a library of re-usable semantic description 

components. 

9. Devise a means of efficiently processing methodology descriptions (implemented in 

the languages from steps 4 and 5). 

1 0. Design the architecture of the new meta-CASE tool, MOOT. 

1 1 .  Realise a prototype of the system proposed in step 1 0, which is suitable for assessing 

the efficacy of the representation scheme for methodology descriptions. 

12. Validate the methodology representation strategy by modelling object-orientated 

methodologies and implementing support for design patterns. 
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3.3 Rationale and Goals of the MOOT Project 

The goals o f  the MOOT project are defined based on the limitations o f  current CASE 

technology as identified in sections 1 .6 and 2.4. These goals are: 

1 .  Support more than one methodology 

Rationale: Software engineering companies need to utilise a number of different 

methodologies to support their work. 

2. Flexibility and customisation 

Rationale: Software engineering comparues often utilise in-house methodologies 

and/ or their own extensions to commercial methodologies .  

3. Support the entire software development life-cycle 

Rationale: The activities of a software engineering company encompass the entire 

software development life-cycle (SDLC), from requirements gathering through to the 

implementation and subsequent evolution of software systems. CASE tools should 

support all software development activrities. 

4. Support re-use of software engineering projects 

Rationale: \)V'hilst it is true that object-orientated technology does not guarantee re­

use it is accepted that one of the principle objectives of object-orientated technology 

is to enable re-use. Supporting re-use should be a key objective of a CASE tool that 

supports object-orientated methodologies. 

5. Support re-use of projects defined with different object-orientated 

methodologies 

Rationale: The representation of potentially re-usable components, by different 

methodologies, should not be a barrier to their subsequent re-use. This goal is related 

to the support for re-use and the support of more than one methodology. Software 

engineering companies use many different methodologies and hence have a 

repository of potentially re-usable components, each of which may be represented 

differently. 
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6. Separation of the syntax and semantic descriptions of methodologies 

Rationale: The syntax and semantics of software engineering methodologies have 

different requirements in terms of the most appropriate modelling language for their 

description. Providing distinct modelling languages ensures that the descriptions of 

syntax and semantics are not constrained by each other. The coupling between syntax 

and semantic descriptions is minimised whilst their cohesion is maximised. In 

addition, supporting late binding of syntax and semantic descriptions increases their 

re-usability. The purpose of this approach is to maximise flexibility, adaptability and 

reusability. 

7. Support for re-use of methodology descriptions 

Rationale: The descriptions of software engineering methodologies may have many 

components in common. Object-orientated methodologies, for example, have much 

in common that could be described by a set of methodology description components. 

New methodologies can be described by re-using and extending a set of existing 

methodology description components. These components may be sourced from 

existing methodology descriptions and from a pre-built library of core methodology 

description components. Maximising the re-use of semantic components between 

methodology descriptions is tightly coupled with the support for re-use in general. 

The means by which the goals of the research project are addressed is summarised in 

Figure 3-1 .  This diagram illustrates how the various goals of the MOOT system have 

been addressed by some of the design decisions made regarding features of the MOOT 

system. 

The left-hand side of Figure 3-1 lists the goals that have been identified. The right-hand 

side lists design decisions made regarding features of the MOOT system. The arrows 

illustrate the mapping between the goals and the design decisions. An arrow that starts or 

terminates on a box indicates that the mapping relates to all of the goals or design 

decisions contained within the box. 

MOOT is a Modifiable CASE environment (see Figure 1 -3 - Classification hierarchy of 

CASE tool categories). MOOT supports software engineers who apply a software 
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engineering methodology to describe a software artefact and also supports methodology 

engineers who create and modify definitions of software engineering methodologies. The 

overall aim of a system of this type is to support arbitrary methodologies. This addresses 

goals 1, 2 and 3.  

Goal 

Support more than one 
methodology 

Flexibil ity and 
cuatomisation 

Support the entire 
SDLC 

Separate description of 
methodology syntax and 

semantics 

Support re-use of 
software engineering 

components 

Support sharing of results :====� 
between projects defined 

with different 00 
methodologies 

Addressed by 

MOOT is a modifiable 
CASE environment 

Two distinct representation 
schemes. One for syntax 

and one for semantics 

Methodology descriptions 
collectively viewed as 
libraries of reusable 

methodology components 

Developed meta-models of: 
'Methodology' (CKB) and 
'Object Model' (GOOKB) 

MOOT meta-model , which 
is an object-orientated 

modell ing language 

Figure 3- 1 - l\fapping between goals and design decisions made 
regarding IOOT 

The underlying meta-model of MOOT is an object-orientated language20. The choice of 

an object-orientated language as the meta-model of MOOT supports the natural, efficient 

20 The MOOT mcta-modcl is described in full in section 5.5.2 - MOOT Meta-Modcl. 
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and express1ve realisation of object-orientated methodologies. The adoption of a 

representation strategy that clirectly enables re-use addresses goals 3, 4 and 7. 

Re-use is further supported in MOOT with the development of two libraries of reusable 

methodology description components. The first has been named the Core Knowledge 

Base21 (CKB). It implements a meta-model of the concept of 'Methodology'. The second 

has been named the Generic Object Orientated Knowledge Base (GOOKB). The 

GOOKB implements a meta-model of concepts that are germane to object-orientated 

methodologies and is a derivation of the CKB. The development of these two libraries of 

re-usable methodology description components addresses goals 4 and 7. 

Methodologies are defined in MOOT as derivations of the CKB, the GOOKB and from 

other methodology definitions. The MOOT approach is to view the entire collection o f  

methodology descriptions as a set o f  potentially re-usable methodology components. 

This approach further addresses goals 4 and 7. 

All object-orientated methodologies support concepts such as class, object, message 

polymorphism and inheritance. Moreover these concepts are supported throughout the 

entire software development life-cycle (albeit with clifferent levels of expressiveness). 

Concepts that are germane to all object-orientated methodologies are deflned with the 

GOOKB. This specifically addresses goal 3. 

MOOT utilises two separate modelling languages for the description of a methodology's 

syntax and semantics. The semantic representation strategy is an expres sion of the 

underlying MOOT meta-model. The syntax representation strategy is derived from an 

analysis of notations used by software engineering methodologies and the consideration 

of Human-Computer Interaction (HCI) principles. The binding of syntax and semantic 

descriptions, to compose a complete methodology description, is performed as late as 

possible. Utilising separate modelling languages and late binding of syntax and semantic 

descriptions addresses goal 5. This approach also means that common syntax and 

semantic descriptions need only be defined once, which addresses goal 7. 

make use  of 

thc: \!( )( lT sYstem will exhibit more and 

Section 9.� l ·u turc \\'ork cm-crs aspects of this work. 
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The focus of the thesis is o n  the representation and execution of methodology 

descriptions by MOOT. This includes the representation of methodologies and software 

engineering projects, and the design of the CKB and GOOKB. A prototype of the 

MOOT system has been implemented in order to facilitate the investigation and 

validation of the approach taken to defining software development methodologies. 

3.4 MOOT Methodology Descriptions 

A methodology description in MOOT is composed of three parts: a description of the 

syntax, a description of the semantics and a description of the mapping between the 

syntax and semantics. 

Two new methodology specification languages, NDL (Notation Definition Language) 

and, SSL (5emantic Specification Language) have been developed during this research. 

NDL and SSL allow the definition of the syntax and semantics of a methodology, 

respectively, in the MOOT system. Late binding of syntax and semantics descriptions is 

captured with a Notation-5emantic Mapping (NSM) table. 

Figure 3-2 shows the relation between syntax and semantic descriptions, the description 

of a particular methodology and a corresponding software project in the MOOT system. 

Semantics 

Syntax 

Description 
Languages 

SSL 

NDL 

Methodology 
Description 

SSL Classes 

NSM Table 

NDL Scripts 

Software 
Project 

SSL Objects 

NDL Views 

3�2 � The relation between software projects, methodologY 
descriptions and the description in ,\lOOT 

NDL is a scripting language used to define the notation of methodology's modelling 

languages (Figure 3-2) . NDL scripts describe how symbols and connections that appear 

in diagrams are rendered onto a computer display. An NDL description of a notation also 

provides facilities for binding actions to symbols and connections as well as logical 
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distortion (Adams, 1 998; Clark, 1 994; Ham, 1994; Mehandjiska, 1 995b; Page et al., 1 994) . 

A rendered image generated from an NDL script is called an NDL View (Figure 3-2). A 

detailed discussion of NDL is given in chapter 4. 

SSL is an object-orientated language used to define the semantics of a methodology. This 

includes the modelling languages and methods supported, the process and the various 

documents that are produced by application of the methodology. A semantic description 

of a methodology consists of a collection of SSL classes (Figure 3-2) . A software 

engineering project (developed with a particular methodology) consists of a collection of 

SSL objects (Figure 3-2) . A detailed discussion of SSL and its design is given in chapter 5 .  

A Notation Semantic Mapping table defines the mapping between notation elements and 

semantic concepts (Figure 3-2) and is used to implement late binding of syntax and 

semantic descriptions. One role of the table is to translate 'logical actions' at the user 

interface, to the corresponding equivalent semantic actions and also to transform 

semantic actions back into the equivalent logical actions. Notation-semantic mapping is 

described in detail in chapter 7. 

A methodology in MOOT is defined by a collection of NDL scripts and SSL classes. 

software project in MOOT consists of a collection of NDL views and SSL objects 

(Figure 3-2) . These views and objects are instances of the NDL scripts and SSL classes in 

the definition of the methodology used for the project. There is a one-to-many relation 

between each NDL script and NDL and a one-to-many relation between each SSL 

and SSL object. 

The example in Figure 3-3 illustrates how a class diagram, which defines some of the 

classes for an abstract syntax tree, might be represented, using the MOOT approach. The 

modelling language used to generate the class diagram in Figure 3-3 consists of a notation 

and a semantic definition. The class diagram syntax (the notation) in Figure 3-3 is defined 

by NDL scripts. The concepts supported by the modelling language (class, inheritance 

relation, class diagram and so on) are defined by SSL classes. The software project 

consists of instances of the SSL classes (SSL objects) and NDL scripts (NDL Views). 
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Semantics 

Syntax 

M�thodology 
Description 

SSL Classes 

Software Project 

SSL Objects 
Class Diagram-------�---, Diagrams 

�---.-··#"""-�---�-"l l-.-41* Abstract Syntax Tree Diagram Class 
Inheritance Relation 

- Association Relation 

NDL Scripts 

Class Symbol 
Inheritance Connection 
Associatio n  Connection 

3-3 

Classes 
--·"-iil!II0 AST Node S tatement Node Loop Node 

If Node Expression Node 

Inheritance Relations 
] ,_, ___ ,. Statement Node IS-A AST Node 

Expression Node IS-A AST Node 

Loop Node IS-A Statement Node 

If Node IS-A Statement Node 

Association Relations 
��--"-·• Association : Statement Node, Loop Node 

Association : Statement Node, If Node 

Association : Expression Node, Loop Node 

Association : Expression Node, If Node 

NDL Views 

Expression Node 

projects 

The example in Figure 3-3 shows SSL objects representing the classes such as A5T Node 

in the Abstract Syntax Tree class diagram. It also shows SSL objects representing the 

inheritance relations (e.g. Statement Node is a AST Node), associations (e.g. an association 

between Statement 1\lode and Loop Node) and an SSL object that represents the diagram 

itself. An NDL script defines each of the different views that may be created (class 

symbols, inheritance connections and so on). Each NDL script may have many instances 

(for example, each rendered class symbol in the Abstract Syntax Tree diagram in Figure 

3-3 is an instance of the 'class symbol' NDL script) . 
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The proposed strategy for methodology descriptions in MOOT supports the goal of de­

coupled syntax and semantics descriptions. Syntax and semantic descriptions are 

developed separately and bound together with an NSM table. A semantic description can 

be bound to many different syntax descriptions and a syntax description may be bound to 

many semantic descriptions. An NSM table defines each particular mapping between a 

semantic and syntax description. 

There are many advantages of this approach: 

• Semantic descriptions are not constrained by particular notations. N o  fixed mapping 

between elements in the semantic and syntax description is therefore necessary. 

Elements of a notation may correspond to one or more semantic elements and vice-

versa. 

• Methodology engineers can develop libraries of notations. In addition the notation 

used for a particular semantic description can be changed at any time. 

• Methodology engineers can develop libraries of methodology semantic descriptions. 

New methodologies can therefore be defined as extensions of those already 

supported. 

• Syntax and Semantic descriptions may be developed in isolation. 

3.5 The CKB and GOOKB 

Figure 3-4 shows how the CKB and GOOKB are related to methodologies in MOOT. 

00 Methodology 
A Knowledge 

Base 

Common to 
Methodologies 

. .  A and B  
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00 Methodology A and 00 Methodology B in Figure 3-4 are derived from the GOOKB (and 

by implication the CKB). They also have features in common. Non-00 methodologies 

only extend the CKB and m ay have features in common. Object-orientated 

methodologies may have common features with non object-orientated methodologies22• 

Figure 3-5 illustrates the relation between the CKB, the GOOKB, methodologies and 

software projects in MOOT. 

Core 
Knowledge 

Base 

Generic Object Orientated 
Knowfedge Base 

nheritance & Aggregation 

Methodology Defined by a Methodology Engineer 

Software Project Built by a Software Engineer 

3�5 � The relation between the CKB, the COOKB, 
and software in \lOOT 

New methodologies in MOOT are derived from the CKB and the GOOKB usrng 

inheritance and aggregation. A methodology may also be defined in terms of previously 

defined methodologies using inheritance and aggregation. MOOT methodology 

semantic definition consists o f  a collection o f  SSL classes derived from the CKB, 

GOOKB and potentially from other methodology definitions. A software project is 

constructed when a software engineer applies  a methodology that has been defined in 

MOOT. The software project is  an instance of the methodology used by the software 

engineer and consists of a collection of SSL objects, each of which is an instance of an 

SSL class in the methodology definition. 

use of Data How 

transition diagrams in n1rious objccr�oricntatcd 

66 

from Structured 



Figure 3-6 illustrates how MOOT relates to other meta-CASE tools in terms of the four 

layer meta-modelling architecture defined in Table 2-1 - Four layer meta-modelling 

architecture. 

Met a- metamodel Moot Meta -model 

Meta -model of Methodology 

) 
U sed to Defi ne 

Meta-model of SD Meta-model of IE 

Met a- model Software Engineering Methodology 

Model Software Engineering Project 

User Objects Software 

Figure 3-6 - Meta-modelling architecture 

Existing meta-CAS tools define methodologies sole!J in terms of their meta-model. The 

MOOT approach, however, is quite different. MOOT introduces two additional layers 

between the topmost layers in the four layer meta-modelling architecture. Figure 3-6 

shows how the MOOT meta-model is used to define a meta-model of methodology. The 

meta-model of methodology is implemented with the Core Knowledge Base (CKB). The 
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third layer in Figure 3-6 consists o f  meta-models that correspond to various approaches 

to the engineering of software. In the middle of the third layer is a meta-model of the 

object-orientated approach. This meta-model is implemented with the Generic Object 

Orientated Knowledge Base (GOOKB). On the left of layer three is a meta-model of 

structured development and on the right is a meta-model of information engineering=''. 

The MOOT meta-model, therefore, is used to define various meta-models, which are in 

turn implemented as re-usable SSL class libraries .  Methodologies in MOOT are defined 

as extensions of these libraries .  

3.6 Addressing the Limitations of M eta-CASE tools 

Existing Meta-CASE tools (as discussed in section 2.4 Limitations of Current Meta­

CASE Technology) suffer from limitations in the following areas: 

I. Poor representation of the concept of 'methodology' and 'software process' 

II. No relation between defined methodologies 

Ill. No support for re-use of methodology descriptions 

IV. N o  support for re-use of software engineering projects 

V. High coupling of syntax and semantic descriptions. Subsequent lowering of the 

cohesion of syntax and semantic descriptions 

VI. Syntax description is primitive 

VII. U sability is poor 

Figure 3-7 illustrates how the limitations of existing meta-CASE tools have been 

addres sed by the MOOT approach. On the left-hand side is the list of limitations that 

have been previously identified. The right-hand side lists design decisions made regarding 

the features o f  the MOOT system. The arrows illustrate the mapping between the 

limitations and the properties of the MOOT system that address them. An arrow that 

starts or terminates on a box indicates that the mapping relates to all of the limitations or 

design decisions contained within the box. 

Thc,;c t;xo mcta-modcb ban: not been 

discu,;sed in ,;cction 9.-l hrturc \\ 

and shown to illustrate the m-crall 
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Limitation 

I Poor representation for L _r....,__ 
'Methodology' a nd 'Process' 1;:::::=::::::,.......... 

No relationship between 
defined methodologies 

No support for re-use of 
methodology descriptions 

No support for re-use of 
software engineering projects 

Syntax a nd semantic 
descriptions constrain each 

other because of high 
coupling 

Syntax description Is 
primitive 

Usability Is low 

Addressed by 

CKB explicitly defines: 
' Methodology', ' M odelling 

language' and ' P rocess' 

All methodologies have the 
C K B  In common. 

00 methodologies have the 
GOOKB in common. 

M OOT meta-model is a n  object 
-orientated model ling language 

SSL Is an 00 language, which 
im plements all the facilities of 

the M OOT meta-model 

View methodology descri ptions 
as re-usable com ponents 

Development of the C KB and 
GOOKB 

Semantic descriptions are 
defined in SSL 

Syntax descriptions are defi ned 
in N D L  

Syntax and semantic 
descripti ons are plugged 
togther with an NSM table 

N D L  design based on an 
analysis of SE notations 

N D L  supports the 'screen 
notation'. 

User Interface design based on 
a detailed examination of the 
usability of meta-CASE tools 

and detailed task analysis. 

Figure 3-7 - Addressing the limitations of meta-CASE tools 

The MOOT system addresses limitation I by explicitly supporting the concepts of 

methodology and software process within the derived Core Knowledge Base (CKB) . The 
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CKB implements a meta-model of 'Methodology' and explicidy defines 'Methodology', 

'Modelling Language' and 'Process'. 

All methodologies in MOOT are derived from the CKB. MOOT also provides explicit 

support for object-orientated methodologies with the development of the Generic Object 

Orientated Knowledge Base (GOOKB). The GOOKB is derived from the CKB and 

implements a meta-model of concepts germane to all object-orientated methodologies. 

All object-orientated methodologies have the GOOKB in common. This addresses 

limitation II. 

Methodology semantic descriptions (including the CKB and GOOKB) are defined in 

terms of the MOOT meta-model and implemented in SSL. The MOOT meta-model is 

an object-orientated modelling language and thus provides facilities such as classes, 

inheritance, message passing and polymorphism. SSL is an object-orientated language 

that implements all the facilities of the MOOT meta-model. This addresses limitation m. 

The GOOKB and the CKB constitute a set of re-usable SSL classes from which all 

methodologies in MOOT are derived. Moreover the MOOT approach is to consider that 

all methodology descriptions consist of potentially re-usable components. This addresses 

limitation Ill. 

The strategy for supporting re-usable methodology components means that there are 

relations between the different methodologies m MOOT. Object-orientated 

methodologies in particular always have the components in the GOOKB in common. 

Software projects can be re-used because they always share a common definition. This 

addresses limitation IV. 

Limitation V has been addressed by the development of separate syntax and semantic 

representation schemes for methodologies (NDL - syntax and SSL - semantics). The 

association of syntax and semantic descriptions is achieved with the development of 

NSM tables. Reducing the coupling between syntax and semantic descriptions addresses 

limitations Ill. The separation of syntax and semantic descriptions in MOOT also means 

that the independent re-use of syntax descriptions is possible, which further addresses 

limitation Ill. 
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Limitation VI is addressed in two ways. Firstly, NDL is designed to support the 

description o f  interactive diagrams and provides facilities for the use of colour, logical 

distortion, hotspots and so on. NDL thus supports 'screen' notations rather than 'pencil 

and paper' notations. Secondly, the facilities NDL provides is based on the analysis and 

modelling of notations used in softw-are engineering. 

In brief\ limitation VII is addressed by a detailed examination of the usability of meta­

CASE tools, which has been conducted in association with other researchers. A CASE 

tool evaluation framework25 has been developed, applied and documented in (Choi, 1 996; 

Phillips et al., 1 998a). The design of the MOOT software engineer's user interface, based 

on this evaluation and on subsequent task analysis, is presented in (Adams, 1 998; Philips 

et aL, 1 998b, c) . 

3.7 Architecture of MOOT 

MOOT has two distinct types of user. Software eng:tneers utilise MOOT to build 

descriptions of software artefacts. Methodology engineers utilise MOOT to build 

descriptions of software engineering methodologies.  MOOT supports each type of user 

by performing two distinct roles (MOOT as a CASE tool and MOOT as a methodology 

development tool) .  The two roles of the MOOT system are illustrated Figure 3-8. 

MOOT as a 
Methodology 
Development 
Tool 

MOOT Meta-model 1 M ethodology E ngineer 
Defines 

Software Development 
Methodologies 

Software Engineer l 
Creates 

Software Development 
Project 

3�8 'Il1e two roles of the \IOOT sntem 

MOOT as a 
CASE Tool 

. \ detailed discussion of is outside the scope of the thesis. The reader JS directed to ( \dams. 1 998: <: hm . 

1 9%: ! 995; et c�!.. 1 998a. b. for more information. 

.\  level overview of the evaluation framework is 1ll I 
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The MOOT system is divided into two logical sub-systems (Figure 3-9) that correspond 

to the two roles of MOOT. These are the methodology development sub-system and the 

CASE tool sub-system. 

The methodology development sub-system IS an integrated tool-set allowing a 

methodology engineer to specify, modify and test methodology descriptions. 

Descriptions created using the methodology development sub-system are represented 

using SSL classes (for the semantic description) and DL scripts (for the syntax 

description). 

The CASE tool sub-system is the methodology CASE component of the MOOT 

environment. It is an integrated tool-set that allows a software engineer to develop 

software by applying methodologies described using the methodology development sub-

system. 

CASE Tool Sub-System 

Software 
Engineering 

Tools 

M OOT Core 

Persistent 
Store 

Methodology 
Engineering 

Tools 

Methodology Development S ub-System 

Figure 3-9 - Moot system 

Both the CASE tool subsystem and the methodology development subsystem make use 

of the MOOT Core, which insulates the underlying, shared, repository (Persistent Store) . 

Software engineering projects and software development methodologies are both stored 

in the Persistent Store. 

The high-level system overview given in Figure 3-9 is further decomposed in Figure 3-1 0, 

which shows the derived architecture of the MOOT system. The Arrows in Figure 3-10 

indicate that a communication pathway exists between two components. 
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....._ ____________ .....,. Methodology Development Sub-System 

Figure 3- 1 0 - Proposed, top level, system architecture 
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MOOT has a three-tier architecture where presentation, application logic and data are 

distributed across three levels, interconnected over a network (!-Kinetics, 1 998) .  The 

presentation level corresponds to the CASE tool client and the methodology 

development tool. The application logic level corresponds to the MOOT core, which is 

responsible for isolating the persistent store (the data level) . 

Each of the components in Figure 3-10 is briefly discussed in the following sections. 

3. 7.1 CASE Tool Client 

The CASE tool client provides the user interface of the CASE tool sub-system. It is a 

'light weight' or thin client and is on!J responsible for the presentation of  a software 

engineering project. It is essentially a user interface shell that is parameterised by NDL 

descriptions of modelling language notations. The CASE tool client provides a set of 

drawing tools that allow a software engineer to construct diagrams. The set of drawing 

tools available is based on a set of generic tools appropriate for the construction of 

arbitrary diagrams, and the notation elements that are defined in NDL specifications. A 

software engineer creates diagrams by selecting drawing tools that represent notation 

elements and placing instances of these onto a drawing canvas. The corresponding 

methodology semantic descriptions are managed by a corresponding instance of a 

methodology interpreter in the MOOT core. The CASE tool client is responsible for 

mapping physical user input to 'logical actions'. Actions that affect the meaning of the 

model being built (e.g. creating a connection) are propagated to the server. The client 

handles actions that do not affect the meaning of the model being built (such as resizing a 

symbol) . 

Multiple clients may interact with the CASE Tool server via the Tool Manager of the 

MOOT Core. The Tool Manager functions as a server, processing one thread of control 

for each CASE Tool client. The Tool Manager maintains an instance of  the Methodology 

Interpreter for each software engineering project that is open in each client. The Tool 

Manager and the Methodology Interpreters are, in turn, clients of the Persistent Store. 

The client is implemented in Java so MOOT may be used from any computer on a 

network that has a Java interpreter (SUN, 1 998) .  The design and implementation of the 

CASE tool client has been completed in association with another researcher and is 
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outside the scope of this thesis. A detailed discussion of the CASE tool client, its design 

and implementation, HCI issues etc, is presented in (Adams, 1 998; Phillips et al., 1 998b, 

c) . Aspects of  this work, relating to NDL and the execution of NDL scripts, is covered in 

detail in chapter 4. 

3. 7.2 Methodology Development Tool 

The methodology development tool is used to maintain the collection of methodology 

descriptions. It provides a notation editor that is used to define notations and a semantics 

editor that is used to define the semantics of methodologies .  The methodology editor is 

used to associate notation descriptions to semantic descriptions in order to provide 

complete methodology definitions. 

The notation editor uses a visual programming approach where the user draws example 

'pictures' of the notation26• The notation editor then generates an NDL description of the 

symbols and connections that comprise the notation, based on the examples drawn by 

the user. The notation editor itself is not in the scope o f  the thesis. Initial work on the 

notation editor tool is documented in (Ham, 1 994; Mehandjiska et al., 1995b). 

The semantics editor is used to define the semantic specification of a methodology. This 

includes the various modelling languages, documents and the process supported by the 

methodology. The semantics editor generates SSL descriptions. The semantics editor 

itself is also outside the scope of  the thesis. 

SSL is compiled to a platform independent binary representation for reasons of 

efficiency. The SSL compiler translates SSL into SSL-BC (the platform independent 

binary representation) and is discussed in chapter 5. 

The methodology editor is used to associate particular notations (defmed in NDL) and 

methodology semantic definitions (defined in SSL) via NSM tables. The development of 

the methodology editor is also outside the scope of the thesis. 

The :\ otation Edit< ;r lS similar to the more recent 

generates a collection of components that 

The notation editor. in contnrst. generates an :\DL 
nte1owetu b1 the C\S I ·: tool client. 
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3. 7.3 MOOT Core 

Tool Manager 

The tool manager facilitates communication between the MOOT Core and the CASE 

tool clients .  The tool manager is responsible for co-ordinating access to shared resources, 

and for monitoring the system's operation. There is a single instance of the tool manager 

operating, for a particular instance of the MOOT system. The tool manager is responsible 

for maintaining details specific to each client (such as the software engineering project 

that is open, the methodology in use and so on) and the corresponding methodology 

interpreter. Messages from the clients (such as: delete a class, add an operation or create a 

new state) are accepted by the tool manager and bound to a message to an SSL object 

and executed with a particular methodology interpreter. 

Methodology Interpreter 

Each CASE tool client is supported by an instance of the methodology interpreter. It is 

responsible for processing methodology semantic descriptions written in SSL. It applies 

the description of the active methodology, defined in SSL, to the user's project in 

response to logical actions at the user interface. 

SSL is compiled to a platform independent binary representation (SSL-BC) for reasons of 

efficiency. The methodology interpreter executes the intermediate representation on a 

purpose built virtual machine (SSL-VM). SSL-BC, the SSL-VM and the SSL compiler are 

discussed in chapter 5. 

Notation, SSL Class and SSL Object Servers 

There is only one instance of each server executing at any time. Each server is responsible 

for isolating the persistent store from the rest of the system and for maintaining a cache. 

They all must ensure mutually exclusive access when appropriate. For example, the SSL 

Object server must ensure that an SSL object cannot be updated by more than one client 

at the same time. 

Persistent Store 

The persistent store is the repository for the MOOT system, both at the methodology 

description level, and at the user-project level. Methodologies  are stored in two different 

partitions in the persistent store. Methodologies that have been developed and tested are 
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stored in the Methodologies-In-Use section. Methodologies-In-Use have been completely 

defined and tested, and are ready to be used to create user projects. These methodologies 

can not be modified, as this would affect the projects that use them. The Methodologies­

In-Use section is read-only. 

The Methodologies-Under-Development section contains methodologies that are in the 

process of being specified, tested and refined. It is not possible to use these 

methodologies to develop projects until they are deployed and become part of the 

Methodologies-In-Use section. 

Software engineering projects are stored in two partitions in the persistent store. Software 

engineering projects (and portions of  software engineering projects) that have been 

completed can be placed in the "re-use pool". These components are available to all 

other software engineering projects in the MOOT system to be re-used. The re-use pool 

is read only as re-usable components can only be extended, not modified. The User 

Projects area contains all software engineering projects that are in the process of being 

developed. 

A Company may wish to distribute software projects, or parts of them, to clients without 

disclosure of their methodology. Methodology descriptions exported with a project are 

stored in the separate In-Transit area, and are not viewable on the target system. 

3.8 The MOOT Prototype 

The focus of the thesis is on the representation and execution of methodology 

descriptions by MOOT. Work has been carried out in the following areas: 

Development of the syntactic representation of software development methodologies 

which is addressed by the development of a new language, NDL. NDL and a 

prototype NDL interpreter are described in chapter 4. 

Derivation of the semantic representation of software development methodologies 

which is addressed with the development of the MOOT meta-model and a new 

language, SSL. The MOOT meta-model and SSL are described in chapter 5. 
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• Design and implementation of the methodology interpreter, which includes the 

development of the intermediate binary representation of SSL (SSL-BC), the design 

of a new virtual machine that SSL-BC executes on (the SSL-VM) and a compiler that 

translates SSL to SSL-BC. The development of SSL-BC, the SSL-VM and the SSL 

compiler are discus sed in chapter 5. 

• Design and implementation of two libraries of re-usable methodology semantic 

components, the Core knowledge Base and the Generic Object Orientated 

Knowledge BASE. The development of these libraries is described in chapter 6. 

• Development of a technique that supports late binding of syntax and semantic 

descriptions (NSM tables). The function of NSM tables is discussed in chapter 7. 

The support for re-use o f  software development methodologies and software engineering 

projects is discussed throughout chapters 4, 5, 6 and 7. 

A prototype of MOOT has been implemented in order to facilitate the investigation of 

the approach to defming software development methodologies. The architecture of the 

MOOT prototype is shown in Figure 3-1 1 .  All further discussion of MOOT in the thesis 

is in relation to this prototype. 

The current implementation of the MOOT core is a single server. All of  the components 

of the MOOT core execute in a single process, rather than being distributed over a 

network. The Server accepts connections from multiple clients. The SSL compiler 

currently accesses the persistent store directly. The persistent store is implemented as a 

collection of files. 

The components of the MOOT core and the SSL compiler are discussed in chapters 4, 5 ,  

6 and 7 .  The Java CASE tool client is  based on the NDL interpreter discussed in chapter 

4 and is implemented in association with another researcher (Adams, 1 998; Phillips et al, 

1 998b-c) . 
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Figure 3- 1 1  - .\rchitecture of the �lOOT prototype 

3.9 Summary 

This chapter has presented the approach taken in the research to address the limitations 

of methodology CASE tools and meta-CASE tools. This included: 

• A proposed architecture of MOOT system. This architecture describes a distributed, 

three layer, database centric system. The architecture has been designed to effectively 

support the two categories of user for the MOOT system - software engineers and 

methodology engineers. The persistent store at the lowest layer stores methodologies 

and software engineering projects. The second layer consists of a collection of 
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distributed components that isolate the persistent store. The top layer consists of thin 

CASE tools clients and methodology specification tools. 

• An outline of MOOT methodology descriptions. The syntax and semantics of 

methodologies are described completely separately in the MOOT system. Two new 

languages have been developed during this research for this purpose. The Notation 

Definition Language (NDL) is used to define syntax and the Semantic specification 

Language (SSL) is used to define semantics. A complete methodology description, in 

the MOOT system, is made by associating an NDL and SSL description with a 

Notation Semantic Mapping (NSM) table. 

An outline of the COre Jillowledge Base and the Generic l:hject Orientated 

Jillowledge Base. These are two libraries of re-usable methodology semantic 

components that are implemented in SSL. All methodologies have the CKB m 

common. Object-orientated methodologies also have the GOOKB in common. 

The description of the architecture o f  a prototype of MOOT that has been built 

during the research detailed in this thesis. 
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Ch a pt e r  4 

Notation D efinition Language 

By relieving the brain of all unnecessary work, a good notation sets it free to 

concentrate on more advanced problems 

4.1 Introduction 

Booch 1991  

This chapter investigates the framework within which the syntax of a methodology is 

defined in the MOOT system. A new language has been developed to support the 

description of the visual syntax of the modelling languages supported by a methodology. 

The derived language (Notation Definition Language - NDL), is presented along with 

the implementation of a prototype system used to assess the language. 

4.2 Method 

The following is an outline of the steps followed during the development of NDL. 

1 .  The graphical notations of software engineering methodologies are explored and their 

components identified. The modelling languages considered in the analysis are from 

the software engineering literature. Some of the modelling languages considered 

include :  

• UML class diagrams (Booch and Rumbaugh, 1 995;  Jacobson et aL , 1 996;  OMG, 
1 997 g; Rational, 1 997b) 

• Coad and Yourdon class diagrams (Coad and Yourdon, 1 990, 1 99 1a, b; Coad and 
Nicola, 1993) 

• Data flow diagrams (Rumbaugh et aL , 1991 ;  Whitten et aL, 1 994) 

State transition diagrams (Feylock, 1 977; Booch, 1 991 , 1 994) 

2. The requirements for a language that allows the description of arbitrary notations are 

derived based on the analysis of notations in step 1 .  The language must support all 
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the components o f  visual notations of the various modelling languages used in 

software engineering. 

3. A new language is derived which satisfies these requirements. Ths new language is 

called NDL (Notation Definition Language) . NDL is  required to support more than 

the static reproduction of a notation on a computer display. It must also support 

many facilities often not considered by methodology developers such as logical 

distortion and the use of colour. 

4. A means of efficiently processing NDL descriptions is developed and implemented. 

4.3 Models and Notations 

A notation is the visual syntax used to document a model. A particular modelling 

language may be used for many different purposes. It is therefore possible for the same 

modelling language to have more than one notation. It is  also possible for a single 

notation to be used for many different modelling l anguages. Hence a many-to-many 

relation exists between the concepts modelling language and notation. 

The majority of notations supported by the modelling languages common in software 

engineering methodologies are graphs containing nodes (symbols) connected by paths 

(connections). 

A notation consists of: 

Symbols that represent semantic concepts 

Connections that represent semantic relations between concepts 

• Text associated with the symbols and connections 

Constraints that specify the way symbols and connecnons are created and 

manipulated 

Examples of symbols include Coad and Yourdon's Class&Object, Booch's Bubble and 

Rumbaugh's Process Bubbles. Examples of connections include Gen-Spec relations in 

Coad and Yourdon, Using relations in Booch and Associations in Rumbaugh. Some 
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symbols are compositions of other symbols; examples are subject areas (Coad and 

Yourdon), class categories (Booch) and packages (UML). 

An Example: The State Transition Diagram 

State transition diagrams are utilised in diverse areas of computer science. Feylock (1 977) 

uses state transition diagrams as a representational basis for Computer Assisted 

Instruction systems. Booch (1 991 , 1 994) utilises state transition diagrams to model the 

dynamic behaviour of objects. The state transition diagram used by Feylock and Booch 

both have the following properties: 

• 

• 

• 

A single start state 

Multiple end states 

Transitions between states. A transition is labelled with an event that causes it to 

occur. transition may be optionally labelled with an action that is carried out when 

the transition occurs 

The semantics of the state transition diagram used by Feylock and Booch is the same, as 

they both use the Mealy model (Booch, 1 991)  where actions are bound to the events of 

the transitions. Two differences exist in the utilisation of state transition diagrams by 

Booch and Feylock: 

1 .  State transition diagrams are used for different purposes. Feylock uses state 

transition diagrams as a representational basis for Computer Assisted Instruction 

systems. Booch utilises state transition diagrams to model the dynamic behaviour of 

objects. 

2. The notation of the state transition diagrams is different. 

Figure 4-1 is an example of two state transition diagrams, which represent the operation 

of drawing a rubber-band line2-. The topmost diagram uses Booch's notation and the 

bottom uses Feylock's notation. The underlying meaning of the two diagrams is identical 

although the notation used in each is different. 

2- To draw mbber band line the user tir:;t select,; the ,;tart 

m' >u,;c. rubber band line is drawn from the start 

actual line is drawn when the mou;;e button 1>' rdca;;cd. 
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Booch's 
Notation 

Move 

update l i n e  to current point  

Fey lock's 
Notation 

d raw l ine to cu rrent point 

B utton Up 

record p o i nt B,  
d raw the l ine 

Move 

u pd ate l ine to cu rrent point  

d raw l i ne to c u rrent point 

-+� 1 � 

The meaning that is being conveyed in both diagrams of Figure 1s: 

State 1 is a s tart state, state 2 and state 3 are normal states and state 4 is a 
stop state 

If there is a Button Down event in state 1 then 

go to state 2 and record point A 

If there is a Move event in state 2then 

go to state 3 and draw line to current point 

If  there is a Move event in state 3 then 

go to state 3 and update line to current point 

there is a Button Up event in state 3 then 

go to state 4 and record point B, draw the line 

The representation of start and stop states is different in both notations. Booch uses a 

special symbol for both the start and stop states. A start state, in Feylock's notation, has 

an incoming transition that does not originate from another state. Booch represents a 

start state with a double circle. The symbol Feylock uses for a stop state is used for a start 

state in Booch. A transition is composed of straight line segments in Feylock's notation 

and curves in Booch's notation. 
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This simple example illustrates the many-to-many relation that exists between the 

concepts modelling language and notation. It also serves to demonstrate that a notation 

defines the syntax o f  a p articular representation of a model and is not the same as the 

model itself. 

It is clear that NDL must allow a notation to be defmed in a way such that the notation is 

not tightly coupled to the modelling that is represented. For example the mechanism 

should allow the notations of Feylock and Booch state transition diagrams to be defined 

and associated with a single semantic description of the State Transition Diagram. In 

terms of this research this means that the semantics of state transition diagrams would be 

defined once in SSL (see chapter 5) and NDL would be used to define the notations of 

Feylock and Booch. 

4.4 Analysis ofNotations 

The analysis of notations focuses only on the visual syntax, and not on the meaning the 

modelling languages are capable of conveying (the semantics) . It is important to avoid a 

simple static view o f  notations during the analysis and note that computer presentations 

of models need not be restricted to simple 'pictures'. They may include, for example, 

facilities for logical distortion and animation (Apperley and Chester, 1 99 S; Smith and 

Anderson, 1 996)2B. Only two-dimensional notations are considered in the analysis as 

three-dimensional layout and navigation is currently not practical on desktop machines. 

This limitation has also been adopted by UML, for the same reason: 

"Note that the UML notation is basically 2-dimensional. Some shapes are 2-

dimensional projections of 3-d shapes (such as cubes) but they are still 

rendered as icons on a 2-dimensional surface. In the near future 3-

dimensional layout and navigation may be possible on desktop machines but 

it is currently not practical." 

From the UML Notation Guide, version 1 .0 (Rationa� 1 997) 

. \ dcmilcd consrdcmtion of human computer inrnacrion in the context of C. \SI/. tools is not the focus of the thesis. 

The reader is directed to 1 998; \mulct_ 1 998: and Chester. 993; 1 99�; Chm. 1 996: ( 

1 995; \le\\ 1rirtt:r. 1 998; \!c\'Chirtcr and :\ utt. 1 99-+: .\!inas and \'ichsracdt. J 995: et al. . 1 998: \hJ!ti\'icw. 

1 998: et a!.. 1 99-: eta!.. 1 998a·c: l'urcha:;c. 1998;  Rt:ad and \larhn. 1 996. 1 998: \\ arv:ick al.. 1 99(,) tor 
more information on ! !C l  issues related w C:.\SF and mcta·< . \SF took 
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The analysis of notations 1s presented by consideration of: Symbols, Connections, 

Docking Areas, Groups, Presentation and Actions. Each is discussed in turn. 

4.4.1 Symbols 

Figure 4-2 is an example of a class diagram, taken from Gamma et al. (1 995), related to 

the Visitor pattern. The same diagram is drawn with the U:ML, Coad and Y ourdon and 

Booch notations. 

Vts1tor 

V!sltConcreteE!ementA (ConcreteE!ementA) / 

V1sJtConcreteEiementB (GoncreteEJementB) ::...·­

VIsrtConcreteEJementC{ConcreteE!ementC) 

ConcreteVISJtorA 

VisltConcreteEiementA \ConcreteEiementA) 

V1SitConcreteEJament8 (ConcreteE!ementB) 

ViS!tConcreteEiementC(ConcreteEiementC) 

UML 

Booch 
ConcreteVJsJtorB 

V!SitConcreteEiementA (ConcreteElementA) 

V1srtConcreteEiementB (Conc•eteEiementB) 

Coad and Yourdon 

-+<2 - drawn with l'\[L, Coad and Yourdon 
and Booch notations 

Symbols are composed of lines and arcs and enclose text fields. Symbols have a well 

defined boundary or border that is typically visually represented. The boundaries of all 

the symbols in Figure 4-2 are explicitly shown as  a series of lines and arcs that encompass 

them. In many instances the boundary is coincident with the position to which 

connections may adhere themselves. The example in Figure 4-2 illustrates one exception 

to this general rule; inheritance connections penetrate the boundary of the Coad and 

Y ourdon Class&Object symbol. 

Text fields describe properties of the concept the symbol represents (such as class name 

and operations for the classes in Figure 4-2) . Typically the height and width of symbols 

vary depending on the content of the text fields. Symbols may expand to contain other 
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things, such as lists of  strings or other symbols. Many symbols are divided into 

compartments. A symbol often contains a field that represents a property related to the 

identity of the concept depicted. The class name fields in Figure 4-2 are an example of 

such a field. 

Figure 4-3 shows three different UML class symbols. The overall size of the UML class 

symbol (height and width) is related to the size of the text it encloses. 

a Class 

anAttribute 

anOperation (  ) 

4 3  Three 

a Class 

a nAttribute 
aSecondAttribute 

a nOperation( ) 
aSecondOperation( ) 

o f  a C .\IL class 

I 

The size and position of each subpart of the UML class symbols in Figure 4-3 depends 

on the enclosed text, and on other parts of the symbol. For example the overall width of 

the symbol is related to the maximum length of the class name, attribute and operation 

compartments. The position o f  the class name text field is always centred in the symbol 

and is also related to the widths o f  the three text fields. The height of the symbol is 

related to the sum of the heights of the individual text fields. Figure 4-4 shows a 

topographical description of an UML class symbol based on these observations. 

(0,0) 

2 + height(A) i  

4 + height(A) 
+ height(B) 

8 + h ieght(A) 
+ height(B) 
+ h eight(C) 

r 
.. 'L 

0------+ @] 

2 + max( length(A) , length(B) , length(C) 

4-4 Topographical description of a C.\IL class 
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The start and endpoints of the line segments in Figure 4-4 are all functions of the sizes of  

text-fields A, B and C (which enclose the class name, the attributes and the operations 

respectively) . For example the overall height and width of the symbol could be defined by 

the following expressions. 

Symbo!Width 2 + max(length(A ), length(B \ length( C)) 
SymbolHeight 8 + height( A)+ height(B )+ height( C)  

Many symbols have sub-parts in common. In Coad and Y ourdon the Class&Object 

symbol is the same as the Class symbol with an additional bounding round rectangle (the 

first two symbols in Figure 4-5) . The Booch Class, Parameterised Class and Instantiated 

Class all have the Booch bubble in common (the last three symbols in Figure 4-5) . 

-1--S - Coad and Yourdon and Booch 
C01Ul11011 

4.4.2 Connections 

Figure 4-6 shows two example connections. The first is a Coad and Y ourdon inheritance 

connection. connection has a special symbol (the half circle) and consists of a series 

of recta-linear line segments. The second shows a transition connection from a Booch 

state transition diagram. It has an arrow-head at one terminus of the connection and it 

also has some associated text (the event-action pair for the transition) . 

Conn ection Terminators 

Special Symbol 

Line Segment 

Connection Terminators 

Button U p  
record point 8 ,  
d raw the l ine 

Property of the  Connection 

-1--(J Two example connections 
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Connections are a visual depiction of a relation between one or more concepts29 and are a 

composition of three parts: connection tertninators, an optional special connection 

symbol and a series of interconnecting line segments and arcs. Connections do not exist 

in isolation and must attach to at least one symbol. Text may be associated with a 

connection to define concepts such as cardinality or role names. In addition connections 

may have other symbols as annotations (for example the triangle in the whole-part and 

semi-circle in the inheritance relations in the Coad and Yourdon notation) . This 

definition of connection does not constrain the manner in which a connection is 

constructed or drawn. UML has adopted a more restricted definition of connection than 

that described here. The UML notation guide states: 

"Paths31 1 are sequences of line segments whose endpoints are attached. 

Conceptually a path is a single topological entity, although its segments may 

be manipulated graphically. A segment may not exist apart from its path. 

Paths are attached to graphic symbols at both ends (no dangling 

lines). Paths may have terminators, that is, icons that appear in some sequence 

on the end of the path and that qualify the meaning of the path symbol." 

From the UML Notation Guide, version 1 . 0  (Rat£ona4 1997) 

The UML notation guide does not consider that a connection may have one or more 

floating endpoints. A start state, in Feylock's notation for example, has an incoming 

transition that does not originate from another state (see the example in Figure 4-1) .  It is 

better to state that a connection must be associated with at least one symbol. 

Furthermore the phrase 'Paths are always attached to graphic symbols at both ends' also 

implies connections can only occur between two symbols. Rumbaugh's ternary relation, 

for example, belies this assumption. 

Some connections visually appear to be grouped in a diagram. Figure 4-7 shows an 

inheritance connection in UML The single tree-like connection actually represents two 

2'! connection may cxprc,;,; relation that concept ha> with itself 

1" Path " the l ' \IJ term for connection. 
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separate inheritance relations31 •  The Gen-Spec connection m the Coad and Yourdon 

notation is another example of 'grouping' connections. 

J 

V:s:tCO�()rcteEicmcntA(C()�crc!sElc3n:or,tAJ 
V: s:tCor:crcteEier.: ent8[CtJr)CrJ:JisEle!'r:er.t8 1 
V;s•lCo�cret,;2Iem enlC(Co0crcle21crnontC) 

l 
ConcretoV•sltor:.. ConcreteVIS;tcr8 

VisitConcrs!eEiementNConc,eteEiernen;l\) 
VJslrConcreteE!arne!ltB!ConcreteEiernem8} 
VJRl!Cnr:cmtHE!emf;rltC(Concrf;tt-!E:lemfmtCJ 

This d iagram contains two conceptually 
separate inheritance relations 
ConcreteVisitorA is 8 Visitor 
ConcreteVisitorB is 8 Visitor 

Figure 4-7 - Inheritance connection in U;\IL 

It is clear that the mapping between semantic relations and connections is not necessarily 

one-to-one. This example also emphasises that the appearance of a connection is a 

presentation issue only. The UML notation guide supports this view: 

"In some relationships (such as aggregation and generalisation) several paths 

of the same kind may connect to a single symbol. In some circumstances 

(described for the particular relationship) the line segments connected to the 

symbol can be combined into a single line segment, so that the path from 

that symbol branches into several paths in a kind of tree. This is purely a 

graphical presentation option; conceptually the individual paths are distinct." 

From the UML Notation Guide, version 1.0 (Rational software, 1997) 

In many instances the orientation of a connection is constrained. Some notations support 

recta-linear line segments whilst others prefer smooth curves. Consider the UML 

sequence diagram in Figure 4-8. Connections in the UML sequence diagram are 

constrained to being horizontal only (except for the special case of a message to self). The 

message name and sequence number, as a group, is centred on the connection . 

. ll U MJ , Jo�,; allow multiple, separate. inheritance connection:; a,; wel l . 
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\ AnotherConcreteObserver j 

6: GetState() 

4�8 � \n example L'.\ll� sequence 

The sequence diagram is an interesting example where the coupling between syntax and 

semantics is very high, as the relative vertical position of the message invocations has 

meaning. This is discussed further in section 9.4. 

4.4.3 Docking Areas 

Many notations constrain the valid positions a connection may attach (or dock) itself to a 

symbol. The inheritance connection in Coad and Y ourdon may only attach to the top and 

bottom of Class&Object symbols for example. In addition whole-part connections only 

attach to the sides of Class&Object symbols. The valid connection point (or docking 

area) between a connection and a symbol is therefore also part of the notation. 

Connections to the Actor and Use Case symbols in J acobson's OOSE methodology 

(Jacobson et al., 1 993) adhere to boundary of the symbol. Figure 4-9 shows a simple 

Use-Case diagram with the boundaries of the symbols shown in grey. The Actor is also a 

prime example of a symbol whose boundary is not explicitly rendered. 

Customer� Returning Item 
' 

Figure 4�9 � � \ C :;e Case diagram33 

is taken from ( ; amma 1( ; �unma PI a!, 

a taken from d a/., 1 9931 
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The U:l\1L notation guide s tates: 

"Paths are connected to two-dimensional symbols by terminating the path 

o n  the boundary of the symbol. Dragging or deleting a 2-d symbol affects its 

c ontents and any paths connected to it." 

From the UML Notation Guide, version 1.0 (&:itional, 1997a) 

It is clear that UML considers that the docking area coexists with the boundary o f  a 

symbol. Whilst this is typical of graphical notations it is not universal. The boundary of a 

symbol and the docking areas do not have to overlap. 

Consider the composite pattern (Gamma et al., 1 995) drawn using the notation of Coad 

and Yourdon (Figure 4-1 0) .  

Docking Areas 

In the Coad and Y ourdon notation whole-part connections (and instance connections) 

adhere to the outside round rectangle (which represents objects) 04• The inheritance 

relation may only adhere to the innermost round rectangle (as inheritance is a relation 

among classes). Neither of these connections may adhere to the curved portion of the 

Class&Object symboL Connections are always rectilinear and orthogonal in Coad and 

Yourdon. 

! r may also adhere to the mncr round but t(>r an abstract class. 
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4.4.4 Groups 

Symbols may also appear to be compositions of other symbols. These symbols are 

interesting as their shape and size depends on one or m ore other symbols (each of which 

is dependent on its own properties) as well as properties o f  their own. The subject area 

symbol in Coad and Y ourdon is an excellent example. Figure 4-1 1  shows two possible 

states for a Coad and Y ourdon subject area, in a diagram that describes the composite 

pattern (Gamma et al., 1 995). 

leaf 

Operation( ) 
Add( Component) 
Remove(Componenl) 
GetChild( ) 

Composite 

Operation( ) Operation( ) 
Add( Component) 
Remove(Component) 
GetChi ld() 

Composite Pattern 

Component 
leaf 
Composite 

and 

On the left-hand side of Figure 4-1 1  is a small class hierarchy surrounded by a grey 

border that delineates the subject area. The subject area may be collapsed into the single 

symbol shown on the right-hand side in Figure 4-1 1 .  The term used here for a notation 

element of this type is a composite symbol. 

Composite symbols should not be confused with symbols that may be 'exploded' into 

another canvas or drawing surface. That is an example o f  a simple symbol that is linked 

to separate diagram or model. For example a U:l\11., package may be exploded into a 

separate class diagram. A process in a data flow diagram may be exploded into either a 

process specification or another data flow diagram. The various states of a composite 

symbol, such as the Coad and Y ourdon subject area, must all appear on the same drawing 

surface. 
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4.4.5 Presentation 

One of the common problems associated with any computer representation of complex 

data, is the relatively small window through which an information space can be viewed. 

CASE tools, which generally provide multiple orthogonal representations of a model 

being developed, share this problem. The small window effect gives rise to difficulties in 

locating a given item of information (navigation), in interpreting an item once it has been 

located, and in relating a given item to others, if that item cannot be seen in its full 

context. 

A range of distortion-oriented presentation techniques have evolved to overcome some 

of these difficulties, (Apperley and Chester, 1 995, Leung and Apperley, 1 993, 1 994; 

Leung et aL, 1 995; Smith and Anderson, 1 996). The common feature of these techniques 

is to allow a user to examine a local area in detail (e.g. a number of classes with their 

attributes and operations), whilst presenting a global view in order to provide an overall 

context and facilitate navigation. 

Many CASE tools support distortion orientated presentation by allowing portions of a 

diagram or symbol to be elided (this is an example of logical distortion) . For example 

Rational Rose allows various compartments of a symbol to be hidden (Figure 4-1 2) .  

i) Attributes and operations 
suppressed 

ii) O perations suppressed 

a Class 
anAttribute : anotherCiass 
aSecondAttribute : anotherCiass 
aThirdAttribute : anotherCiass 

�-------------------

i i i )  Attributes suppressed 

aCiass 
an Operation() 
anotherOperation() 

iv) Nothing suppressed 

lanAttribute : anotherCiass J I. aSecondAttribute : anotherCiass , 
aThirdAttribute : anotherCiass ! 

! 

aCiass i 

an Operation () 
anotherOperation() 

v) Nothi ng suppressed , operation signatures shown 

a Class 
anAttribute : anotherCiass 
aSecondAttribute : anotherCiass 
aThirdAttribute : anotherCiass 

an0peration(arg1 : anotherCiass, arg2 : aCiass) : anotherCiass 
anotherOperation() 

Figure -l- 12  - _-\ Ul-IL class expres ed with varying levels of derail 
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Figure 4-1 2  shows the same UML class symbol in various levels of detail ranging from (i) 

attributes and operations being suppressed to (v) all compartments visible, with operation 

signatures displayed. 

Facilities for logical distortion are not commonly part of the definition of the notation of 

a methodology. One notable exception to the rule is UML that includes a description of 

'Presentation options' in the UML notation guide. 

"Presentation options: Describes various options in presenting the model 

information, such as the ability to suppress or filter information, alternate 

ways of showing things, and suggestions for alternate ways of showing 

information within a tool. Dynamic tools need the freedom to present 

information in various ways and we do not want to restrict this excessively. 

In some sense we are defining the 'paper notation' that printed documents 

show rather than the 'screen notation' . . .  Note that a tool is not supposed to 

pick one of the presentation options and implement it; tools should give the 

users the option of selecting among various presentation options, including 

some that are not described in this document." 

From the UML otation Guide, version 1 .  0 (&ztiona� 199 7 a) 

The explicit consideration of 'presentation options' by UML is a significant development 

in the evolution of CASE technology. It signals the recognition by methodologists of the 

importance of CASE support for software engineering methodologies, presentation and 

human computer interaction issues. 

4.4.6 Actions 

Actions correspond to the tasks a user performs at the user interface whilst developing a 

model. Some actions may affect the semantics of a model (such as deleting and editing) 

and some only the syntax (such as formatting, querying and resizing). 

Methodologists do not consider the concept of actions. Their primary concern 1s to 

define the static pen-and-paper notation for their methodologies. The 'screen' notation, 

however, need not be static and can therefore include a description of 'hotspots' (or 

active areas) on the symbols and connections.  Further it may be possible for a notation to 
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include a definition of  actions related to these hotspots. Two possibilities are illustrated in 

Figure 4-1 3. In the first example the user has selected the text area, which causes an 

update box to appear. In the second example, selection of a hotspot causes the symbol to 

modify its appearance to show more information. 

Stack 

(i) 
4- 1 3 - Two actn·e areas 

Stack Items 

(ii) 

Push 
Pop 
Top 
Is Empty 

The use and visual appearance of hotspots 1s only limited by the imagination of the 

notation designer. Two primitive actions that must be supported are update actions 

(example (i) in Figure 4-1 3) and transition actions (example (ii) in Figure 4-13) .  

4.5 Notation Definition Language 

One of the design philosophies of the MOOT methodology representation strategy is to 

separate the description of  the syntax and semantics of a methodology as much as 

practical. NDL is only used to define the syntax of the modelling languages supported by 

a methodology. Similarly SSL is only used to define the semantics of the modelling 

languages supported by a methodology. The MOOT approach is to have a single 'editor' 

(the CASE tool client) ,  which is dynamically parameterised by NDL notation descriptions 

of the syntax . 

4.5.1 Requirements of NDL 

NDL must provide the necessary facilities to describe how symbols and connections may 

be rendered and manipulated to describe the types of notations discussed thus far. NDL 

must support the 'screen' notation by supporting: 

1 .  Graphical primitives such a s  lines, arcs, text, regions, fill and pattern styles, fonts and 

font size, colour. These are the building blocks of symbols and connection s  

Thi:; can be contra:;tcd to :;vw:m:; such Dia( ; m  !\ ! inas and \"ichsracdt 1 99'i;. \ !uti\ icw !\farhn f! al.. 1 993; 

\ larlin. 1 996: \ !ulri\-icw. 1 998; Read and \larhn. 1 996. 1 99111 and al.. 1 998:  \\ arwick ill. . 
that focus on 11(>tatit )11. 
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2. Relations between subparts of a notation element. For example the size and position 

of a line may depend on the length of one or more text fields 

3. Grouping. This allows shapes common to several symbols and/ or connections to be 

defined once 

4. Connection docking areas and annotations 

5. Logical distortion 

6. Hotspots/ Active areas 

7. Transition and update actions 

4.5.2 Design of NDL 

A template strategy has been designed to support the elements of a notation. The NDL 

templates are blueprints for creating notation elements. NDL provides template types 

that correspond to each type of notation element. For example, symbols are defined with 

symbol templates, connections with connection templates and lines with line templates. 

Figure 4-1 4  presents a U:ML class symbol and illustrates how NDL templates represent 

the corresponding notation elements. 

Class name 
An attribute 
A second attribute 
An operation 
A second operation 
A third operation . 

( i) 

-+ 1 -t  . (i) 

Class name 

An attribute 
A second attribute 

An operation 
A second operation 
A tb;{d operation . 

(ii) 

Symbol template 

3 "' 0. 

Line template --

Text template 
- Line template --

Text template 

§ s 
'-' - Line template -- .@ 
� � 

Text template 

template --

( iii) 

templates 

Figure 4-1 4  (ii) shows the notation elements that comprise the U:ML class symbol in 

Figure 4-1 4  (i) . Figure 4-1 4  (iii) shows the one-to-one mapping between templates and 

the notation elements that they describe. ln addition Figure 4-1 4  demonstrates that the 

composition of templates in a symbol template parallels the composition o f  notation 

elements in a symbol. 
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A complete NDL description of a notation consists of a collection of templates to define 

the symbols and connections of that notation. The example in Figure 4-1 5  illustrates how 

a symbol template is applied to generate a symbol in an arbitrary notation. 

Class 
name :  
attri butes: 
operat ions:  

Stack 
Items 
Push 
Pop 
Top 
i s  Empty 

Sym bol tem plate 

Graphical templates 

�l±ldJJ� 
O D D _  I _  I _ _  

Docking area templates Bui ld 

�� 
D O D O  

Active area templates 

�� 
D O D O  

Figure 4- 1 S - �\pp lying a template 

Stack .... 

Items 

Push 
Pop 
Top 
isEmpty 

The symbol template in Figure 4-1 5 describes a class symbol. In this example the symbol 

template creates a symbol when it is provided the properties of an instance of a concept 

(a class in this example) and a context. The size and position of the lines, text fields, 

hotspots and docking areas depend on the properties of the concept. In addition the 

generated symbol is also dependent on the context within which it is to be rendered (a 

Macintosh, or a system running X-windows for example) . In general a template produces 

a notation element when provided a concept and a context. 

The context in Figure 4-1 5 is an abstraction of the environment within which symbols 

and connections are rendered and acts as an interface between a notation specification 

and a drawing surface. It abstracts the dependency between the underlying graphical 

system (e.g. the Macintosh toolbox, or X-windows) and the notation specification. One 

of the responsibilities of the context, for example, is calculating the size, in picture 

elements, of a string of characters. 

ach notation defines a set of identifiers (ND L  ID) that correspond to the properties of 

concepts that are needed in the notation. In the example in Figure 4-1 5  the identifiers are 

name, attributes and operations. These identifiers only exist within the context of the 
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notation and in no way constrain the way in which these properties are represented in 

SSL (Semantic Specification Language) . Mapping NDL identifiers to the values of SSL 

properties is a responsibility o f  the NSM table and is discussed in detail in chapter 6. 

The advantage of this design is twofold: 

1 .  The description of notation elements is separated from the properties of the semantic 

concepts they represent. 

2. The description of notation elements is separated from the environment within 

which the symbols and connections are rendered. 

Currently a minimal set of graphical primitives (lines, arcs and text boxes) is supported by 

NDL. This minimal subset has been chosen, as it is sufficient for constructing notation 

elements and determining the e fficacy of the proposed approach to defining the syntax of 

a methodology. 

4.5.3 Describing Symbols in NDL 

A UML class symbol will be defined in NDL to assist illustrate how NDL is used to 

define symbols in general. See appendix II for a complete definition of NDL syntax. 

Figure 4- 1 6  shows a topographical description of a UML class symbol. The symbol has 

three fields (A, B and C) where text may appear. The height and width of these text fields 

depend on the text they contain. 

W idth •I 
� � -1 Single l i ne of text 

N I I - A -

, _L_ 
v C') 
I I 

:E 
M u ltiple l ines of text 

c: ·a; I - .. 8 -
, , 

M ultiple l ines of text 

- ... c """ ,.. 
,, 

Figure -1--16 - Topographical description of a UiiiL class symbol 
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Each text box in Figure 4-1 6  has two properties, a height and a width. NDL provides two 

functions (height and wzdth) that are used to dynamically determine the size of a text :field. 

The value of H1,  H2, HJ, H4 and Height can be calculated by using the height and width 

functions. All NDL expressions are in reverse polish. 

H 1  + 1 h e ight ( A ) 
H 2  + 1 H 1  

H3 + + 1 H2 height ( B ) 
H 4  + 1 H 3  

H e i ght + + 1 H4 he i gh t ( C ) 

The overall width of the symbol in Figure 4-1 6  is dependent on the widths of  all three 

text fields. NDL supports a function, max, which returns the maximum value of its 

arguments. The width of the symbol in Figure 4-1 6  can be calculated in the following 

way: 

Wi d th = + 2 max ( width ( A ) , w i d t h ( B ) , w i d t h ( C ) ) 

The position o f  the class name text field in Figure 4-1 6  can be derived from the overall 

width of symbol and the width of the class name field in the following way: 

W 1  d i v  - Wi dth width ( A ) 2 

So far this example has shown that the basic arithmetic operations (add, subtract, multiply 

and divide) are all supported by NDL. It has shown that two functions (height and width) 

are used to represent the dynamic properties of text fields. It has also demonstrated that 

the max function is used to capture relations amongst sub-parts of a symbol. 

The UJ\1L symbol in Figure 4-1 6  is comprised of three lines and three text boxes .  Two of 

the lines separate the various compartments and the third i s  a poly-line that represents the 

boundary of the symboL NDL supports statements that correspond to each o f  

primitive notation element. These are represented in NDL in the following way: 

L I NE ( 0 ,  0 )  ( Wi d th , 0 )  ( Wi dth , 

L INE ( 0 , H 1 )  ( Width , H 1 )  
L INE ( O , H3 )  ( Wi dth , H3 )  

TEXT A ( Wl , 1 )  

L I S TTEXT B ( 1 , H2 )  

L I S TTEXT C ( 1 , H4 )  

) ( 0 '  ) ( 0 '  0 )  
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This example shows the line, text and listtext statements respectivelir'. Lines must define at 

least two points (the first line in this example defines five) . The text statement defines a 

text field that may only contain a single line of text. The listtext statement defines a text 

field that may contain multiple lines of text. Both the text and listtext statements 

introduce an NDL ID for that field that may be used elsewhere to reference that field. 

A symbol may also define one or more hotspots or active areas. Figure 4-1 7  is an 

extended topographical description of the UML class symbol of Figure 4-1 6, with four 

active areas. 

"' I 

U") I 
Active Area B 

Active Area C 

Active Area D 

l' .\IL class with actin: areas 

Two default actions, that may be associated with an active area, are supported by NDL. A 

Transition action specifies that the symbol should be rendered with another template 

(where the symbol shows less information, for example) . Update action specifies that a 

change has been requested of one more text areas. These four areas are defined in NDL 

in the following way: 

ACT IVE AREA ( 0 , 0 )  ( W i d th , l )  TRAN S I T I ON TO 

ACTIVE AREA ( 0 , 1 )  ( W i d t h , H5 )  UPDATE A 

ACTIVE AREA ( 0 , H2 )  ( Wi dt h , H6 )  UPDATE B 

ACT IVE AREA ( O , H4 )  ( W i d t h , H7 )  UPDATE C 

The steps that are carried out in response to an action are the responsibility of the user 

interface, not the notation. The notation o nly defines where actions are generated. Active 
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areas are currently defined as rectangles for the purpose of the initial research. In general 

an active area will be defined as a region. 

A symbol may also define one or more docking areas. A docking area defines a place on a 

symbol that connections may attach themselves to. The UML class symbol of  Figure 4-1 6  

and Figure 4-1 7  may accept connections at any point around its perimeter. A single 

docking area is therefore sufficient to define the UML class symbol. A docking area is 

defined in NDL in the following way}7: 

LINE DA { 0 , 0 ) ( Wi dth , O )  ( Wi dth , He ight ) ( O , He i gh t ) { 0 , 0 )  

This docking area defines a poly-line that is coincident with the boundary of the UML 

class symbol. NDL actually supports three types of docking area. Each will be discussed 

in more detail in section 4.5.5 - Docking Areas. 

A complete template that describes a UML class symbol is given in Figure 4-1 8. 

-

Symbo1_Temp l a t e  UML_CLASS_SYMBOL 

{ 
H 1  + 1 h e i ght ( A )  
H2 + 1 H1 
H3 + + 1 H2 height ( B )  
H 4  + 1 H 3  
Height + + 1 H 4  height ( C )  
Width = + 2 max ( width ( A ) , width ( B )  , width ( C ) ) 

I - � -. 
W1 = div - Wi dth width ( A )  2 

�---'---------'-----1 L �TEXT A ( W1 , 1 )  
.--H-..L ISTTEXT B ( 1 , H2 )  -L_r- J L I STTEXT C ( 1 , H4 ) 

4tlt;:::!��-�--... LINE ( 0 ,  0 )  ( W i dth , 0 )  
( Wi d th , Height ) ( O , Heigh t )  ( 0 , 0 )  •t�:Elt:LINE ( 0 , H1 )  ( W idth , H 1 )  

��----------------�� LINE ( 0 , H3 )  ( Width , H3 )  

-· ··--··-····-·------·-··-·······-····-····-···········-·······�--

_.ACTIVE AREA ( 0 , 0 )  ( Width , 1 )  
TRANSIT ION TO <Targ e tTemp l a t e >  

�CTIVE AREA ( 0 , 1 )  ( Width , H S )  
UPDATE A 

�ACTIVE AREA ( 0 , H 2 )  ( Wi d th , H6 )  
UPDATE B 

ACTIVE AREA ( 0 , H4 )  ( Wi d th , H7 )  
U PDATE C 

DOCK ING AREA 
( 0 , 0 )  ( Wi dth , O )  ( W idth , He i gh t ) 
( O , He i gh t ) ( 0 ,  0 )  

Figure 4-1 8 - Template describing a U;\IL class symbol 

r TILi:; docking area template ha:; bt:cn simplified for the :<ake of discussion . .  \ complete description of docking area 

template:< in mad<.: in 4.5.5 - Docking .\rcas. 
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A, B and C are NDL IDs that are unique within the context of the notations as is the 

name given to the template. The arrows show the mapping between notation elements 

and the templates that define them. 

4.5.4 Support for Grouping 

NDL provides group templates to support the definition of common sub-components of 

symbols and connections. Group templates are used to define icons that may appear on 

connections or as annotations on a symbol. Consider the pseudo Coad and Y ourdon 

notation of Figure 4-1 9  where there are two versions of the class and Class&Object 

symbols. 

Class Symbols Class&Object Symbols 

Figure -l- 1 9  - Coad and Yourdon class and Class&Objecr s1·mbols 

The two versions of each symbol show different levels of detail. One only shows the 

class name whilst the other shows all three compartments. They grey area at the top of 

each symbol is an active area which causes a transition from one form of the symbol to 

the other. It would be possible to create this notation in NDL with four completely 

separate symbol templates. This would, however exhibit some redundancy in the 

descriptions. Figure 4-20 shows the pseudo Coad and Y ourdon notation of Figure 4-1 9  

with the identification of common sub-parts. An N D L  definition of these symbols can be 

simply achieved by using NDL group templates. 

Class Symbol 

Class& Object 
Symbol 

Figure -l-20 - Identified common sub-parts in Coad and Yourdon's 
norauon 
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Group templates are defined in exactly the same way as symbol templates except they 

may not define docking areas. Figure 4-21 shows NDL definitions of two group 

templates complete with active areas. 

G roup_Temp l a t e  CLASS_NAME 

{ 
----+-+---�TEXT A ( 1 , 1 )  

'"""-�--·�-�-·�--�-�-�--��� 

,.. '""1 ..., _i 
• �� 
l ! 

I 
I 

.., ;  -

I ! 

� 
-

ACTIVE AREA ( 0 , 0 )  ( +  2 w i dth ( A ) , 1 ) 

TRANS I TI ON TO ALL_COMPARTMENTS 

L----I�ACTIVE AREA ( 0 ,  1 )  ( + 2 width ( A ) , + 1 h e i ght ( A )  ) 

U PDATE A 

'--

Group_Temp l a t e  ALL_COMPARTMENTS 

{ 

4 

� 
j----.. 

.. 

j----.. 
. 

.. 

H 1  + h e igh t ( A )  1 

H2 H1 1 

H3 + H2 height ( B )  

H4 + H 3  1 

H e i ght 

W i d th 

W1 div 

+ + H4 height ( C )  1 

+ max ( width ( A )  , width ( B )  , wi d th ( C ) ) 2 

W idth width ( A )  2 

TEXT A ( W1 , 1 ) 

L I S TTEXT B ( l , H2 )  

LI STTEXT C ( 1 , H4 )  

L INE ( 0 ,  ) ( Width , H1 )  

L I NE ( 0 , H3 )  ( Width , H3 )  

ACTIVE AREA ( 0 , 0 )  ( Wi dth , 

TRANS I TI ON TO CLAS S_NAME 

ACTIVE AREA ( 0 ,  ) ( Wi d th , HS )  UPDATE A 

ACTIVE AREA ( O , H2 )  ( W i dth , H 6 )  UPDATE B 

ACTIVE AREA ( O , H4 )  ( W i dth , H 7 )  UPDATE C 

4-2 1  

The group templates in Figure 4-21 can b e  used to create the symbols in Figure 4-1 9. 

Figure 4-22 shows an NDL definition of the Coad and Y ourdon class symbol that uses 

the group templates in Figure 4-2 1 . 

One 
Of 

I I AllCompartmen t s ) 

L INE ( 0 , 0 ) ( groupwidth ( grp )  , 0 )  

( gr oupwidth ( grp ) , +  grouphe i ght ( grp ) 1 )  

( 0 , +  grouphe ight ( grp ) 1 )  ( 0 , 0 ) 

DOCKING AREA ( 0 ,  0 )  ( groupwidth ( grp ) , 0 )  

( gr oupwidth ( grp ) , +  grouphe i ght ( grp ) 1 )  

( 0 , +  groupheight ( grp ) 1 )  ( 0 , 0 ) 

4-22 - C:oad and Yourdon class 
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Symbol templates can additionally contain a group reference statement. Each group 

reference statement contains a list of all possible group templates that may constitute its 

state. The first group template in the list is the default. 

The class symbol template in Figure 4-22 consists of a single group (grp) and a line for the 

border. The first template listed in the group reference statement of Figure 4-22 is the 

ClassName group template. This means that a new Coad and Y ourdon class symbol would 

only show the class name field when it is initially created. I f  a n otation designer wished all 

three compartments to be visible by default they would place the Al!Compartments group 

template first in the list. 

The docking area in Figure 4-22 is co-incident with the b order as in the preVlous 

examples. Both the border and the docking area are defined using the groupheight and 

groupwzdth functions. These functions are used to dynamically determine the size o f  a 

group reference. They imply a rectangular boundary around all groups, which may be 

unnecessarily restrictive. The empirical evidence gained from u sing NDL has not proven 

this to be so. 

4.5.5 Docking Areas 

Docking areas represent the positions on a symbol that a connection can attach itself to. 

NDL supports three docking areas of different shape. These are point, line and arc 

docking areas. 

All docking areas allow the follmving to be constrained: 

The number of permissible connections. 

• The types of connection that may be attached. 

• The direction connections can approach from, in order to attach. 

The last constraint is implemented by defining what is 'inside' and what is 'outside' o f  a 

docking area. The purpose of this constraint is to avoid a connection crossing the interior 

of a symbol, to attach at a docking area. 
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Point Docking Area 

A point docking area represents a single point on a symbol that can accept a connection. 

Figure 4-23 shows two examples of connections attached at a point on a symbol. 

//\ .. 
// / 

// / 
v ... < 

., 
·, '- /'  

.,\ ',. 
c 

'·· 

/ 
/.)' 

/ 

/ 
> <<���� 

/ 

/" �\, / 

-t-23 - Docking at a po111t 

The example in the left-hand side of Figure 4-23 shows a desirable connection. The 

example in the right-hand side of Figure 4-23 shows an undesirable connection that 

crosses the symbol. Figure 4-24 shows a symbol that has a point docking area on the top­

left corner. 

val id  i nvocation 
connection 

i nval id i nv ocation 
conn ection 

Point docking area 

A fragment of NDL code that could be used to describe 

is given below. 

docking area in Figure 4-24 

P O I NT DA ( 0 , 0 ) 1 CONNECT I ON ARC ( 9 0 , 9 0 )  ( i nvoca t i o n )  

The first property of a point docking area i s  its position. In  this example coincides 

with the top-left corner of the symbol. The next property specifies the maximum number 

of connections that may be attached to this docking area. In this example only a single 

connection may b e  attached at a time. A value of u is used to specify that any number of 

connections may attach at this point. The next property defines the connection arc, 

through which all valid connections must pass. A connection arc is specified as a start 

angle - extent pair. The co-ordinate system for connection arcs is shown in Figure 4-24. 
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The final property is a list of connection types that may attach at this point. Each element 

in the list is the name of a connection template (connection templates are discussed in 

section 4.5.6). If this list is empty then any connection may attach at this point. In this 

example only connections of type invocation may attach at this docking point. 

Line Docking Area 

A line docking area represents a line on a symbol that can accept connections. Figure 

4-25 shows a symbol with two connections that have attached along its left-hand side. 

/ 
v 

... 

-+<25 Docking on a line 

The connection corrung from the left in Figure 4-25 is a desirable connection. The 

connection coming from the right in Figure 4-25 is undesirable as it crosses the symbol. 

Figure 4-26 shows a symbol with a line docking area on it left-hand side. 

val id  invocation 
con nection 

-+-26 

Line d ocking area 

of a line area 

i n val id  invocation 
conn ection 

A fragment of NDL code that describes the docking area in Figure 4-26 is given below. 

L I NE DA ( 0 , 0 )  ( O , y ) u 5 i nvocat ion ) 

The first property of a line docking area is its position, which is represented by a series of 

points. In this example the line docking area coincides with the left-hand side of the 

symbol. The direction of the line docking area is used to encode the valid direction from 

which a connection may come to attach to the docking area. Figure 4-27 shows how this 

is achieved. 
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Left-hand side 

I nside 

B 

A Outside 

Figure 4-2- Representing nlid directions for a line docking area 

Outside 

The right-hand side o f  line segment AB, as viewed looking along the line from A to B, is 

taken as the outside o f  the line (Figure 4-27) . The left-hand side of the line (and the line 

itself) is taken as the inside of the side. Only connections that approach from the outside 

of a line docking area may be attached. The right-hand side of Figure 4-27 shows how 

this property of line d ocking areas can be used to approximate the inside and outside of a 

symbol''. 

The next property o f  a line docking area specifies the maximum number of connections 

that may be attached. The value u, in this example, means that the number of connections 

is unconstrained. The next property specifies a minimum inter-connection distance. The 

final property is a list o f  connection types that may attach to the line docking area. In this 

example only connections of type invocation may attach at this line docking area. 

Arc Docking Area 

An arc docking area describes a curve along which connections may attach themselves. 

Figure 4-28 shows some examples of how an arc might be used as a docking area. 

(i) Using the concave side (ii) Using the convex side 

Figure 4-28 Docking on an arc 

of all the line arcb could intcr:<cct with 
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The c onnections that cross over the symbols in Figure 4-28 are undesirable. Figure 4-29 

shows how an arc docking area can be used. This particular example shows a single arc 

docking area that is coincident with the boundary of a circular symbol. 

Arc docking area 

A fragment of NDL code that could be used to describe the docking area in Figure 4-29 

is given below. 

ARC DA ( 0 , 0 )  ( w , h )  ( 0 , 3 6 0 )  CONVEX u 5 ( invocation )  

The first p roperty o f  an Arc docking area defines its position and shape. In this example 

the arc is bounded by a box from (0,0) to (w,h) . The shape of the arc is defined by a start 

angle - extent pair. In this example (0,360) describes a circle. The next property is used to 

define the direction connections may approach the arc and attach themselves. Figure 4-30 

shows how the two possible values for this property (Convex and Concave) define the 

inside and outside of an arc docking area. 

Convex side 
(outside) 

Concave side 
( i nside) 

'Convex ' Arc docking area 

-+� )() � 

Convex side 
( i ns ide) 

( i i )  'Concave' Arc docking area 

Ya!id dirccriom for an arc area 

A value of 'convex' means that the convex side of the arc is to be interpreted as its 

outside (example (i) in Figure 4-30). A value if 'concave' means that the concave side o f  

the arc is t o  b e  interpreted a s  its outside (example (ii) in Figure 4-30). 

The next two properties of an arc docking area specify the maximum number of 

connections that may be attached and a minimum inter-connection distance. The final 

property is a list of connection types that may attach to the arc docking area. 
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4.5.6 Describing Connections in NDL 

Connections in NDL are composed of a single, optional, connection symbol template 

and a collection of connection terminator templates .  Each type of template will be 

discussed in turn, followed by the definition of an NDL connection template. 

Figure 4-31 shows an example o f  Coad and Yourdon's notation with a Gen-Spec 

connection and a message connection. Both types of connection will be defined in NDL 

to assist illustrate how NDL is used to define connections in general. 

Li n e  
segments 

Connection term i n ators Line 
segments 

Connection symbol 

4-.) 1  Two connections 

A Coad and Y ourdon Gen-Spec connection consists of two connection terminators, a 

special connection symbol and some line segments (Figure 4-31) .  A message connection 

consists of two connection terminators (one of which is an arrow head) and a collection 

of line segments .  

Connection Symbols 

NDL connection symbol template for the Coad and Yourdon Gen-Spec connection 

symbol is given in Figure 4-32. 

C ONNECTI ON_SYMBOL Inher i ta n ce_Segment 

{ 
.,------1 ...... T O P  ( 2 0 ,  0 )  

� 
r! ARC ( 0 , 0 ) ( 4 0 , 4 0 ) ( 0 , 1 8  0 ) 

I 
- L INE ( 0 ' 2 0 ) ( 4 0 ' 2 0 l 

� L INE DA ( 0 , 2 0 )  ( 4 0 , 2 0 )  u 1 0  ( )  EXTEND 

} 

4--32 Connection template 
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A connection symbol has one incoming line segment. In the case of a Coad and Y ourdon 

Gen-Spec connection this is from a super-class. It may have several outgoing line 

segments. In the case of a Coad and Y ourdon Gen-Spec connection these lines go 

towards sub-classes. The first statement of the connection symbol template specifies 

where the connection symbol attaches itself to the incoming line segment. The arc and 

line template statements define the shape of the connection symbol. The last statement of  

the connection symbol template i s  a line docking area from which all the outgoing line 

segments start. A line docking area for a connection symbol has an additional property 

that defines whether the line docking area is permitted to change its length, to support 

more line segments. Figure 4-33 illustrates this property with two examples. 

• 

(i) (ii) 
-kn - Coad and Yourdon connection 

area (i) \\-ith connection with 

) 

line UU\.I>.H\)C, 
connections 

connection symbol line docking area is shown by an arrow on the inheritance 

connection symbol in Figure 4-33. In the example on the left-hand side of in Figure 4-33 

the line docking area is big enough to maintain a single connection. In the example on the 

right-hand of in Figure 4-33 side the line docking area has been extended past the 

boundaries of the connection symbol. Connection symbol line docking areas will 

automatically extend in this way if the last property of  the line docking area has the value 

Extend. 

Connection Terminators 

Figure 4-34 shows NDL connection terminator templates for the different types of  

connection terminator in the Coad and Y ourdon Gen-Spec and message connections .  
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CONNECTI ON_TERMINATOR p l ain 
{ 

CONNECTI ON_TERMINATOR Mes s age_De s ti nat i on 
{ 

.----+----. LINE ( 1 0 I 6 ) ( 1 6  I 6 ) 
LINE ( 0 I 6 ) ( 1 0 I 0 ) ( 1 0 I 12 ) ( 0 I 6 ) 
HEAD ( 0 1 6 ) 

1..--f--l ... TAI L ( 1 6  I 6 )  

4-34 - Connection terminator for Coad and 
Yourdon and message connections 

A connection terminator consists o f  a collection of primitive template segments (in this 

example lines and arcs) . The last two statements define the head and tail positions on the 

connection terminator. The head position is where the terminator will attach to a docking 

area. The tail position is where the terminator attaches to a line segment. 

Connection Template 

Each connection in a notation 1s defined by a separate connection template. A 

connection template specifies the arity '') of the connection, an optional connection 

s:ymbol template and a list of terminator templates. NDL connection templates that 

implement Coad and Y ourdon Gen-Spec and message connections are given in Figure 

4-35. 

COJ\"NECT ION TEMPLATE 

I nh e r i tance_C o nn e c t i on 

ARITY 2 
CONNECT I ON_SYMBOL 

I nher i tance_Segment 

TERMINATOR ( , p l a i n )  

C ONNECTION_ TEMPLATE 

Me s s a ge_Conne c t i on 

{ 
A R I TY 2 
TERMINATOR 

( , Me s s ag e_De s t i na t i on )  

4-3.5 - "DL connection for Coad and Yourdon 
and message connections. 

The order of the terminator templates in the terminator list corresponds to the order with 

which the portions o f  the connection are created. The message connection template in 

"' The of a connection the number of that mm· be involved in the connccti(Jn. 
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Figure 4-35, for example, specifies the sequence plain followed by Message_Destination. 

This means that a plain terminator is used at the beginning of a message connection and a 

Message_Destination terminator is used at the end of a message connection. 

4.6 NDL Interpreter 

An NDL interpreter has been built to verify that the approach taken with NDL is 

efficacious. Each notation is written in NDL and stored in a file. The grammar of DL is 

presented in appendix II . The interpreter is a simple drawing tool that allows a user to 

place symbols and connections that are defined in a notation file. A high level 

architecture is given in Figure 4-36. 

User Interface .._ 

Tool Bar 

M enu Bar 

Drawing 
Surface 

Context SSL object 
proxies 

Templates � 

NDL 
views NDL parser 

Figure 4-36 - Components of the �DL interpreter 

Notation 
file 

The NDL interpreter parses a notation file and builds an abstract syntax tree (which is an 

instance of the Composite pattern (Gamma et aL, 1 995)) for each Template. These abstract 

syntax trees are also instances of the Interpreter pattern as they can execute themselves. 

Each Template requires an SSL object proxy and a Context to generate its corresponding 

notation element. 

An SSL of?ject proxy is a stub that takes the place of the MOOT server in this prototype. 

Each proxy encapsulates a map of NDL identifiers and properties. For example the map 

in an SSL of?ject pro:>ry representing a class would contain three elements, which would 
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correspond to the NDL identifiers 'c/assname', 'attribute! and 'operations. SSL object proxies 

perform no semantic validation. 

The NDL views in Figure 4-36 are the symbols and connections that have been generated 

from templates. An NDL view is a collection of primitive notation elements (such as lines, 

active areas and text fields). NDL views know how to draw themselves on a drawing 

surface with the assistance of a Context object. 

The Context is an instance of the Visitor pattern (Gamma et aL, 1 995) .  It hides the 

properties of the drawing surface (for example how long a string actually is, in drawing 

units, on the drawing surface) from the interpreting mechanism. Templates use this 

behaviour when generating notation elements. The Context also provides facilities for 

drawing primitive notation elements on a drawing surface. 

The N DL interpreter as a whole can be potted to a different windowing interface 

environment by updating the specific interface elements (windows toolbars etc) and the 

Context. The Context is implemented as an abstract super-class, which defines the interface 

needed by Templates and NDL views. Implementations of the interpreter specialise Context 

as appropnate. 

The user interface is implemented in tcl, the notation file in NDL and the rest of the 

components in C++. The CASE tool client (Figure 3-1 1 - Architecture of the MOOT 

prototype) is based on the design of the NDL interpreter. 

4. 7 Design of the NDL Interpreter 

4. 7.1 Representing Expressions 

All templates are defined in terms of a series of expressions (see Figure 4-4, Figure 4-1 6, 

Figure 4-1 7) .  The types of expression supported in NDL include: 

• 

arithmetic expressions and numerical constants 

maximum and minimum function 

height and length functions 

groupheight and grouplength functions 
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The different types of expression are represented in the inheritance hierarchy given in 

Figure 4-37. 

Expression 

Evaluate(p • SSLObjectProxy, c · Context) 

. > SSLObjectProxy 

GetProperty(id : NDL_ID) 

Context 

length(s • string) 
height(s • string) 

... ')" drawline() 

Function Value 

Evaluate(p • SSLObj ectProxy, c • Context) 

Maximum Minimum 

draw Arc() 
d rawString() 

TextFunction 

txt_I D  • N D L.JD 

Evaluate(p • SSLObjectProxy, c :  Context) Evaluate(p : SSLObjectProxy, c · Context) 

GroupFunction 

grp_ID · NDL_ I D  

Height Length 

Evaluate(p SSLObjectProxy, c . Context) Evaluate(p : SSLObj ectProxy, c · Context) 

ArithmeticExpression G roupHeight Grouplength 

Evaluate(p . SSLObjectProxy, c : Context) Eval uate(p · SSLObjectProxy, c : Context) 

Add Mult ip ly 

Evaluate(p · SSLObjectProxy, c · Context) Eval uate(p . SSLObjectProxy, c Context) 

Subtract Divide 

Evaluate(p . SSLObjectProxy, c Context) Eval uate(p . SSLObjectProxy, c Context) 

-J..r . The clas s  

AJl expression objects respond t o  the message evaluate with arguments o f  an SSL object 

proxy and a Context. Arithmetic expressions include all basic operations involving two 

operands (which are both expressions) and an operator. The arithmetic expressions 

supported in the initial prototype include addition, subtraction, multiplication and division. 

Text functions calculate either the height or width o f  a string or a list o f  strings. A text 

function knows the NDL name of the p roperty it is to be applied to. The width and 

height of a text item depends on the context it is viewed in. This includes the particular 

font, the font size for the block of text. Text functions delegate the responsibility for 

performing their calculation to a Context object. The Context object can calculate the 

physical size (in drawing units) of a string. 
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Four functions are used to capture constraints between sub-parts of a VIew. The 

GroupHeight and GroupLength functions calculate the physical size (in drawing units o f  a 

group reference. The Maximum and Minimum functions calculate the maximum and 

minimum value of their argument expressions respectively. 

4. 7.2 Segment Templates 

Segment templates correspond to the primitive notation elements such as lines and arcs. 

They are implemented in the interpreter with the class hierarchy given in Figure 4-38. 

Context 
-·-·--·--·---·--·-

length(s : string) 

�--
�----.. ____ ... __ 

height(s : string) 
drawline() 
drawArc() 
drawString() 

SegmentTemplate «instantiates» 1 Segment . -.. ·-·-.... ·---.. --·--.. ----;------------------------3>!---·-, Build(p : SSLObjectProxy, c : Context) 1 Draw(c : Context) 

if ,----------.1 _____________ .. _ .. ___ .. ______ " __ . __ , 
I [-Si·;;;�;s;;-g-;entT;;:;;;I�t;·-.

. 1
-

�-
---·--

SegmentTemplatelist 

1 • Build(p : SSLObjectProxy, c :  Context) .. ------,\-----·---· . .  

Lj 

G raphicaiSegmentTemplate 

£ \  

LineSeg mentTem plate 

0 . .  * 

1 /\ , ,  
·-G ro_ip_�:tere':l_C_��9.mentTemplate 
Build(p : SSLObjectProxy, c : Context) 

ActiveAreaSegmentTemplate _.!_ __ j 
----·-·--------------------------·····-·····-····--················-·····-·· Build(p : SSLObjectProxy, c : Context) 

ArcSegmentTem plate 
1 Bu ild(p : SSLObjectProxy, c :  Context) 

Build(p : SSLObjectProxy, c : Context) 

UpdateSegmentTem plate 
I Build(p : SSLObjectProxy, c :  Context) ! 

r--------·-.. ---·-.. --.. --J.-,_ 
1 SingleTextSegmentTemplate ----.. --==---

-· I ListTextSegmentTemplate ! I Build(p : SSLObjectProxy, c : Context) ! 
DockingAreaSegmentTemplate 

I Build(p : S SLObjectProxy, c : Context) . 

PointDockingAreaSegmentTemplate ArcDockingAreaSegmentTemplate LineDockingAreaSegmentTemplate 
Build(p : SSLObjectProxy, c : Context) Build(p : SSLObjectProxy, c : Context) Build(p : SSLObjec!Proxy, c : Context) 

Figure 4-38 - Template segment hierarchy 

1 16 



The leaf classes in the inheritance hierarchy in Figure 4-38 correspond to the different 

components of a view that are supported (lines, arcs, text, active areas and docking areas) . 

The Segmenffemplate class defines an operation called build, which takes an SSL olject proxy 

and a Context as arguments. A Segmenffemplate object responds to the Build message by 

creating an instance of the Segment class. Segments are the primitive components of views 

and correspond to notation elements such as lines, arcs and text fields. Instances o f  

ArcS egmenffemplate and LineS egmenfTemplate construct arc and lines respectively. 

SingleTextSegmenfTemplate defines a single line o f  text. A ListTextSegmentTemplate builds a list 

of text items. Segments know how to draw themselves with the assistance of a Context 

object. An inheritance hierarchy of segment classes corresponding to the segment 

template hierarchy is also defined, but not shown for brevity. 

4. 7.3 Group Templates 

Group templates are implemented by the classes Group ReferenceS egmenffemplate and 

SegmenfTemplateList (Figure 4-38). An instance of GroupRcferenceSegmenfTemplate 

encapsulates a reference to a segment template list (which contains a collection o f  

segment templates). An instance of .SegmentTemplateList may also contain instances of  

Group ReferenceS egmenffemplate. group template may, therefore, be  defined as  a collection 

of simple segment templates and other group templates. 

A template segment list also contains a collection of active area sebrrnent templates. The 

two types of active area (transition and update) are supported the classes 

Transition.SegmenfTemplate and Update.SegmenfTemplate (Figure 4-38) . Active area segment 

templates which template they belong too. 

additionally knows which template to transform into. 

which properties are to be updated. 

4. 7.4 Connection and Symbol Templates 

Transition template segment 

update segment template knows 

The components of a notation are supported with the classes in Figure 4-39. A notation 

is composed of templates. An instance of class Template responds to the message Build by 

creating an instance of the class View. The Template class defines the view construction 

protocol is implemented by its sub-classes. 
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Template 

Bui ld(p : SSLObjectProxy, c : Context) 

Connection Tem p l ate 

Context 
'-�·--�·------�---------------· 

length(s : string) 

height(s : string) 
draw line() 

d raw Arc() 
drawString() 

S S LObjectProxy 

GetProperty(id : NDL_I D) 

<<instan�iates>> 
' 

1 . . *  

SegmentT emplateContainer 

Bu i ld(p  · S SLObjectProxy, c : Context) 

0 . . 1 '. 1 . . .  

1 . .  * 

ConnectionSymboiTemp late 
'''' ''''"''" '"'"'' 

Bui ld(p . S SLObjectProxy, c : Context) 

SymboiTemplate 

Bui ld(p : SSLObjectProxy, c : Context) 

ConnectionTerminatorTemplate 

Bu i ld(p : SSLObjectProxy, c · Context) 

·+--'19 · The different tYpe; o f  

The immediate sub-class of Template i s  SegmentTemplateContainer. This abstract super-class 

maintains a collection of segment templates.  The sub-classes of SegmentTemplateContainer 

are ConnectionSymbo!femplate, Connection Terminator Template and J..ymboffemplate. 

Instances o f  ConnectionSymbo!femplate describe connection symbols (such as the triangle in 

the UML inheritance connection and the semi-circle in the Coad and Y ourdon Gen-Spec 

connection) . Instances of Connection Terminator Template describe the terminators that appear 

at the ends of connections. Finally, instances of Symbo!femplate describe symbols such as 
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process bubbles in a data flow diagram, classes on a class diagram and states on a state 

transition diagram. 

Templates for building connections are represented by the class ConnectionTemplate. A 

connection template is composed of a collection of connection terminator templates and 

an optional connection symbol template. 

4.8 Implementation of the NDL Interpreter 

The NDL interpreter has been implemented on a Sun SparcSERVER 1 000e running 

Solaris 2.5 using SparcWorks C + +  2.0, Tcl 7.3, Tk 3.6 and xf 2.3.  Td is a general-purpose 

interpreted programming language. Tk is an extension to Td that supports graphical 

windowing applications. Xf is an interface development tool that allows the construction 

of applications based on Tcl and Tk. Together these tools allow the rapid construction of 

graphical interfaces. 

Figure 4-40 shows t\Vo snapshots of the system processing NDL descriptions of the 

Rumbaugh instance and object diagram. Figure 4-41 shows a snapshot of the system 

processing an NDL description of the Coad and Y ourdon class diagram. 

�-�-�---·---���--�--�����--���---�� "  
' 

-+�40 � '-.;DL mterprctcr an '-.;DL description of the 
Rumbaugh instance and 
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4.9 Summary 

• 

·-

• 

chapter has presented the development of NDL. It began with an overv1ew of 

graphical notations that are used in software engineering methodologies. A clear 

distinction was drawn between the syntax of a model and its meaning. A notation only 

facilitates the communication of meaning. It is not the 'meaning' itself. The requirements 

and design of NDL were discussed and a prototype NDL interpreter, from which the 

development of the CASE tool client is based, was presented. 
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Chapter 5 

Semantic Specification Language 

Good languages not only rest on mathematical concepts which make logical 

reasoning about programs possible, but also on a small number of concepts 

and rules that can freely be combined. If the definition of a language requires 

fat manuals of hundred pages and more, and if the definition refers to a 

mechanical model of execution (i.e. to a computer) , this must be taken as a 

sure symptom of inadequacy. 

5.1 Introduction 

Niklaus Wirth 1997 

This chapter presents the design and philosophy of a new language that is used to 

implement methodology semantic descriptions in the MOOT system. The new language 

has been named SSL (5emantic Specification Language) . The major goal o f  development 

of SSL is to derive a language that directly supports the MOOT meta-model, provides 

facilities for re-use of methodology descriptions and is suitable for a programmer to use. 

An aspect of this research is the development of an efficient and portable mechanism for 

executing S SL. 

5.2 Method 

The following is a high level description of the steps taken during the design and 

development of SSL. 

1 .  Derive the requirements for a language that allows the description o f  methodology 

semantics.  

2. Investigate existing languages. Clarify the goals and design a new language, S SL. 

3. Derive an execution strategy for SSL. Consider space-time efficiency and platform 

independence of the execution strategy. 
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4. Design an intermediate, platform independent binary representation for SSL (SSL-

BC). 

5. Design and implement a new virtual machine after consideration of other virtual 

machines SSL-VM (SSL VlrtUal Machine) . 

6.  Develop and implement a compiler that translates SSL into SSL-BC. 

7. Test SSL, and the SSL-VM with some simple examples. 

5.3 Rationale and Goals of SSL 

The goals of  SSL are derived from some o f  the limitations o f  meta-CASE tools as 

described in chapter 2. They address  limitations related to the use, number and separation 

of the specification languages used by existing meta-CASE tools. These goals are: 

1 .  Integrate the description of structure and behaviour 

Previous meta-CASE tools p rovide two or more separate languages for the 

specification of methodologies. One is used to define structure and the second to 

define constraints on the structure (a form of behaviour) .  There are several problems 

with this approach: a) there are multiple languages for the same task b) the coupling 

of methodology semantic specifications increases and c) the cohesion o f  

methodology semantic specifications decreases .  

2. Support more than completeness and consistency checking 

Current meta-CASE tools only focus on checking the rules of the various modelling 

languages .  There is no consideration of things such as auto-correction, quality analysis 

or guidelines .  The behavioural aspects of SSL can include more than checking 

constraints, and be used to implement auto-correction etc. 

3. Emphasise 'programming the semantics' rather than formally defining them 

Most meta-CASE tools provide either an extremely formal set of languages or a large 

application programmer interface (API) . 

Formal languages can be difficult to understand and use. The use of formal languages 

also means that supporting inconsistent models is often not possible. This is a barrier 

to an exploratory approach to design that software engineers naturally use. 
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Meta-CASE APis obscure the underlying meta-model and place no emphasis o n  

specification. A large portion o f  the API i s  also generally related to the user interface 

and the underlying repository. This means the API itself provides facilities that are at 

different levels of abstraction with respect to the meta-CASE tooL 

If SSL provides some of the facilities of a general purpose programming language 

then it will be more flexible and comprehensible. SSL should be sufficiently flexible 

that programmers feel comfortable using it, yet it should never imply it is a general 

purpose programming language. 

4. Support re-use 

Existing meta-CASE tools do not place any emphasis on re-use of methodology 

descriptions.  They only support accidental re-use, where existing methodology 

description s  may be duplicated and then changed. There are several problems with 

this approach: a) it is wasteful in terms of resources and development effort; b) there 

is no dear relation between methodology descriptions that are similar; c) support for 

re-use of software engineering projects is difficult; d) a very large and unstructured 

pool of methodology descriptions exist. 

5. Space/time efficiency 

SSL must support methodology descriptions whose execution is efficient in terms of 

space and time. This includes the language and its run-time representation. 

6. Platform independence 

Both methodology specifications and user projects must be completely portable 

across platforms. Methodology descriptions and software engineering projects can 

then be distributed to other users of MOOT without translation. 

7.  Hide persistence of SSL objects 

Software engineering projects are represented by collections of SSL objects in the 

persistent store. This fact should be completely hidden from users of SSL. Object 

persistence is transparently addressed by the SSL-VM. 
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Figure 5-1 illustrates how the various goals of SSL have been addressed by some of the 

design decisions made regarding the features SSL. 

Goal 

Support re-use 

Emphasise programming 
the semantics rather than 

formally defining them 

Support more than 
completeness and 

consistency checking 

Methodology descriptions  
efficient in space and time �==� 

Platform Independent 

H ide persistence of SSL 
objects 

Addressed by 

SSL supports inheritance 
and polymorphism 

SSL is an object­
orientated language 

SSL resembles a general 
purpose programming 

language 

Behaviour expressed with 
messages + operations + 

methods + constraints 

Structure expressed with 
has-a and is-a h ierarchies 

SSL provides built-in types 
(including collections) 

SSL is statical ly type 
checked 

SSL compiled to SSL-BC 

Execute SSLBC on SSL-VM 

SSL-VM manages 
persistance of SSL objects 

Figure 5- 1 - Mapping between goals and design decisions made 
regarding features of SSL 

5 .4 Requirements of SSL 

There are two types of requirements for SSL. The first type (MOOT specific 

requirements) is related to supporting the MOOT philosophy for the description of 
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methodology semantics. The second type (SSL specific requirements) 1s related to 

addressing the limitations of other meta-CASE specification languages. 

MOOT Specific Requirements 

Provide all the facilities of the MOOT meta-model. The MOOT meta-model is an 

object-orientated meta-model. SSL must, therefore, be an object-orientated language. 

• Support the description of behaviour. This requirement is satisfied by the decision to 

develop SSL as an object-orientated language. Behaviour is supported with message 

passing, methods and constraints. 

• Suitable for 'programmers' to use. SSL provides some of the facilities of a general­

purpose object-orientated programming language. For example it provides classes 

and supports sequence, selection and repetition. It does not provide facilities such as 

input/ output. 

Used as a specification language. The choice of facilities that SSL supports must 

ensure that it is not considered to be a general-purpose programming language. 

• Support the expression of constraints .  Each SSL class may defme a constraint. A 

constraint is a boolean expression that is a function of the state of an object. 

Support re-use. SSL is an object-orientated language. Re-use is supported with 

inheritance and polymorphism. 

SSL Specific Requirements 

• Prmr:ide the following basic primitive types :  Real, Integer, Boolean and String. SSL 

supports primitive types to facilitate time-efficient execution of SSL. 

• Provide facilities for collating sequences of  items. The support should be as simple as 

possible and at least permit adding and removing items as well as the traversal of a 

sequence. 

Address the global namespace pollution common in other meta-CASE tools. 

• Provide a clean separation of interface and implementation. The public interface of 

SSL classes only consists of a collection o f  operations. The attributes and methods 

are not accessible to other classes. 
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• Support multiple entry points. Conceptually the execution of an SSL description may 

start at any operation. 

SSL does not require: 

Input/ output facilities. Supporting input and output is the responsibility of NDL. 

• Concurrency4". Supporting concurrency in SSL could have several negative effects: a) 

the language becomes more complex; b) the language resembles a general purpose 

programming language; c) the MOOT meta-model becomes obscured. 

5.5 Semantic Specification Language 

5.5.1 Overview 

SSL is an object-orientated language, with extensions to explicitly support the description 

of methodologies. It is an executable specification language whose primary purpose is to 

provide all the facilities of the MOOT meta-model. SSL is strongly typed, s tatically typed 

checked, implements late binding, provides a module system and supports a simple 

automatic memory management system. 

The execution profile expected of SSL is: 

A large number of messages 

• Each message will take a small amount of 

• Frequent creation and destruction of objects 

5.5.2 MOOT Meta-Model 

to process 

A model of the MOOT meta-model (a meta-metamodel) has been derived and is shown 

in Figure 5-2. 

SSL Classes 

SSL classes have an interface4\ a collection of attributes and a collection of methods. 

Multiple inheritance is supported; an SSL class can inherit from one or more super-

The current mctcHllodcl supports a one-to-one between a class and its interface. 
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classes. The interface of an SSL class consists o f  the list of operations and defines the 

name of the class. Operations are overloaded based on the order, number and type of 

parameters in the parameter list. Each method corresponds to one of the operations in 

the interface of the class. A method consists of a collection of statements. The types of 

statement support sequence, selectio n, iteration and assignment. 

Name 

0 • Message 

Bu1lt-1n Type Instance 

Message Send Message Target 
Current ProJeci 

Current Mode! 

5-2 .\fOOT meta -metamodel 

Constraints 

In addition to attributes and operations, each class may define a constraint for its 

instances (an invariant which is a function o f  an object's state) . The constraint 1s 
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evaluated after an object receives and processes a message. If the constraint is violated the 

state o f  the object is restored to the state it was in prior to the message being invoked. 

SSL Objects 

An object contains a set of values, which correspond to the attributes defined by its class. 

It also contains a collection of objects that correspond to the super-classes of its class. 

Values can be instances of built-in types (integers, strings and so on), iterator instances, 

collection instances and objects. The state of an SSL object only changes as a result of 

accepting and processing messages. 

Extensions to support the description of Methodologies 

The MOOT meta-model defines a set of built-in variables called current_prqject, 

cmrent_model and current_diagram. The values of these variables define the context the user 

is in as they carry out actions at the user interface. They are analogous to the self in 

Smalltalk and this in C + + .  Figure 5-3 shows how the values of these variables  define the 

context (the project, model and diagram) the user is in whenever they perform an action. 

The user has selected an active area on a symbol in Figure 5-3. As discussed in chapter 4, 

an action is generated and propagated to the MOOT core (see Figure 3-1 1  Architecture 

of the MOOT prototype) . Current_model is a reference to the model that is the context 

from which the action occurred. Current_diagram is a reference to the corresponding 

diagram of  the curmt_model. Finally current_prqject is a reference to the software engineering 

project. 

Expressions 

5-3 The built-in SSL variables 

The M OOT meta-model provides boolean, integer, real and string fundamental types. 

The collection and iterator types together provide support for sequences of items. 

Expressions include values, self, the built-in SSL variables, unary and binary expressions 
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and message-send expressions. Messages may be sent to an object, a collection instance 

and an iterator instance. Each message has a name and a set of arguments. The message 

name corresponds to the name of an operation. 

5.5.3 Module System 

All SSL classes belong to a module. All module names must be unique in the scope of the 

CASE environment. Modules are implemented in two parts in SSL. Interface modules 

provide a public list of class interface definitions. Each class interface only defines the 

class name, a set of operations and any super-classes. Implementation modules provide 

the corresponding implementation for each class. This includes  the attributes and 

methods implemented by each class. The SSL module 1s similar to a Booch Class 

Category, a C++ namespace, an Ada95 package and a category in the Smalltalk 

programming environment. There are two major differences: 

SSL modules are separated into interface and implementation modules 

• SSL interface modules only define a collection of class interfaces 

5.5.4 Memory Management 

SSL provides a simple, automatic, memory management system. It is a simple adaptation 

of the reference counting algorithm Qones and Lins, 1 996).  Each SSL object maintains a 

count of the number of other objects that reference it. SSL objects are given an initial 

count of 1 ,  as are created. The count is incremented for each new reference to 

object and decremented each time a reference is broken. SSL objects delete themselves, 

once their reference count reaches zero. This scheme has been adopted because: 

It distributes the memory management overhead by interleaving the garbage 

collection with the execution of SSL. 

The response time, with respect to execution of SSL, is regular. 

The execution profile expected of SSL (high number of requests for computation and 

small execution time of each computation) suggests that the memory overhead of 

storing reference counts and the computation overhead from updating reference 

counts would not be an issue. 
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SSL objects are created by sending a create message to a class42• There must be at least 

one create operation implemented for each class. Create operations are implicitly meta­

level operations who se sole purpose is to provide an appropriate initial state for SSL 

objects. Create operations may be overloaded. 

Each class may define a single destroy operation. Once the number of references to an 

SSL object reaches zero a destroy message is automatically sent to it and the SSL object is 

released. Destroy messages are automatically sent to the objects that correspond to the 

super-classes of its class .  

5.5.5 Messages 

A mess age in SSL, as in other object-orientated languages, represents a request to 

perform an operation. A message has two parts: a message selector and an argument list. 

The message selector c orresponds to the name of an operation to be performed. The 

argument list is a collection of SSL objects, collections, iterators and simple values 

required to perform the operation. 

All messages in SSL are dynamically bound. Late binding is implemented via a method 

lookup table per class to avoid the run-time overhead of searching the inheritance 

hierarchy for an appropriate method to bind to a message. 

5.6 Semantic Specification Language Defmition 

The following discussion uses a simple implementation of the Sieve of Eratosthenes4' in 

SSL to aid the illustration of the facilities SSL provides. The syntax of SSL is presented by 

using examples in the remainder o f  the chapter. The SSL grammar is presented in 

appendix HI. Two complete SSL implementations of the Sieve of Eratosthenes are given 

in appendix IV. 

SSL provides the following simple built-in types: Integer, Real, Boolean and String. It also 

provides two parameterised types: collection and iterator. The definition of a class 

introduces a new type. New types are also added by providing concrete parameters for 

the collection and iterator types. 
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SSL variables, whose type corresponds to a class44, are similar to variables in Smalltalk 

and Java and contain a reference to an SSL object. These variables are initialised to a 

special value (no_oqjec� before their first use. Variables of a collection type also contain a 

reference. Variables of an iterator type and variables of a simple type contain values. 

Variables of a class type may contain a reference to an SSL object defined by the class 

type of the variable itself. It may also contain a reference to an object defined by any of 

the sub-classes of the variable's class. The only messages which may be sent via a variable 

of class type are those that are defined in the interface of the class of the variable, or one 

of its super-classes. This restriction is imposed because SSL is statically type checked. 

5.6.1 Collections 

SSL provides built in polymorphic collection and iterator types. These two types operate 

together to provide sequences of elements of an arbitrary type. SSL collections support 

insertion deletion and traversal of collections. No particular ordering o f  items in a 

collection can be assumed. The interfaces of the Collection and Iterator types are given in 

Figure 5-4. 

SSJ . collection and iterator tYpes 

A collection item type may be any of the built-in SSL types (including iterators and 

collections) as well as SSL objects. The interface of the SSL collection and iterator types, 

as shown in Figure 5-4, is the minimum needed to support collections. 

5.6.2 Simple Expressions 

The types of expressions in SSL include: simple values,  special SSL values, arithmetic 

expressions, relational expressions, boolean expressions, string expressions, scope 

resolution expressions, create object expressions and message send expressions. 

1 !  Such Yariabks arc referred to as ·variables of class t\'pc.' 
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Simple Values 

SSL values may be any of the following: 

• A constant. This includes constant integer values (e.g. 1 0) ,  real values (e.g. 10.2), 
b oolean values (true or false) and strings (e.g. "a string'') 

• The result of a message 

• A reference to an attribute, a local variable o f  a method or a message argument 

• Self, which is a reference to the current object 

• One of the built-in, pre-defined variables. These are current_project, current_model 
and current_diagram 

The following special values are also defined in SSL. 

True 

Fa l s e  

Boolean true 

Boolean false 
No_ob j e c t  Empty reference to an object 

Arithmetic Expressions 

SSL supports the following arithmetic operators: 

+ 

* 

Addition 

Subtraction 

Multiplication 

I 

D i v  

Mod 

Division 

Integer division 

Integer modulus 

All operators are overloaded for the basic built-in arithmetic types except the div and mod 

operators, which are only defined for integers. 

Relational and Boolean Expressions 

SSL supports the following relational operators: 

< 

> 

> =  

Less than 

Greater than 

Greater than or equal to 

< 

< >  

Less than or equal to 

Equal to 

Not equal to 

The values of all built-in types may be compared with the relational operators. Both of 

the values compared must of equivalent type. The type of a relational expression is 

boolean. The following boolean operators are als o  supported: 

And 

Or 

Not 

Logical conjunction 

Logical disjunction 

Logical negation 
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These operators may only be used with boolean values and expressions. 

String Expressions 

Strings concatenation 1s performed with the overloaded addition ( +) operator. The 

relational operators may also be used with strings, as expected. 

Scope Resolution Expressions 

Module scope resolution operator 

Class scope resolution operator 

The module scope resolution operator is used to qualify a class name with its owrung 

module to overcome class name clashes. The class scope resolution operator is used to 

qualify a message name with a class to overcome message name clashes. For example two 

modules may define a class with the same name. They can be referred to by fully 

qualifying the class name with the module name (for example aM.odu/eName::aC/assName) . 

The class scope resolution operator can be used in an analogous way (for example 

aC/assName:anOperationName) . 

Message Send Expressions 

Message send operator 

A message-send expression is composed of three parts: an object (the message receiver), 

the message-send operator and a message. The message consists of a message name and a 

list of arguments. The message-send operator is used to bind the message to a particular 

operation of the receiving object. The type of a message-send expression is that of the 

result type of the requested operation. A message-send expression can be used anywhere 

a value of its type may be used45 (e.g. on the right hand side of an assignment, or as an 

argument to another message) . Message-send expressions are evaluated eagerly46; all of 

the actual arguments are evaluated before the message is sent. 

Create Object Expressions 

Objects are created in SSL by sending a create message to a class. The result is the 

creation of an instance of the class the message is sent to. Each class may implement 

41 Currently message� that rcrurn more than one object a� a result may onh- appear on the right hand �idc of an 

a»ignment statement Thi� rc�triction is in place ro �reed up the implementation. 

41• . \I! argument� arc evaluated fir�t. before the message-send expression is evaluated. 
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several create operations. They are overloaded by the order and type of the arguments. 

The following example illustrates how objects are created. 

1 1  a L i s t  i s  o f  type l i s t  

aLi s t  = l i s t . c rea t e ( ) ; 
aL i s t . c o n s ( l i s t i tem . c re a t e ( 1 0  ) ) ; 
1 /  ano t h e rL i s t  i s  o f  type l i s t  
anotherL i s t = l i s t . c r e a t e ( a L i s t  ) ; 
1 1  ani t em i s  o f  type l i s t i t em 

ani tem l i s t i t em . c r e a t e ( 2 0  ) ; 

anotherL i s t . c ons ( a n i t em ) ; 

5.6.3 Interface Module 

interface module provides a public collection o f  class interfaces. All interface modules 

must have unique names. The names of classes defined within each interface module 

need only be unique within the scope of the module. 

Each module starts with the module keyword and is followed by a name. A 'uses clause' 

declares the modules and classes that are used in a module. Class names are always 

qualified by the name of the module they are defined in. Using a class name without 

qualification is a shortcut for identifying a class defined within the current module. 

modul e  modu l eName ; 

uses o t h e rModu l e : : o t h e r C l a s s ,  a n o therModu l e ; 

This uses clause specifies that the class otherC/ass, and any of its sub-classes, may be used 

within moduleName, It also declares that any of the classes defined by the module 

another}v1odule may be used. A 'uses clause' can be used to introduce a local name (an alias) 

for a class. The scope of the alias is the module the alias is defined in. 

module MyMethodo l o gy_Model_El emen t s ; 

uses OOM_A_Model E l emen t s : : c l a s s  
uses OOM_B_Mode l_E l ement s :  : c l a s s  

OO_A_c l a s s ;  
OO_B_c l a s s ; 

In this example two modules that both define a class called class are used. Two local 

aliases (OO_A_class and OO_B_class) are introduced as a syntactic convenience. 

5.6. 4  Class Interface Definition 

A class interface defines the set o f  operations that may be performed by an instance of a 

class. It consists o f  a class name, an optional list of super-classes and a list of operations. 
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c l a s s Name : s uperC l a s s , anotherSuperc l as s  

integer o p e r a t i onOne ( )  

integer operat i onOne ( integer X ) 

operat i onTwo ( )  
oper a t i o nTwo ( integer X ,  integer Y 

In this example the class className has two super-classes (supnClass, anotherSuperclass) . It 

also defines four operations. The operations are overloaded based on the operation name 

and on the order and type of the arguments. 

5.6. 5  Implementation Module 

Each interface module has an associated implementation module, which defines the 

implementation of each class listed in its corresponding interface module. 

The implementation module starts with the keyword module and is followed by its name. 

The name of the implementation module is the same as its corresponding interface 

module. Implementation modules may also have zero or more uses lists. The rest of the 

module consists of  a list of class definitions. 

5.6.6 Class Definition 

Each SSL class definition in the implementation module corresponds to an SSL class 

interface in the interface module. An SSL class definition consists of a class name 

followed by the definition of the attributes, methods and an optional constraint. The 

following is an example that shows a definition of a list class (from the Sieve of 

Eratosthenes example in appendix IV), where the method bodies are empty. 

l i s t  

attribu t e s  

l s tn o d e  l ;  

operat i on s  

new ( ) { }  

cons ( integer va l u e  ) { }  

l i s t i te ra to r  f ront ( )  { }  
t a i l { )  { }  

boolean i sEmpty ( )  { }  

:-l-J Partial SSL implementation of  a list class 
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The attributes section consists of zero or more attributes. The type of an attribute may 

either be a built-in SSL type, a class, a collection or an iterator. The aggregation relation in 

Figure IV-1 Sieve of Eratosthenes version 1 ,  is captured by the listnode attribute I in 

Figure 5-S. The operations section lists the implementation of the operations (the 

methods) in the class interface.  Each SSL class may optionally define a single constraint, 

which is a list of boolean expressions that are functions of the state of an SSL object. 

Evaluating the constraint for an object includes evaluating the constraints defined in the 

class of the object and in each super-class. 

5.6. 7 Methods 

The methods for an SSL class are defined inside the body of the class. Each method 

definition has five parts: a result type, a name, a formal argument list, a local variable list 

and a body. 

The formal argument list follows the method name and is a comma-separated list of type 

-argument name pairs. All arguments are passed by value. Variables of simple built-in SSL 

types and iterators contain values whilst variables class and collection types contain 

references. The formal argument list is optionally followed by the definition of any local 

variables that are used in the body of the method. Finally, the method body consists of a 

seguence of SSL statements. 

SSL methods may return zero or more objects as a result. In the following example the 

class aC!ass defines four methods, each of which returns a different number of objects as 

a 

a C l a s s  

attributes 

operat ions 

methadOne ( )  { }  
integer me t h o dTwo ( )  { }  
( integer , integer ) met h odThre e ( )  { }  
( integer , integer , intege r )  me thodFou r ( )  { }  

A complete SSL class implementation o f  the list class 1n Figure IV-1 - Sieve of 

Eratosthenes version 1, is given in Figure S-6. 
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l i s t  

{ 
attributes 

l i s tnode l ;  

operations 

new ( )  { l = no_obj ect ; 

cons ( integer va l ue ) 

l i s t i  t ern i ;  

i l i s t i t em . create ( va l ue ) ;  

l l i s t n o de . create ( i ,  l ) ;  

i s t i t era t o r  f ront ( )  { 
return l i s t i terator . create ( l ) ; 

ta i l  ( )  

i f ( not ( l = no_obj ect ) ) 

{ 
l . next ( ) ; 

boolean i s Empty ( )  { return no_obj ect ; } 

'i - 6  - SSJ , implementation of the list class 

Create Methods 

The purpose of create methods is to provide an appropriate initial state for newly created 

objects. An object is created, in SSL, by sending a create message to a class. The create 

message names one of the create operations in the interface of the class. This causes the 

corresponding create method, deflned by the class, to be executed. 

The default r behaviour of sending a create message, with no arguments, is to return a 

new instance, which has all attributes of class and collection type initialised to no_of?ject. 

This default beha·viour can be replaced by implementing a create operation that takes no 

arguments. 

Each class may implement multiple overloaded create operations. Create operations are 

overloaded by order and type of arguments. The example in Figure S-7 shows the 

r . \ default create if one does not exist. 
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implementation of a class (aCiass) that defines two create operations. The first initialises 

the attribute anlnt to zero. The second initialises anlnt with the value of its single integer 

argument. 

a C l a s s 

attributes 

integer an i n t ; 

operations 

c r e a t e  ( ) 
{ 

anint 0 ;  

c r e a t e ( integer I ) 
= >  superC l a s s . c r e a t e ( I ) , 

ano t h e r S uperC l a s s . c r e a t e ( I + 1 0  ) ; 

anint I ;  

The super-classes of a class are initialised by sending a create message to each super-class. 

The second create method in Figure 5-7 shows how these create messages are specified 

(the super-class create lis�. The SSL compiler is responsible for ensuring that the super-class 

create list is correct. 

Destroy Methods 

A destroy message is automatically sent to an object when the number of references to it 

reaches zero. Destroy messages received by an object with one or more references are 

ignored. 

A class may only implement the destroy operation once. The purpose of the destroy 

method is to permit an object to perform any necessary tasks before it is released4B. The 

default4'1 behaviour of the destroy operation is to assign the special value, no_of:fect, to all 

variables o f  class and collection type. The destroy o peration must be explicitly 

implemented if any other behaviour is required. 

1"  Thts would include task> such <Js demise. 

,,, The SSl . a default of the if one does nor 
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5.6.8 Statements 

The following statements are available in SSL: 

Message send 
I f  

Message Send Statement 

Return 
Loop 

Assignment 
Debug_Print 

The message send statement is a special case of  a message-send expression where the 

message being sent does not return any instances as a result. 

Return Statement 

The return statement signals the end of execution of a method. The value returned must 

match the return type of the method. A method may contain more than one return 

statement. Methods that do not have a return type do not require a return statement. 

Assignment Statement 

The assignment statement is used to update the value of an 1-value. L-values include 

attributes ,  method parameters and variables local to a method. The right hand side of an 

assignment statement is an expression. The result of evaluating the expression, the r­

value, is used to update the 1-value. The types of the 1-value and r-value must be 

compatible. An 1-value may also be a tuple, for assignment of the result of a message that 

returns more than one result. In the following example an object is sent three different 

messages that each return three values as a result. 

( X , Y , Z )  aPoint . ge tC a r t e s i an O r d i nates ( ) ; 
( r , the t a , Z )  a P o i n t . getCy l i nd r i c alOrdinate s ( ) ;  

( r , the t a , a P o i n t . g e t Sphe r i c a lOrdi n a t e s ( ) ;  

Tuples are an additional type in SSL that is currently only supported with the assignment 

statement and return types of methods. 

If Statement 

The if statement consists of the if reserved word, a condition, a statement block and an 

optional else part that consists of  the else keyword and a statement block. The condition 

must be a boolean expression. I f  the condition evaluates to tme, then the if statement 

block is executed.  If the condition evaluates to false, and there is an else part of the 

statement, then the else statement block is executed. 
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Loop Statement 

The loop statement consists of the loop reserved word followed by a loop body. The loop 

body consists of a statement block that contains a single endloop clause. The endloop 

clause consists of the reserved words endloop when, followed by a boolean expression. The 

endloop clause may appear anywhere in the body of the loop statement. The loop body is 

repeatedly executed until the endloop condition is true. Execution continues from the 

statement following the loop. Figure 5-8 shows the implementation of the findprimes 

method of the sieve class in Figure N -1  - Sieve o f  Eratosthenes version 1 .  

I I f i nd t h e  

f i ndPr ime s ( )  

integer s t ep , 

l i s t i t e ra t or l ;  
l i s t i t em i ;  

numbers c o n t a i n e d  in the l i s t  i n t s  

loop 

{ 

top div 2 ;  

t ;  

s k i p ( ints . f ro n t ( ) , s t e p  2 ) ; 
i f ( not . end ( )  ) 

l .  i t em ( ) ;  
i f  ( l .  ( )  

{ 
mark ( , s t ep ) ;  

s tep s t ep 
endloop when ( s t ep 

Debug_ Print Statement 

t ) ; 

and if o;tatemenrs 

The debug_print statement exists for debugging purposes during the development of 

SSL. It  was added since SSL itself does not need to support any input/ output. The 

debug_print statement evaluates its single argument and displays the result onto the 

standard error stream. Both the expression type and the result are displayed. 

5. 7 SSL Compiler 

The SSL compiler translates SSL interface and implementation modules into SSL Byte 

wde (SSL-BC). The main components of the SSL compiler are presented in Figure 5-9. 
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Persistent store 

Compiled SSL SSL sou rce 

Figure 5-9 - SSL compiler 

SSL source code and compiled SSL are both maintained in the persistent store. The 

persistent store provides version control facilities and ensures mutually exclusive access 

to SSL classes. The Store Proxy isolates the compiler from the persistent store. 

The synta..x analyser is responsible for performing lexical analysis and syntax checking. 

This component was built using PCCTS (Purdue Compiler Construction Toolkit) (Parr, 

1 997; PCCTS, 1 99 8) .  The parser i s  an LL(k) parser, which dynamically adjusts the look­

ahead depth (k) as it parses. 

The semantics analyser is responsible for performing type checking. It also builds and 

checks the method lookup table for each class. 
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The code generator is responsible for translating SSL into SSL-BC for each class and 

compiled interface modules. The code generator can also be used to print the annotated 

abstract syntax tree and to produce SSL assembler"". 

Figure 5-9 also shows the steps in the compilation process. These are: 

1 .  The compiler i s  invoked. It accepts a list o f  module names to be compiled as input. 

Each module is compiled in two phases. In the first phase steps 2 - 6 are performed 

for the interface module. In the second phase steps 2 - 6 are performed on the 

corresponding implementation module. 

2. The compiler determines if the interface and implementation module source code has 

been updated since the last time it was compiled. It does this by asking the store 

proxy to compare the modification dates of the source code and compiled module. If 

the source need to be compiled the compiler asks the store proxy to retrieve the 

interface and implementation module source code from the store. 

3. The lexer and parser then process the module source code and build an abstract 

syntax tree. Any lexical and syntax errors are reported. 

4. The type checker traverses the abstract syntax tree and annotates each node in the 

tree with type information. It also generates method lookup tables from class 

interface definitions in the interface module. This includes checking for operations 

that cannot be disambiguated from each other and detecting the inheritance of the 

same operation from two or more super-classes. Type errors, ambiguous operations 

etc are reported. 

5. The code generator traverses the annotated abstract syntax tree generated by the 

semantics analyser and generates SSL-BC code for each class and interface module. 

6. The compiler then asks the store proxy to place the compiled SSL into the persistent 

store. 

7. Finally the results are reported. This will be a simple list of all the interface modules 

and implementation modules that were successfully compiled. 

A description o f  the implementation of the SSL compiler is given in appendix V1. 

human readable \Tf,;ton of SSL-B< : that i,; for purpo,;c,;. ! t i,; not 

di,;cus,;cd further in the thc,;i,;. 
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5.8 Executing SSL 

Figure S-1 0 shows a more detailed Vlew of the components of the methodology 

interpreter and the tool manger. 

Methodology interprete r 

SSL virtual 
machine 

Class 
client 

Object 
client 

SSL class 
server 

r----...., 

Server proxy 

Action 

Message request 

SSL object 
server 

2 

Persistent store 

Result 5 

Tool manager 

Message 
request broker 

NSM table 

U ser projects M ethodologies 

Figure 5- 1 0  - Processing actions 

There is one tool manager for the overall system, which acts as a server for multiple 

virtual machines. The tool manager insulates the rest of the system from the persistent 

store and the CASE tool clients from their corresponding virtual machines. 

The tool manager maintains an instance of the virtual machine for every active user. Each 

instance of the SSL-VM has only one thread of control. This means that incoming 

messages are queued until the SSL-VM completes processing the current message. 

The Message Request Broker accepts message requests from clients and messages sent as 

a result of the interpretation of a method. It is responsible for ensuring mutually exclusive 
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access to objects (through object level locking) . It is also responsible for detecting 

deadlock situations and resolving them in a manner transparent to the message senders. 

The SSL class server maintains a cache of SSL classes. If a requested class is not present 

in the cache it is retrieved from the persistent store. This class replaces the least recently 

requested class in the cache, if the cache is full. 

The SSL object server is responsible for caching SSL objects in a manner similar to the 

SSL class server. It provides a transparent reference counting mechanism and garbage 

collection for SSL objects in the persistent store. It also maintains consistency between 

copies of the same object. 

The SSL class client maintains a cache of SSL classes in a manner similar to the SSL class 

server. The difference is that the class client is executing as part of the same process as 

the virtual machine. The purpose of this cache is to minimise inter-process 

communication. 

The SSL object client manages temporary (non-persistent) SSL objects. Any updates to or 

requests for persistent objects are passed directly to the SSL object server. Temporary 

objects that are assigned to attributes of persistent objects become persistent themselves, 

and are passed to the SSL object server to be placed in the persistent store. The 

Methodology Interpreter does not distinguish between temporary, local and persistent 

objects. Responsibility for all accesses and updates is delegated to the SSL object client, 

which determines if the operation needs to be passed to the SSL object server or dealt 

with locally. 

The following lists the steps taken in processing an action (see Figure 5-1 0) :  

1 .  The server proxy in the CASE tool client propagates an action at the user interface to 

the tool manger. The server proxy implements the communication protocol between 

the CASE tool client and the MOOT core. The message request broker initially 

translates the user action into a corresponding semantic action. 

2. The message request broker delegates the responsibility for finding this semantic 

action to an NSM table. The NSM table returns a message as a result. Note that each 

methodology has its own NSM table and that the role of the table is to provide a 
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mapping between notations and semantics descriptions. NSM tables are the topic of 

chapter 7. 

3. The message is propagated to the SSL Virtual Machine. The SSL-VM binds the 

message to a particular method and executes it. 

4. Any messages that are sent during the execution of the method are initially 

propagated to the message request broker. The message request broker is responsible 

for ensuring mutually exclusive access to objects and for detecting deadlock 

situations. 

5. The result of the initial action 1s returned to the CASE Tool client once the 

corresponding message found in step 1 has been processed. 

The message bandwidth between the message request broker and the methodology 

interpreter is high as the execution of SSL methods typically cause many messages to be 

sent. Whilst not an issue for the prototype 5 1 ,  it is an important consideration for the final 

MOOT system. 

The proposed architecture (Figure 3-1 0 - Proposed, top level, system architecture) could 

be implemented in many different ways. For example each component could execute as 

separate processes and could conceivably execute on different machines. It is more likely 

that the persistent store, the SSL class server and the SSL object server will execute as 

separate processes, possibly on separate machines. The tool manger and methodology 

interpreters will most likely execute as a single process, possibly on a separate machine, 

with one thread of control used for each methodology interpreter. 

5.9 SSL Virtual Machine 

Much work has been done previously on virtual machines for object orientated­

programming languages. Two examples are Smalltalk (Deutsch and Schiffman, 1 984; 

Goldberg and Robson, 1 983) and Java (Lindholm and Yellin, 1 997). The requirements 

for the SSL-VM were found to differ significandy from the virtual machines adopted in 

other programming language systems. The differences are: 

Each operation in the interface of a class can be used as an entry point. 

SI The prototype ha,; been primarily built to te>t the cfficac1· of the l\!OO'J' methodolo!-,'1' rcpre,;cnration ,;chcmc. The 

prororype implemcnrs the .\ lOOT core and pcrsisrcnt srorc a,; a single process. wirhout the use of threads. 
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There is only a single thread of control required in the SSL-VM. However multiple 

instances of the SSL-VM can be active at the same time processing messages from a 

common pool of SSL objects. 

Support for persistent objects and object-level locking is required. 

SSL is designed to be a specification language, and thus does not require many of the 

facilities of general-purpose languages. 

Existing virtual machines are too low-level, in terms of abstraction. 

Appendix VII describes the implementation of the SSL-VM. 

5. 9. 1 Requirements of the SSL Virtual Machine 

The SSL-VM is required to provide support for a multi-user environment. The SSL-VM 

must ensure that separate updates are not being performed on the same object at the 

same time (i.e. that mutual exclusion is guaranteed, at the object level) . This allows the 

possibility of a model being open for writing, but individual components in it being read­

only Qocked) .  A collorary of this is that the SSL-VM must be able to detect and resolve 

deadlock situations. 

5. 9.2 Architecture of the SSL Virtual Machine 

The SSL Virtual Machine has a stack based architecture (Figure 5-11) . 

SSL virtual machine 

stack 

reg isters 
projectl_j 
mod el 

d iagram 

instruction 
counter 

Figure 5- 1 1  - Architecture of the SSL virtual maclllne 

The stack stores message arguments and results, which allows nested message calls. It is 

also used to perform expression evaluation. All pushes onto the stack are balanced by 
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pops off the stack. The SSL-VM has an instruction counter which always points to the 

next SSL-BC instruction. The instruction counter is modified via instruction execution. It 

has three special registers (methodology registers) that each contain the SSL ID of the 

current project, model and diagram. These registers correspond to the SSL variables 

cumnt_pnject, current_!Jlode! and cumnt_diagraJJJ respectively. 

The SSL-VM provides explicit support for all the types available in SSL. All values are 

stored with the most significant byte first. The sizes for the SSL-VM types correspond to 

the sizes of equivalent types on the development architectures used (various 32-bit 

platforms). No final, long term, decisions about the sizes of these types have been made 

The SSL-VM types are shown in Table 5-L 

Type 

Boo lean 

Integer 

Real 

Collection 

Iterator 

Object ref•e:re11ce 

Size Comment 

One byte Value is  stored in the least significant bit 

Four bytes 

bytes 

Four bytes 

Eight bytes 

Four bytes 

Null terminated sequence of bytes 

The unique SSL ID of  a collection 

An SSL ID of a collection and an offset into the 
collection 

The unique SSL ID of  an object 

5. 9.3 SSL Virtual Machine Instruction Set 

The SSL-VM instruction set includes instructions for stack operations, arithmetic 

operations, string operations, comparison operations, conditional branching, issuing 

message calls and manipulating collections. Instructions may operate on the stack, local 

variables, message arguments, object attributes, the instruction counter or methodology 

registers. 

There are 29 instructions (Table S-2) . A complete list of all SSL-BC instructions, with 

explanations is given in appendix V. 

Instructions on the SSL-VM have an address mode and a type mode. The address mode 

specifies the location of any operands. 

147 



There are three address modes: 

• Implicit (no operand for this instruction) 

• Immediate (operand follows the instruction) 

• Indirect (a reference to the operand follows the instruction) 

The type mode is used to specify the data type that the instruction will operate on. The 

type modes supported on the SSL-VM include: boolean, integer, real, string, collection, 

iterator and object reference. 

DBG 

PSH 

ADD 

MUL 

MOD 

OR 

LSS 

BRT 

MGS 

END 

PRJ 

DGM 

Debug print 

Push 

Add 

Multiply 

onto stack 

Integer modulus 

Convert type 

Logical or 

Equal 

Less than 

Branch if true 

Message send 

Scoped message send 

End of collection 

Current project 

Current diagram 

RTN 

POP 

DIV 

NEG 

AND 

NOT 

GRT 

BRF 

FNT 

ITM 

MDL 

Return from message 

Pop item from stack 

Subtract 

Divide 

Negation 

Logical and 

Logical negation 

Not equal 

Greater than 

Branch if false 

Create message 

Front of collection 

Item from collection 

Current model 

Table 5�2 SSL�BC instruction set 

5.9.4 lntemal Representation of Classes, Objects and Methods 

All SSL classes and SSL objects have a unique ID. The creation of the unique IDs is the 

role of the persistent store. The design of the internal representation of SSL classes and 

objects relies heavily on the proxy pattern (Gamma et aL , 1 995). The SSL class proxy 
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encapsulates a reference to the Methodology interpreter class client and an SSL class ID. 

The SSL object proxy encapsulates a reference to the Methodology interpreter object 

client and an SSL object ID. All references to SSL objects and SSL classes are managed 

through proxies. The reference counting mechanism is implemented via the proxies. 

Representation ofSSL classes 

Figure 5-1 2  shows the components of an SSL class. An SSL class consists of a unique ID, 

a description of its attributes, a vector of super-classes, a method lookup table and a 

method table. 

SSL Ciass i D  

Attribute 
description 

S uperclasses 

Superclass proxy A 
Superclass proxy B 
Superclass proxy C 

SSL class 

Method lookup table 

A(} Self 

8() �
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f __ ___, 
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C
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_

s
_

s
_

p
-

ro
_
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-t 

'---'-'--
§L Class proxy A 
F(} Class proxy A --'-------' 
GO Class proxy C 

Figure 5- 1 2  - SSL class 

Method tabl e 

A() !Rn-'-FcO 

The SSL class ID corresponds to the unique fully qualified name of the class.  An ID is 

used instead of the complete class name to minimise the memory required to store SSL 

classes and SSL class proxies (which also contain an SSL class ID) .  The attribute 

description defines the number of attributes of each type the class has. Each class also 

contains a vector of all direct and indirect super-classes of the class. The super-class 

vector is a flattened version of the inheritance lattice with respect to the class and is 

generated by the SSL compiler. This approach implies some redundancy but simplifies 

class instantiation and the implementation of late binding. The method lookup table is a 

map of operations and SSL class proxies. The table contains all operations (including 

those inherited from super classes) accessible from the class. Each operation is mapped 

to an SSL class proxy that identifies where that operation is implemented. Finally the 

method table is a map of operations and methods. This table contains all the operations 

implemented (i.e. the methods) in this class. 
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There are several advantages to this design: 

• Accessing a leaf class in an inheritance hierarchy will not cause the retrieval of the 

entire inheritance hierarchy from the persistent store. The use of SSL class proxies 

ensures that a class will only be retrieved when it is actually needed. 

The method lookup table simplifies the implementation of late binding. The onus of 

building the lookup table, however, is on the compiler. 

Representation ofSSL Methods 

Figure 5- 1 3  shows the components of an SSL method. Each method has a name, 

arguments, local variables and a method body. 

Method Name 

Arg uments 
description 

SSL Method 

Locals variables 
description 

Figure 5- 1 3  - SSL method 

M ethod Body 

SSLBC code 

Constant str ings 

The method name is the same as the name of the operation that the method implements. 

The argument description defines the number of arguments of each type the method has. 

The local variable description defines the number of local variables of each type that the 

method uses. The method body consists of two parts: a block of SSL-BC code and a list 

of constant strings. The constant string list contains constant literal strings and class 

names that are used in the method. The block of SSL-BC code references a constant 

string in the string list via an absolute offset to the first character in the string. 

Representation ofSSL objects 

Figure 5-14 shows the components of an SSL object. It consists of a unique ID, a proxy 

for its class, its state and object proxies corresponding to the super classes of its class. 

The unique ID defines the identity of the object. Creating new IDs is the responsibility of 

the persistent store. The class of the SSL object is represented by an SSL class proxy. The 

state of the object corresponds to the values of the attributes defined by the class of the 
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object. The super-state of the object is a vector of SSL object proxies that correspond to 

instances of the direct and indirect super classes of the class of the object. 

State 
Booleans 
I nteg ers 
Rea Is 
Stri ngs 
Col lections 
lterators 
Object R efs 

SSL object 
SSL Object I D  

Class 
C lass proxy X 

S uper-State 
Super-object proxy A 
Super-obj ect proxy B 
Super-obj ect proxy C 

Figure 5-14 - SSL object 

5. 9.5 Processing Messages on the Virtual Machine 

Figure 5-15 is a more detailed view of the methodology interpreter shown in Figure 3-1 0, 

Figure 3-1 1  and Figure 5-1 0. It depicts the steps taken and the components involved in 

processing a message with the methodology interpreter and SSL virtual machine. The 

components involved include the SSL interpreter, the SSL Virtual Machine, SL classes 

and SSL objects. The reader is directed to appendix VII for a detailed description of the 

implementation of the SSL virtual machine. 

The SSL interpreter is responsible for managing the execution of a method on the virtual 

machine. It does this by executing the SSL-BC instructions contained in a method body. 

The steps taken to process a message are illustrated in Figure 5-1 5.  

1 .  The SSL interpreter receives a message and a proxy to the S L object to which the 

message has been sent. The interpreter obtains a reference to the SSL object via its 

proxy. It then pushes the SSL ID of the object onto the stack of the Virtual machine 

(this is the implicit 'self argument) .  

2. The SSL interpreter requests the object to accept the message. The result of the 

object accepting the message will be: a) a method suitable for processing the message 

and b) the state of the object. The state of the object is part of the context the 

message will be processed in. 
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Figure 5- 1 5  - Processing messages on the SSL-Thf 
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3. In order to find an appropriate method the object asks its class to bind the message 

to an appropriate method. The object fust obtains a reference to its class via the SSL 

class proxy it contains. It then delegates the method binding responsibility to its class .  

Th e  class uses its method lookup table to search for a proxy to the class that define s  

an appropriate method. I f  the proxy refers to a super class then the method will b e  

fetched from the super-class method table. Otherwise the method i s  fetched from the 

local method table. Note that the code generation and type-checking steps of the 

compilation process are responsible for ensuring that there will always be a method 

to bind to a message. 

4. The SSL interpreter receives the method and the state of the object as a result o f  

steps 2 and 3 .  I t  builds the context within which the method will be executed. This 

context is composed of three parts: a) the actual message arguments b) space for any 

local variables the method requires and c) the state of the object. The method and 

context are then used to execute the method. 

5. The SSL-VM performs a fetch-decode-execute cycle where each of the instructions in 

the method body is executed on the virtual machine in turn. These instructions will 

cause changes in the Virtual machine instruction counter, stack, and in the context. 

6. The method execution finishes once a RTN SSL-BC instruction is executed. The SSL 

interpreter then evaluates the object constraint to see if the object is still valid. I f  the 

constraint is satisfied then the object is updated with the new state that is contained in 

the context. Finally the result of the message is returned to the tool manager. 

5.10 Summary 

This chapter has described the development of SSL. The goals of SSL and the MOOT 

meta-model (the facilities of which SSL provides) were discussed. 

SSL is an object-orientated language that supports a subset of the facilities of a general 

purpose programming language. It is a statically type checked language that provides 

clean separation between 'class interface' and 'class implementation'. SSL supports 

dynamic binding, multiple inheritance, built-in primitive types, polymorphic collection 

and iterator types and provides a module system. 
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Chap t e r 6 

The Core Knowledge B ase and Generic Object Orientated 

Knowledge B ase 

6.1 Introduction 

Myth #9: Softv.rare re-use will just happen. 

Tracz 1988 

This chapter presents tv.ro libraries of re-usable methodology semantic description 

components that have been developed as part of this research. The libraries are called the 

wre lillowledge Base (CKB) and the Generic lkject Orientated Knowledge Base 

(GOOKB). The primary objective of these tv.ro libraries is to provide a pool of re-usable 

components that methodology semantic descriptions will be defined as extensions of. 

There are tv.ro major goals to be realised by this approach. Firstly, the effort required to 

define new methodologies is reduced. Secondly, all methodology definitions share a 

common sub-set, which provides distinct advantages in terms of reasoning about 

methodologies and re-using softv.rare engineering results. 

6.2 Context of the Core Knowledge Base and the Generic Object Orientated 

Knowledge Base 

The information processed by MOOT can be classified into three groups: 

• Meta-descriptions of 'methodology' and software engineering approaches (meta­

models of methodology, object-orientated development, information engineering etc.). 

• Descriptions of methodologies built using the methodology development sub-system 

(specific methodologies). 

• Descriptions of software built using the CASE tool sub-system (user projects). 

These categories of information are arranged in three tiers, as shown in Figure 6-1 .  

1 54 



y-;; MethOdology oe,.topmeot s-b-syotem 

Abstraction of 
Methodology 

Process J Modelling 
Language 

Document 

Methodology Developer Defines 

My Company's 
Methodology 

In-house Process Object Model 

Analysis Report Timing Diagram 

Software Engineer Creates 

My system 

My Analysis 
Report 

Assistance 
provided during 

development 
Process 

� CASE tool s-1>-system 

Vehicle C lass 
Diagram 

Engine T iming 
Diagram 

Abstraction of 
M odelling Language 

[ Diagram Relation 

Concept 

Inheritance and Aggregation 

My Company's 
Object Model 

Aggregation Inheritance 

""" ':' ( ,.,� ·�-��� 

My Representation 
of Vechicles 

; _ _  ., ·. ·-· '  

Car Is a 
Vehicle 

Vehicle has a 
Engine 

Figure 6-1 - The three tier structure of the information processed by 
MOOT 

1 55 



The methodology engineer's view is from the top where methodologies in tier two are 

defined in terms of tier one. This view is provided by MOOT's methodology engineering 

sub-system. The software engineer's view is from the bottom where a user project in tier 

three is defined in terms of tier two. This view is provided by the CASE tool sub-system. 

In the top tier of the structure depicted in Figure 6-1 is the meta-model of methodology 

described by the Core Knowledge Base (CKB). The classes at this level define an 

abstraction of methodologies. The Generic Object Orientated Knowledge Base 

(GOOKB), which is an extension of the CKB for object-orientated methodologies, is 

also defined in tier one52• 

Methodology engineers create their own methodologies in tier two by sub-classing SSL 

classes within tier one. They may also inherit from other classes previously defined in tier 

two. All methodologies in tier two have classes from the CKB defined in tier one in 

common as they are all directly or indirectly defined in terms of it. 

Software engineers build descriptions of software artefacts at tier three by instantiating 

the SSL classes defined in tier two. Thus the semantic content of a user project consists 

of a collection of SSL objects. 

6.3 Development of the Core Knowledge Base 

The Core Knowledge Base has been designed by adopting a meta-modelling approach. 

6.3.1 M eta-Model of Methodology 

Each methodology has a collection of modelling languages, documents and provides a 

process. 

A software engineer uses the modelling languages supported by a methodology to express 

and investigate the relevant abstractions in the problem domain. Various modelling 

languages are available to the software engineer to use. Each modelling language has an 

associated method, which at least is 'do not break the rules of the modelling language.' It 

may also include quality guidelines and direction for how a modelling language is best 

5! ( )rhcr software engineering approachc,; can abo be mcta-modcllcd and supported in tier one. Thi,; work i,; dj,;cus,;cd 

in section 9.-1 - Future \X'ork. 
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applied to build models of software. The method subsumes the guidelines, suggestions 

and strategies that may be contained in the description of the modelling language. The 

evolution of software development methodologies has resulted in many methodologies 

providing the same modelling language with variation in interpretation, application or 

appearance (Henderson-Sellers, 1 99 6) .  

Documents are produced during the process of  applying a methodology to a particular 

problem. These documents may vary in terms of  scope, content and their intended 

audience. The structure of these documents is not necessarily defined by a particular 

methodology. Company may choose to adopt an in-house standard for the 

documentation or may choose to use a more widely used document standard. 

A software engineering process is a suggested framework that the software developer 

applies whilst building a software artefact. The process may define the order with which 

models of the software are derived and may also provide quality guidelines. Ideally the 

process provides a systematic approach to constructing models. It may include guidelines 

regarding the suitability of modelling languages for particular tasks and suggestions and 

strategies for problem solving using the methodology. The process of a methodology is 

more than a suggested software development life-cycle. It also subsumes the guidelines, 

suggestions and strategies that may be contained in the description of the methodology. 

Figure 6-2 shows a meta-model of methodology. Methodology has a Process, zero or 

more Documents and one or more Modelling Languages. Each Process, Document and Modelling 

Language may be used in more than one Methodology. 

1 . : 

1 . .*  
Model l ing Language 

meta· model 

The relation between Methodology and Process and between Modelling Language and Method 

has been modelled with an association in Figure 6-2. Henderson-Sellers (1996) notes "We 
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have seen that, on the one hand, a process has three constituent parts, one of which is 

methodology and, on the other hand, that a methodology must contain a process. These 

two relationships between methodology and process are, on the face of it, contradictory. 

Which is right? Well they both are!" It is expected that software engineering processes 

may be attached to more than one methodology and methods to more than one 

modelling language. Moreover it i s  possible that a modelling language may be used in 

association with a different method, when used to model different classes of problem. 

For example the method used to apply a state transition diagram in the context of Booch 

object-orientated design, is likely to be different to the method used to apply the same 

modelling language as a representational basis for Computer Assisted Instruction systems 

(Feylock, 1 977). The research to date has yet to consider meta-modelling of software 

process and method in detail. Such research closely is related to the cognitive support of 

software engineering discussed in section 9.4 Future Work. 

Models do not in isolation. Different models can be used to investigate different 

dimensions of a problem. There may be relations between parts of a model and relations 

between different models in a software engineering project. For example a package on an 

UML class diagram may be exploded into a separate UML class diagram. Transitions 

correspond to the possible paths of navigation in a methodology. The classes Intra-Model 

Transition and Inter-Model Transition in Figure 6-3 represent these navigation paths. 

1 . . *  

Modelling lang uage 

0 . .* 

I ntra Model Transition 

6-3  - Transitions 

6.3.2 M eta-Model of ModeUing Language 

A modelling language provides one or more diagrams (for example a DFD model 

consists of a context diagram, D FD diagrams as well as process specifications). Diagrams 
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may contain zero or more model elements. Specialised model elements include concept 

(such as a class), relation (such as an association between two classes) and composite 

(such as a Coad and Yourdon Subject Area) . Model elements must exist in at least one 

diagram but may be used in several others. Figure 6-4 shows a meta-model of modelling 

language. 

Modei_Eiement 

Concepts, relations and 
composites must belong 
to at least one diag ram 

A composite should have at 
least one item in it, either a 
concept or another composite 

o.: 

Figure 6--t - �Ieta-model of modelling language 

A modelling language consists of one or more diagrams. Each diagram is part of one 

modelling language. An instance of Diagram contains a collection of instances of the 

modelling elements that are supported by the modelling language. A composite is a group 

of concepts and relations and other composites. Each modelling element must be used in 

at least one diagram. 

Relations have been represented with two classes, Relation and Relation Terminator in Figure 

6-4. The Relation Terminator class models the end points of a relation. It may be sub­

classed to implement specialist roles (e.g. whole, part, message sender, message receiver 

etc) . Each instance of Relation Terminator knows the relation it is part o f  and the concept it 

attaches itself to. A Relation object contains instances of Relation Terminator for each 

endpoint of the relation. Figure 6-5 illustrates the structures involved in representing 

relations with an example that uses the classes in Figure 6-4. 
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a) 

b) 

)) 
'1 Class A : ,  ', A Whole part relafon ' [ class B :  
'1' c t : � -----1 : R-elat1'on 1 L.  1, 

-JI
Concept ��q£1 , I , . 

'... -� ,// L------=-·--
' I \ . 

' I ' I � I \ , / 

\ Whole :Tf'elatio-� / \\ I� 
· Term i nator I ······· ......... ../ 

� --------� Term inator 
i 

Figure 6-S Representing a whole-part relation 

Figure 6-5 shows a whole-part relation expressed using Coad and Yourdon. This is a 

directed binary relation where one class (A in Figure 6-5) takes the role o f  'whole' and the 

other class (B in Figure 6-5) takes the role of 'part'. The two classes are represented by 

instances  of Concept. Each end of the relation is represented by an instance of Relation 

Terminator. The whole-part relation itself is represented by an instance o f  Relation. Figure 

6-5 describes the whole-part relation only in terms o f  the classes in Figure 6-4. In practice 

descendants of classes defined in the GOOKB, or in extensions of the GOOKB, would 

be used to represent s uch a relation. The object structure, however, would be same. 

Figure 6-6 shows how a simple diagram that represents composite pattern (Gamma et 

al. , 1 995) could be represented with instances of the classes in Figure 6-4. 

The Coad and Yourdon class diagram in Figure 6-6 (a) involves three concepts (the 

classes A, B and q and three relations (an inheritance relation between class A and class 

B, an inheritance relation between class A and C, and a whole-part relation between class 

and q. All of the concepts and relations belong to a diagram, which in turn is part of a 

'Coad and Y ourdon class diagram' model. 

Figure 6-6 (b) (i) shows the objects involved m representing the inheritance relation 

between class and class B in Figure 6-6 (a) . Each end of the relation is represented with 

an instance o f  Relation Terminator"'. inheritance relation itself is represented with an 

instance of Relation. Figure 6-6 (b)(ii) shows a similar collection of objects that represents 

the inheritance relation between class A and class C. The object structure highlighted in 

Figure 6-6 (b) (iii) represents the whole-part relation b etween class A and class C. 

to the ( XB and ( ;( l( li-\.B will be with the name ( ,f  the 
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a) 

b) 

'--::7-- ---�--! 
"· / ����������:.�ll����� A and B ·1• : CKB::Relation 

I L ..... 

6-Cl 

·· �·· m � m m m 

I A as a  rt o! C :  

I 
CKB::Relalion Terminator 

�--, --11 ! ""' 
i > 

•· ········· ····················· & ... d::" ................. . 
' Whole part relatio�tween A and C 

: j ' ··· ;:D 7 ········ · · �··· ... . .. ... . .  ) 

c .  
--- - --- Jil CKB :Concepfi 

/.___ _ __ _ 

: CKB::Ratation li--

'• ' 

. �l'th���e o! A : 

a class with instances of  classes 
from the Ch.B 

The collection of Relation Terminator objects that is maintained by each instance of the 

Concept class in Figure 6-6 corresponds to the roles that each concept plays in the diagram 

of Figure 6-6 (a) . For example, object A in Figure 6-6 (b) has links to three Relation 

Terminator objects. They represent the roles class A plays in the diagram o f  Figure 6-6 (a) 

(A as a super-class of B, A as a super-class of C, A as a part of q.  

The Coad and Yourdon 'class diagram' model of  Figure 6-6 (a) is represented by  the two 

objects in Figure 6-6 (b)(iv) . The instance of Modelling Language represents the whole 

model. This object has a link to a single instance o f  Diagram. The Diagram object 

maintains links to the three Concept objects, and the three Directed Binary Relation objects. 
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Figure 6-7 shows the meta-model of modelling language (Figure 6-4) in more detail. The 

Critic class in Figure 6-7 is discussed in section 6.3.3. 

Q , , '  1 , ,'  

CKB::D:agram 
- - -i 

: AddConcept(c CKB :Conc<lf't) CKB: Cntic 
, AddRelat10n(r CKB: : Relat:on) CKB: :Cnt:c 

�-, i AddComposite(c CKB::Composite) - C KB : :Critic' �-
0 :'/j isValid() CKB :Critic 

v, __ >-

-
: contains(mc CKB::Concept) Boolean Q __ • 

contains(mr CKR:Relat10n) Boolean 
i contains(mc CKB: :Composite) Boolean 

Q, . 

The meta-model in Figure 6-7 has been specialised in Figure 6-8 with additional classes 

that represent the various types of relations that may exist. They have been classified in 

terms of the number of concepts involved in the relation and the direction of the relation. 
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1sValid() 
AddToS!art() 

; AddToEnd() 
I Remove() 
I GetStart() 
GetEnd() 

1 
,.....__ 

---�� 

Attach(r : CKB: : Relation� Terminator) : CKB: :Critic 
Detach(r · CKB : Relation�Term,nator) : CKB: :Critic : 

f Remove() 
...... • L* 

----�-
-endA 

---� --------�- ·--�� ���.--............ ��--, --����n e  1 i CKB: :Relat1on Term1nator 
·----;, Cr��te ( m  . CKB::Concept, r 

-many1 ' Destroy() 
DetachConcept() 

1 .. • 1 . DetachRelatJon() 
••-�� -Elr1_9B-,......'1 getConcept() CKB::Concept 

-----.·--·-�------�.��-----�·- CKB:: Relat1on 

: String 
: CollectiOn<integer> 

The relations supported in Figure 6�8 include Binary Relation, Directed Binary Relation, One to 

Many Relation, Many to Matry Relation, Directed Many to Matry Relation and Nary Relation. 

Relation Terminator has been sub�dassed to provide a terminator that additionally provides 

a role name and cardinality. Figure 6�9 shows the classes in the Core Knowledge Base. 
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AddToStart() 

AddToEnd() 

GetStart() 

6�9 � Core 
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6.3.3 Handling Exceptional Situations 

The user performs many logical actions whilst applying the methodology process to build 

a description of their software artefact. These actions are related to tasks such as creating 

and updating models, searching the current and existing projects, checking their work for 

correctness, completeness, quality and so on. The situation in Figure 6-10 corresponds to 

the response to a request made by the user. 

User 
Interface 

Inference 
Mechanism 

(J-1 () - Situations 

Methodology 
Knowledge 

Base 

What occurs in response to the generation of a situation is under the control o f  the 

inference mechanism and is a function of the situation itself. It may be that a simple 

warning is passed to the user as a result or that some form of auto-correction is applied. 

For example consider the situation where a class is created with a name that is in use by 

another class. It is up to the methodology engineer to allow or disallow this situation. 

They may decide that this is a fatal error and disallow it. Or they may simply change the 

requested name automatically and report the situation to the user. 

Some of the situations and responses that might occur include: 

• reporting an erroneous state to the user 

• suggesting corrective action to the user 

• performing auto-correction 

• providing comments about the suitability of the users project, model or model 

element 

• providing a link to an aspect of the methodology process or the method of a 

modelling language 

The inference mechanism m Figure 6- 1 0 is outside the scope of the definition o f  

methodologies that existing meta-CASE tools provide. The ARGO project (Robbins et 

al , 1 996, 1 997, 1 998) has considered some of these issues with the development of a 
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methodology dependent CASE tool called ARGO /UML. The ARGO project refers to 

the facilities described here as 'cognitive support' for software engineers. Implementing 

these facilities in the CKB was relegated to future work once the existence of the 

ARGO /UML project was identified. 

Simple explanation facilities have been implemented with the Critic class in the CKB. The 

majority of the operations in the CKB return a result that is an instance of the Critic class. 

Critics are used to signal the result of an operation in the CKB. The Critic class hierarchy 

given in Figure 6-1 1 is an instance of the composite pattern (Gamma et al, 1 995) .  

state Boolean 

Explam() · Stnng 
changeExplanatJon(newDescription Stnng) 

6- 1 1  - Critics 

The abstract class Critic in Figure 6-1 1 encapsulates a boolean flag that signals the success 

or failure of an operation. The SimpleCritic class extends the Critic class with a string that 

contains an explanation. The explanation could be the reason an operation was 

unsuccessful or perhaps some feedback relating to the success of an operation. The 

CompositeCritic class maintains a collection of other critic objects. Composite critics are 

used in situations where the success of an operation is dependent on the result of several 

sub-operations. The explanation given 

component critic's explanations. 

a composite critic is the concatenation of its 

6.4 Development of the Generic Object Orientated Knowledge Base 

This Generic ikject Orientated Knowledge Base (GOOKB) is an extension of the CKB 

that contains classes that represent concepts germane to object-orientated methodologies. 

All object-orientated methodologies encompass the concepts of  encapsulation, 

information hiding and hierarchical decomposition, and are founded on the concepts of 
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classes, objects, inheritance, message passing and polymorphism. The nature of the object 

model is  consistent acros s  what is traditionally described as the four phases of the 

software development life-cycle: analysis, design, implementation and maintenance. There 

is a basic core of commonality between all object-orientated analysis and design 

methodologies due to this consistency even though each methodology has its own 

variations in its expression of the 'object model.' 

"The OMG Object Model defines a core set of requirements that must be 

supported in any system that complies with the Object Model standard. The 

set o f  required capabilities is called 

(QED, 1992) 

'Core Object Model' " 

This statement indicates that object-orientated methodologies have properties that are 

generic and can be modelled with the generic object-orientated knowledge base. 

The method used to derive the classes in the GOOKB was designed by considering 

existing comparisons of object-orientated methodologies. The objective was to identify 

potential methods for the comparative analysis and subsequent meta-modelling of object­

orientated methodologies. 

This research pre-dates the COMMA project, the development of UML and submissions 

to O MG OA&DF, all of which have a similar objective - understanding the common 

aspects of object-orientated methodologies .  

6.4.1 Object-Orientated Methodology Comparisons 

Many object-orientated methodology comparisons have been conducted in the past. 

Notable research includes (Amold et al., 1 991 ;  Brinkkemper et al., 1 998; de Champeaux 

and Faure, 1 992; Cribbs et al., 1 992; Fichman and Kemerer, 1 992; Fung et al., 1 997; 

Henderson-Sellers and Bulthuis, 1 996a, b, 1 997; Henderson-Sellers and Firesmith, 1 997 a; 

Hong et al. , 1 993; Hutt, 1 994; Loy, 1 990; Monarchi and Puhr, 1 992; Object Agency, 1 998;  

Rumbaugh et al., 1 991 ;  Sharble and Cohen, 1993; Taylor, 1 998; van den Goor et al., 1 992; 

Wirfs-B rock and J ohnson, 1 990; Y ourdon and Argila, 1 996) .  
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Existing methodology comparisons were analysed, evaluated and contrasted. A taxonomy 

of object-orientated methodology comparisons was subsequently derived as a result 

(Dasari et aL, 1 995; Mehandjiska et aL, 1 996a-c) and is presented in Figure 6-1 2. 

00 comparisons 

Evaluate OOM performance Compare features 
provided by OOM's 

l 
Build the same system with 

different methodologies 
Informal comparison Formal comparison 

Key: 
Objective 
Approach 

Identify a common superset Meta-model OOM's 

Identify common 'features' Identify a checklist of 
m odeling tools 

Figure 6- 1 2 - Taxonomy of object-orientated methodology 
compansons 

The purpose of methodology comparisons that have been conducted in the past was to 

either evaluate the performance of different methodologies or to compare and contrast 

their features. Attempts were also made to establish a common understanding of object 

technology. 

Typically the performance of an object-orientated methodology has been evaluated by 

modelling a single problem with multiple methodologies and comparing the resulting 

analysis, design and implementation models. 

The features provided by object-orientated methodologies have been compared formally 

by meta-modelling or informally by identifying common modelling tools and features.  

Comparisons of object-orientated methodologies have been classified according to the 

approach taken to the comparison and the objectives of the comparison. 
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The consideration of object-orientated methodology comparisons has highlighted the 

following issues: 

Each methodology has its own set of  definitions, processes, notations and tools. 

Concepts may be named differently for each methodology and the richness of 

support of a concept may vary between methodologies. 

Comparisons that involve a simple matching of 'terms' are inaccurate as many 

methodologies use the same 'term' but with distinct interpretation. Ideally a 

methodology comparison should involve matching the definition of 'terms' as many 

methodologies support the same concepts with different names. 

Comparing methodologies 'two by two' is time consuming, as the number of discrete 

methodology comparisons for a set of Nm methodologies is large (Figure 6-13) .  

For example, 1 225 discrete comparisons would be required to evaluate the fifty 

(Muller, 1 997) object-orientated methodologies that existed by 1995. 

n=Nm 

Ne } )n - 1 ) or 
noo] 

G- 1 3  \:umber o f  

Nm 
Nc = -( Nm - 1) 

2 

for 

• Researchers evaluating methodologies are o ften biased in review results as 

attempt to evaluate methodologies within the context of their own development 

background. 

• Many comparisons initially involve identifying a genenc list of properties that a 

methodology should support. Methodologies are then compared to this generic list 

of properties. Different researchers may choose a different set of representative 

properties and may use different definitions for those properties. Different 

comparison results are produced due to the difference in the choice of representative 

concepts and definitions. 
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6.4.2 Method used to Design the Generic Object Orientated Knowledge Base 

Based on the review of the methodology comparisons it was decided that the method 

used to identify the components in the generic Object Orientated Knowledge Base 

would: 

• Use a formal meta-modelling approach. This is an obvious decision given the desired 

result is a meta-model. 

• Use a small sub-set of methodologies. Whilst meta-modelling every object-orientated 

methodology would produce an appropriate meta-model it was decided that a small 

subset would be sufficient. Existing comparisons support the view that there is a 

high degree of similarity in the interpretation o f  object-orientated principles amongst 

object-orientated methodologies. 

• Be carried out relative to a set of methodology independent object-orientated terms. 

This was done to avoid a two-by-two approach to meta-modelling. The terms chosen 

a first-guess at components expected in the meta-model. 

The method adopted is: 

1 .  Identify candidate generic concepts defined by the Object Management Group 

(QED, 1 992; OMG, 1991 ,  1 992). 

2. Identify equivalent OMG concepts in a o.u1uo.•cL of object-orientated methodologies. 

Each methodology defines and uses distinct terms for the fundamental object­

orientated concepts. The concepts identified by the OMG provide a consistent 

vocabulary that is not methodology specific. 

3. Model the identified concepts in a single homogenous object-orientated meta-model. 

4.  Identify the portion of the meta-model that is  not methodology specific. 

5. Re-define the generic portion of the meta-model as an extension o f  the Core 

Knowledge Base. 

6. Implement the GOOKB in SSL. 
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In-house experience and knowledge of object-orientated methodologies, especially those 

that were new (such as UML and OPEN) and were not considered in the literature 

dealing with methodology comparisons, was used throughout the process. 

The results of the meta-modelling work in steps 1 - 4 is presented in (Mehandjiska et al., 

1 996a-c). The remainder of this section will cover the last two steps and present the initial 

design of the GOOKB as an extension of the CKB. 

6.4.3 Generic Object Orientated Knowledge Base 

Figure 6-1 4  shows the classes in the GOOKB that are used to represent the object­

orientated concepts of class and object. 

CKB: :Concept 
c-:--�- . .., .... ·c:cC--:KB:::-:--:: R:-e

�la
�
tio

··-
n _Terminator) 

' Detach(r : CKB: :Relation_Terminator) · CKB: :Critic 

0 . .  • 

GOOKB: :Operation 

GOOKB: : Be haviourProperty 
create(name : 
isval id() : Critic 

···················· ·· ·· ··· 

GOOKB: :Ciass 
create(name String) 
1svalid() · CKB::Critic 

1 changeCiassName(newName .  String) CKB: :Critic 
className() . String 
add( a GOOKB :Attribute) · int 
add(o GOOKB :Operation) int 
Instantiate() GOOKB :Object 
newAtlribute() . GOOKB: :Attribute 
newOperation() GOOKB: :Operation 

CKB:: Property : GOOKB: :Atlribute 

G- 1 -t  classes and 

0 . .'  

The GOOKB introduces four sub-classes of Concept. These are Of:ject, Class, Inteiface and 

Message (Figure 6-1 4) .  It also introduces two direct sub-classes of Properry. These are 

BehaviourProperry and StructureProperry. Operation and Attribute are defined as sub-classes of 

BehaviourProperry and StructureProperry respectively. An Inteiface consists of a collection of 
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Operations. A Class has a single Inteiface and has zero or more Attributes. A Class may have 

zero or more instances .  Each Oiject is an instance of a single Class. 

Figure 6-1 5  shows the classes 1n the GOOKB that are used to represent inheritance, 

aggregation and association. 

CKB::Relation .. Jerm1nator 
: CKB::Co ncept, r :  CKB::Relation) 

Destroy() 
Detach Concept() 
DetachRelation() 

i getConcept() : CKB::Concept 
' getRelatlon() : CKB:: Relation 

GOOKB::SubType 

cardinality : CollectiOn< 1nteger > 
rolename · String 

GOOKB: :Whole <(; 
ISval1d() : CKB: :Cnt1c 

6- 1 5 -

GOOKB::SuperType 
CKB::Directed_Binary _Relat1on 

1sValid() : CKB::Critic 
GetStart() : CKB::Relation_Terminator 
GetEnd() · CKB::Relation_ Terminator 

GOOKB::Assoc1at1on 

relations 

Association is defined as a sub-class of Binary Relation. Each end of an association is an 

instance of Ordinary Relation Terminator (or an instance of a sub-class) . The Ordinary Relation 

Terminator defines a role name and cardinality. Inheritance is defined as a type of Directed 

Binary Relation. Subclass and Superclass represent the terminuses of an inheritance relation. 

Aggregation has been defined as a Directed Binary Relation and as a specialised association. 

Whole and Part represent the terminuses of an aggregation relation. 

Figure 6-1 6  shows all of the classes that are defined by the GOOKB. 
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: CKB::Relation_ Terminator) : CKB::Critic 
Detach(r : CKB: : Relation_ Terminator) : CKB::Critic 

GOOKB: :Operation 

GOOKB :StructureProperty 
create(name : String) 
ISvalid() : Critic 

Destroy() 
DetachConcept() 
Detach Relation() 
getConcept() : CKB::Concept 
getRelation() . CKB::Relation 

GOOKB::SubType 

GOOKB: :Subclass 
isvalid() : CKB::Crit1c ."'( 

GOOKB::Ciass 
create( name : String) 
isvalid() : CKB::Cri!IC 
changeCiassName(newName : String) : CKB: :Critic 
className() : String 
add(a : GOOKB::Attribute) : int  
add(o : GOOKB::Operation) · int 
Instantiate() : GOOKB: :ObJect 
newAttribute() . GOOKB: :Attribute 
newOperation() · GOOKB::Operation 

GOOKB::SuperType ISValid() · CKB: :Critic 

isvalid() : Critic 

GetStart() . CKB::Relat1on_ Termmator 
GetEnd() . CKB: :Relation_ Termmator 

GOOKB::Object_Model 

6- 1 6  - The Generic Object Orientated 
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Figure 6-1 7  (a) shows a Coad and Yourdon class diagram that represents the composite 

pattern (Gamma et al., 1 995) .  Figure 6-6 previously showed how instances of classes in 

the CKB could be used to represent this modeL Figure 6-1 7  (b) shows how instances of  

the classes in  the GOOKB could also be used. The object structure described in Figure 

6-6 (b) and Figure 6-1 7 (b) is identical. The only difference is the class of the objects 

involved. 

a) 

b) 

I 
�KB-uperclass 

/ 11, 
/ \ 

i. GO�.I,�h�.;-

GOOKB::Ciass 
',�,��,,,, 

____
_

__ _ 

: GOOKB::Object 
Model 

" ' - �  

6 r -

11 
' /�? 11 ' 

/ 

an model v.1th classes from the 
GOOKB 
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The objects in Figure 6-17 (b ) (i) represent the inheritance relation between class A and 

class B in Figure 6- 1 7  (a) . The objects in Figure 6-1 7  (b) (ii) represent the inheritance 

relation between class A and class C in Figure 6-1 7 (a) . The objects in Figure 6-17  (b)(iii) 
represent the whole-part relation between class A and class C in Figure 6-1 7  (a). 

6.5 Implementing the Knowledge Bases 

A convention has been adopted for the SSL module structure used to implement the 

knowledge bases. Each methodology knowledge base is partitioned into the following 

modules, where KB Name is  the name of the knowledge base. 

KB_Name 

KB_Name_Model_Element 

KB _Name_Document 

KB_Name_Critic 

KB_Name_Model 

KB_Name_Transistion 

KB_Name_Process 

Figure 6-1 8  shows the SSL module structure of the CKB and GOOKB. 

G- 1 8  :\fodule structure o f  the CIQ) and GOOKB 

The GOOKB extends the CKB_Model, CKB_Mode!Element, CKB_Transition and 

CKB_Critic modules. The GOOKB_Patterns module provide s  support for patterns and is 

described in section 8.3 - Supporting Patterns. 
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6.6 Summary 

This chapter has presented the development of the Core Knowledge Base (CKB) and the 

Generic Object Orientated Knowledge Base (GOOKB). The CKB was derived using a 

meta-modelling modelling approach and implements a meta-model of methodology. It 

also provides simple facilities for cognitive support. The GOOKB was derived by meta­

modelling and implements a meta-model of concepts that are manifest with all object­

orientated methodologies 

One of the significant benefits of the Object-Oriented paradigm is the support for re-use. 

Re-use of methodology components is supported through the inheritance and 

aggregation mechanisms of the SSL class descriptions. The support of re-use in MOOT 

is fundamentally different to that of other Meta-CASE environments, which only support 

accidental re-use. The re-use strategy of MOOT is a reflection of the underlying meta­

model (Mehandjiska et al., 1 995a, 1 996a-c) . 
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Chapter 7 

Realising Methodologies and Software Engineering Projects in 

MooT 

We all agree that your theory is crazy, but is  it crazy enough? 

7.1 Introduction 

Niels Bohr 

Tills chapter presents the design and philosophy of the mechanisms for realising 

methodology descriptions and software engineering projects in the MOOT system. There 

are two aspects to this research: a) the development of a communication protocol 

between the MOOT core and CASE tool clients and b) the de-coupling mechanisms that 

have been developed to support late binding of syntax and semantic methodology 

descriptions. The syntax-semantic de-coupling is achieved in two parts: a) A table of 

methodology descriptions, which has been named the Methodology Lbcription Table 

(MDT) and b) a mapping table, which is named the Notation semantic Mapping (NSM) 

table. This chapter presents a high-level description of the communication between 

tool clients and the MOOT core. The MDT and NSM tables are also described. 

7.2 Interaction Between CASE Tool Clients and the MOOT Core 

The interaction that occurs between a CASE tool client and the MOOT core can be 

classified, based on the direction of the interaction. 

CASE Tool Client � MOOT Core 

The communication in this direction corresponds to a software engmeer trying to 

perform a task. Tills includes: 

Logging-in and logging-out 

Manipulating sofrnlare engineering projects, models and diagrams 
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• Creating, deleting and updating notation elements in diagrams 

Each action is implemented as a request that is sent from a CASE tool client to the 

MOOT core. 

MOOT Core � CASE Tool Client 

The MOOT core is responsible for processing requests from CASE tool clients. It is also 

responsible for determining if any other CASE tool client should be notified of the result 

of a successful request. Communication in this direction includes: 

Responses to requests generated i?J CASE tool clients 

Responses correspond to the MOOT core informing CASE tool clients of the 

success or failure of satisfying a request. Each and every request is matched by a 

response. 

Directives from the MOOT core to CASE tool clients 

Directives support the broadcast of information to CASE tool clients. This ensures 

that clients are aware of important events that have caused a change in the state of 

the software engineering projects they are using. Directives are matched by an 

acknowledgement by clients. Directives are assumed to be successful if received54• 

Figure 7-1 shows some of the requests, responses and directives that are transferred 

between CASE tool clients and the MOOT core. The requests and directives in Figure 

7- 1  have been subdivided into project-level requests and directives and model-level 

requests and directives. 

7.2.1 CASE Tool Client Requests 

The general requests, in Figure 7-1 ,  generated by the client include: 

• Getting a list of all the available methodologies, so a software engineer may select 

one and create a new software engineering project. 

• Getting a list of all the available software engineering projects, so a software engineer 

may open an existing project. 

'4 The 1\ lOOT core manage,; the ,;cmantic ,;rate of a software: cnginccring project. whil,;t a C.\SE tool clicnt manages the 

,;vmactic stare. The 1\ IOOT core. therefore, onlv generate,; Jircctivc,; that corrc,;ponJ to a corrcct ,;cmantic state. 
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General 
Requests 

Log-in 
Log-out 

List available 
methodologies 
List available 

projects 

Project Level 
Requests 

Create, delete, 
open, save and 

rename projects, 
models and 

diagrams 

CASE Tool Client 

Mode! Level 
Requests 

Create and delete 
Symbols and 
Connections 

Update Fields 

Responses 
Permission to 

perform requests 

Error Messages 

MOOT Core 

Model Level Project Level 
Directives Directives 

Create and delete Create, delete and 
Symbols and rename projects, 
Connections models and 

Update Fields diagrams 

� - 1 The communication benveen C_\SE tool clients and the 
_\fOOT core 

Project-level requests correspond to actions (at the CASE tool client) on whole projects, 

models and diagrams.  This includes creating, deleting, opening, closing and renaming 

software engineering projects, models and diagrams. 

General and project level requests are satisfied by the MOOT core the assistance of 

the Methodology description table (MDT). The :MDT table is discussed in detail in 

section 7 .3. 

Model-level requests correspond to actions, at the CASE tool client, on the elements of 

diagrams. This includes: 

• Placing new symbols and connections 

Deleting symbols and connections 

• Updating text fields 

The MOOT core uses an NSM table to translate these requests into semantic actions on 

the collection of SSL objects that define the state of  the user's software engineering 

project. NSM Tables are discussed in detail in section 7.4. 
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7.2.2 MOO T  Core Directives and Responses 

Project-level directives correspond to the MOOT core broadcasting the results of 

successful project-level requests to other CASE tool clients. This includes broadcasting 

the creation, deletion and renaming of  software engineering projects, models and 

diagrams to CASE tool clients. 

Model-level directives correspond to broadcasting two types of result to CASE tool 

clients. The first type is the result of successful model-level requests. The seconds relates 

to actions performed by the MOOT core, which have knock-on effects that must be 

propagated to CASE tool clients. The model-level directives (shown in Figure 7-1), 

generated by the MOOT core include: 

• Directing a CASE tool client to create a new symbol or connection on a diagram that 

corresponds to semantic elements (SSL objects) created by the MOOT core. 

• Directing a CASE tool client to delete a symbol or connection from a diagram that 

corresponds to semantic elements (SSL objects) removed by the MOOT core. 

Directing a CASE tool client to update a text field in a diagram based on the change 

in state o f  semantic elements (SSL objects) by the MOOT core. 

Project-level directives are generated the MOOT core with assistance of  the 

methodology description table. Model-level directives are generated the MOOT core 

with the assistance of NSM tables. 

The responses, in Figure 7-1 ,  are generated by the MOOT core as a result of processing a 

request. There are two types of response: 

• Permission to carry out general, project-level and model-level requests. Responses of 

this type include any relevant information that the CASE tool client requires. 

• Errors that correspond to disallowing a general, project-level and model-level 

request. An error response is always accompanied by an explanation. 

A communication protocol has been defined that supports the requests a CASE tool 

client may make of the MOOT core and the directives and responses the MOOT core 
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sends to CASE tool clients. It is simple hand-shaking protocol that has been 

implemented on top of TCP /IP. A description of the protocol can be found in (Adams, 

1 998). 

7.3 Methodology Description Table 

The Methodology Description Table (MDT) provides a list of methodologies supported 

by MOOT and corresponds to an index of the methodologies in the persistent store. 

Each element in the table specifies: 

• The SSL classes that define the methodology 

• The modelling languages supported by the methodology 

The diagrams supported by each modelling language 

The notation, defined in NDL, to use for each modelling language 

• An NSM table 

7.3.1 Composition of the Methodology Description Table 

Figure 7-2 shows the composition of the methodology description table. It is  a map of 

Methodology descriptions is indexed by methodology name. Each element of the 

table corresponds to a methodology in the MOOT system. The structure of  the MDT 

corresponds to the upper level of the Core Knowledge Base (CKB). A methodology has 

one or more modelling languages, one or more documents and a process .  Each modelling 

language provides one or more diagrams. 

Each methodology in Figure 7-2 has a name that is unique within the MOOT system. 

The methodology name is a descriptive string that identifies the methodology. Each 

methodology description in the MDT references: 

• 

• 

• 

A methodology type name that corresponds to its semantic definition 

An SSL class that defines its semantics 

An NSM table that defines the mapping between syntax and semantics 

A list of model descriptions 
1 8 1  



Methodology Description Table 

Methodology Description 

Methodology Name --•• Methodology Type Name 

I I : �SL Class Name 

...... ______ _,_. N S M  Table Name 

Model l ing Language Description 

Language Name SSL Class Name 

-----• NDL Notation Name 

Diagram Description 

Diagram Name SSL Class Name 

Document Name SSL Class Name 

Process Description '-----------, 

Process Name ---. SSL Class Name 

Figure 7-2 - fethodology Description Table 

The methodology type name is a descriptive string that identifies the semantic definition 

of a methodology55. Each SSL class that corresponds to a methodology definition (that is 

55 The methodology type name is cu.rrently automatically derived from an SSL class name. 
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the Methodology SSL class defined in the CKB, or one of its sub-classes) has a 

corresponding methodology type name. The name that a software engineer will see, for a 

methodology, is the conjunction of the methodology name and the methodology type 

name. Consider the situation where the MOOT system has two variants of UML with the 

same semantic definition, but with different syntax. The UML semantic definition has a 

descriptive type name (say 'UJ\1L'). Each methodology will also have a descriptive name 

(say 'Company X' and 'Standard') . The names that the software engineer will see, at the 

CASE tool client, would be 'Company X (UML)' and 'Standard (UML)'. The purpose of 

the methodology type name is to make it explicit to the software engineer that the two 

methodologies are both semantically identical. This approach also avoids the problem 

with other meta-CASE tools where a 'same semantics' with 'different notation' implies a 

'new methodology'. I n  MOOT this situation is simply viewed as 'same methodology' but 

'different notation' .  

Each modelling language description has a name that is  unique within the context of its 

methodology description. This name is a descriptive string that identifies the modelling 

language and is the name that a software engineer will see, at the CASE tool client. Each 

modelling language description references: 

An SSL class that defines its semantics 

• An NDL notation description that defines its syntax 

A list of diagram descriptions 

The modelling language description list defines set of modelling languages that are 

available with this methodology. It  is possible that the list may contain a subset of all the 

modelling languages defined in the semantic description. The name of each diagram 

description is unique within the context of the modelling language description. This name 

is a descriptive string that identifies the diagram and is the name that a software engineer 

will see at the CASE tool client. The diagram description maps the diagram name to the 

SSL class that defines its semantics .  

Each methodology may have one or more documents. The name of each document 

description is unique within the context of the methodology description. This name is a 
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descriptive string that identifies the document. Document descriptions map document 

names to the SSL classes that define them. 

The last element in a J\1DT entry is a process description. It consists of a descriptive 

name that identifies the process and an SSL class that defines it. Any references made to 

the process, at the CASE tool client user interface, will be made with respect to the 

process name. 

This thesis has not concerned itself with detailed modelling of documents and soft\Vare 

development processes (see section 9.4 - Future Work) . The coupling bet\Veen a 

methodology and its documents and process is much lower than that bet\Veen a 

methodology and its models. It is expected, therefore, that methodologies with the same 

semantic definition may be able to have different documents and processes. 

7.3.2 Applying the Methodology Description Table 

Figure 7-3 describes the scenario of opening a new softv.rare engineering project. For the 

purposes of this discussion the net\Vork communication between the Client object and 

ClientManager object is represented by the interchange o f  messages. 

Cl1ent CASE Tool Cl1entManager ����gy�- classForMethodology 

� DescnptJon Table 

getMethodolgyNames( ) 
getMethodolgyNames( ) 

--� · x 
successResponse(llst) 

createProject(mName) 
·---� _ getMethodologyCiass( ) 

successResponse(newiD) 

SSL Class 

a new software cng:mccring: project 
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ChentManager is a singleton object (Gamma et al., 1995) that is part of  the tool manager 

(see Figure 3-1 1 - Architecture of the MOOT prototype) . It is responsible for managing 

communication between the MOOT core and CASE tool clients. 

Initially a software engineer creates a new software engineering project. The first sub-task 

performed is to choose a particular methodology. The Client initially requests a list of 

methodology names from the MOOT core. The ClientManager object delegates the 

responsibility of  generating this list to the MDT. The ClientManager sends a successResponse 

to the Client, with the list of names as an argument. The software engineer then selects the 

methodology they wish to use from this list. 

The Chent then requests that the MOOT core creates a new project. It provides the 

methodology name, selected by the software engineer, as an argument of a request sent to 

the ClientManager. The ClientManager initially must determine the SSL Class that 

corresponds to this methodology by interrogating the :MDT. Once it has the appropriate 

SSL class, it then creates an instance o f  it. The resulting SSL object (NewPrqject in Figure 

is the root of  the new soft\vare engineering project. The last step o f  the process is to 

return the unique SSL ID of NewPrqject to the client as an argument of a successResponse 

message. Any future references the Client makes to the new software engineering project 

will include this SSL ID as an argument. 

7.4 Notation Semantic Mapping Tables 

The Notation Semantic Mapping (NSJ'vf) defines the mapping between notation 

elements and semantic concepts (see Figure 3-2 The relation between software projects, 

methodology descriptions and the description languages in MOOT). 

7.4.1 NDL vs. SSL 

The syntax of a methodology is defined using the Notation Definition Language (NDL) . 

NDL is a scripting language that is based on composition of a fixed set of template types. 

Template types are parameterised by a set of text fields, each of which has a unique NDL 

ID. The syntax definition of a methodology consists of a set of NDL scripts. The visual 

representation of a software engineering project consists of a collection of NDL views, 

grouped into a collection of diagrams. 
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The semantics of a methodology is defined using the Semantic Specification Language 

(SSL) . SSL is an object-orientated language based on classes, inheritance, aggregation, 

association, polymorphism and message passing. The semantic definition o f  a 

methodology consists of  a set of SSL classes. The state of a software engineering project 

consists of a collection of SSL objects. The MOOT core processes SSL by executing SSL 

methods on the SSL virtual machine. It does this in response to the tasks the software 

engineer performs using the CASE tool client. 

The NSM table is responsible for defining a particular mapping between a syntax and 

semantic definition. Table shows the correspondence between elements that support 

syntax and elements that support semantics in MOOT. 

Project 
Structure 
Elements 

Structural 
Elements 

Dynamic 
Elements 

Syntax 

Project editor of the CASE tool 
client 

Model editor CASE 
client 

Diagram editor of the CASE tool 
client 

NDL template 

NDL view 

Creating and destroying NDL 
Vlews 

Values in fields 

Actions on ND L views 

Semantics 

Instance of the Methodology SSL 
class (and sub-classes) 

Instance of the Modelling Language 
class (and sub-classes) 

Instance of the Diagram SSL class 
(and sub-classes) 

SSL class 

SSL object 

Attributes of SSL cla�>ses 

Creating and destroying SSL 
objects 

SSL object state 

Messages to SSL objects 

Table - 1  ben,·ccn svntax and semantic elements 

The mapping of the structural and dynamic elements shown in Table 7-1 is supported by 

NSM tables. The mapping of project structure elements is supported with the 

Methodology Description Table. 
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7. 4.2 Composition of NSM Tables 

An NSM table consists of si..-x associative arrays (maps) . Each map supports one aspect of 

the mapping between an NDL description and an SSL description. 

The names of the six maps contained in an SM table are: 

1 .  'Create concept' map 

2. 'Create relation' map 

3. 'Add' map 

4. 'Action' map 

5.  'SSL object creation' map 

6. 'SS L  object update' map 

Create Concept Map 

The create concept map (Figure 7-4) defines the mapptng between 'D L symbol 

templates and SSL classes. 

Create Concept Map 

NDL Symbol Template Name SSL Class N ame SSL Create Message 

NDL Symbol Template Name 

NDL Symbol Template N ame 

SSL Class N ame SSL Create Message 

SSL Class Name SSL Create Message 

Figure -4 - The create concept map 

The left-hand side is a list of DL symbol template names. The right-hand side is a list of 

SSL class names and SSL create message pairs. A request from the client to create a 

particular symbol (that is represented by an D L  symbol template) is satisfied by 

instantiating the corresponding SSL class .  The corresponding create message is sent to 

this class to initialise the new SSL object. 

Each NDL symbol template may only appear once m the map. The current 

implementation of the NSM table assumes a one-to-one mapping between an DL 

symbol template and an SSL class. Only SSL classes that correspond to an NDL symbol 

template will appear in this table. 
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Create Relation Map 

The create relation map (Figure 7-5) defines the mapping between NDL connection 

templates and SSL classes. 

The left-hand side of Figure 7-5 is a list of NDL connection template names. The right­

hand side i s  a list of SSL class names and SSL create message pairs. A request from the 

client to create a particular connection (that is represented by an NDL connection 

template) is satisfied by instantiating the corresponding SSL class. 

Create Relation Map 

N DL Connection Tem plate Name -

Connection Start 

N DL connection Arity 
termi nator name 

N DL connection Arity 
termi nator name 

NDL connection Arity 
termi nator name 

Connection End 

NDL con nection Arlty 
termi nator name 

N DL con nection Arlty 
termi nator name 

N DL connection Arlty 
termi nator name 

Figure 7-5 - The create relation map 

... SSL Class 
N ame 

SSL Create 
Message 

Each create relation entry in the create relation map (Figure 7-5) is composed of one or 

two parts. The connection start defines items that may appear at the beginning of a 

connection. The connection end defines items that may appear at the end of a 

connection. This structure implies the convention that all relations have a 'start' and an 

'end'. ary connections (which do not have a start or end) are represented with the 

connection start. The distinction between start and end parts is important for directed 

relations, but not for bi-directional relations. 

Each item in the connection start and connection end parts is composed of an N D L  

template of a connection terminator and an arity. The arity defines how many connection 

terminators may be involved in a connection. 

The current implementation of the NSM table assumes a one-to-one mapping between 

an DL connection template and an SSL class. Only SSL classes that correspond to an 

NDL connection template will appear in this table. 
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Add Map 

The add map (Figure 7 -6) is used to add models to projects, diagrams to models and 

concepts and relations to diagrams. 

Add M a p  

Model Name -.;r---t� SSL Message 

Model Name SSL Message 

Diagra m  Name SSL Message 

Diagra m  Name SSL Message 

NDL Template Name SSL Messag e  

N DL Te mplate Name SSL Messag e  

Figure 7-6 - The add map 

Models and diagrams are created with the assistance of the MDT, which provides a 

similar service as the create concept and create relation maps. The add map is used to 

find the SSL message that is used to add models to projects and diagrams to models. The 

first two maps, in Figure 7-6, provide a mapping between model and diagram names and 

the appropriate SSL message. 

Creating a new concept or relation is achieved in two steps. The first is to create a 

corresponding SSL object. This is supported with the create concept and create relation 

maps. The second step is to add the new SSL object to a diagram. The add map is used to 

find the SSL message that is used to add an item, that corresponds to a particular NDL 

template, to a diagram. The message is  sent to the SSL object that represents the diagram, 

with the item as an argument. 

Action Map 

The action map (Figure 7 -7) helps translate 'logical actions' at the software engineer user 

interface, to the corresponding equivalent semantic actions. 

NDL text fields can be considered as the visual representation of the properties of 

concepts and relations (such as the role name on an association connection, or the class 
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name in a class symbol). The properties correspond to attributes of SSL classes. The 

values of the properties correspond to the state of SSL objects. 

Action Map 

NDL Action N DL Field ID 

N DL Action N D L  Field ID 

N D L  Action N DL Field ID 

-.....___. SSL Message 

---.• SSL Message 

SSL Message 

Figure 7-7 - The action map 

An NDL action on a particular field is mapped to an SSL message. DL actions do not 

reference the state of SSL objects directly, as this would break encapsulation. This 

mechanism supports the binding of arbitrary D L  actions to SSL messages. 

SSL Object Creation Map 

The SSL object creation map (Figure 7 -8) performs the reverse operation of the create 

concept and create relation maps. 

SSL Object Creation M a p  

SSL C lass Name 

SSL C lass Name 

SSL C lass Name 

N DL Tem plate Name 

N DL Tem pl ate Name 

N DL Template Name 

Figure 7-8 - The SSL object creation map 

The SSL object creation map identifies those SSL classes whose instances should be 

reflected by visual representations in clients. It is used when the server creates SSL 

objects, without a request from a client. For example an SSL object representing a 

context diagram in a Data Flow Diagram (DFD) model may automatically create an SSL 

object for the system process. SSL classes in this category are a subset of all the SSL 

classes in a methodology description. 

SSL Object Update Map 

The SSL object update map (Figure 7 -9) performs the reverse operation of the action 

map for updates of the state of an SSL object. It maps SSL messages to one or more 

N D L  fields (each of which has a unique identification number - an N D L  I D).  When an 
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SSL object on the server sends a message that appears on the left-hand side of the map, 

the NDL fields on the right-hand side need to be updated with new values. Such changes 

are broadcast by the MOOT core to affected clients. 

SSL Object Update Map 

SSL Class Name SSL Message NDL Field l Os 

SSL Class Name SSL Message ••.....---•• NOL Field lOs 

SSL Class Name SSL Message NOL Field l Os 

Figure 7-9 - The SSL object update map 

7. 4.3 Applying NSM Tables 

The complete NSM table is shown in Figure 7-1 0. The arrows indicate sub-parts of the 

table that are related to each other, in terms of satisfying requests and satisfying the 

issuing of directives. The lower section shows the NSM table elements that provide 

reverse operauons. 

The top four maps are related to communication from CA E tool clients to the MOOT 

core (the requests) , whilst the bottom two maps are related to communication in the 

reverse direction (the directives). 

The create concept and create relation maps are both used to translate 1DL templates 

into S L classes and support the creation of new symbols and connections on diagrams. 

The SSL object creation map provides the reverse operation of translating SSL classes 

into DL templates. 

The add map is used to specify how new concepts and relations are added to a diagram. 

The action map is used to translate logical actions at the CASE tool client into semantic 

actions (messages to SSL objects). The SSL object update map provides the reverse 

function of the action map, for update actions. 
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Create Concept Map 

NDL Symbol Template Name • SSL Class Name NUL >:>ymDOI I emp1a1e Name 
NUL �ymoo1 1 emp1a1e t'lame 

SSL Create Message 
. - - - - ...., -' 

Create Relation Map 

NDL Connection Template Name 

Connection Start 

SSL Class 
Name 

NDL connection terminator name Arity 
. - - - - - · · · · - - -· - · ·  - - ·  · · · · · · - - - ·  · · - · · · - - · · · -1 

SSL Create 
Message 

Connection End 

NDL connection terminator name Arity 
. - - - - - · · · · - - - · - · ·  - - ·  · · · · · · - - - ·  · · - · · · - . .. - -1  

Add Map 

Model Name 
IWIVUGI 1 •0 1 1 11;;; 

Diagram Name 
IJ I CI � I  Cl I l l  I • a t J ICiO 

IJ I Q� I  Q l l  I I • a t  I IV 

NDL Template Name 

SSL Message 
� � �  nn;;..,�a�a 

..... ...., ... nt -c;;: ..;:, .;;x;a �a 

SSL Message 
..... -...� ._ ... ... ��a�a 

....,..., ._ ....... �..ox;l�a 

SSL Message 
"" "'"' ._  •••cr�..,a � a 

- - - ...., -
- - ...., -

, ,. .., ._  • c a • • t" a "v • • a • • •c;;; 

. . ..... ._ I Gl l l iJ I CI  .. G I .. CI. I I IG ....., ..... , .  ... ... .,...,�a !:fa 

Action Map 

NDL Action NDL Field ID SSL Message 
. ..  ..., � ""' "' "' "" ' '  · · - -- ' ...... . ,.. · - ....,..., � ....... .., ... a !:fa 

�....,,_- """""' '- ... ... ..,-.i:la !:fa 

SSL Object Update Map 

SSL Class Name SSL Message 
......, ...,. _ ...., . .... 'Oil� · · "" ' ' '"" """ """ - . . . ..... � �""" �"""' 

..._, ...., ._ """" '""'�� I •Ut I IV ..., ...., ._ I W I V  ... 'ti;#U �"w 

SSL Object Creation Map 

. ..  .., ._  I ICiOI\ol I IJ S  

, .. .., �  I t c; I U  I Ll S  

SSL Class Name ...__......,.._ NDL Template Name 
��L. viCil:tl:t I .. CI I I Itt: ,3----- I .. LIL. I tt:l l lf.IICiltt: nctl l ri!  

....,,;..__..._., I .. LI L.  I tt:ll lf.IICiltt: I .. CII I �  

Figure 7-10 - The Notation Semantic 1fapping Table 
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Several scenanos that illustrate how NSM tables are used follow. These are: creating a 

new model; creating a new concept; the successful update of a text field; a failed attempt 

to update a text field and the propagation of a server side update to CASE tool clients. 

Creating a New Model 

The scenario in Figure 7-1 1 (creating a new model) illustrates the use o f  the NSM table 

add map. It also further shows the use of the Methodology Description Table (MDT). 

successResponsta(nO'W!D) 

a new model 

The software engineer has already created a new software engineering project, or opened 

an existing one, and has decided to create a new model. The Client requests a list of 

modelling language names from the MOOT core5('. The C!ientManager delegates this 

The Cliflll requests this list when the user selects 

a new model can be in the ;-;;Jmc context. 
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responsibility to the MDT. The argument to the getModellingLangNames message 

corresponds to the methodology of the user's project"7• The ClientManager then sends a 

successResponse message to the Client with a list of modelling language names as an 

argument. 

Once the software engineer has chosen the modelling language to use, the Client sends a 

createModel message to the ClientManager, with the modelling language name as an 

argument. The ClientManager uses the MDT to find the appropriate SSL class for this 

modelling language (the classForModel object in Figure 7-1 1). It then creates an instance of 

this class (NewModel in Figure 7-1 1) by sending classForModel an instantiate message. 

The ClientManager now uses the NSM table object (Table in Figure 7-1 1 )  to find the SSL 

message which is used to add the newly created model (NewModel in Figure 7- 1 1) to the 

current project (the project object in Figure 7-1 1) .  The add message is then sent to the 

prqject object with NewModel as an argument. The ClientManager then sends a successResponse 

message to the Client with the unique SSL ID of the newly created model as an argument. 

The Client also needs the notation that corresponds to the new model. I f  it does not 

already have the notation it sends a getNotation request to the ClientManager, with the 

modelling language name as an argument. The ClientManager determines the NDL script 

that is required by interrogating the MDT. It then requests the notation from the 

NotationSeroer object'H. The ClientManager finally sends a successResponse message to the 

Client, with the notation as an argument. 

Creating a New Concept 

The scenario captured by Figure 7-1 2  illustrates the use of the NSM table create concept 

map. Tills scenario occurs whenever the software engineer places a new concept into a 

diagram (e.g. a new class on a class diagram, or a new state on a state transition diagram). 

;- The Clienti\Ianager actually maintains a vecror of C/ien!Ptv:>y' objects (one for each connected chcnt). Each C :l icntProxy 

object maintains derails such as the user and the active project. The ClientPm.:J' objects have been omitted from these 

djagrams for brevitY. 

iR The 1\ !00T protorypc implements this as a ilirect rC<jUCst ro rhc pcrsisrcnr store. 
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accept(addMe$sage) 

getiD( ) 

successRespon.se(newiD) 
< 

- 1 2 - a nc\v conccpr 

The Client sends a createNewConcept message to the ClientManager. The arguments to this 

message include SSL IDs of the model and diagram5'1 where the concept is to be 

placed and the name of an NDL symbol template. The CJientManager perfonns two tasks 

on receipt of the createNewConcept message. It first asks the NSM table (the Table object in 

Figure 7-1 2) to translate the NDL symbol template name into a corresponding SSL class 

name (conceptClass in Figure 7 - 1 2) .  It then asks the NSM table for a create message. The 

create message is used to initialise the new concept (newConcept in Figure 7 - 1 2) .  Once the 

object has been created the CJientManager asks the NSM table for an add message. The 

add message is used to add the new concept to the diagram (diagram in Figure 7 - 1 2) 

identified in the original createNewConcept message. 

l r  is a,;,;umcd that client can all mc:;,agc,; from the Client abo 

include rhc SSL lD of the rn,jcct. The idcntific:; the context 

'J.:irhin an action occur:-:. 
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The ClientManager then sends a successR.esponse message to the Client with the unique SSL 

ID o f  the new concept as an argument. In this example all steps are successful. In general 

each step may fail and result in a jailResponse message being sent to the Client. An example 

that includes a failresponse is given on page 1 97. 

The Successful Update of a Text Field 

The next two scenarios demonstrate the use of  the NSM table action maps. In Figure 

7- 1 3  the software engineer has changed the value of a text field on a diagram. Text fields 

correspond to the properties of concepts and relations. This scenario corresponds, for 

example, to changing an attribute name in a class diagram or renaming a store in a data 

flow diagram. 

Chent : CASE i 
Tool Cl1ent 

' 

changeEiement{modei. d1agram, act1on, element, 

successResponse( ) 

args) 

Table NSM i source . SSL 
� Ql?.lgg 

getActJon(actJon, element) 

,,,,-� '��-> -

accept(updateMessage,args) 

" -� '�"- -'- ,_,_,,,,_,,, , ___ �,�,-��-

otherCI;ent • CASE 

processMessage( ) 

accepr{ iSOKMessage) 

->� 

perform(project, model, dtagram, actton element. source. args) 

1 3  Successful of a field 

Initially the client sends a changeElement mess age to the ClientManager. The arguments to 

this message include the SSL IDs of the model and diagram on which the updated field is 

placed. It also includes IDs that identify the action to be performed, the text field that has 

been altered and the SSL ID of the concept or relation that owns the text field. The 

model, diagram, element and source IDs uniquely identify the field to be updated. The 

action ID defines what is to be done to the field. 
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The ClientManager asks the NSM table to translate the action and element ID into an SSL 

message (updateMessage in Figure 7-1 3) .  The update message is then sent to the object that 

corresponds to the source argument of the original message (source in Figure 7-1 3) .  

Figure 7-13 shows that the update message has resulted in the creation o f  a critic object 

(resultCritic in Figure 7 - 1 3) .  The resultCritic SSL object is then interrogated to determine the 

result of the update message. If the resultCritic indicates a success  the Clientlvfanager sends a 

successResponse to the Client to indicate that it can commit the update. The ClientA1anager 

can now broadcast the change to any other CASE tool clients that may be interested 

(otherC!ient in Figure 7 -1 3). 

A Failed Attempt to Update a Text Field 

Figure 7-14 shows the same scenario as Figure 7-1 3  except that the result of processing 

updateMessage indicates that the update is not valid. For example changing the name of an 

attribute so it is the same as another might be considered illegal. 

Cl1ent . CASE 
� 

ChentManager 

getACtion(actlon. e!ement) 

accept( update Messag$ ,args) 

""' 1 -t Failed attempt to update a field 

processMessage( ) 

<<create>> 
......., resu!tCtltiC : SSL 
·;7" - �0 --

The resultCritic object in Figure 7-1 4  has indicated that an error occurred (the isOKA1essage 

message has returned false) .  The ClientManager interrogates the resu!tCritic object for an 
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explanation. A Jai!Response message is sent to the Client with the explanation as an 

argument. The Client can then present the explanation to the software engineer('' '. 

Propagation of a Server Side Update to Other Clients 

The final example (Figure 7 - 1 5) illustrates the use of the SSL object update map. 

receiVIng obrect 

SSL ObJect 

propagateUpdate(updat�D,rectJve) 

� 1 5 -

pertorm(project. mOdel, d1agram, act1on, element, source, args) 

SCITCf siJe 

The SSL object sending object in Figure 7-1 5 has sent a message (message in Figure 7 -1 5) to 

another SSL object (receiving of:jec� . Once receiving object has finished processing the message 

it then interrogates the NSM table to see if the message might cause an update that is of 

interest to CASE tool clients. The message is translated into a collection of NDL field 

IDs by the NSM table. Receizing object then asks the ClientManager to propagate update 

directives to any CASE tool clients that may be interested. The ClientManager sends a 

perform message to all clients (othetClient in Figure 7-1 5) .  The perform message 

includes the SSL ID o f  the source object and the element ID of the field. The Client is 

responsible for updating all views that correspond to the source object. 

l n the proton·pc 

so the soft\van: 

of the ( :  \Sl ·. tool client 

han: done. 

1 98 
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7.5 Summary 

This chapter has discussed the realisation of methodologies in the MOOT system and 

illustrated how syntax and semantic descriptions are associated with each other to form 

complete methodology descriptions. The syntax-semantic association involved: 

• The relation between a software engineering project, in terms of its models, diagrams 

and documents, to the methodology used to create it. 

• The relation between the syntax and semantic descriptions expressed with NDL and 

SSL. 

• The relation between logical actions performed usmg the CASE tool client and 

semantic actions processed by the MOOT core. 

The three aspects of the syntax-semantic mapping have been supported by: 

The Methodology Description Table (MD1). Each element of the MDT 

corresponds to a methodology. The structure of the MDT corresponds to the upper 

level of the Core Knowledge Base (a methodology has a collection o f  modelling 

languages,  a collection of documents and a process. Each modelling language has a 

collection of diagrams) . 

• Notation-Semantic Mapping tables. Each NSM table defines mapping between a 

NDL notation description and SSL semantic description. This includes mapping 

NDL templates to SSL classes, NDL Views to SSL objects and logical actions on 

NDL views to messages to SSL objects. 

The communication protocol between the CASE tool client and MOOT core. This 

protocol is based on the requests and directives that are passed between the CASE 

tool client and the MOOT core. 
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Chapt e r  8 

Validating the MOOT Approach 

Give me a fruitful error any time, full of seeds, bursting with its own 

corrections. You can keep your sterile truths for yourself. 

8.1 Introduction 

Vi!fredo Pareto 

The research described in this chapter is representative of work carried out to validate the 

initial MOOT prototype and to investigate the efficacy of the MOOT approach. A range 

of results that illustrate the application of the principles ,  techniques  and ideas 

propounded in this thesis are presented. This includes: 

• The implementation of the Coad and Y ourdon methodology (Coad and Y o urdon, 

1 990, 1 99 1 a, b). The description includes fragments of NDL code, SSL code,  a 

portion of an NSM table and an entry from the Methodology Description Table. 

An extension of the Generic Object Orientated Knowledge Base, which implements 

support for patterns (Gamma et al., 1 995).  

• Defining the core UML meta-model as an extension of the CKB and GOOKB. 

• Development of the semantics editor using MOOT. Two modelling languages are 

proposed for this purpose - the SSL module structure modelling language and the 

SSL method modelling language. The semantics of these modelling languages are 

defined as an extension of the Core Knowledge Base (CKB) and the Generic Object 

Orientated Knowledge Base (GOOKB). 

• Development of the Joosten workflow methodology Qoosten, 1 995) .  
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8.2 Defining the Coad and Y ourdon Methodology 

The Coad and Y ourdon methodology can be reaclily defined as an extension of the 

Generic Object Orientated Knowledge Base (GOOKB). The GOOKB already defines 

SSL classes for class, attribute, operation, inheritance, whole-part and association. The 

only additional relation that must be added is message connection. 

Figure 8-1 shows the SSL classes that have been added to implement Coad and Y ourdon. 

AddCiass(c : Class) CKB·.:Critic 

Addlnheritance(r : GOOKB::Inheritance) : CKB: :Cri!ic 

AddWholePart(r :  GOOKB::Whole_Part) : CKB::Critic 

AddAssociation(r GOOKB::Association) : CKB::Critic 

i Destroy() 

' DetachConcept() 
: DetachRela!ion() 

getConcept() . CKB::Concept 

getRelation() : CKB::Relation 

Coad_and. Yourdon: :Message_Receiver 

Coad_and. Yourd on : : Message_Sender 

the Coad and Yourdon 

The Message Connection class in Figure 8-1 is a type of Directed Binary Relation. Its end points 

are modelled with two sub-classes of  Relation Terminator - Message Receiver and A1essage 

Sender. Object Diagram has been sub-classed and extended with behaviour for handling 

message connections .  This example illustrates two important points: 

The definition of  Coad and Y ourdon is straight forward. \Xlhilst it can be said that 

Coad and Y ourdon is one of the simplest methodologies, 

Coad and Y ourdon only required four new classes. 

semantic definition of 

The SSL module system prevents an explosion of SSL class names. For example the 

two Object Diagram classes in Figure 8-1 are disambiguated by the knowledge base 

they are defined in (GOOKB and Coad and Yourdon). 

Figure 8-2 shows an entry in the Methodology Description Table (MDT) for Coad and 

Y ourdon. The first line is the name that a software engineer will see when using the 

CASE tool client. The second line is the SSL class that is instantiated when a new Coad 
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and Y ourdon project is created. Line three specifies how many modelling languages are 

supported. In this example Coad and Y ourdon supports a single modelling language. 

Lines four to nine define the single modelling language. Line four is the descriptive name 

for the modelling language that the software engineer will see. The next line is the 

corresponding SSL class that is instantiated when a new model is created that uses this 

modelling language. Line six is the name of an DL notation to be used for the 

modelling language. Line seven specifies that this modelling language consists of a single 

type of diagram. Line eight contains a descriptive name that the software engineer sees, 

for this diagram and line nine is the corresponding SSL class. 

L i ne 1 .  c oad and yourdon 

Line 2 .  c kb : methodo l o gy 

Line 3 .  1 
Line 4 .  c oad and yourdon c l a s s  di agram 

Line 5 .  g o okb_mode l : obj e c t_model 

Line 6 .  c oadyourdon_c l a s sdiagram 

Line 7 .  1 
Line 8 .  c l a s s  di agram 

Line 9 .  c oadyourdon_mode l : ob j e c t_di agram 

Figure 8-2 - �[ethodology description table for Coad and Yourdon 

Figure 8-3 shows a snapshot of the CASE tool client 'select methodology' dialogue box. 

� CANCE� I  
Figure 8-3 - The select methodology clialogue box 

The example in Figure 8-3 shows that the software engineer has three methodologies to 

choose from, when creating a new project6 1 •  The last item in the list (coad and yourdon) 

corresponds to the entry in the MDT in Figure 8-2. The text displayed in this dialogue 

box is from line one of the Coad and Y ourdon entry in the MDT. 

The N D L  description to be used for the Coad and Yourdon class diagram modelling 

language is given in line 6 of the Coad and Y ourdon entry in the MDT. This N D L  

6 !  The other entries will be discussed i n  subsequent sections of this chapter. 
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description contains definitions of the symbols and connections that are used for the 

syntax of the Coad and Y ourdon class diagram modelling language. Figure 8-4 (a) shows 

a Coad and Y ourdon Class&Object symbol rendered by the CASE tool client. The 

corresponding NDL specification, from which the Class&Object symbol is generated, is 

given in Figure 8-4 (b). 

a )  
C l a s s &O bj e ct 

.... 

attri b ute 1 
a ttri b ute 2 

a n  extre mely l o n g  o p erati on n a m e  
o p e ration 2 

b )  

Symbo l_Temp l a t e  c l a s s  

{ 
hght 

wdth 

dy = 

dx = 

+ 4 g rpHe i ght ( grp ) # 

+ 4 grpW i dth ( grp ) # 

- hght 5 # 

- wdth 5 # 

# ( i )  component s 

0 :  c l as sheigh t  

1 :  c l as swidth 

2 :  dockingY 

3 :  dockingX 

GROUP grp ( _c l as snamegroup l l _c l as sgroup )  AT ( 2 ,  2 )  

LINE ( 5 , 0 )  ( dx , 0 )  

LINE ( wdth , 5 )  ( wdth , hght ) 

LINE ( dx ,  hgh t ) ( 5 ,  hght ) ) 

L INE ( 0 ,  dy ) ( 0 ,  5 )  

ARC ( 0 , 0 ) ( 1 0 , 1 0 ) , 9 0 , 9 0 

ARC ( - wdth 1 0 ,  0 )  ( wdth , 1 0 ) , 0 ,  9 0  

ARC ( 0 , - hght 1 0 )  ( 1 0 ,  hght ) , 1 8 0 , 9 0  

ARC ( - wdth 1 0 , - hght 1 0 )  ( wdth , hght ) , 2 7 0 , 9 0  

BOUND ING RECT ( wdth , hght ) 

# ( i i )  docking areas 

# i n s tance , who l e - part , me s s age conne c t i on 

L I NE DA 0 ( 0 , 5 )  ( 0 ,  dy ) u 1 0  

( i n s tance who le -part me ss age ) 

LINE DA 0 ( 5 , hght ) ( dx , hght )  u 1 0  

( i n s t ance who l e -part me s s age ) 

LINE DA 0 ( wdth , dy )  (wdth , 5 )  u 1 0  

( i n s tance who l e -part mes s age ) 

L I NE DA 0 ( dx , O )  ( 5 , 0 ) u 1 0  

( in s tance whol e-part me s s age ) 

# inhe r i tance 

L INE DA 0 ( 2 , 5 ) ( 2 , dy)  u 10 ( inheri tance ) 

L I NE DA 0 ( 5 , - hght 2 )  ( dx , - hght 2 )  u 1 0  ( i nher i tanc e )  

L INE DA 0 ( - wdth 2 , dy)  ( - wdth 2 , 5 ) u 1 0  ( inher i tanc e )  

L I NE DA 0 ( dx ,  2 )  ( 5 ,  2 )  u 1 0  ( inher i tanc e )  

DEFAULT TEXT ( grp , 9 )  # text f i eld contained in grp 

Figure 8--+ - Symbol template for the Coad and Yourdon 
Class&Objecr symbol 
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Figure 8-4 (b)(i) consists o f  a collection o f  segment templates('2• The first segment 

template is a group reference. The default group template (_classnamegroup) defines the 

three inner compartments and a surrounding round rectangle. Clicking on the arrow in 

the upper right-hand corner of the symbol in Figure 8-4 (a) will cause this group to 

change to an instance of _classgroup. The remaining eight segment templates define the 

outer round rectangle of the symbol (which denotes the 'objects' in Coad and Y ourdon) . 

Figure 8-4 (b)(ii) lists eight docking areas. The first four define where whole-part, instance 

and message connections may be attached. These types of connection may be attached 

anywhere on the outer round rectangle of the symbol (except on the curves) . The second 

group of four docking areas define that inheritance connections can only attach at the 

inner round rectangle (but, again, not on the curves) . 

Figure 8-5 (a) shows an example Coad and Y ourdon message connection rendered by the 

CASE tool client. The corresponding NDL specification, from which the message 

connection is generated, is given in Figure 8-5 (b) and Figure 8-5 (c) . 

Three types of template are used to define connections in NDL (connection template, 

connection symbol template and connection terminator template) . Figure 8-5 (b) shows 

NDL connection terminator templates for the Coad and Y ourdon message connection. 

The first (_defaul� describes a single line. This connection terminator template is used for 

connections that do not have a symbol at their end points (that is the inheritance, 

instance and whole-part connections in Coad and Y ourdon). The second connection 

terminator template defines a simple arrow head. The arrow head can be seen attached 

to the Destination class in Figure 8-5 

Figure 8-5 (c) shows the NDL definition for the Coad and Yourdon message connection. 

The line templates and the bounding rectangle are used to draw an icon for a button that 

will appear on the CASE tool client toolbai'. The next NDL statement specifies that the 

message connection is a binary connection. The terminator list specifies the connection 

terminator templates that are used for each end point of the connection1'4• In this example 

t< ' !!ldicatt: a C< munull rn \:!) J . .  

I com for arc the ,;nnb<>l onto the toolbar button. 

1" The connccnon It appears bcfon: the terminator li,;t, if needed. 
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the _difault connection terminator template is used at the beginning of the connection 

and the _messageDestination connection terminator template is used at the end. 

a )  

B I 

b )  

C onnec t i on_Te rmi na t o r  d e f a u l t  

L INE ( 0 ,  3 )  ( 1 2 , 3 )  

BOUNDING RECT ( 1 2 , 6 )  

HEAD ( 0 ,  3 )  

TA I L  ( 1 2 , 3 )  

D e stin ati o n  
" -v 

Connec t i on_Te rmina t o r  _me s s ageDe s t ina t i on 

c )  

L I NE ( 1 0 , 6 ) ( 1 2 ,  6 )  

L I NE ( 0 , 6 )  ( 1 0 , 0 ) ( 1 0 , 1 2 ) ( 0 , 6 ) 

BOUNDING RECT ( 1 2 , 1 2 )  

HEAD ( 0 ,  6 )  

TA I L  ( 1 2 , 6 ) 

C onnec t i on_Temp l a t e  me s s age 

{ 
# too l bar i c on 

L INE ( 3 , 3 ) ( 1 2 , 3 )  

L INE ( 0 ,  3 )  ( 3 , 0 )  ( 3 , 3 )  ( 0 ,  3 )  

BOUNDING RECT ( 1 2 , 6 ) 

ARITY 2 

TERMINATOR _de fau l t  _me s s ageDe s t ina t i on 

Figure 8-5 - Representing the Coad and Yourdon message 
connecaon 

A portion of the Notation Semantic Mapping (NSM) table used to associate the syntax 

and semantic descriptions for the implementation of Coad and Y ourdon is given in 

Figure 8-6. 

Figure 8-6 (a) is the action map. The number 0 indicates an update action. The second 

number is a unique NDL ID that corresponds to a text field. The last part is the SSL 

message that corresponds to the action. The first entry in the action map, for example, 

specifies that the SSL message changeclassname-S# will be used to implement an update 
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action on the text field with ID 9 (the field with ID 9 contains the class name in this 

example) . 

a )  

0 9 changec l a s s name - S # 
0 1 2  adda t t r ibu t e - S #  

0 1 5  addoperat i on - S #  

b )  

c l a s s 

abs t ra c t  c l a s s  

gookb_mo de l e l ement : c l a s s  
gookb_mo de l e l ement : c l a s s  

i nhe r i t ance gookb_mode l e l emen t : inher i t anc e  
d e f au l t  2 

c rea te - #  

c r ea t e - B# 

2 

: c l a s s # V g o ok b_mode l e l emen t : c l as s # #  

who l e - part gookb_mo de l e l emen t : who l e_pa r t  2 
_de fau l t  2 
c reat e - Vgookb_mode l e l emen t : c l a s s #Vg o ok b_mode l e l emen t : c l a s s # #  

ins t an c e  gookb_model e l emen t : a s s o c i a t i on 2 
de fau l t  2 

: c l as s # Vg o o kb_model e l emen t : c l as s # #  

mes s a g e  c oadyourdon_mode l e l ement : me s s a g e c onne c t i on 2 
defau l t  1 

_me ssageDe s t i na t i o n  1 
: c l a s s #V g o okb_mo de l e l emen t : c l as s # #  

c )  

c l a s s  
abs t ra c t c l a s s  

inhe r i t ance 

addc l a s s  : c l as s # #  

addc l a s s - V g o o kb_mode l e l ement : c l a s s # #  

who l e - part 

ins t ance 

adda s s oc iat 

mes s age 

a ddr e l a t i  

: i n h e r  t a nc e # #  

# 

: as s o c i at i on# # 

: me s s agec onne c t i on # # 

Figure 8-6 (b) contains the create concept and create relation maps. The Coad and 

Y ourdon Class and Class&Object symbols (line one and two respectively of Figure 8-6 

(b)) are both represented by an instance of Class in the GOOKB. The two different 

create messages are used to ensure that Class symbols represent abstract classes, whilst 

Class&Object symbols represent concrete classes. 

Figure 8-6 (c) contains a portion of the add map. The six entries in the add map define 

the SSL message that is used to add an item that corresponds to a particular NDL 
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template, to a diagram. This message 1s sent to the SSL object that represents the 

diagram, with the item as an argument. 

Figure 8-7 shows the implementation of the addAttribute operation (an SSL method) that 

is referenced in the second line of the action map in Figure 8-6 (a) . 

1 1  i mp l ment a t i on o f  opera t i on adda t t ribu t e  for 

1 1  g ookb_mode l e l emen t : c l a s s  

c r i t i c  addA t t r ibu t e ( string a ) 

A t t r i bute toAdd , c ur r en t ; 

C omp l exC r i t i c  addC r i t i c ; 

s 
] a t t r ; 

1 1  a )  create a new attribute 

t oA d d  = self . newA t t r ib u t e (  a ) ; 

a d dC r i t i c  Comp l exCr i t i c . create ( toAdd . i sVa l i d ( )  ) ; 

1 1  b )  check to see i f  i t  i s  a duplicate 

a t t r theA t t r i bu t es . front ( ) ; 

l oop 

} 

endloop when ( a t t r . end ( ) ) ; 

c u rrent a t t r . itam ( ) ;  
i f ( t oAdd . i s S ameAs ( c u r r e n t  ) ) 

{ 
addC r i  t i c . add ( 

) ; 

S i t i c . creat e ( false , 

" there s a l ready an a t t r i bu t e  ca l l ed " +a ) 

a t t r . next ( ) ; 

i f ( addC r i t i c . i sOK ( )  ) { theA t t r i bu t e s . add ( toAdd ) ; 

return addC r i t i c ; 

of the add.\ttriburc 

The add.Attribute method given in Figure 8-7 is a method of the SSL class 'Class', defined 

in the GOOKB. It is executed whenever a new attribute is added to the class. 

In Figure 8-7 (a), a new SSL object (toAdd) is created to represent the new attribute. This 

is achieved by sending the newAttribute message to the self object''5• The new SSL object is 

then sent an is Valid message, which returns an instance of Critic as a result. 

nuy be overridden in �ub-da::.:::.;c� tt , gcncran.: an insrancc of an SSL 
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The code fragment in Figure 8-7 (b) determines i f  the newly created attribute i s  unique 

within the context of the class .  It does this by iterating over the collection of attributes in 

the class (theAttributes) and comparing each one to the newly created attribute. If the new 

attribute (toAdd) is found to be a duplicate a Critic object is created, with an appropriate 

explanation. Figure 8-8 illustrates these steps by showing an example of the CASE tool 

client in action. 

!;[Jl;'MOOT GUI Cl isnt - (unnamo>dlcoad and }''· · · I!II!J D 
Project 

[§] I  

Test c l a s s  

attribute 1 
attribute 2 
attri bute 21 

(a) the user tries to duplicate an attribute 

U ; i i I 

;f}!j MOOT GUI Clisnt - [unnamsd lcoad and y . . .  I!II!J D 
Project 

[§J idl  
Test c la s s  

attribute 1 
attribute 2 

(b) the action has been disallowed 

I !  

(c) the explanation generated by the MOOT core 

Figure 8-8 - Adding an attribute 

In Figure 8-8 (a) the software engineer has created a single class. The first message in the 

feedback window (Figure 8-8 (c)) corresponds to the successful creation of the class. The 

user has then started to add several attributes. The software engineer is entering a third 

attribute in Figure 8-8 (a), but has mistakenly duplicated the previous attribute name. 

\'V'hen the software engineer presses the enter key, or de-selects the class, a request to 

create a new attribute is propagated from the CASE tool client to the MOOT core. The 

MOOT core uses the NSM table in Figure 8-6 to determine that an addAttribute message 

must be sent to the SSL object that corresponds to Test class in Figure 8-8 (a). The result 

of processing the addAttribute message will be a Critic object that indicates an error has 
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occurred. The resulting explanation is returned to the CASE tool client with a fail 

response. Figure 8-8 (b) shows that the CASE tool client has cleared the offending text 

field and added the explanation to the feedback window in Figure 8-8 (c). 

Figure 8-9 shows a screen snapshot of MOOT used to capture a model of Object­

Orientated Analysis (page 205 of Coad and Yourdon (1 991  a)). 

.. .. . .  . . . .  . . . 
Project 
lliJ lriDI-I I�·Jol�ll�l 

. . .  . . . ' . . . 

Select objects . I  Add object � OOA Mode � t----<J--- umber 
Name Name 

� 

Instance Connection 

Amount Or Range 1 
Amount Or Range 2 
Symbol 

I Message ConnecHon 

[Symbol 

I 

Symbol 

---� 

rstr;;� 
Name 

I I 
Symbol 1-'----

A Class·&·Object (or ClassT 
Name 

Symbol I I Object Slate Diagram (Oen-Spec Structurel Wllole·Part Structure 

1 
Amount Or Range 1 
Amount or Range 2 

Attribute Ser<ice 

Name Name 
Description Parameters 

Constraints Bullet Ust 

Figure 8-9 - An Object-Orientated Analysi model of Object­
Orientated Analysis (Coad and Yow:don, 199 1a) 

8.3 Supporting Patterns 

- [] X 

I 

ilstsnce 
inherionce 
-part 
message 

Patterns are an important concept that has gained much interest in the object-orientated 

literature (Gamma et aL, 1 995; Fowler, 1 997; Pree, 1 994). The idea behind patterns is very 

simple yet extremely powerful. It provides a standard vocabulary for software engineers 

to use when developing systems. System developers can now talk in terms of larger 

components than class and object and understand phrases such as "Abstract Factory'', 

"Adapter'' and "Chain of responsibility." The advent of patterns is so important that a 
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technical decision has been made to support patterns with MOOT. This is the first step 

toward the support of Component Based Development. 

"One thing expert designers know not to do is solve every problem from first 

principles. Rather they re-use solutions that have worked for them in the 

past. When they find a good solution, they use it again and again. Such 

experience is part of what makes them experts. Consequently you'll find 

recurring patterns of classes and communicating objects in many object­

oriented systems. These patterns solve specific design problems and make 

object-oriented designs more flexible, elegant, and ultimately reusable." 

From Design Patterns: Elements ofReusable Object-Oriented Software 

(Gamma et aL, 199 5) 

There are several requirements that the support for patterns in MOOT had to satisfy. 

1 .  It should be possible to instantiate a pattern on any class diagram. This must include 

class diagrams created with modelling languages that have not yet been defined in 

MOOT. 

2. There should be a well-defined protocol or method for adding new patterns in the 

future. 

The support for patterns was implemented in the GOOKB by a set of abstract super­

classes, which satisfies requirement 1 .  The classes involved define the protocol for the 

instantiation of a pattern on a class diagram. The protocol between these classes satisfies 

requirement 2. 

A new class (Pattern) has been defined in the GOOKB. The interfaces of some of the 

existing classes have been extended (Object Model, Object Diagram and Class). The 

implementation of patterns is shown in Figure 8-10. 

Concrete patterns are implemented as sub-classes of the abstract super-class Pattern 

(Figure 8-1 0). Each pattern implements the instantiate operation66• The instantiation 

process uses an instance of Object Model and an instance of Oi?Ject Diagram. A pattern 

object instantiates itself onto the Object Diagram object with the assistance of the Object 

66 They may also overload instantiate with an operation that rakes additional arguments. 
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Model object. The Pattern hierarchy is an example of the Template method pattern 

(Gamma et aL, 1 995) ,  where the entire instantiation process is different for each sub-class 

of Pattern. 

O bj ect model builds classes and relations (such as i nheritance) in association with a pattern object 

Class builds attributes and operations in association with a pattern object 

This role of Object Model and Class is an i nstance of the factory pattern (p87) 

The pattern hierarchy is independent of the type of object model (and hence the type of classes and relations) 

G OOKB::Ciass 

create(name : String)  

isvalid() : CKB: :Critic 

changeCiassName(newName : Stri ng) : CKB::Critic I 
cl assName() : Stri n g  1 add(a : GOOKB: :Attribute) 

add(o : GOOKB::Operation) I Instantiate() : GOOKB::Object 

newAttribute() : G O O KB: :Attribute I newOperation() : G OOKB: :Operation 

�---·..J ', ', 
<<i nstanti�fas>> ' ' I 

[����ohoh:ore 

... 

I ,---------, 
! 

I 
<<inst�ntiates>> 

/ 
// 

I 
I 

/ 
I 

I 
I ' ' ' 

I / 
/ 

/ / 
<<instaril(ates» 

,/" 

,/// 

____ ,....,., 
...... 

GOOKB::Object_Model 

Create() 

newCiass() : GOOKB: :Ciass 

newW holePart(whole : GOOKB: :Ciass, part : GOOKB: :Ciass) : GOOKB::Whole_Part 

newlnheritance(superclass : GOOKB::Ciass, subclass : G OOKB: :Ciass) : GOOKB:: Inheritance 

I 
I 

newAssociation(associate_a : G OOKB::Ciass, associate_b : GOOKB::Ci ass) : GOOKB::Association , 

' ' ' h ' ' ' / A pattern object instanti ates a 

I? design pattern onto an object 
GOOKB:: Object_Diagram i diagram . -· 

i AddCiass(c : Class) : CKB: :Critic I 
Addlnheritance(r : G O OKB: : In heritance) : CKB: :Critic I it is an instance of the template 

AddW holePart( r :  G OOKB::W hole_Part) : CKB:: Critic I pattern (gamma p325), where the 

AddAssociation(r : G OOKB::Association) : CKB::Critic 1 entire instantiation process is 

� different for each subclass of 
''-,,, pattern 

',, /_,/ 

', _,/ '" ,/ ' ,/' 

I GOOKB::Pattern I I lnstanti ate(om : GOOKB::Object_Model ,  od : GOOKB::Object_Diagram ) : CKB::Critic J 

1--------------
+ other patterns � 

I Pattern:: VisitorPattern 

..___, 

I lnstantiate(om : GOOKB: :Object_Model ,  od : GOOKB: :O bject_Diagram) : CKB: :Critic 

I Pattern: :FacadePattern I 
I lnstantiate(om : G OOKB: :Object_Model ,  od : GOOKB::Object_Diagram) : CKB:: Critic I 

Figure 8- 1 0 - Extending the GOOKB to support Patterns 
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The Oiject Diagram class in Figure 8-10 provides operations for an Oi?Ject Diagram object to 

add new classes and relations to itself. The interface of Oiject Model has been extended 

with operations for creating new classes and relations. A pattern object delegates the 

responsibility for creating classes and relations to an Oi?Ject Model object. This role of Oiject 

Model is an example of the Abstract factory pattern (Gamma et al., 1 995,  p87) . The 

interface of Class has been similarly extended with operations for creating new attributes 

and operations. This role of Class is also an example of the Abstract factory pattern 

(Gamma et al., 1 995) .  The use of the Abstract factory pattern in Oiject Model and Class 

ensures that the Pattern hierarchy is independent of the type of object model (and hence 

the type of classes and relations) . 

N ew types of object model that are implemented in MOOT are always defined as 

extensions of the Oi?Ject Model class in the GOOKB. Extensions of Oiject Model must 

override the newclass, newinheritance, newWholePart and newAssociation operations to support 

patterns. New types of class are always defined as extensions of Class in the GOOKB. 

Extensions of Class must override the newAttribute and newOperation operations to support 

patterns. 

8.4 Supporting UML 

Work in progress to support the UML v1 . 1  meta-model (OMG, 1 997c-j) as an extension 

of the CKB and GOOKB is documented in Figure 8-1 1 ,  Figure 8-1 2 and Figure 8-1 3. 

Figure 8-1 1 shows how the following packages from the UML specification (OMG, 

1 99 7i) have been modelled as extensions of the CKB and GOOKB: 

• UML v1.1  Foundation: CORE: Backbone 

• UML v1 . 1  Foundation: CORE: Extension Mechanisms 

• UML v1 . 1  Foundation: C ORE: Auxiliary Elements 

Figure 8-12 and Figure 8-1 3  show how the following packages from the UML 

specification (OMG, 1 997i) have been modelled as extensions of the CKB and GOOKB: 

• UML v1 . 1  Behavioural Elements: Collaborations 

• UML v1 . 1  Behavioural Elements: Common Behaviour 
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:Model_ Element 

: Expression 
. Multiplicity 

r.h,mnP.l'lhl�> · ChangeableKind 
rn<>t!':r,rm<> : ScopeKind 

8- 1 1  UI\JL v1 . 1  Foundation: CORE: Backbone + 
Foundation: CORE: Extension Mechanisms + Foundation: CORE: 

Elements 
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CKB::Di rected_Binary_Relations hip 

UML::SubType 

UML :Modei_element 

8-1 2  U�IL v1 . 1  Behav'ioural Elements: Collaborations 
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UML: :AssociationEnd 

isNavigable : Boolean 
isOrdered : Boolean 

aggregatio n ·  AggregationKind 
targetScope : ScopeKind 
multiplic ity . Multiplicity 

changeable . C hang e ableK i nd 

8- 1 3  - L' .\fL v1 . 1  Common Beha>·iour: Common Behaviour 

The definition o f  the core UML meta-model as an extension of the CKB and GOOKB 

validates the novelty, flexibility and extensibility of the MOOT approach as UML is an 

example of a new methodology that did not exist when the research commenced. 

8.5 Preliminary Development of the Semantics Editor 

The Semantics editor (Figure 3-1 0  - Proposed, top level, system architecture) is used by 

methodology engineers to define the semantics of methodologies in SSL. The 

development o f  the semantics editor by using MOOT is a bootstrapping approach where 

NDL and SSL are used to develop a tool for building SSL specifications. 

Two modelling languages are proposed to support the development of SSL 

specifications. These are: 
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• SSL module structure modelling language. The purpose of this language is to define 

the class and module structure of an SSL specification. It supports the construction 

of a collection of diagrams, each of which corresponds to an SSL module. 

• SSL method modelling language. The purpose of this language is to define the 

implementation of an operation shown in an SSL module structure model. 

Figure 8-1 4 shows how the two modelling languages are supported in MOOT. 

CKB::Intra-Model Transition 

The two modelling languages are represented by sub-classes of Modelling Language (Module 

Model and Method Mode�. lmplementOperation is an inter-model transition between an SSL 

Module Model and an SSL Method Model The implementation of an operation in a SSL 

Module Model by a method is represented by an instance of lmplementOperation. Uselnteiface 

is an intra-model transition between two SSL module structure diagrams. This transition 

corresponds to using a class in a module that is defined in another module. 

Figure 8-1 5  documents work in progress, to define the semantics of SSL as an extension 

of the GOOKB. This extension is called the SSL Knowledge BASE (SSLKB). The 

SSLKB is partially designed and has not been implemented in SSL. 
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GOOKB::Operation 
association use the 
classes from the 

GOOKB 

8-1 5  Representing SSL as an extension of the GOOI..::B 

Figure 8-1 5  represents the module structure of SSL. Intetjace Module contains zero or 

more Intetjaces. Implementation modules contain zero or more SSL Classes. Each Class in an 

implementation module corresponds to an intetjace in an intetjace module. The SSLKB defines an 

extension of GOOKB Class (SSL Class) as SSL classes also have a constraint. SSL Class is 

also a sub-class of 7)pe. The other Sub-classes o f  Type include Collection and Iterator. 

Inheritance and association are already supported in the GOOKB. Figure 8-1 5 shows an 

extension of GOOKB Whole_Part and GOOKB Part that permits any SSL type to take the 

role of 'part' in a whole-part relation. 

The development o f  NDL specifications for the two proposed modelling languages have 

been conducted independently from the development of the SSLKB. 
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8.5.1 Notation for the SSL Module Structure Modelling Language 

There are two symbols in the notation of the SSL module structure modelling language. 

c l a s s  n a m e  
o p e rati o n  o n e  
o p e rati o n  two 

Interface symbols represent SSL class interfaces. An interface symbol 

has two compartments, one for the class name and one for the 

operations. Each use of a class from another SSL module corresponds 

to an interface in an SSL module model. 

c l a s s  n a m e  
o p e rat i o n  o n e  

attri b ute o n e  
attri b ute two 

The Class symbol has three compartments. The top compartment 

contains an interface. The last two compartments contains the 

attributes and a constraint. 

c l a s s  c o n straint 

The current implementation of the SSL module modelling language uses elements from 

the CKB as its semantic definition. SSL classes and interfaces are represented by an 

instance of CKB concept. Inheritance and Using relations are represented by instances of 

CKB Directed Binary Relation. A portion of the NSM table used is  given in Figure 8-1 6. 

a )  

0 1 1  s e t l abe l - S #  

0 1 2  s e t labe l - S #  

0 1 3  s e t l abel - S #  

0 1 4  s e t l abe l - S #  

b )  

I n t e r face ckb_rnodel e l ernent : c oncept crea t e - #  

C l a s s  ckb_rnode l e l ernent : c oncept crea t e - #  

I nh e r i t ance ckb_rnode l e l ernent : di rected_bina ry_re l a t i onship 2 
_p lain 1 

i nheri tance_end 1 
c reate-Vckb_rnode l e l ernent : concept #Vckb_mode lel ernent : concep t # #  

U s e s  c kb_mode l e l ernent : di re c ted_binary_re l a t ionship 2 
_p lain 1 
_arrow_end 1 
c r eate-Vckb_rnode l e l ernent : concept #Vckb_mode lel ernent : concep t # #  

c )  

I n t e r face 

C l a s s  

I nhe r i t ance 

U s e s  

addc oncept -Vckb_rnode lelernent : concep t # #  

addc oncep t - Vckb_rnode lelernent : concep t # # 

addre l a t i onshi p - Vckb_rnode l e l ernent : re l a t i onship # #  

addr e l a t i onship - Vckb_rnode l e l ernent : re l a t i onshi p # # 

Figure 8- 1 6  - SM table for the SSL module modelling language 

Figure 8-1 6  (a) shows the NSM action map. The update of each field is mapped to a 

setlabe/ message (which takes a single string argument) . Figure 8-16  (b) contains the create 

concept and create relation maps. Classes and interfaces are represented by an instance of 

Concept from the CKB. All relations are represented by an instance of Directed Binary 
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Relation from the CKB. Figure 8-16 (c) contains a portion of the add map. These entries 

specify the message that is used to add an item that corresponds to a particular NDL 

template to a diagram. 

Figure 8-1 7  shows a snapshot of MOOT being used to draw an SSL module structure 

diagram that corresponds to the Critic module of the CKB (see Figure 6-1 1 - Critics). 

Figure 8-1 7  - Supporting SSL with MOOT 

The example in Figure 8-1 7  shows the CASE tool client and the MOOT core running on 

the same machine. A description of each window is given below. 

Project Manager 

MOOT 
Core 

MOOT CASE Tool 
Client 

Feedback Window Java Console J 

MOOT CASE Tool Client 

The interface of the CASE Tool client consists of a 

drawing surface, a toolbar and a menu bar. The toolbar is 

generated automatically from the NDL specification for 

the current modelling language. This example also shows 

inheritance and uses connections. 

220 



MOOT Core 

The output displayed in the console corresponds to the translation of actions at the 

CASE tool client. 

Feedback Window 

Explanations generated by the MOOT core and feedback related to the successful 

creation of symbols and connections are displayed in this window. 

Prqject Manager 

The project manager is used to manipulate the models in a project. 

] ava Console 

The output displayed in the console corresponds to success response packets sent from 

the MOOT core in response to a request by the CASE tool client. 

8.5.2 Notation for the SSL Method ModeUing Language 

The proposed SSL method modelling language is used to define the SSL code in the body 

of an SSL method. The notation described here is a proposal, whose primary purpose is 

to demonstrate that a notation of this type can be described successfully with NDL. 

The proposed notation has fourteen symbols and three connections. The symbols 

correspond to SSL statements, SSL operators and values .  The connections represent 

invocation, value and part relations. The symbols and connections are discussed below. 

Statement block 

This symbol represents a sequence of statements, which 

are connected to the statement block with invocation 

connections. The order of the invocation connections 

represents the order of execution o f  the statements. 

If statement 

The boolean condition is attached to the bottom of the if 

symbol with a value connection. This example shows a 

variable symbol whose name is condition and whose type is 

boolean. Single statements can attached to the T and F parts 

of the if symbol. 
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b o o l e a n  pget- out c o ndition 

EEJ rg]  
EJ 

Loop statement 

The get-out condition is attached to the bottom of the 

symbol with a value connection. In this example the get­

out condition is a boo lean variable called get-out condition. 

Return statement 

The return statement indicates the end of a method. The 

values that are returned a result of the method are attached 

at the bottom of the symbol with value connections. 

Assignment statement 

The assignment statement is used to update the value of a 

variable. This example can be read as '1-value is given the 

value of r-value'. 

Arithmetic operators 

Each arithmetic operator symbol may accept multiple 

value connections at the top and have one or two value 

connections at the bottom. 

Message send operators 

The two message-send operators are used to represent the 

binding of messages to an SSL object, SSL collection or 

SSL iterator. 

Part connection 

The part connection is used to associate an assignment 

operator with its 1-value and r-value and to associate a 

message send operator with its message receiver and 

message. In this example the message message is being sent 

to an object called receiver. 

Value connection 

Value connections represent the evaluation of an 

expression. This example shows a message with two 

arguments af}!,ument 1 and argument 2. 
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Invocation connection 

The invocation connection represents the execution of a 

statement. In this example a loop statement and then a 

return statement are being invoked, from within a 

statement block. 

Figure 8-1 8 shows SSL code for the Explain method of the CompositeCritic SSL Class 

defined in the Core Knowledge Base. A ComplexCritic object encapsulates a collection of 

other critic objects. The Explain method concatenates the explanations generated by the 

component critic objects. 

/ I  Exp l a i n  method from CKB : : Compo s i teCr i t i c  

string Explain ( )  

string exp lanat i on ; 

Ite rator [ Cr i t i c  ] s i t ;  

Cri t i c  c ;  

/ 1  i f  there i s  no probl em r e turn ok 

i f ( i s OK ( )  ) 

{ 
return " ok " ; 

e l s e  

1 1  otherwi se bu i l d a n  exp l an t i on 

exp l anat ion = " " ;  

/ 1  s i tua t i ons i s  a c o l l ec t i on o f  c r i t i c  obj e c t s  

s i t  = s i tuat i ons . f ront ( ) ; 

loop 

{ / /  f inish when we have checked everyone 

endloop when ( s i t . end ( )  ) ; 

c = s i t . item ( ) ;  

1 1  update the expl ana t i on 

explana t i on = exp l ana t i on + c . Exp l a i n ( ) ; 

s i t . next ( ) ; 

/ 1  return the resu l t  

return exp l ana t i on ; 

Figure 8- 1 8  - Explain method of the ComplexCritic class in the CKB 

Figure 8-1 9 shows the corresponding SSL method model and shows how the explain 

method can be captured using the proposed notation. 
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lie rator(Critic) �situation 

Figure 8- 19  - An example SSL method model 

Repeti:K>n 
AssigYnent 
Message_Send 
Scoped_IIAessoge_Send 
Select 

Rellln_Resuft 

Add 
s..tllract 
Muliply 
Divtde 
Or 
Message 
Variabte 

Whilst no claim is made to suggest that MOOT should be used to implement visual 

programming languages, this result is interesting because the development of the notation 

for the SSL method modelling language (with 1 4  symbols, three types of connection and 

logical distortion) was achieved in a matter of hours. 

8.6 Toward Supporting Joosten Workflow Modelling 

This work started after an expression of interest, by another researcher, to use MOOT to 

model and implement several workflow methodologies. The aims of this work are to: 

• Model several workflow methodologies. 

• Derive a meta-model of workflow methodologies. This work 1s similar to the 

GOOKB in scope and intent. 

Assess the MOOT approach when used to model a non object-orientated 

methodology. 
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This research is in its preliminary stages. An NDL specification of the Joosten Ooosten, 

1 995) workflow methodology has been derived. An example Joosten trigger model 

Ooosten 1 995) which has been drawn using MOOT is given in Figure 8-20. 

Customer 

complain 

customer 
consent 

customer 

approve 

8.7 Summary 

��------------------------� --;eJect\....) � 

repres. 

negotiate solution 

rep res. 

negotiate satisfaction 

rasp. mgr 

ack 

activity 
atc.mc_activfty 
synch'onlsolion...PO<nl 

Figure 8-20 - Joosten trigger model Qoosten, 1 995) 

This chapter has presented a series of examples showing how the results of the research, 

as discussed in chapter 3 - 7, can be applied. This included: 

• Describing Coad and Y ourdon 

Implementing the support for patterns as part of the GOOKB 

• Initial work on describing the UML meta-model as an extension of the GOOKB 

Initial work on supporting the semantics editor (as described in the description of the 

proposed architecture in chapter 3) using MOOT 

Initial development of the Joosten Workflow methodology 
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The successful modelling and implementation of patterns and UML (recent advances in 

object technology), which did not exist when the research commenced, shows the 

innovative and original nature of the approach and the new methodology representation 

strategy. This research is a significant move toward building adaptive systems; the 

ultimate future of software engineering. 
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Cha p te r  9 

Conclusion and Future Work 

If we knew what it was we were doing, it would not be called research, would it? 

9.1 Introduction 

Albert Einstein 

The objectives of the research, as stated in section 1 .  7, are: 

• Develop a novel meta-CASE tool methodology representation strategy that: 

• Uses an object-orientated meta-model. 

• Allows methodology descriptions to be re-used. 

• J\finimises the coupling between methodology syntax and semantic descriptions 

such that methodology syntax and semantic descriptions can be re-used 

independently. 

• Permits software engineering projects to be re-used, even if they are built with 

different methodologies. 

• Design and implement a prototype meta-CASE tool that realises the new 

methodology representation strategy via the development of: 

• Languages that support the description of syntax and semantics of a 

methodology. 

• The efficient execution strategy of syntax and semantic descriptions. 

This thesis presents the development of a new modifiable CASE environment designed 

to satisfy these objectives (Meta a:,ject Orientated Tool) . The results of this research are 

manifest in the existence of NDL, SSL, SSL-BC, SSL-VM, NSM tables, the CKB, the 

GOOKB and the MOOT prototype. 

The thesis is summarised in section 9.2 and a critical evaluation of the study is presented 

in Section 9.3. Some of the future work that has been envisaged is outlined in section 9.4. 

Final concluding remarks are made in section 9.5. 
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9.2 Summary of the Thesis 

Chapter 1 introduced and defined fundamental terms used throughout the thesis. The 

type of CASE tool that is the subject of the research was defined (methodology CASE 

tool) . A classification hierarchy o f  methodology CASE tool categories was derived and a 

review of CASE tools was presented with respect to the hierarchy. The limitations of 

methodology CASE tools were discussed from organisational and CASE tool 

perspectives and the goals of the study presented. 

Chapter 2 examined meta-modelling and meta-CASE technology. In particular the 

following limitations of meta-CASE technology were identified: 

• Reliance on data models 

• Separation of 'structural' and 'behavioural' elements of semantic descriptions, which 

decreases the cohesion of semantic descriptions 

• High coupling between the syntax and semantic descriptions, primarily because of an 

assumed, fixed, mapping between elements of syntax and semantic descriptions 

• No consideration of software process 

• No consideration for re-use of methodology descriptions or software engineering 

projects 

• No relation between supported methodologies 

• Very poor usability 

Chapter 3 presented the approach taken to address the limitations of methodology CASE 

tools and meta-CASE tools. The proposed architecture of a new modifiable CASE 

environment (M:OOT) was presented. The methodology representation strategy 

supported by MOOT was outlined and a prototype of MOOT described. 

Chapter 4 presented the development of NDL (Notation Definition Language). An 

overview of graphical notations used in software engineering methodologies was 

presented. The requirements and design of NDL were discussed and a prototype NDL 

interpreter (the basis of the MOOT CASE tool client) was presented. 

Chapter 5 described the development of SSL (Semantic Specification Language). SSL 

implements the MOOT meta-model; integrates the description of 'structure' and 

'behaviour'; supports more than completeness and consistency checking; emphasises 
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programming, rather than formally defining the semantics; supports re-use and provides 

efficient execution and platform independence. 

SSL is an object-orientated language that supports a subset of the facilities of a general 

purpose programming language. It is a statically type checked language that provides 

clean separation between 'class interface' and 'class implementation'. SSL supports 

dynamic binding, multiple inheritance, built-in primitive types, polymorphic collection 

and iterator types and provides a module system. 

Chapter 6 presented the development of the Core Knowledge Base (CKB) and the 

Generic Object Orientated Knowledge Base (GOOKB). The CKB was derived using a 

meta-modelling approach and implements a meta-model of methodology, which provides 

simple facilities for cognitive support. The GOOKB was derived by meta-modelling and 

implements a meta-model of concepts germane to all object-orientated methodologies. 

Chapter 7 discussed the realisation of methodologies and software projects in MOOT. 

The derived Methodology Description Table (MD1), Notation-Semantic Mapping 

(NSM) tables and the communication protocol between the CASE tool client and 

MOOT core were presented. It was shown that the association of syntax and semantic 

descriptions involved: the relation between a software engineering project, in terms of  its 

models, diagrams and documents, to the methodology used to create it; the relation 

between the syntax and semantic descriptions expressed with NDL and SSL; the relation 

between logical actions performed using the CASE tool client and semantic actions 

performed by the MOOT core. 

Chapter 8 presented a series of examples showing how the results of the research can be 

applied. This included: implementing Coad and Y ourdon's methodology; implementing 

support for patterns as part of the GOOKB; initial work on describing the UML meta­

model as an extension of the GOOKB; initial work on supporting the semantics editor 

and initial development ofJoosten's Workflow methodology. 

Table 9-1 summarises the practical work and the publications completed as a result of 

this research. 
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Chapter Practical Work 

3 Prototype of the 
MOOT Core 

4 

5 

6 

7 

Prototype NDL 
Interpreter 

SSL Compiler 

Core Knowledge Base 
and Generic Object 
Orientated Knowledge 
Base 

Communication 
protocol in the CASE 
tool client 

Implementation Details Related Publications 

""" 90 classes Page et al., 1 997, 1 998 

""" 8000 lines of C++ Mehandjiska et al., 1 997 

""" 80 classes 

""" 5000 lines C++ 

""'1 600 lines tcl 

""" 450 lines of PCCTS 
grammar 

""" 80 classes 

Page et al., 1 994 

Mehandjiska et al., 1 995b, 
1 996a 

Page et al., 1 997, 1 998 

""" 5000 lines of C++ Mehandjiska et al., 1 997 

""" 800 lines of PCCTS 
grammar 

:::::: 45 classes 

""' 1 000 lines of SSL 

""' 10 classes 

""' 800 lines of] ava 

Page et al., 1 998 

Mehandjiska et al., 1 996b, 
1 996c, 1 997 

Mehandjiska et al., 1 997 

Phillips d al., 1 998b, 1998c 

Table 9- 1 Practical work completed during the research 

9.3 Discussion 

The discussion summarises the novel meta-CASE tool methodology representation 

strategy. The overall MOOT approach is critically reviewed and the new modelling 

languages (NDL and SSL) are discussed in turn. Finally two re-usable libraries of 

semantic methodology descriptions (the CKB and GOOKB) are considered. 

9.3.1 The Novel M eta-CASE Tool Methodology Representation Strategy 

The novelty of this research is the philosophy and implementation of the new 

methodology representation strategy for meta-CASE tools. 

Novel Prindples of the Methodology Representation Strategy 

• A language for modelling methodology syntax. This is an advantage in contrast to 

existing approaches, which only provide simple support for 'pen and paper' 

notations. 
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• A single modelling language for representing methodology semantics.  This is an 

advantage in contrast to existing approaches, which are typified by 'data model and 

separate constraints.'  

• Independent development of syntax and semantic descriptions. This is supported by 

the scope of the modelling languages and late binding of methodology syntax and 

semantic descriptions. 

• Re-usable methodology description components. 

• Explicit relation between methodology descriptions. 

• Facilities such as auto-correction, intelligent feedback and cognitive support. 

Novelty of the Implementation 

• An object-orientated meta-model used for a meta-CASE tool. 

• NDL, a new language for describing methodology notations. 

• SSL, a new language for describing methodology semantics.  

• SSL-VM, a new virtual machine which supports efficient processing of SSL. 

• CKB and GOOKB, two libraries of re-usable methodology semantic description 

components. 

9.3.2 The MOOT Approach 

The approach described in the thesis addresses issues related to CASE tools and meta­

CASE tools. Positive and negative ramifications of the novel methodology representation 

strategy and its implementation in MOOT have been identified based on empirical results 

gained by using the MOOT prototype. The positive ramifications are related to: the 

adoption of an object-orientated meta-model, the scope and separation of NDL and SSL, 

and the emphasis on re-use. The negative ramifications are common to all meta-systems 

and are related to redundancy, efficiency and complexity. 

9.3.2. 1 An Of?ject-Orientated Meta-Mode/ 

The integration of state and behaviour 

Previous meta-CASE tools typically provide two or more separate languages for the 

semantic specification of methodologies. One is used to define 'structure' and the second 
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to define constraints on the structure (a form of behaviour). There are several problems 

with this approach: a) there are multiple languages for the same task b) the coupling of 

methodology semantic specifications increases and c) the cohesion of methodology 

semantic specifications decreases. MOOT addresses these issues by providing a single 

language (SSL) that integrates the description o f  structure and behaviour. 

Inheritance and pofymorphism 

Using inheritance is the logical extension of the support for 'sub-typing' that the majority 

of meta-CASE tools provide. The integration of state and behaviour in SSL, combined 

with inheritance and polymorphism, fosters a 'model by derivation' approach to 

methodology meta-modelling in MOOT. This approach has significant advantages in 

comparison to some meta-CASE tools, which only support accidental re-use of previous 

methodology meta-modelling results. 

Support for re-use 

An object-orientated approach promotes re-use, as widely propounded in the literature. 

The benefits of an object-orientated approach, in terms o f  fostering and enabling re-use, 

applies to MOOT methodology semantic descriptions, as MOOT incorporates an object­

orientated meta-model and meta-modelling is simply modelling, at a different level of 

abstraction. 

9.3.2.2 Separate Syntax and Semantic Modelling Languages 

Key benefits of the separation of the syntax and semantic modelling languages in a meta­

CASE tool include: 

• Syntax and semantic descriptions can be developed in isolation 

The new approach to meta-modelling in MOOT allows syntax and semantic 

descriptions to be derived separately. Methodology engineers with sound HCI skills 

can develop notations whilst those with sound modelling skills can derive 

methodology semantic descriptions. This permits the development of effective 

'screen' notations to be considered. If it can be said, "to a user of a system, the 

interface is the system" (Apperley and Duncan, 1 994), perhaps it can analogously be 

said, "to a user of a methodology, the notation is the methodology." 
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• Increased cohesion and reduced coupling 

This is a direct consequence of ensuring that the syntax modelling language can only 

be used to model syntax and the semantic modelling language can only be used to 

model semantics. Therefore, the cohesiveness of syntax and semantic descriptions 

must be the same as, or better than, that achieved with other meta-CASE tools. The 

coupling between the descriptions is certainly low as each may be developed 

independently. 

• Syntax and semantic descriptions can be plugged together 

The MOOT approach fosters a culture of 'develop the semantics once' rather than 

developing similar semantic descriptions with different syntax, which in turn 

emphasises that 'different syntax' and 'same semantics' is not the same as 'different 

methodology.' 

• The modelling languages mqy be extended in the future without affecting each other 

A complete separation of NDL and SSL ensures that each language may be extended 

independently in the future. 

9.3.2.3  Viewing MethodoloJJJ Descriptions as Potentialfy Re-usable Components 

The development of the CKB and GOOKB was driven by the realisation of the 

homology of object-orientated methodologies. The fact that the CKB and GOOKB can 

be built at all is evidence of the potential of the MOOT approach. These two libraries have 

successfully been used to derive Coad and Yourdon's methodology, the semantics of 

SSL, the UML meta-model and support for patterns. 

9.3.2.4 Redundanry 

The existence of two separate languages in MOOT may lead to redundancy in the 

methodology descriptions. For example, the developer of a syntax description for an 

object-orientated methodology constrains inheritance connections to occur between 

classes, a feature also captured by the semantic description. However, MOOT syntax and 

semantic descriptions serve completely different purposes. Therefore the scope and 

representation of similar concepts (in syntax and semantic description) is different. The 

MOOT approach increases the cohesion of methodology descriptions and reduces the 

syntax - semantic coupling. 
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9.3.2.5 E.fficienry 

Meta-systems typically suffer with respect to efficiency in time and space because of the 

additional layers of representation they entail. There are three aspects of the MOOT 

system where efficiency should be considered: processing NDL specifications, processing 

SSL messages and mapping syntax and semantics with NSM tables. The time/ space 

efficiency considerations include: 

• Processing NDL specifications 

Empirical experience gained thus far, from using MOOT, indicates that the 

additional overhead in terms of time is not noticeable in the client. For example 

NDL is used to dynamically update symbols, as a user types text directly onto the 

drawing surface. An NDL template is subsequently interpreted, in between 

keystrokes, to resize affected symbols and connections. However, no delay noticeable 

by users of the CASE tool client0: has been observed. 

Size q[NDL specifications 

The space overhead of NDL specifications is insignificant. For example, a complete 

textual NDL definition of Coad and Yourdon, including support for logical 

distortion, is approximately 4500 bytes. The major overhead in the client is the space 

it takes to represent NDL templates in memory. Currently the client parses the NDL 

specification and builds an abstract syntax tree for each template. The overhead is, 

however, not large. 

• Processing S SL messages 

Two aspects of processing SSL messages have been considered. The first is the time 

taken to execute the body of a method. SSL is compiled to a platform independent 

binary representation to address this issue. The second is the time it takes to bind a 

message to an SSL object. SSL is statically type checked to address this issue. In 

addition the SSL class run-time representation includes a method lookup table. 

This research has not been concerned with multi-user access, so the current 

prototype only implements very primitive multi-user facilities6B. The impact of object 

on low-end computer, such an l ntd Pentium 1 50 based machine 

users can connect to the .\f( )( Yf core and all ret]UC<'ts for access to SSl > objects 
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level locking, therefore, cannot be qualitatively or quantitatively assessed at this time, 

although it is expected to be significant. 

• Size of SSL specifications 

The space overhead of maintaining semantic specifications (SSL classes in MOOT) is 

no greater than that of other meta-CASE tools m. 

• Appfying NSM tables 

Empirical evidence gained from using MOOT shows that the run-time cost of 

implementing late binding of syntax and semantic descriptions, with NSM tables, is 

not significant in comparison to processing NDL and SSL. 

• Size qfNSM tables 

The space overhead of NSM tables is insignificant in comparison to the NDL and 

SSL specifications that comprise a methodology description and the NDL views and 

SSL objects that comprise a software engineering project. 

9.3.2.6 Complexity 

MOOT is more complex than a methodology CASE tool and some existing meta-CASE 

tools as two languages are needed to describe a methodology (NDL and SSL). However, 

the contention of the MOOT approach is that the scope and separation of these 

languages provide significant advantages to the methodology engineer, which compensate 

for the complexity. 

The current MOOT prototype requires a methodology engineer to write code in NDL, 

SSL and develop NSM tables by hand. Learning two new languages constitutes a 

significant learning overhead. This issue can be resolved by providing visual editors to aid 

the methodology engineer in the task of creating methodology specifications (see the 

Semantics editor, Notation editor and Methodology editor in Figure 3-10 - Proposed, top 

level, system architecture) . 

9.3.2. 7 Structure of the Persistent Store 

The meta-modelling approach adopted requires careful design of the MOOT repository. 

Methodology descriptions consist of a collection of SSL classes, NDL specifications, an 

that MOOT supports more than 
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NSM table and an entry in the Methodology D escription Table .  Software engineering 

projects consists of a collection of NDL views and SSL objects. The persistent store 

contains instances of the C++ classes that implement SSL class, SSL object and so on. 

The structure of the persistent store, whilst logically is very rich (it corresponds to the 

SSL class hierarchies), is physically flat (as it contains instances of approximately four 

C++ classes). The significance of this becomes apparent when browsing of software 

engineering projects is considered. The MDT provides sufficient indexing to locate the 

SSL objects that correspond to individual projects, models and diagrams. However, 

browsing a software engineering project is also concerned with browsing the content of the 

models that have been derived. A method for supporting browsing of software engineering 

projects in MOOT, at granularity finer than that of the diagram, has not yet been 

proposed. 

9.3.3 The Notation Definition Language 

NDL allows notations to be described and supports the 'screen notation' in contrast to 

the limited support for 'pen and paper' notations provided by other meta-CASE tools. 

The limitations of NDL are related to supporting operations over groups of symbols and 

connections, facilities that are not supported by the syntax representation mechanism 

adopted by other meta-CASE tools. Some notations represent semantic information by 

the relative positions of symbols and connections (e.g. RDD). Whilst NDL can be used 

to describe the symbols and connections of such notations, it does not provide facilities 

to capture such a spatial relation. Composite symbols such as the Booch bubble (where a 

class bubble may appear inside another Booch bubble) and the Coad and Yourdon 

subject area cannot be represented. This is the purpose of the NDL composite template, 

which has yet to be implemented. 

Each of these limitations are addressed in section 9.4 - Future Work 

9.3.4 The Semantic Specification Language 

Existing specification languages and virtual machines were investigated to determine their 

applicability to the implementation of MOOT. The main reasons for deriving a 

specialised language for MOOT were: 
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• The approach adopted by other meta-CASE tools only focuses on completeness and 

consistency checking. MOOT was required to support additional features such as 

cognitive support and auto-correction. 

• The formal approach adopted by other meta-CASE tools does not allow a software 

engineering project to be in an inconsistent state. This is a barrier to an exploratory 

approach to development that software engineers naturally use. 

• A new language can be readily extended and modified based on results gained form 

its use and future research ideas. 

The SSL execution strategy was developed based on the requirement for efficient 

execution of SSL specifications and platform independence. The decision to translate SSL 

to a platform independent representation and execute it on a virtual machine was a 

natural one. 

Existing object-orientated virtual machines were investigated (e.g. the Smalltalk virtual 

machine and the J ava virtual machine) .  The following issues were noted: 

• Existing virtual machines implement representations of general-purpose 

programming languages and therefore provide facilities that SSL does not require 

(such as support for input and output) . 

The support required for concurrency is different to that of existing virtual machines. 

SSL requires only a single thread of control to be active in the SSL-VM, yet multiple 

instances of the SSL-VM can be active at the same time processing messages from a 

common pool of SSL objects. Object-level locking is therefore required and is tightly 

coupled with the virtual machine. 

• In contrast to other virtual machines, the SSL-VM only required a small instruction 

set and a close correlation to SSL. 

9.3.5 Core Knowledge Base and Generic Object Orientated Knowledge Base 

One of the primary goals in developing the CKB and GOOKB was to demonstrate the 

feasibility of producing libraries of re-usable methodology semantic components for a 

meta-CASE tool. 
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The CKB is a base, from which other meta-models may be derived in the future. It is 

similar in scope and intent to the OMG Meta Object Facility. For example the GOOKB 

has been defined as an extension of the CKB (see section 9.4 - Future Work). 

The focus of the GOOKB is limited to static modelling of class hierarchies and the 

various types of association supported by object-orientated methodologies. The GOOKB 

was designed to model concepts germane to all object-orientated methodologies. Its 

scope is similar to the latter COMMA project, which was for a "critical minimality that 

could be supported by all methods" (Henderson-Sellers and Bulthuis, 1 996a) . 

Implementing the support for behavioural modelling in MOOT is addressed in section 

9.4 - Future Work. 

Meta-modelling of 'software process' is a significant research task in its own right and is 

on-going in the MOOT project. The inclusion of the process and document classes in the 

CKB acknowledges the importance of these concepts, which is an improvement over 

existing meta-CASE tools. 

9.4 Future Work 

The overall goal of MOOT is to support all phases of the software development life­

cycle, promote re-use and support component based software engmeenng 

methodologies. The planned future work can be classified as: 

1 .  Extending the MOOT prototype so it completely implements the architecture 

proposed in chapter 3. 

2. Extending the methodology representation strategy. 

3. Extending the scope of MOOT. 

Subsequent sections describe future work related to categories two and three. 

9.4.1 The Notation Definition Language 

Extension if existing ND L facilities 

• Introduce a module system and improve the scope rules for NDL Currently 

template names and NDL IDs are unique within an NDL specification. Therefore, 

portions of an NDL specification can not be easily re-used. Experience gained by 
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using NDL indicates that the group template mechanism is very useful and that 

building libraries of group templates is efficacious. 

• Consider supporting format specification for text areas. Currently text fields contain 

strings in an 'unparsed' form. The CASE tool client transfers the content of the text 

fields to the MOOT core, which translates them. The communication between the 

CASE tool client and the MOOT core can be reduced if the CASE tool client can 

check the syntax of text fields. 

• Introduce a general action template to improve user-defmed actions. NDL supports 

two built-in action types, update and transition. User defined actions are currently 

supported by permitting a user defined action ID to be associated with an active area. 

These actions are propagated by a CASE tool client to the MOOT core but cannot 

have any arguments. 

Adding new facilities to ND L 

• Support parameterised symbol and connection types. For example a class symbol 

could be parameterised by an outside and an inside group template. A parameterised 

template could be instantiated to create a concrete template type. 

• Consider manual re-sizing of symbols. This could be implemented by simple scaling. 

However this would lead to symbols that are distorted. better solution would be to 

include optional 'stretch in x' and 'stretch in y' properties for the primitive template 

types that correspond to graphical elements. 

• Support repetitive subgroups in symbols. This would allow a greater range of 

notations to be described and also simplify the description of others. This technique 

could also be used to replace the multi-line-text template segment type. 

Implementing the support for repetitive subgroups would provide better targeting of 

events and actions to sub-parts of symbols. 

• Allow 'position information' to be propagated to the MOOT core. One possible 

technique is to apply a logical grid over a diagram with a 'snap to grid factor'. The 

origin of this grid would be relative to the first symbol placed in a diagram. 

• Support constraints on item placement. One possible technique is to use the 

Meta View idea of Clusters. 
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• Investigate supporting animation of diagrams. This is something that is outside the 

initial scope of NDL. 

9.4.2 The Semantic Specification Language 

Extension if existing 5 5L facilities 

• Permit SSL classes to define local methods, which have the same visibility as the 

attributes and are only relevant to the class implementation. This ensures the class 

interface does not become polluted with operations that are onfy related to the class 

implementation. 

Add support for parameterised types to SSL. 

Extend the use of the SSL tuple type. 

Adding new facilities to 5 5L 

Consider implementing the CKB classes Methodology, Model, Diagram, Concept and 

Relation as built-in SSL types. This work implies an extension of the SSL-VM. 

Address optimisat:ion of compiled SSL. 

Investigate the need to support concurrency m SSL. MOOT allows multiple 

instances of the SSL-VM to be active at the same time, processing messages from a 

common pool of SSL objects (a form of concurrency). Supporting concurrency in 

SSL would require more than one thread of control in the SSL-VM and perhaps in 

SSL objects. Two approaches are: a) provide explicit programmer support (e.g. a 

programmer API or programming language constructs, related to concurrency) b) 

automate the support for concurrency. 

The preferred method for supporting concurrency in SSL would be the second 

approach. 

9.4.3 Notation Semantic Mapping Tables 

Two avenues of future work are envisaged for NSM tables: 

• NSM tables could be extended with a simple scripting language (NSM-SL). The 

elements on the right-hand-side of the majority of table entries would consist of a 
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block of NSM-SL code. This would support mapping the creation of an NDL view 

to the creation of one or more SSL objects; mapping the server side creation of an SSL 

object to instance s  o f  one or more NDL templates and mapping an NDL action to 

several messages to several SSL objects. 

• Generalise the NSM table to permit representations other than NDL to be bound to 

SSL. For example a simple command-line client has been implemented and 

associated to an SSL semantic description via an NSM table. 

9.4.4 Support for Re-use 

A significant amount of research has already been conducted on adopting re-use 

strategies and on the problems of building, indexing and searching through, a collection 

of re-use assets (Yu, 1 999). Future research must consider how these techniques can be 

applied and extended within the context of MOOT. This includes: 

• Descriptions of re-usable components in the re-use pool. One possibility is to extend 

SSL to permit descriptions of 'meaning' to be attached to SSL objects. Another is to 

use a separate language for describing the components in the re-use pool. 

Assistance in selecting re-usable components, which includes intelligent searching of 

the re-use pool and the promotion of new items into the re-use pool. 

The management of re-usable components over their lifetime. 

Implementation o f  a re-use pool browser. 

This work must also consider the requirements of emergmg, component -based, 

development methodologies (D'Souza and Wills, 1 998; Wills and D'Souza, 1 997) and 

technologies such as SOM, COM, DCOM, CORBA, JavaBeans IIOP and ActiveX 

(Forman et aL, 1 995; I-Kinetics, 1 998; LaMonica, 1 997; Montgomery, 1 997; OMG, 1 991 , 

1 992, 1 998; Orfali et al., 1 996; Siegel et al., 1 996; Soley, 1 998) .  
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9.4.5 Cognitive Support 

This future work involves implementing the ARGO/UML7u scheme for cognitive 

support (Robbins et al., 1 996, 1 997, 1 998), in the context of the Core Knowledge Base. 

This would be an extension of the Critic SSL module of the CKB to support: 

Building user models. 

• Providing a change history. The CASE tool client currendy implements this in a 

primitive way. It records the request-result pairs that correspond to communication 

with the MOOT core and displays them in a separate window for the user to view. 

• Supporting auto-correction. 

• Introduce support for ARGO /UML style Critics. The ARGO scheme allows critics 

to be active and monitor the user as they work. 

The ARGO/UML approach is specific to object-orientated methodologies and focuses 

on the support of design. The scope of the ARGO /UML scheme must be re-considered 

in terms of: 

• Generality. MOOT is a meta-CASE tool that aims to support arbitrary methodologies. 

• Scope. MOOT is intended to support methodologies across a wide portion of the life­

cycle. Ultimately this includes tasks such as requirements gathering and 

implementation. 

9.4.6 Meta-Modelling 

• Core Knowledge Base and Generic Olject Orientated Knowledge Base 

The CKB and GOOKB should be compared to other meta-modelling 

developments, as they become stable. Further modelling of the UML71 meta-model 

(see section 8.4 - Supporting UML) and the OPEN meta-model as extensions of the 

GOOKB is necessary. A comparison of the OMG Meta Object Facility to the CKB 

is also of particular interest. 

The current 

""'''ndent C\SE tool 

related to support the cotrmtl'vc 

of the U :vn . meta-modcl has not anv modifications to the CKB or G( )( JKB. 
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• Meta-modelling if sqftware engineering process 

The result of this research will be a software process meta-model, which can be 

defined in SSL as a part of the Core Knowledge Base. This research is also related to 

the future work on cognitive support for software engineers as it deals with the 

suggestions and guidelines implicit in the software process. 

Meta-modelling the behavioural modelling languages supported f?y oiject-orientated methodologies 

This research will consider the behavioural modelling languages adopted by object­

orientated methodologies. It will also consider the COMMA project, the UML meta­

model and the submissions for the OMG OA&D facility. 

• Meta-modelling other approaches to srftware engineering 

The original intent of the MOOT project was to solely address object-orientated 

methodologies. The subsequent development of the CKB, however, suggested that 

the MOOT approach is more widely applicable than was initially intended. 

The objective of this research is to determine if meta-models of other software 

engineering approaches can be implemented as extensions of the CKB. These meta­

models will have the same scope and intent as the GOOKB. Examples include 

Workflow methodologies (preliminary work on this is described in section 8.6) and 

Information Engineering. 

9.4.7 Validation of a Complete Implementation of MOOT 

A complete implementation of the MOOT CASE architecture (proposed in chapter 3) 

must be validated with respect to the two types of user that MOOT supports; it must be 

validated as a CASE tool and as a meta-CASE tooL 

An evaluation framework has been derived (appendix I) to support validation of a 

complete implementation of MOOT. The results of applying the evaluation framework 

to MOOT will be compared to evaluation results already generated for other CASE and 

meta-CASE tools (Choi, 1 996; Gray, 1 995; Phillips et aL, 1 998a). 
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9.5 Conclusion 

This research has demonstrated the efficacy of adopting an object-orientated approach to 

the development of a methodology representation strategy for meta-CASE tools. The 

novel methodology representation strategy reinforces fundamental object-orientated 

principles: 

Encapsulation 

Everything related to the description o f  a methodology's syntax is written in a single, 

separate, purpose built language (NDL) and grouped together. Everything related to the 

description of a methodology's semantics is written in a single, separate, purpose 

built language (SSL) and grouped together. 

• Information Hzding 

The implementation of syntax and semantic descriptions of a methodology are totally 

hidden from each other. Semantic elements do not know, and do not need to know, how 

they are visualised. Syntax elements do not know, and do not need to know, what they 

represent. 

• Pojymorphism and Late Binding 

An NDL specification can be bound to any SSL specification via an NSM table. 

• Re-Use 

Re-use is promoted by viewing methodology specifications as potentially re-usable 

components and by the development and subsequent use of the CKB and GOOKB. 

The results of this research are manifest in the existence of NDL, SSL, SSL-BC, the SSL­

VM, NSM tables, the CKB, the GOOKB and the MOOT prototype. Empirical results 

gained from applying the MOOT prototype demonstrated the flexibility, extensibility and 

potential o f  the novel methodology representation strategy. This approach permitted the 

implementation and modelling of UML and patterns, two recent advances of object 

technology that did not when research commenced. 

The novel strategy presented in this thesis is more than an untried theory. It has been 

implemented, applied and is being evaluated. Simply, it is real and it works. 
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A ppe n d i x  I 

Evaluation Framework 

1.1 Existing Evaluation Frameworks 

A CASE tool Evaluation Framework should support both qualitative and quantitative 

assessment. The framework should provide the structure from which a set of questions 

can be generated that are designed to assess the functionality, methodology support and 

usability of CASE tools. 

Examples of evaluation frameworks that have been developed in 

work of Misra (1990), Mosley (1992) and Ovum (1996). 

past include the 

These approaches suffer from several important problems. Existing evaluation 

frameworks: 

• Do not address all the features and characteristics of CASE tools. 

• Are often out of date with respect to CASE and software engineering technology. 

• Cannot be systematically modified to address new advances in CASE technology. 

Their structure is not conducive to simple extension or refinement. 

• Cannot be easily targeted toward tools of a particular type. For example some of the 

evaluation criteria related to meta-CASE tools are not relevant to a methodology 

dependant tool. 

• Are difficult to use to focus on one particular dimension of 

tools (e.g. usability) .  

1 .2 A New Evaluation Framework 

properties of CASE 

new evaluation framework has been developed, as a part of this research, to address 

the problems identified with existing evaluation frameworks (Phillips, 1998a). 
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The new evaluation framework: 

1 .  addresses usability, methodology support, life-cycle support and information 

exchange 

2. can be easily extended in the future to allow for emerging technology 

3. copes with the plethora of different methodologies and tools 

The new evaluation framework is based on a classification hierarchy of 00 CASE tool 

categories (Figure 1-3 - Classification hierarchy of CASE tool categories) . 

Each node in the hierarchy represents a CASE tool category and has a set of associated 

evaluation criterion. Each node inherits evaluation criteria from parent nodes. The 

hierarchical structure permits the framework to be extended to support new types of 

CASE tool. 

A classification based evaluation framework provides the necessary flexibility needed to 

cope with changing CASE and software engineering technology. This structure also 

prevents the evaluation framework from becoming unmanageable, as evaluation criteria 

are always associated with a node in the classification hierarchy of an appropriate level of 

abstraction. This structure also permits evaluation criteria to be specialised and refined in 

a systematic way, in less abstract CASE tool categories. 

Evaluation criteria are further classified with respect to usability, methodology support, 

life-cycle support and information exchange. The four evaluation criteria hierarchies are 

orthogonal to the CASE-tool-category classification hierarchy (Figure I-1). Each 

evaluation criteria hierarchy is further structured into a hierarchical series o f  categories. 

Evaluation criterion is therefore classified in two ways a) based on the CASE tool 

category it is relevant to and b) based on the property of CASE tools it addresses. 
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Methodology 
Support 

Usabi l ity 

A 00 CASE Tools 

c. Multi-Methodalogy 
CASE Tools 

E. Meta CASE Tools 

Figure I - 1  - Dimensions of the evaluation framework 

Lifecycle 
Support 

Information 
Exchange 

For further information on the evaluation framework and its application see (Choi, 1 996, 

Gray, 1 995, Phillips et aL , 1 998a) .  
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App e n d i x  I I  

NDL Grammar 

11.1 Introduction 

The following grammar is an abridged version of the PCCTS grammar used by the CASE 

Tool Client. This grammar uses version 2.x of the PCCTS syntax. 

A description of PCCTS can be found at the PCCTS web site (PCCTS, 1 998). 

II.2 Reserved Words 

NOTAT I ON CONNECTI ON_ TERMINATOR_ TEMPLATE 

II.3 

II.4 

CONNECTION_SYMBOL_TEMPLATE 

{ } 
( 

GROUP TEMPLATE -
DEFAULT TEXT 

L INE ARC 

GROUP DA 

AREA TRANSITION 

UPDATE POINT 

RECT l.JNCONSTRAINED 

HEAD TAIL 

HEIGHT GROUPWIDTH 

MAX MIN 

T ERMI NATORS 

Operators 

+ 

I 

Grammar 

n o ta t i on 

NOTATION I DENTIFIER 

( group ) *  

( ) * 
( 

( ) * 
( connec t i on ) *  
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C ONNECTION_ TEMPLATE 

S YMBOL_ TEMPLATE 

ARITY 

L I STTEXT 

ACTIVE 

T O  

BOUNDING 

TOP 

W I DTH 

GROUPHEIGHT 

S YMBOL 

* 



group : 

GROUP_TEMPLATE I DENT I F I ER 

BEG I N  

expres s i ons graphi cal_component s  a c t i ve_areas 

bounding_r e g i o n  

END 

temp l a te 

exp r e s s i ons graph i ca l _c omponents bound ing_reg i on 

symbo l 

SYMBOL_TEMPLATE I DENT I F I ER 

BEG I N  

ac t ive_areas docking_areas 

de faul t_t ext_prope r ty ) ?  
END 

defau l t_text_proper ty 

DEFAULT TEXT 

OPENBRACKET I DENT I F I ER C OMMA IDENT I F I ER CLOSEBRACKET 

INTEGERVAL 

conne c t i on_symbo l 

CONNECTION_SYMBOL_TEMPLATE I DENTIFIER 

BEG I N  

t emp l a t e  TOP p o int dock i ng_areas 

END 

CONNECTION_TERMINATOR_TEMPLATE IDENT I F I ER 

BEG IN 

t emp l a t e  HEAD point TAI L  

END 

conn e c t i on 

CONNECTION_TEMPLATE IDENTI F I ER 

BEG I N  

ARI TY INTEGERVAL 

( SYMBOL I DENT I FI E R  ) ? 
TERMINATORS I DE NT I F I ER ( IDENT I F I ER ) *  

END 

expr es s i on s  

( I DE NT I F I ER EQUALS exp re s s i on ENDEXPR ) *  
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expres s i on 
( 

term 

PLUS expres s i on expres s i on 
M INUS expres s i on expres s i on 
T IMES expres s i o n  expres s ion 
DIVIDE expres s i on expres s ion 
t erm 

I NTEGERVAL I funct i on I IDENTIFIER ) 

funct ion 

W IDTH 
H EIGHT 
GRP_WIDTH 

O PENBRACKET IDENTIFIER CLOSEBRACKET 
OPENBRACKET I DENTIFIER CLOSEBRACKET 
O PENBRACKET I DENTIFIER CLOSE BRACKET 

GRP_HEIGHT O PENBRACKET IDENTIFIER CLOSEBRACKET 
MAX argument_l i s t 
MIN argument_l i s t  

argument_l i s t  
OPENBRACKET 

expres s i o n  ( COMMA expre s s i on ) *  
CLOSEBRACKET 

graphi c a l _c omponen t s  

( 
L I NE po i nt point ( 
ARC point point p o i n t  
TEXT IDENT IFIER point 
L I STTEXT IDENT IFIER po int 

) * 

Group IDENT IFIER IDENTI FIER 
) * 

ACTI VE AREA poi nt a c t i on ) *  

act i on 

UPDATE I DENT I FIER 
I TRANS ITION TO I DENTIFIER 
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docking_areas : 
( POINT DA point c onne c t i on_count point 

a l l owable_conne c t o r s  
LINE DA f lag rect_a r e a  conn ec t ion_count INTEGERVAL 

al l owabl e_connec t o r s  
ARC DA rec t_area p o i n t  f lag c onne c t i on_count 

INTEGERVAL a l l owab le_conne c t o r s  
) * 

rect area : 
po int point 

c onnec t i on_coun t  : 
UNCONSTRAI NED / INTEGERVAL ) 

a l l owable c onnec tors : 
OPENBRACKET ( I DENT I F I ER ) *  CLOSEBRACKET 

bounding_reg i on 
BOUNDING RECT point 

point 
OPENBRACKET expres s ion COMMA expres s ion CLOSEBRACKET 
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A ppe n d i x  I I I  

SSL Grammar 

111.1 Introduction 

The following grammar is an abridged version of the PCCTS grammar used by the SSL 

compiler. This grammar uses version 1 .33 of the PCCTS syntax. A description of PCCTS 

can be found at the PCCTS web site (PCCTS, 1998) and in Terrance Parr's PCCTS book 

(Parr, 1 997) . 

111.2 Reserved Words 

MODULE USES 
OPERATIONS CONSTRAINT 

111.3 

} 
[ 

BOO LEAN 
ITERATOR 
DEBUG_PRINT 
CURRENT_DIAGRAM 
IF 
END LOOP 

Operators 

+ 

I 
< 

< =  

and 

( 
J 
I NTEGER 
STRING 
CREATE 
S ELF 
CURRENT 
ELSE 
WHEN 

d iv 
> 

o r  

111.4 Grammar 

modul e i nterface 
MODULE IDENT I FI ER 
u se s_l i s t s  
c l a s s inter facede f s  

u s e_clau s e  ) *  

PROJECT 
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ATTRIBUTES 
{ 
) 

REAL 
COLLECTION 
DESTROY 
CURRENT_MODEL 
NO_OBJECT 
LOOP 
RETUR..l'J 

* 

mod 
> = 

<> 

not 



u s e_c l au s e  : 
USES u s e s  i tem ( COMMA u s e s  i tem ) *  ENDSTATEMENT 

u s e s  i t em : 
IDENT I F IER MODULESCOPE I DE NT IF I ER EQUALS I DENTIFIER ) 
IDENTI F I ER 

c l as s name 
IDENTI F I ER I I DE NT I FI ER MODULESCOPE I DENT I F I ER ) 

c l a s s inter facede f s  
( c la s s interfacede f ) * 

c l a s s inter facede f  
I DENT I F I ER 
{ superc las s l i s t  } 
BEGIN 

( operati on ) *  
END 

opera t i on 
( 

DESTROY LPAREN RPAREN 
I ( CREATE I { operat ion_resu l t  } I DENTIFIER ) 

parameter_l i s t  

module 
MODULE I DENTIFIER 
uses_ l i s t s  
c la s s de f s  

c l a s s de f s  
( c l a s s def ) * 

i s t  ENDSTATEMENT ) *  

c l a s sde f 
I DENT I FI ER 
BEGIN 

ATTRIBUTES 
OPERATIONS 
CONSTRAINT 

method ) *  
expr e s s i on ) *  

END 

I SA c l as sname 
( 

COMMA classname 

) * 
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a t t ribut e_l i s t  : 
type I DENT IFIER 

( COMMA I DENT I FIER ) *  

type 
I NTEGER 

REAL 
STRING 
BOO LEAN 
c la s s name 
COLLECTI ON LSQBRACKET type RSQBRACKET 
I TERATOR LSQBRACKET type RSQBRACKET 

method 
opera t i on 
( a t  

block 
i s t  ENDSTATEMENT ) *  

s ta t ement l i s t  
( s tat ement ) * 

b l ock 
BEG I N  s tatement l i s t  END 

opera t i on_res u l t  
type 
I L PAREN type 

p aramet e r_l i s t  
L PAREN 

COMMA type ) *  RPAREN 

{ type IDENTIFIER ( COMMA type IDENTIFIER ) *  } 
RPAREN 

s ta t emen t  

s end_me s sage ENDSTATEMENT 

r eturn_s tatemen t  

s el e c ti on 
i teration 

ENDSTATEMENT 

DEBUG_PRINT LPAREN expres s i on RPAREN ENDSTATEMENT 

255 



lva l ue : 
I DENTIF IER 
j LPAREN IDENTIFIER ( COMMA IDENT I F I ER ) *  RPAREN 

as s ignment 
lvalue EQUALS expre s s i on ENDSTATEMENT 

return s ta t ement : 
RETURN ( exp r e s s i on ( COMMA expre s s i on ) * ) ENDSTATEMENT 

s end_message 

{ ( IDENT I F I ER I SELF I D IAGRAM I P ROJECT ) DOT } 
{ LSQBRACKET c las sname RSQBRACKET } 
I DENTIF IER 
L PAREN { exp r e s s i on ( COMMA expres s i on ) *  } RPAREN 

create_me s s age 
c l a s sname DOT CREATE 
L PAREN { expres s ion ( COMMA expres s i o n  ) *  } RPAREN 

des troy_me s sage : 
I DENTIFIER DOT DESTROY L PAREN RPAREN 

s e l ec t i on 
i f sta t ement 

i terat ion 
l oops tatement 

i f s ta tement 
I F  condi t i on block 

approx 
ELSE b lo c k  } 

l o o p s tatement 
LOOP 
BEGIN 

s tatemen t l i s t  
ENDLOOP WHEN cond i t i on ENDSTATEMENT 
s tatement l is t  

END 

c on di ti on 
LPAREN expre s s i on RPAREN 
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expres s i on 
arithme t ic_expres sion 
{ ( EQUAL S j NOTEQUALS j LESS j LESSEQ j GREATER j GREATEREQ 

a r ithmet ic_expression 

ari thme t i c_expres s i on 
rnul t ip l i ca t ive_expression 
( ( PLUS j MINUS j OR ) 

rnul tipl i cative_expres s i on 
) * 

mul t i p l i cat ive_expression 
fact o r  
( ( TIMES j DIVIDE j DIV j MOD j AND 

factor  
) * 

fact o r  
INTEGERVAL 

BOOLEANVAL 
STRINGVAL 
CURRENT_MODEL 
CURRENT_DIAGRAM 
CURRENT_PROJECT 
NO_OBJECT 
SELF 
IDENTIFIER 
s end_mes s age 
c reate_rnes s age 
LPAREN e xpres s ion RPAREN 
NOT fact o r  
MINUS factor  
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A ppe n d i x  I V  

S SL Examples 

IV.1 The Sieve ofEratosthenes Version 1 

This implementation of the Sieve of Eratosthenes72 was written during the development 

of SSL to test the efficiency of object creation, object destruction and message binding. It 

is not intended to be an efficient implementation of the Sieve of Eratosthenes. The 

classes involved in this example are given in Figure N -1 .  

In this example a 

: from, I nteger : step) 
: from, I nteger : step) : Lisff!erator 

<<Instantiates>> 

collectively implement a linked 
list 

<<Uses>> 

IY -1 Sieve of Eratosthenes version 1 

object maintains a linked list of boolean flags of a fixed size. The 

lined list is implemented with the ListNode and Listltem classes. The sieve object uses 

instances of the Listlterator class to perform traversals of the list. 

for numbers. 
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IV.J.J Interface Module 

module s i eve 

l i s t  
{ 

new ( )  
c ons ( integer value ) 
l i s titerator f ront ( )  
tail  ( )  
boolean i s Empty ( )  

l i st i tem 

new ( integer value ) 
s e t ( boolean i s Pr ime 
boolean i s Pr ime ( )  
integer val u e  ( )  

l i s tNode 
{ 

new ( l i s t i t em i ,  l i s tnode n ) 
l i stitem i t em ( ) 
l is tnode next ( )  

l i s t i terator 
{ 

} 

new ( l i s tnode p 
l i sti t em i t ern ( )  
next ( )  
boolean end ( ) 

s ieveClass 
{ 

integer s ta r t  ( ) 
init ( integer top 

( ) 
mark ( l i s t i t e rator 1 ,  integer s tep 
integer numPrimes ( )  
l istiterator  ( l i s t it erator l ,  integer n ) 

} 

IV. 1.2 Implementation Module 

module s i eve 

s ieveClas s  
{ 

attributes 

l i s t  int s ; 
integer t op ;  
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operat ions 

integer s tart ( )  
l istitem i ;  
l ist iterator l i ;  

i nit ( 1 0 0 0  ) ;  
f indPrimes ( ) ; 
return numPrimes ( ) ; 

i ni t ( integer t ) 
integer c ;  

t op = t ;  
c = top ; 
i nts = l i s t . create ( ) ; 
ints . new ( ) ; 
l oop 

{ 
ints . cons ( c ) ; 

endloop when ( c 
c = c - 1 ;  

f indPrimes ( )  
integer s tep ;  
integer upper l imi t ;  
l i s t i terator 1 ;  

l istitem i ;  

2 ) ; 

s t ep = 2 ;  

upperlimi t 
loop 

top div 2 ;  

{ 
1 skip ( ints . front ( ) , step 2 ) ; 

i f ( not l . end ( )  ) 

{ 
i 1 .  i tern ( ) ; 
i f  ( l .  ( )  
{ 

debug_print ( s te p  ) ; 
mark ( l ,  s tep ) ;  

step = s tep + 1 ;  
endloop when ( s tep 
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mark ( l i stiterat o r  1 ,  integer s ) 
l i s t i tem i ;  

{ 

} 

loop 

{ 
1 = skip ( 1 ,  s ) ; 

endloop whe n ( l . end ( )  ) ; 
i = 1 .  i tern ( )  ; 
i .  s et ( fal s e  ) ; 

integer numPrime s ( )  
integer total ; 
l i s ti terator 1 ;  
l i s t i tem i ;  

t o t a l  = 0 ;  
1 = ints . front ( ) ; 
l oop 

{ 
endloop whe n ( l . end ( )  ) ; 
i = 1 . i tern ( ) ; 
i f ( i . ispri me ( )  
{ 

total = t o ta l  + 1 ;  

l . next ( ) ; 

return total ; 

l i s t it erator skip ( l i s t i terator 1 ,  integer n ) 
i nteger c ;  

c = 0 ; 

l oop 

{ 
endloop whe n ( l . end ( )  OR ( c  
l . next ( ) ; 
c = c + 1 ;  

} 
return 1 ;  

l i stNode 
{ 

attributes 

l i s t i tem 
l i s tNode next_ ; 

operat i ons 

new ( l is titem i ,  l is tnode n ) 
{ 

i tem_ i ;  next n ;  
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} 

l i s t  
{ 

l i s t i tem i t em ( )  
{ 

return 

l i s tnode next ( )  
{ 

return next_ ; 

attribute s  

l i s tnode l ;  

operations 

new ( )  
{ 

1 = no_obj ect ; 

cons ( integer value 
l i s t i tem i ;  
l i s tno de newl ; 

i = l i s titem . create ( ) ; 
i . new ( value ) ; 
newl = l i s tnode . create ( ) ; 
newl . new ( i ,  1 ) ;  

1 = newl ; 

l i s ti t erator front ( )  
l is ti t erator it ; 

i t = l istiterator . create ( ) ; 
i t  . new ( 1 ) ; 
return it ; 

tai l { )  
{ 

if ( not ( 1 = no_obj ect l ) 
{ 

1 = 1 . next ( ) ; 

boo lean 
{ 

return 1 

( ) 

no_object ; 
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l i s t i tem 
{ 

attributes 

boolean pr ime ; 
integer val ; 

operations 

new ( integer value 
{ 

} 

prime = t rue ; 

val = value ; 

s e t ( bool ean i s Prime 
{ 

= i sPrime ; 

boolean i s Pr ime ( )  
{ 

return p rime ; 

integer value  ( ) 
{ 

return val ; 

l i s t i terator 

attributes 

l i s tnode p o s ; 

operations 

new ( i stnode p ) 
{ 

pos = p ;  

l i stitem i tem ( ) 
{ 

return p o s . i tem ( ) ;  

next ( )  
{ 

i f ( not ( pos = no_obj ect 

{ 
pos = pos . next ( ) ; 

263 



boolean end ( ) 
{ 

return pos no_obj ect ; 

Sample output from executing this implementation of the Sieve of Eratosthenes 

algorithm with an early prototype of the SSL virtual machine is given below. 

> mooto - c  s i eve : s i eveclass  -p 2 

No message spec i f i ed ,  u s ing s tart- #  

There are 1 i t em ( s )  in the stack . 
I tem 1 i s  an integer ( 1 6 8 )  

Total number o f  opcodes interpreted 
Total time ( seconds ) 
Opcode s / Sec 
A t otal of 2 4 9 8  obj e c t s  were created 

3 3 6 7 9 6 9  

3 5 2  

9 5 6 8  

A total  o f  6 1 7 0 4 7  mes s ages were proces sed 
> 

It was executed on a Sun Spare Server 1 OOOe. On average, 1 0000 SSL-VM instructions 

and 1 800 messages were processed per second. 
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IV.2 The Sieve ofEratosthenes Version 2 

This implementation of the Sieve of Eratosthenes was written during the development of 

SSL to test the SSL collection and iterator types. The classes involved in this example are 

given in Figure IV-2. 

marklll:era.tor.,us:tltem> : from , Integer : step) 

o.: 

: l!erator 
: Boolean 

: from , Integer : step) : lterator<Listltem> 

<<Instantiates>> 

Listltem 

prime · Boolean 
: Integer 

<<Instantiates>> 

IY -2 - Sieve of Eratosthenes version 2 

IV.2.1 Interface Module 

modul e  s i eve2 

l i s t i tem 

} 

new ( integer val u e  ) 

s e t ( boolean i s Pr i me 

boolean i s Prime ( )  

integer val u e ( )  
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s i eveC l a s s  

integer s tart ( )  

i ni t ( integer top 

f in d P r imes ( )  

mark ( i terator [ l i s t i t em ]  1 ,  integer s ) 

i te ra t or [ l i s t i tem] s k i p ( i t e rator [ l i s t i t em] l , integer n )  

integer numPrime s ( )  

IV.2.2 Implementation Module 

modu l e  s i eve2 

s i eveC l a s s  

{ 
attributes 

c o l l ection [ l i s t i tem] i n t s ; 

i nt eger top ; 

operati ons 

integer s tart ( )  

{ 
i n i t ( 1 0 0 0  ) ; 

f indPrimes ( ) ; 

return numP r imes ( ) ; 

i n i t (  integer t ) 

integer c ;  
l istitem i ;  

{ 

} 

t op = t ;  

c = 2 ;  

l oop 

{ 
i l i s t i t em . create ( ) ; 

i . new ( c ) ; 

int s . add ( i ) ; 
endloop when ( c 1 0 0 0  ) ;  

c = c + 1 ;  
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f indPr irnes ( )  

integer s t ep ;  

integer upper l irni t ; 

iterator [ l i s t i t ern] 1 ;  
l i s t i t em i ;  

s t ep = 2 ;  

uppe r l imi t t op div 2 ;  

debug_print ( " Wo r k i ng . . . . . .  " ) ; 

loop 

{ 
1 skip ( i n t s . front ( ) , s t ep 2 ) ; 

i f ( not l . end ( )  ) 

{ 

} 

l = l . i t ern ( ) ; 

i f  ( i .  i sp r irne ( )  

{ 
debug_print ( s t ep ) ;  

mark ( 1 ,  s t ep ) ;  

s tep = s tep + 1 ;  
endloop when ( s tep uppe r l irni t ) ; 

mark ( i terator [ l i s t i tern] 1 ,  integer s ) 

l i s t i t ern i ;  

loop 

{ 
1 = skip ( 1 ,  s ) ; 

endloop when ( l . end ( )  ) ; 

i = l . i tern ( ) ; 

i . s et ( fal s e  ) ; 

integer nurnPrirne s ( )  

integer t o t a l ; 

i terator [ l i s t i t ern] l ;  

l i s t i tern i ;  

t o t a l  = 0 ;  

l = ints . front ( ) ; 

loop 

{ 
endloop when ( l . end ( )  ) ; 

i = l .  i t ern ( )  ; 

i f  ( i .  ( )  ) 

{ 
total t o t a l  + 1 ;  

l . next ( ) ; 

debug_print ( " number o f  

debug_print ( t o t a l ) ;  

return total ; 
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i terator [ l i s t i tem] 

s k i p ( i terator [ l i s t i tem] l ,  integer n ) 
integer c ;  

c = 0 ;  
l oop 

{ 
end loop when ( l . end ( ) OR ( c 

l . next ( ) ; 
c = c + 1 ;  

return l ;  

l i s t  I tem 

[ 
attribute s  

boolean p r ime ;  

integer val ; 

operat i ons 

new ( integer value 

{ 

} 

p rime = true ; 

val = va lue ; 

s e t ( boolean i s Pr ime 

{ 
= i s Pr ime ; 

boolean i s P r ime ( )  

return 

integer value ( ) 

{ 
return val ; 
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Appe n d i x  V 

S SL-VM Instruction S et 

V.1 Introduction 

Instructions described here have the following format: 

Name Type-mode Address-mode [Operands] 

Name is the instruction name. Ijpe-mode corresponds to the type that an instruction 

operates on. Address-mode specifies where the instruction's arguments are. 

Ijpe-mode is one of the following: 

Boo lean Int Real 

Collection Iterator ObjRef 

Address-mode is one of the following: 

Imp (Implicit) Imm (Immediate) 

V.2 Instruction Set 

Mgs 1 Send a message to an object 

Format Mgs ObjRef Ind aReference 

String 

Ind (Indirect) 

aMessage 

Retrieve the object reference indicated by aReftrence from the context. Send 
alvfessage to the object identified by object reference. 

Cmg Send a create message to a class 

Format Cmg ObjRef Imm class name 

Create an instance of the class with the name indicated by classname. 
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Smg Send a scoped message 

Format Smg ObjRef Imm aReference classname aMessage 

Retrieve the object reference indicated by aR.eflrence from the context. Send 
aMessage to the object identified by the object reference, as if it were an 
instance of classname. 

Rtn Return from message 

Format Rtn Void Imp 

Set the instruction counter (Iq to -1 (end of a message) . 

Psh Push item onto the s tack 

Format Psh Int Imm anlnt 

Psh Int Ind aReference 

Psh Real Imm aReal 

Psh Real Ind aReference 

Psh Boo lean Imm aBoolean 

Psh Boo lean Ind aReference 

Psh Collection Ind aReference 

Psh String Imm aString 

Psh String Ind aReference 

Psh ObjRef Imm anObjRef 

Psh ObjRef Ind aReference 

Psh Iterator Ind aReference 

If AddrMode is Ind, get the value from context and push it into stack. If 
AddrMode is !mm, get the following value and push it into stack. 
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j 
Pop 

Format 

Add 

Format 

Pop an item from the stack 

Pop Int Ind aReference 

Pop Real Ind aReference 

Pop Boo lean Ind aReference 

Pop Collection Ind aReference 

Pop String Ind aReference 

Pop ObjRef Ind aReference 

Pop Iterator Ind aReference 

Reset the variable indicated by aReftrence in the context, with the value on 
the top of the stack. Remove the top item from the stack. 

Addition 

Add Int Imp 

Add Real Imp 

Add String Imp 

Add Collection Ind aReference 

Add Iterator Ind aReference 

Int and Real 

The top two values are popped off stack and added together. Push the 
result onto the stack. The two values of stack must have the same type. 

String 

The top two values are popped off stack and appended. The result is 
pushed back onto stack. 

Collection 

Pop the item off the stack and add it into the collection indicated by 
aReftrence context. 

Iterator 

Move the iterator indicated by aReftrence forwards along the list it points to. 
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Sub 

Format 

Subtraction 

Sub Int Imp 

Sub Real Imp 

Sub Collection Ind 

Int, Real 

Pop the top two items off stack. Subtract them and push the result onto 
stack. Both items must be o f  the same type. 

Collection 

Pop an iterator off the stack and remove the item that the iterator points to 
from the collection. 

Mul Multiplication 

Format 

Div 

Format 

Mul Int Imp 

Mul Real Imp 

Pop the top two items o ff stack. Multiply them and push the result onto 
stack. Both items must be of the same type. 

Division 

Div I mp 

Div Real Imp 

Pop the top two o ff stack. If the second operand is zero, a maximum 
value is pushed onto stack. O therwise divide them and push the result onto 
stack. Both items must be of the same type. 

Mod Modulus 

Format Mod Int Imp 

Pop the top two items o ff stack. If the second operand is zero, a maximum 
value is pushed onto stack. Otherwise apply the modulus operation and 

i push the result onto stack. 
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Cnv Convert type 

Format 

Neg 

Format 

And 

Format 

Or 

Format 

Not 

Format 

Cnv Int Imp 

Cnv Real Imp 

Pop a value off stack, convert its type from Int to Real or from Real to Int, 
and push the result back to stack. 

Unary minus 

Neg Int Imp 

Neg Real Imp 

Change the sign of the topmost value on stack. 

Boolean And 

And Boo lean Imp 

Pop two boolean values off stack. Push the logical conjunction of these 
values onto the stack. 

Boolean Or 

Or Boo lean Imp 

Pop two boolean values off stack. Push the logical disjunction of these 
values onto the stack. 

Boolean Not 

Not Boo lean Imp 

Pop topmost boolean value off stack. Push the logical negative of it onto 
the stack. 
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Eq 

Format 

Neq 

Format 

Grt 

Format 

Typed equal comparison 

Eq Int Imp 

Eq Real Imp 

Eq Boo lean Imp 

Eq String Imp 

Pop two values off stack. If their value and type is equal push true onto the 
stack otherwise push false. 

Typed not equal comparison 

Neq Int Imp 

Neq Real Imp 

Neq Boo lean Imp 

Neq String Imp 

Pop two values o ff stack. If their value and type are not equal push true 
onto the stack otherwise push false. 

Greater than 

Grt Int Imp 

Grt Real Imp 

Grt String Imp 

Pop two values off stack. If the first is greater than the second one push 
true onto the stack otherwise push false. Both operands must have the same 
type. 
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Lss Less than 

Format Lss Int Imp 

Lss Real Imp 

Lss String Imp 

Pop two values off stack. If the first is less than the second one push true 
onto the s tack otherwise push false. Both operands must have the same 
type. 

Brt Branch if true 

Format 

Brf 

Format 

Fnt 

Format 

End 

Format 

Brt Boo lean Imm anAddr 

Pop top value off stack. If it has the value tme, set the IC to the address 
. anAddr. 

Branch if false 

Brf Boo lean Imm anAddr 

Pop top value off stack. If it has the value false, set the IC to the address 
anAddr. 

Create an iterator 

Fnt Collection Ind aReference 

Create an iterator that points to the first item of the collection indicated by 
aReftrence in the context. Push the iterator onto stack. 

Test if iterator is at the end of a collection 

End Iterator Ind aReference 

If the iterator indicated by aRiference refers to the end of a collection, push 
tme to stack. Otherwise, push false to stack. 
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Format Itm Iterator Ind aReference 

Push the item that the iterator refers to onto the stack. If the iterator is at 
the end of a list, push no_oiject onto the stack. 

Prj Get the value of the project register 

Format Prj Void Imp 

Push the value of the project register onto the stack. 

Mdl Get the value of the project register 

Format Mdl Void Imp 

Push the value of the model register onto the stack. 

Dgm Get the value of the project register 

Format Dgm Void Imp 

Push the value of the diagram register onto the stack. 
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A ppe n d i x  V I  

SSL Compiler 

VI.l Introduction 

This appendix describes the design and implementation of the SSL compiler (SSLC). 

VI.2 The SSL Compiler 

The SSL compiler (SSLC) is a command line tool that accepts a collection of SSL module 

names as input. It initially compiles each interface module and then compiles the 

corresponding implementation modules. Any additional interface modules that are used 

by these modules are also compiled, if needed. SSLC generates SSL-BC and SSL­

assembler for each class. 

SSLC was developed using: 

• Gnu 2.7.2 for Solaris 2.5 

• Microsoft Visual C++ 5.0 for Windows 9 5/NT 

PCCTS 1 .33 (Parr, 1 997; PCCTS, 1 998) 

PCCTS (Purdue Compiler Construction Tool Set) is a public domain tool that aids in the 

construction of language recognisers and translators. It consists of a parser generator 

(ANTLR) and a lexical analyser generator (DLG). PCCTS generates LL(k) parsers that 

dynamically adjust token look-ahead depth (k). PCCTS v 1 .33 generates lexical 

analysers and parsers in C and C++. 

An abridged PCCTS grammar for SSL is given in appendix III. 

The major components of the compiler are shown in Figure VI-1 .  
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No Type() : SSL_SimpleType 
Boolean() : SSL�SimpleType 

Real() : SSL __ SimpleType 

Integer() : SSL�SimpleType 

String() : SSL_ SimpleType 

SSL� Type __ Manager 

Void() : SSL�SimpleType 

NoObject{) : SSL�SimpleType 
.Tuple( : SSL__Tuple) : SSL�Tuple !Collection( : SSL�Collection) : SSL. Collection 

lterator( : SSL�Ite rator) : SSL�Iterator 

Class( : SSL�Ciass) : SSL�Ciass 
Classname( : SSL .. CiassName) : SSL�CiassName 

I lockup( : SSL� Tuple) : SSL� Tuple 

Lockup( : SSL�Colleetion) : SSL�Collection 
Lookup( SSL�Iterator) : SSL�Iterator 
Lookup( SSL _Ciass) : SSL�Ciass 

Lockup( : SSL _CiassName) : SSL�CiassName 
getAiias( :  string) : SSL�Aiias 

deduce Type( : OP .. TYPE : SSL�Expression) SSL.SimpleType 
deduce Type( : SSL�Expression : OP �TYPE, : SSL�Expression) SSL_SimpleType 

\"I- 1 The main components of the SSL compiler 

moduleinterface() 

SSL Compiler is a singleton (Gamma et al., 1 995) class that is responsible for parsing the 

compiler command line and generating a vector of SSL modules that need to be 

compiled. It directs the action of the parser, type checker and code generator. 

SSL ParserBlack13ox is a parameterised class that is responsible for binding a parser and 

lexer object together. The parsing sub-system of the compiler is made by instantiating the 

Lexer and Parser type arguments of SSL ParserBlack13ox with SSL Lexer and SSL Parser 

respectively. The SSL Lexer class is the lexical analyser that is generated by the DLG and 

ANTLR tools. The SSL Parser class is the parser that is generated by the DLG and 
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AN1LR tools. The interface of SSL_Parser consists of a set of member functions, which 

correspond to the rules in the SSL grammar (appendix Ill). 

Actions (such as creating nodes for an abstract syntax tree) can be associated with the 

rules in a PCCTS grammar. The embedded actions are copied into the related member 

functions of the PCCTS generated parser. These actions have been placed into a 

singleton class (Parser Action) so the entire parser does not need to be regenerated and 

recompiled each time an action is modified. 

Ijpe Manager is a singleton class that stores details relating to the SSL classes, SSL 

collections, SSL iterators and SSL tuples as they are recognised by the parser. It provides 

facilities for searching for and registering new types, checking to see if a type is defined 

and for deducing the type of an expression. It is used during type-checking. 

The PstoreProxy class isolates the compiler from the persistent store. It provides facilities 

for retrieving and storing classes, interfaces, modules and their compiled representations. 

Symbol Table is a singleton class that stores details related to attributes of SSL classes, local 

variables of SSL methods and message arguments. 

Visitor is an abstract super-class that implements the Visitor pattern (Gamma et al, 1 995). 

SSL Ijpe Checker, SSL Bytecode Generator and SSL Assembler Generator are all sub-classes of 

Visitor. The use of the Visitor pattern is discussed in more detail in section Vl.4. 

VI.3 Representing Types in the SSL Compiler 

Figure Vl-2 illustrates how types are represented in the SSL compiler. All primitive types 

are represented by a single instance of SSL Simple Ijpe that is managed by SSL Ijpe 

Manager. Classes, collections, iterators and tuples  are represented by sub-classes of SSL 

Simple Type. The type manager is responsible for maintaining all instances of the type 

classes. It provides facilities for checking to see if types have been previously defined and 

for registering new types. 
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SSL� Type_Manager 

NoTypeQ : SSL�SimpleType 

Boolean() : SSL�SimpleType 
Real() : SSLSimpleType 
I nteger() : S S L�SimpleType 
String() : SSL,,SimpleType 
Void() : SSL�SimpleType 
NoObject() SSL�SimpieType 

Tuple( , SSL� Tuple) : SSL,Juple 
Collection( : SSL�Collection) , SSL�Colleclion 
lterator( : SSL�Iterator) : SSL�Iterator 
Class( : SSL_Ciass) : SSL�Ciass 
Classname( SSL�CiassName) : SSL_CiassName 
Lookup( : SSL� Tuple) : SSL_ Tuple 
Lockup( : SSL�Collection) : SSL�Collectron 
Lookup( : SSL�Iterator) : SSUterator 
Lookup( : SSL�Ciass) : SSL_Ciass 
Lookup( : S SL�Ciass Name) : SSL_ CiassName 
getAiias( :  string) SSL_Aiias 
deduce Type( : operator, : SSL_Expression) 
deduceType( , SSL�Expression, 

\'l-2 

VI.4 Representing Statements and Expressions in the SSL Compiler 

Figure VI-3 shows how statements and expressions are represented by the SSL compiler. 

The parser (SSL Parser in Figure VI-1) builds Abstract Syntax Trees (AST) for each 

method. The types of node 

Figure VI-3. 

the AST are defined by the sub-classes o f  AST Node m 

The interface of the abstract Visitor class of Figure VI-3 defines a visit operation that 

corresponds to each sub-class of AST_Node. Concrete classes of the AST node hierarchy 
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implement the Accept operation defined in AST Node. The sub-classes of Visitor 

implement specific operations of the compiler (such as type checking and code 

generation) .  The type checker and code generators are related by the order in which they 

visit nodes in an AST (i.e. the traversal algorithm is the same). 

Figure \T3 S tatements and expressions in the SSL cotnpJller 
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VI.5 Representing Modules in the SSL Compiler 

Figure VI-4 shows the classes involved in representing SSL modules in the compiler. 

SSL�SimpleType 

methods in the SSL compiler 
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The classes in Figure VI-4 can be grouped into three categories: 

Classes that represent interfaces (SSL Module Interface, SSL Class Description and SSL 

Operation Description) . 

• Classes the represent implementations (SSL Module Implementation, SSL Class 

Implementation and SSL Method). 

• Classes that represent compiled implementations (SSL Compiled Class, SSL Compiled 

Class ASSM, SSL Compiled Class BC, SSL Compiled Method, SSL Compiled Method 

ASSM and SSL Compiled Method Bq. 

SSL Module Interface represents an SSL interface module. It  contains a collection of SSL 

Class Description instances (one for each class interface in the interface module) and is 

associated with an instance of SSL Module Implementation. 

All Class Description objects have an associated instance of SSL ClassName. Class names are 

always fully qualified by a module name. SSL Alias extends SSL ClassName by overriding 

and overloading the isEqual operation. An instance of SSL Alias corresponds to a local 

alias introduced with a modules uses list. 

The interface of an SSL class contains all of its operations and defines its super-classes. 

Operations are represented with an instance of SSL Operation Description. Each operation 

parameter is represented by an instance of SSL VarRef(a sub-class of AST Node in Figure 

VI-3). 

A class's method lookup table is derived based solely on its interface. The Method Lookup 

Table class encapsulates a collection of Lookupitem objects, each of which is an SSL Class 

Name - SSL Operation Description pair. 

SSL Module Implementation (Figure VI-4) represents SSL implementation modules. It 

contains a collection of SSL Class Implementation instances, one for each Class Description 

instance in its associated SSL Module Interface object. 

Each SSL Class Implementation object has a Variables Description object that defines the 

number of attributes, of each type, the SSL class has. The operations that are 

implemented by the SSL class are represented by a collection of SSL Method objects. The 

283 



body of the method is represented by an instance of SSL Statement (a sub-class of AST 

Node in Figure VI-3) . 

SSL Module Implementation, SSL Class Implementation and SSL Method all provide a Generate 

Code operation, which takes an SSL Code Generator object as an argument. SSL Assembler 

Generator overrides the newCiass and newMethod operations to create instances of SSL 

Compiled Class ASSM and SSL Compiled Method ASSM respectively. SSL ByteCode Generator 

overrides the newCiass and newMethod operations to create instances of SSL Compiled Class 

BC and SSL Compiled Method BC respectively. 

SSL Compiled Class (Figure VI-4) defines the internal representation of compiled SSL 

classes. Its sub-classes (SSL Compiled Class ASSM and SSL Compiled Class BC) override the 

name method to produce flle names for classes compiled into assembler or SSL-BC. The 

current implementation only uses a different format for the methods (i.e. assembler vs. 

SSL-BC) so the write method in only defined in SSL Compiled Class. SSL Compiled Class 

ASSM and SSL Compiled Class BC may override the write method in the future. 

SSL Compiled Method defines the internal representation of compiled methods. Its sub­

classes (SSL Compiled Method ASSM and SSL Compiled Method BC) override the write 

method to produce SSL assembler code and SSL BC code respectively. 
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A pp e n d i x  V I I  

The SSL Virtual Machine 

VII.l Introduction 

This appendix presents the design and implementation of the SSL Virtual Machine. The 

initial implementation of the SSL virtual machine is presented in (Griffin, 1 997; Page et 

al., 1 997, 1 998; Mehandjiska et al., 1 997). 

VII.2 The SSL Virtual Machine 

The SSL-VM was developed using: 

• Gnu 2.7.2 for Solaris 2.5 and Linux 

• Microsoft Visual C++ 5.0 for Windows 95/NT 

The primary design goal of the SSL-VM was that it be easy to modify, especially with 

respect to its instruction set. The SSL-VM design makes heavy use of patterns (especially 

the proxy pattern). The S SL-VM implementation makes heavy use of the C++ STL 

(Standard Template Library). 

The major classes in the design of the SSL-VM are given Figure VII - 1 .  

The class Virtual Machine has a stack (Alpha 5 tack) and three registers (Prrject Register, Model 

&gister and Diagram Register;. All message requests that occur whilst a method is executing 

on the SSL-VM are satisfied via the Request Broker, which is implemented using the 

singleton pattern (Gamma et al, 1 995). 

The classes SSL Instance Manager and SSL Class Manager correspond to the SSL Oiject 

Client and SSL Class Client of the Methodology Interpreter (Figure 3-1 0 - Proposed, top 

level, system architecture and Figure 3-1 1  - Architecture of the MOOT prototype). SSL 

Class Manager and SSL Instance Manager are responsible for isolating the SSL-VM from 

persistent store. 
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DecremerrtCo!lectlonRef{!d SSLinstanceiD) 

Resolvei D(id • SSLinstanceiD) SSLOb19C! 

ResolveCo!lecUonlD{!d SSL!nstance!D) SSLCollect10n 

NewtDO SSLinstancelD 

SSUnstanceiD 

YII-1 - of the SSL-Y:\1 

The Debugger class in Figure VII-1 provides facilities for tracing the messages and SSL­

VM instructions that are executed by an instance of the SSL-VM. It also provides 

profiling of  methods. 

The MsgCall class represents a request for a particular message to be executed on the 

virtual machine. It encapsulates a message selector, a message receiver and a reference to 

the SSL-VM that the message is to be executed on; more detailed description of 

binding and message execution is  presented in sections VIIS - Processing Messages and 

VII.6 - Binding. 
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VII.3 Representing SSL Types 

The SSL types are implemented in the following manner: 

Type Implemented with 

SSL integer C++ long 

SSL real C++ double 

SSL boolean C++ bool 

SSL String C++ STL string 

SSL Collection C++ STL map 

SSL lterator C++ STL pair 

SSL Class C++ class called SSL Class 

Table YU- 1 - Implementation of SSL types in the SSL-\':\f 

Variables of the primitive types (integer, real, boolean and string) contain instances of the 

corresponding C++ types, Variables of SSL Collection and SSL Class contain a proxy 

object. Variables of an SSL iterator contain an instance o f  STL pair, where the first item is 

a collection proxy and the second is an index into the collection. The classes involved in 

representing SSL classes and SSL objects are discussed in section VII.4 SSL Proxies.  

VII.4 SSL Proxies 

One of the goals of the design of the SSL-VM was that the persistence of SSL objects 

should be completely hidden. To achieve this goal, access to instances of SSL Class and 

SSL Collection is always via a proxy object. SSL proxies are an example of the Proxy 

design pattern (Gamma et al., 1 995) . 

Proxies encapsulate a unique ID and a static reference to a man.ager object. The manager 

object is responsible for resolving unique IDs into concrete objects and collections. 

The SSL instance manager is responsible for managing instances of classes and 

collections. The SSL class manager is responsible for managing classes. 
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SSUnstance-Proxy) 

+tnhented stale 

YII-2 SSL and SSL classes 
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An instance of SSL Class encapsulates a Variable Info object that describes the number of 

attributes, of each type, that the class defines. Instances of an SSL Class encapsulate a 

Variable Space object that defines the state of the object. A Variable Space object contains 

collections of instances of the basic types and collections of proxy objects for SSL 

Collections and SSL Objects. The sizes of the collections are defines by a Variable Info 

object. 

An instance of SSL Class encapsulates a collection of SSL Class Proxy objects that identify 

its direct and indirect super-classes. An instance o f  SSL Object encapsulates a collection of 

SSL Instance Pro:ry objects that correspond to the state described by the super-class SSL 

Class Pro:ry collection defined in its class. 

VII.5 Processing Messages 

Figure Vll-3 shows the classes involved in processing a message on the SSL--VM. 

A MsgCa/1 object identifies a method to be executed for an object, on a particular SSL­

VM. 

The Context class encapsulates the context a method is interpreted in. It includes the 

attributes of se!f (the object that receives the message), the message arguments and local 

variables that are used within the method. The attributes are represented with an instance 

of Van'able Space. Message arguments and local variables are represented with a second 

instance of Variable Space. SSL--VM instructions that change the value of an attribute, local 

variable or message argument act on an instance of Context. 

Methods are executed by sending an Interpret message to an instance of the Method class. 

The method body consists of a sequence of bytes that corresponds to a set of SSL-VM 

instructions and their operands. 
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SSLlnstanceProx:y, NewVM 
SSUnstanceProY:J, NewVM V!rtua1Mach1ne) 

VII-3 "Ibe classes involved in pn:>c<�ssJ,ng a message on the 
SSL-VM 

Figure VII-4 shows an abridged fragment of C++ from the Interpret method m the 

Method class. 
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L ong IC 

d o  

0 ;  1 1  Ins t ru c t i on Counter 

{ 
i f (  IC < 0 1 1  IC > = S i z e ) { / * s i gna l an erro r * /  } 

1 1  Fetch 

Opc ode next Ge tinstru c t i on ( Code + I C ) ; 

1 1  Decode 

I n s t ruc t i on * Instr 

1 1  Execute 

I C  Ins t r - >Execu t e ( 

theCon t ext , 

VM ,  
IC , 

Ins t ruc t i onTab l e ( )  [ next . in s t Code ( ) ] ; 

Code + IC + s i z e o f ( Opcode ) , 

next . addrMode ( )  ) ;  

wh i l e ( IC ! =  Re t urnFromMes sage ) ;  

Figure \·II-4 - Executing a method on the SSL-\•:\f 

Figure VII-4 shows the fetch-decode-execute cycle that is performed for each SSL-VM 

instruction. The first step (fetch) involves translating the byte located at the Instruction 

Counter (IC) into an SSL-VM opcode. The next step (decode) involves retrieving the 

corresponding instance of the Instruction class from the InstructionTable (Instr'). The 

Instruction class, and its sub-classes, are instances of the Flyweight design pattern (Gamma 

et al, 1 995). The last step (execute) is performed by the Opcode object (Instr') itself. 

VII.6 Binding 

Figure VII-S shows how a message is bound to method and executed on the SSL-VM. 

The message binding process starts when the message request broker receives a request 

to dispatch a message to a particular object. The request will be accompanied by: 

• An SSL Instance Pro:x:y object 

• An instance of the MsgCall class VII-3) 

The SSL Instance Proxy object identifies the object that is to receive the message. The 

MsgCall object identifies the method to be executed and the particular SSL-VM it is  to be 

executed on. 
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2: AcceptMessage( M )  

� I, proxy to class of receiver : 

SSLC\assProxy 

J 3: Dereference( ) � 1 :  Dereference( ) 

9: Getl nstance(proxy to defining class) 
proxy to message receiver : 

SSLi nstanceProxy 

J 8: Dereference( ) I 
' D•""""'�""''"·'"" "' ="w; � I 

10 :  l nterpret(proxy to instance of defining class, VM) 

� 

5: find(messagename) / 

Figure Yil-5 Binding a message to a method on the SSL-Y.\I 

The following steps are performed to bind a message to a method and execute it on an 

SSL-VM: 

1 .  The message request broker first de-references the proxy to rece1vmg object 

(proxy to message receiver in Figure VII-S) . It then asks the message receiver object to 

accept the message. 

2. The message receiver object (message recetver m Figure VII-5) delegates the 

responsibility of finding an appropriate method to its class.  It must first de-reference 

the that defines its class (pro:x:y to class of receiver Figure The message 

receiver then sends a Dispatch Message message to its class (class if receiver in Figure 

VII-S), with the message and a proxy to itself as arguments. 

3. The class o f  the message receiver (class if receiver in Figure VII-S) uses its Method 

Lookup Table to determine which class defines a method that can be bound to 

message. 
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4. The class of receiver object then de-references the proxy to the method defining class 

(pro:x;y to difining class in Figure VII-5). The method defining class (difining class in Figure 

VII-S) is then asked to provide a method that corresponds to the message (method to 

execute in Figure VII-5). 

5. The class of receiver object then asks the message receiver object to return a proxy to the 

instance of the method defining class (pro>ry to instance of difining class in Figure VII-5). 

The proxy returned will either: correspond to the message receiver, or to the instance 

of one of the super-classes, of the message receiver's class (that is part of its inherited 

state). 

6. Finally the method to execute object is asked to interpret itself (message number 10 in 

Figure VII-5) . 

VII.7 Garbage Collection 

The garbage collection scheme is completely transparent to the Virtual machine. It is a 

simple adaptation of the reference counting garbage collection algorithm Oones and Lins,  

1 996). 

Figure VII-6 shows the classes involved in 

scheme used in the SSL-VM. 

reference counting garbage collection 

The classes SSL Instance Seroer and SSL Class Seroer correspond to the SSL Object Server 

and SSL Class server in Figure 3-10 - Proposed, top level, system architecture and Figure 

3-1 1  - Architecture of the MOOT prototype respectively. 

In the prototype implementation of the MOOT core SSL Instance Manager and SSL Class 

Manager simply forward requests directly on to the corresponding server object. SSL 

Instance Seroer maintains a map of SSL Objects (indexed by their SSL Instance ID) and a 

map of SSL Collections (also indexed by their SSL Instance ID). It maintains two maps o f  

reference counts (indexed b y  an SSL Instance ID), one for th e  Instance Map and one for th e  

Collection Map. When a collection o r  object i s  registered for th e  first time a new entry is  

added to the appropriate Riference Count Map with an initial count o f  1 .  
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Figure VII-6 shows that the SSL Class Seroer maintains a map of SSL Classes (indexed 

their SSL Class ID). The SSL Class Server also maintains complementary maps of SSL 

class names and SSL Class ills. 

SSLinstarx:eProxy 
I D  : SSLi nstanceiD 

SSLCollectionProxy 
I D  : SSLinstancel D SSLinstarx:eProxy(Thelnstarx:e : SSLObject) 

SSLinstarx:eProxy(toCopy : SSLinstanceProxy) 
SSLCollectionProxy(toCopy : SSLCollectionProxy) , SSLinstarx:eProxy(l nstanceiD : SSLinstarx:eiD) 
SSLCollectionProxy(lnstarx:e i D : SSLinstanceiD) <>--

Dereference() : SSLObject 
lsValid() : boolean SSLCollectionProxy(Collectio niD : SSLinstanceiD) 

Dereference() : SSLCollectlon isEqual(comp : SSLinstanceProxy) : boolean 
lsVaiKl() : boolean GeliD() : SSLinstanceiD 
isEqual(comp : SSLCollectionProxy) : boo lean , ) GeliD() : SSLinstance i D  

SSLCiassProxy +StheSSLinstance Manager +StheSSLinstance Manager 
, 

name : SSLCiassl D 
SSLinstarx:eManager 

SSLCiassProxy(cName : string) Register(id : SSLinstarx:eiD) 
SSLCiassProxy(TheCiass : const SSLCiass) UnRegister(id : SSLinstanceiD) 
Dereference() : SSLCiass RegisterCollection(id : SSLinstarx:eiD) 
lsVaiKl() : boolean UnRegisterCollection(id : SSLinstancel D) 
isEqual(comp : SSLCiassProxy) : boo lean , l rx: rement(id : SSLinstanceiD) 
GetName() : SSLCiassiD '---- Decrement(id : SSLinstanceiD) 

0 1  
l rx:rementCollectionRef(id : SSLinstanceiD) 
DecrementCollectionRef(id : SSLinstarx:eiD) 
ResolveiD(id : SSLinstanceiD) : SSLObject 

, +StheSSLCiassManager 
ResolveCollectioniD(id : SSLinstanceiD) : SSLCollection 

SSLCiassManager 
Register( name : string) : SSLCiassiD 
UnRegister(id : SSLCiassl D) 
GetName(id : SSLCiassiD) : string 
ResolveName(id : SSLCiassiD) : SSLCiass 

I 
I 
I 
I I 
I 
I 

� 
SSLCiassServe r 

Register(cName : string) : SSLCiassiD 
Unregister(Name : SSLCiassiD) 
GetName(Name : SSLCiassiD) : string 
ResolveName(Name : SSLCiassi D) : SSLCiass 

NewiD() : SSLinstanceiD 
NewCollectioniD() : SSLinstanceiD 

SSLinstarx:eServer 
Register(ID : SSLinstarx:eiD) 
Unregister(I D : SSLinstanceiD) 
RegisterCollection(ID : SSLinstanceiD) 
UnRegisterCollection(ld : SSLinstanceiD) 
lrx:rement(ID : SSLinstarx:eiD) 
Decrement(ID : SSLinstanceiD) 
lrx:rementCollectionRef(id : SSLinstanceiD) 
DecrementCollectionRef(id : SSLinstarx:eiD) 
ResolveiD(ID : SSLinstanceiD) : SSLObject 

'I ( 

1 

�� 
ResotveCollectioniD(ID : SSLinstanceiD) : SSLCollection 
GetNewiD() : SSLinstanceiD 1 GetNewCollectioniD() : SSLinstancei D  I ClassNameMap y I 1 l\ 

,-----::-,..--:-'-----, 
l t

1

1 nd(ID : SSLC iassi D) · stnng 
1 

1 

1 �� ���C�Ia_ss�M�����I 
lfind(I D SSC i assiD) SSLCiass 1 
c__ _______ _; I ClassiDMap I I lnstanceM� I 1 flnd(I D : string) : SSLCiassiD 1 1 find(I D :  SSLinstanceiD) SSLOb1ect 1 

1 
·Spersistent store 1 I Collection Map I 

Store 1 find(ID : SSLinstance) : SSLCollection 1 
DeleteObject( : SSLinstanceiD) 
GetObject(ID :  SSLinstanceiD) : SSLObject 1 I ReferenceCountMap I putObject(Obj : SSLinstance) 
getCollecbon(ID : SSLinstance i D) : SSLCollection lfind(ID : SSLinstanceiD) : Long 1 1 
putCollection(c : SSLCollection) 
GetCiass(cName : string) : SSLCiass 
GetNextiD() : SSLinstancei D 
GetNextCollectioniD() : SSLinstanceiD 
getNSMTable(tName :  string) : NSM_ Talble 
getNotation(notationName : string) : string 

·Spersistent store 

Figure VII-6 - Implementation of the reference counting garbage 
collection scheme 
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The SSL Instance Pro:>g and SSL Collection Pro:>g classes in Figure VII-6 drive the reference 

counting process. Proxy objects notify their manager whenever they are created, copied 

and deleted. Creating and copying proxies corresponds to incrementing a reference count 

and deleting a proxy corresponds to decrementing a reference count. Such a scheme is 

easily implemented as shown in Figure VII-7. 

1 1  a proxy wi th I D  z ero corresponds to no obj ect 

S SLinstanc eProxy : : SSLins tanceProxy ( )  I D ( O )  { }  

1 1  contructed from an exi s i t ing obj e c t  

S S L i nstanceProxy : : SSLins t anceProxy ( 

c ons t SSLOb j e c t  &The ins tance ) : I D ( The ins tanc e . Ge t i D ( )  ) 

assert ( I sVa l i d ( )  ) ; 

Manager - > Incr ement ( ID ) ; 

1 1  c reate f rom an exi s i t ing SSL ID 

S SLins tance Proxy : : S SL ins t anceProxy ( 

c ons t SSL i n s t anc e i D  & Ins tanceiD : I D ( Ins tance i D  

assert ( I sVa l i d ( )  ) ; a s s ert ( Instanc e i D  ! =  0 ) ; 

Manager - >Regi s t e r ( ID ) ; 

Manager - > In c r ement ( ID ) ; 

1 1  c opy cons truc t o r  

S SLinstanc e Proxy : : S SLins t anceProxy ( 

cons t SSLins t anceProxy& toCopy ) 

{ 
assert ( I sVa l i d ( )  ) ; 

i f (  ID ) Manage r - > I nc rement ( ID ) ; 

1 1  destruc tor 

S SLinstanc e P roxy : : -SSLins tanceProxy ( )  

{ 
assert ( I sVa l i d ( )  ) ; 

i f (  ID ) Manager- >Decrement ( ID ) ; 

} 
1 /  assignment operator 

I D ( toCopy . ID ) 

S SLinstanc e Proxy &SSLins tanceProxy : : operator 

const SSL i n s t an c e P roxy &Copy ) 

} 

i f ( thi s ! =  & Copy ) 

{ 
assert ( I sVa l i d ( )  ) ; 

i f ( I D  ) Manager - >Dec rement ( I D  ) ; 

ID = C opy . Ge t i D ( ) ; 

i f ( I D  ) Manager - > Increment ( I D  ) ; 

return * th i s ; 

Figure YII-7 - Implementation of the SL Instance Proll:y class 
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An instance of SSUnstancePro:>ry (Figure VII-7) sends Increment and Decrement messages to 

its manager in the constructors, destructor and the overloaded assignment operator. 

These C++ member functions collectively define the primitive operations on a type in 

C++ (i.e. duplication, instantiation, deletion and assignment) .  
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Errata Sheet 
Spelling Errors and Clarifications 

page 6, Fig 1 .2 

page 8, line 1 6  
page 1 4, line2 
page 29, line 1 9  
page 36, line 1 9  
page 48, line 7 
page 64, Fig 3.3 
page 75, footnote 
page 87, Fig 4.4 
page 93, line 1 3  
page 1 24, Fig 5. 1 
page 1 28, line 1 7  
page 1 29 
page 1 37,  Fig 5 .6  
page 2 1 0, section 8 .3  

page 2 1 3  

page 3 1 3  

The arrow with the 'Meta' label only points from the 'modelling process '  on 
the left to the 'modelling process' on the right 
'Some of the most prominent' should read 'Some prominent' 
'Existing CASE tools' should read 'Several existing CASE tools' 
'CASE Date' should read 'CASE Data' 
'tool configuration' should read 'tool configurations' 
'Primary' should read 'Primarily' 
Directed arrows correspond to inheritance relations 
Warwick et aL 1 996 should read Mugridge et aL 1 996 
'hieght' (bottom left of figure) should read 'height' 
'to separate' should read 'to a separate' 
'persistance' (bottom right of figure) should read 'persistence' 
'currnt_mode! ahould read 'current_mode! 
The memory management scheme has reference loop detection 
listiterator and listlterator are the same as SSL is not case sensitive 
Instantiate is overridden to achieve different behaviour for pattern 
instantiation (see footnote page on page 2 1 1) 
Consistency between models is achieved by the meta-modelling approach 
supported by MOOT 
Reference Warwick, B., Mugridge, B . ,  Hosking, J .G .  and Grundy, J . C .  
(1 996) should read Mugridge, \VB.,  Hosking, J .G.  and Grundy, J .C. (1 996) 

Systems Relating to Graphical Notations 

Additional information about some of the systems noted m chapter 4 - otation Definition 
Language, is given below. 

DiaGen (Minas and Viehstaedt, 1995) 

This system is used to generate a bespoke editor for a particular graphical notation. ott'ltions are 
defmed using hypergraphs, hypergraph grammars and layout constraints. The role of DL in the 
MOOT system is similar to role of the hypergraphs, hypergraph grammars and layout constraints in 
the DiaGen system. 

BuildByWire (Mudgridge et al., 1996, 1998) 

BuildByWire generates a collection of J avaBean components that correspond to a notation, as well as 
an editor J avaBean component. BuildByWire is similar to the MOOT otation Editor, which 
generates DL descriptions of notations that are subsequently interpreted by the CASE tool client. 

Amulet (Amulet, 1998; Myers et al., 1997) 

Amulet is a User Interface development toolkit. It does not have a separate language for describing 
visual notations, but provides an extendable hierarchy of widget classes. The coupling between 
application and notation presentation logic is much higher in Amulet than between DL and SSL. 

Escalante (Mc Whirter, 1998; Mc Whirter and Nutt, 1994) 

Escalante is an environment for specifying and generating applications for graph based visual 
languages. A language (and its notation) is described via elements of a type hierarchy tl1at provide the 
base classes for the various components of graph based languages. These include s tructural and 
visual language constructs (eg. nodes and edges) and a set of structured graphics objects. Escalante is 
used to build bespoke visual language systems. The coupling between application and notation 
pre entation logic is much higher in Escalante than between DL and SL. 
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