Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.



m.e.e.T

META ®BJECT
ORIENTATED TOOL

A NOVEL META-CASE
TODOL METHODOLOGY

REPRESENTATI®N
STRATEGY

A dissertation submitted in partial fulfilment of the
requirements for the degree of

Doctor of Philosophy in Computer Science

Massey University, New Zealand

David Charles Page

1998



Abstract

This thesis presents an investigaton into current meta-CASE technology. The research
focuses on CASE tool support for the concept of methodology, the representation of
methodology syntax and semantcs, and the support for re-use of methodology
descriptions and software artefacts. A novel methodology representation strategy for
meta-CASE tools is proposed and implemented with the development of a new meta-

CASE tool MOOT — Meta Object Orientated Tool).

The novel strategy propounded in this thesis uses an object-orientated meta-model and
views methodology descriptions as potentially re-usable components. The coupling
between methodology syntax and semantic descriptions is minimised so they can be re-

used independently.

Two new modelling languages have been derived, to support the definition of syntax
(NDL — Notation Definidon Language) and semantics (SSL — Semantic Specification
Language) of software engineering methodologies. Semantic descriptions are compiled to
a platform independent representation (SSL-BC), which is executed on a purpose built
virtual machine (SSL-VM). Late binding of syntax and semantic methodology
descriptions is implemented with the development of Notation Semantic Mapping
(NSM) tables. Two libraries of re-usable methodology description components, the Core
Knowledge Base (CKB) and the Generic Object Orientated Knowledge Base (GOOKB),

have been derived during this research.

Empirical results gained from applying the MOOT prototype demonstrated the
flexibility, extensibility and potental of the novel methodology representation swategy.
This approach permitted the implementation and modelling of UML and patterns, two

recent advances of object technology that did not exist when the research commenced.

The novel strategy presented in this thesis is more than an untried theory. It has been

implemented, applied and is being evaluated. Simply, it is real and it works.
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GLOSSARY

The content of the glossary has been derived from a range of dictionaries
(Collins, 1995; Nuttals, 1902; Readers Digest, 1988; Oxford, 1993; Mirriam-
Webster, 1998), the Dictonary of Object Technology (Firesmith and Eykholt,
1995) and (D’Souza and Wills, 1998; Jacobson e a/, 1995; Pressman 1997,
Schach, 1993, 1997; Somerville, 1996).

Abstraction. Any model that includes the most important, essendal, or disdnguishing
aspects of something while suppressing or ignoring less important, immaterial, or
diversionary details. The result of removing distinctions so as to emphasise
commonaldes.

Arity. The cardinality of something. For example the arity of a relaton specifies the
number of concepts that are involved in the relaton.

Attribute. Any named property used as a data abstracton to describe its enclosing object,
class or extent.

Behaviour. Anything that an organism does involving action and response to stimulaton.
The way in which someone behaves; also: an instance of such behaviour.

Bind. To place under certain constraints. To cohere or cause to cohere. To place under
obligaton; oblige.

Binding. Any selecdon of the appropriate method for an operation on receipt of a
corresponding message.

Browser. Any view that allows you to access hierarchically organised and indexable
information.

CASE Tool. A) Any computer based tool for software planning, development and
evolution. This includes all examples of computer-based support for the managerial,
administrative, or technical aspects of any part of a software development project. B)
Products that assist the software engineer in developing and maintaining software.

CASE. An acronym that stands for Computer Assisted Software Engineering.

CKB. Core Knowledge Base. A library of methodology semantic components that
implements a meta-model of methodology.

Class. Any uniquely identified abstraction (i.e. a model) of a ses of logically related
instances that share the same or similar characteristics. The combination of a type
interface and associated type implementation.

Classification. The act of forming into a class or classes; a distribution into groups such as
classes, orders, families, etc., according to some common relations or affinides.
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Cohesion. The degree, to which something models a single abstraction, localising only
features and responsibilities related to that abswaction.

Component. A) Any standard, reusable, previously implemented unit that is used to
enhance the programming language constructs and to develop applications. B) An
independently deliverable unit of software that encapsulates its design and
implementation and offers interfaces to the out-side, by which it may be composed with
other components to form a larger whole.

Coupling. The degree to which one thing depends on another. Low coupling is desirable
because it produces better encapsulation, maintainability, and extendibility with fewer
objects needlessly affected during iteration.

Encapsulation. To enclose in or as if in a capsule; the act of enclosing in a capsule. The
physical localisation of features.

Engineering. The application of scientific principles to such practical ends as the design,
construction, and operation of efficient, economical structures, equipment and systems.
The application of science to the design, building, and use of machines, constructions etc.
GOOKB. Generic Object Orientated Knowledge Base. A library of methodology semantic
components that implements a meta-model of concepts germane to all object-orientated
methodologies.

Identity. Individuality.

Information Hiding. The deliberate and enforced hiding of information (e.g. design
decisions, implementation details) from clients. The limiting of scope so that some

information is invisible outside of the boundary of the scope.

Inheritance. The incremental construction of a new definition in terms of existing
definitions without disturbing the original definitions and their clients.

Instance. Anything created from or corresponding to a definition.

Interface. The visible outside, user view of something.

Language. Any method of communicating ideas, as by a stream of signs, symbols, gestures
or the like. The special vocabulary and usage of a scientific professional or other group.

The speech or expression of ideas.

MDT. An acronym that stands for Methodology Description Table. The Methodology
Description Table provides an index of the methodologies supported by MOOT.

Message Send. The sending of a message to an object.
Message. Any communication sent or received by an object.

Meta. A Greek prefix signifying beyond, after, with, among and frequently expressing
change. Going beyond or transcending. Used with the name of a discipline to designate a
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new but related discipline designed to deal critically with the original one. Of a higher or
second-order kind.

Meta-CASE Tool. A) A meta-CASE tool is any tool that provides automated or semi-
automated support for developing CASE tools. B) ... are CASE tools which are used to
generate other CASE tools. C) A CASE tool that operates on CASE tools.

Meta-language. The natural language, formal language, or logical system used to discuss
or analyse another system. A form of language used to discuss a language.

Method. A) Mode of procedure, logical arrangement, orderly arrangement, system of
classification. A means or manner of procedure, especially a regular and systematic way of
accomplishing anything. The procedures and techniques characteristic of a particular
discipline or field of knowledge. A special form of procedure esp. in any branch of
mental activity. B) A way of carrying out a complete phase such as such as design or
integration. C) The hidden implementation of an associated operation.

Methodology CASE Tool. A CASE tool that supports one or more software development
methodologies and attempts to span most of the software development life-cycle.

Methodology. The science of scientiic method of classificaton. From the Greek method
and logis (science). The system of principles, practices, and procedures applied to any
specific branch of knowledge. The science of method; a body of methods used in a
particular branch or activity.

Model. A) Archetype; a description or analogy used to help visualise something that
cannot be directly observed; a system of postulates, data, and inferences presented as a
mathematical description of an entity or state of affairs. A preliminary pattern or
representation of an item not yet constructed. A tentative framework of ideas describing
something intangible and used as a testing device. B) A model clarifies — for a person or
group of people ~ some aspect or perspective on a thing or event.

MOOT. Meta Object Orientated Tool. A new meta-CASE tool developed as a result of
this research.

NDL. Notaton Definition Language. A new language used to define the syntax of a
methodology in MOOT.

Notation. A system of characters, symbols, or abbreviated expressions used in an art or
science or in mathematics or logic to express technical facts or quantties.

NSM. An acronym that stands for Notaton-Semantic Mapping. NSM tables are used to
implement late binding of NDL and SSL. methodology descriptions.

Object. Any abstraction that models a single thing.
Operation. Any service that may be requested.

Polymorphism. The ability of a single name to refer to different things having different
forms.
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Process. A) A system of operations in the production of something. A series of actions,
changes or functdons that bring about an end or result. A course of action or proceeding,
esp. a series of stages in manufacture or some other operation. B) ... the way we produce
software. It starts with concept exploraton and ends when the product is finally retired.
C) ... the set of activities and associated results which produce a software product.

Relation. Connection by consanguinity or affinity; kinship; reladonship; as, the relation of
parents and children; an abstraction belonging to, or characteristic of, two entities or parts
together.

Semantic. Of, or relating to, meaning in language.

Software Development Life-cycle (SDLC). A process by which software engineers build
computer applications.

Software Engineering. A) The application of a systematic, disciplined, quantifiable
approach to the development, operaton, and maintenance of software; that is the
application of engineering to software. B) ... is concerned with the theories, methods and
tools that are needed to develop software for computers. C) A discipline whose aim is the
production of quality software that satisfies the user’s needs, and is delivered on time and
within budget.

Software Project. A software project consists of a set of models (built using a particular
methodology) which collectively define the software being constructed.

SSL. Semantic Specification Language. A new object-orientated language used to define
the semantics of a methodology in MOOT.

SSL-BC. SSL Byte Code. A platform independent, binary, representadon of SSL, which is
generated by the SSL. compiler.

SSLC. SSL. compiler.

SSL-VM. SSI. Virtual Machine. A new wvirtual machine which supports efficient
processing of SSL.

State. Any status, situatdon, condition, mode, or life-cycle phase of an object or class
during which certain rules of overall behaviour (e.g. response to messages) apply.

Syntax. The way in which linguistic elements (as words) are put together to form
consttuents (as phrases or clauses).

Tool. A thing used in an occupation or pursuit. Any instrument of use or service.
Type. A lower taxonomic category selected as a standard of reference for a higher

category. The declaration of the interface of any set of instances (e.g. objects) that
conform to this common protocol.
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Chapter 1

Introduction

He that will not apply new remedies must expect new evils: for ime is the
greatest innovator, and if time of course alter things to the worse, and

wisdom and counsel shall not alter them to the better, what shall be the end?
Francis Bacon
1.1 Introduction

Edward Yourdon once said, “CASE technology will help revolutionise the software

industry”. Unfortunately he was overly optimistic.

There can be no doubting the potential benefits of automation during the software
development process, yet the adoption of CASE technology can only be described as
lethargic. If the philosophy behind CASE technology is not at fault then what is the cause

of its languid rate of adopton? The fault can only be ascribed to its execution.

“Vendors have been selling products for years that are supposed to promote
reusability, promote better design, and speed tme to market. The problem is
that few commercial products actually live up to even significant portions of

their claims.”
From the FreeCASE web site (FreeCASE 1998)

Evaluation of CASE tools has revealed a number of shortcomings in many of the existing
tools in use today (Brough, 1992; Brown, 1997; Crozier et al, 1989; Gibson, 1988;
Isazadeh and Lamb, 1997; Lang, 1991; Marttin ez a/, 1993; Mehandjiska ez a/, 1994,
1995b, 1996a, 1997; Misra, 1990; Mosely, 1992; Nilson, 1990; Ovum, 1996; Papahristos
and Gray, 1991; Phillips ez a/, 1998a; Rossi ef al, 1992; Sorenson, 1988; Sumner, 1992;
Vessey et al., 1992).



This thesis details research which aims to develop novel methods and techniques to
address the limitations of current CASE and meta-CASE technology with respect to
methodology representation and customisation. The research is part of a three year
project, funded by the Foundation of Research, Science and Technology (Adams, 1998,;
Clark, 1994; Choi, 1996; Dasari ef al, 1995; Gray, 1995; Gritfin, 1997; Ham ef a/, 1994;
Mehandjiska ez al,, 1994, 1995a, b, 19964, c, 1997; Page ez al., 1994, 1997, 1998; Phillips ez
al, 1998a-c; Yu, 1999). A new meta-CASE tool, which implements a new methodology
representation strategy, has been developed during this research. Its prototype is

presented in this thesis.

The remainder of this chapter defines the scope of the research detailed in this thesis.
Initially some essential fundamental terms are introduced. A brief history of object-
orientated software engineering methodologies is presented followed by a review of the
current status of CASE technology. The terin Methodology CASE tool is defined and the
scope of the research is presented. The limitations of Methodology CASE tools are
discussed from several perspectives and the objectives of the research are subsequently
defined. Finally an overview of the research method and an outline of the remainder of

the thesis is presented.

1.2 Fundamental Terms

Don’t sit, accustom yourself to use big words for little matters ... The practice
of using words of disproportionate magnitude is, no doubt, too frequent.

Samuel Johnson

The following terms are germane to this thesis and are pervasive throughout:
« Software Engineering D evelopment Methodology

«  Computer Aided Software Engineering (CASE)

« CASE tool

«  Meta-modelling

e Meta-CASE tool

No attempt is made to adopt, or artificially create, definitions of these fundamental terms
for the sole purpose of this study. Rather a pragmatic overview of these fundamental
terns is presented by adopting a holistic approach. A range of definitions are introduced

from English dictionaries (Collins, 1995; Nuttals, 1902; Oxford, 1990; Readers Digest,
2



1988; Mirriam-Webster, 1998) and used to facilitate the rationalisation of these terms.
The reader is directed to the glossary, which includes accepted definitions from the
literature (D’Souza and Wills, 1998; Firesmith and Eykholt, 1995; Jacobson ef a/, 1995;
Pressman, 1997; Schach, 1993, 1997; Somerville, 1996).

1.2.1 Software Engineering Development Methodology

Engineering. [rd]' The application of scientific principles to such practical ends
as the design, construction, and operation of efficient, economical structures,
equipment and systems. [oxf] The application of science to the design, building,

and use of machines, constructions etc.

Software engineering is the applicaton of scientific principles to the design and
construction of software systems. A software engineer applies these scientific principles
by modelling within the context of a given problem domain. Boehm (1976) proposed a
definition for software engineering: “the practical application of scientific knowledge in
the design and construction of computer programs and the associated documentation

required to develop, operate and maintain them.” |

Model. [web] Archetype; a descripion or analogy used to help visualise
something that cannot be directly observed; a system of postulates, data, and
inferences presented as a mathematical description of an entity or state of affairs.
[rd] A preliminary pattern or representation of an item not yet constructed. A
tentative framework of ideas describing something intangible and used as a testing

device.

A model is an abstraction of a problem domain that is built by concentrating on features
a software engineer deems salient. Modelling is the process of deriving a model. Marttiin ¢/
al. (1993) state “A model is a simplified representation of a system.” A model is built by
applying well-tested scientific principles and is expressed in a language that encapsulates

those principles.

Language. [rd] Any method of communicating ideas, as by a stream of signs,
symbols, gestures or the like. The special vocabulary and usage of a scientific

professional or other group. [nt] The speech or expression of ideas.

Cld] Readers Pligest Dnerssie Readers Dieear, 1993 0 Jond] Constse Oxford Dhenanary - Uidard, 10wl

Woebsrer's Revised Unabidged Erenonase Dlieam-Webster, 19985 |nt] Nutrals Standard Pherionany Nurals 1902).
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A language that is used to express models is called a modelling language. The syntax of a
modelling language determines the ‘phrases’ that may be constructed with the language.
The semantics of a modelling language determines how valid ‘phrases’ are interpreted and
understood. The procedure followed to derive a syntactically correct model, which

communicates the desired information, is the method.

Method. [nt] Mode of procedure, logical arrangement, ordetly arrangement,
system of classification. [rd] A means or manner of procedure; especially, a
regular and systematic way of accomplishing anything. The procedures and
techniques characteristc of a particular discipline or field of knowledge. [oxf] A

special form of procedure especially in any branch of mental activity.

Marttiin e al. (1993) state “A method is a set of steps and rules that define how a model is
derived.” Often the term language subsumes the term method, in software engineering”.
Even in this situation the method exists and is implicitly ‘do not break the rules of the
language’. Figure 1-1 illustrates the relations between method, modelling language, model
and system. A modelling language is used (by following an associated method) to define a

model, which is an abstraction of a system.

Modelling Language Method

Used to define

Model

Is an abstraction of
System
Figure 1-1 - Modelling

The meaning that can be conveyed by a model is subject to the facilities provided by the
modelling language that is used to derive it. Smolander ez a/ (1991) state “A method
embodies a set of concepts that determines what is perceived, a set of linguistic

conventions and rules which govern how the perception is represented and

«

2 The teem method 1s also often used interchangeably with methodology. Sigfricd (1996) notes
established practice for the use of these two coneepts.”

. there 15 no wll
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communicated.” A software engineer investigates the many dimensions of a problem
domain by applying a range of different methods (and hence languages) to build a
collection of models. The set of methods and modelling languages used to describe the

dimensions of a software system is called a methodology .

Methodology. [nt] The science of scientific method of classification. From the
Greek method and logis (science). [rd] The system of principles, practices, and
procedures applied to any specific branch of knowledge. [web] The science of

method; a body of methods used in a particular branch or activity.

Marttiin er /. (1993) note “a methodology is an organised collection of methods.” A
software engineering methodology is a collecdon of methods that can be applied to build
models of a software system such that the system is completely defined and can be built.
Smolander ez al. (1991) state “a methodology can be defined as an organised collection of
methods and a set of rules which state whom, in what order, and in what way the
methods are used.” The procedure that is followed, to desctibe the dimensions of a
software system, is called the process. Younessi and Henderson-Sellers (1998) note “a
methodology is not just a set of notations and modelling rules ... a methodology must
have a process dimension, thus implying a methodology includes or encompasses a

4
process.”

Process. [rd] A system of operations in the production of something. A series of
actions, changes or functions that bring about an end or result. [oxf] A course of
acton or proceeding, esp. a series of stages in manufacture or some other

operation.

A software engineering methodology promotes a set of software engineering principles
that are deemed to be efficacious to the construction of software systems. Different
methodologies may promote different sets of software engineering principles. It is natural
in the development of any science that scientific principles change, evolve and are

superseded. Naturally this is also true of software engineering methodologies.

*The concept of “Muthodidog 1s also discussed in more detail nchapres 6.
F Whether a methodolows engapsndates a process, or 1s associated with one 1s an 1ssuce that &= open to debate. Younesst
and Henderson-Sellers 11998} offer some mrevesing arguments in this arca.
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12.2 Meta-Modelling
Meta is a prefix that is derived from the Greek language.

Meta. [nt] A Greek prefix signifying beyond, after, with, among and frequently
expressing change. [rd] Going beyond or transcending. [web] Used with the
name of a discipline to designate a new but related discipline designed to deal

critically with the original one. [oxf] Of a higher or second-order kind.

A meta-model is something ‘beyond or transcending’” a model. That which is beyond a
model is the modelling language used to define it. Odell (1995) states “Basically a meta-
model is a model that is used to talk about various kinds of models we wish to build.”
Tolvanen and Lyytinen (1993) note that “meta-modelling can be defined as a modelling
process, which takes place one level of abstraction and logic higher than the standard
modelling process.” Figure 1-2 illustrates how applying the meta prefix indicates a shift in

context and changes the focus of attention to something at a higher level of abstraction.

I Meta-Modelling Process

Modelling Process

Used to define

Modelling Process

Used to define | Is an abstraction of

Is an abstraction of

+Meta

Figure 1-2 - Meta-modelling

Meta-modelling is concerned with modelling a modelling process. Tolvanen and Lyytinen
(1993) note “the meta-model captures information about the concepts, representation
forms, and use of a method.” The model derived by the modelling process on the right-

hand side of Figure 1-2 describes the application of the modelling language used in the



modelling process on the left-hand side. A modelling language is, therefore, a meta-

model. Meta-models are built using a meta-modelling language.

Meta-language. [web] The natural language, formal language, or logical system
used to discuss or analyse another system. [oxf] A form of language used to

discuss a language.

The meta-modelling process shown in Figure 1-2 can conceptually be performed
infinitely. Tolvanen and Lyytinen (1993) note “Meta-modelling also uses its own tools
which, in turn, can be described on one level higher in meta-metamodels (and so ad
infinitwmr).” It 1s important to realise that the process of building a meta-model is

modelling and that a meta-modelling language is a modelling language. The application of

point of reference.
1.2.3 Computer Aided Software Engineering (CASE)

The acronym CASE also represents terms such as Computer Assisted Software

Engineering and Computer Automated Software Engineering.

Aid. [oxf] A person or thing that helps; promote or encourage [web] Help;
succour; assistance; relief.

Assist. [oxf] Help; an act of helping. [web] To lend aid; to help

Automasion. [oxf] The use of automatic equipment to save mental and manual
labour. The automatic control of the manufacture of a product through its
successive stages. [web] The technique of making an apparatus, a process, or a

system operate automatically.

In the context of Computer Aided Software Engineering it is clear that the computer is
used to help, promote and encourage the practice of software engineering. CASE is a

|
|
|
|
|
|
- . . |
a number of meta prefixes indicates the relation of languages and derived models, to a
|

: |
very general, all embracing, term. |

12.4 CASE Tool

Tool. [oxf] A thing used in an occupation or pursuit. [web] Any instrument of

use or service.



A CASE tool is any computer based system that may be used during the software
development process. A more detailed discussion and classificadon of CASE tools is

given in section 1.4.
1.2.5 Meta-CASE and Meta-CASE Tool

There are many possible interpretations of the term Meta-CASE. Webster’s (Minam-
Webster, 1998) dictionary states that meta can be “used with the name of a discipline to
designate a new but related discipline designed to deal critically with the original one.”
Meta-CASE, therefore, can be interpreted as the discipline of critically dealing with
computer aided software engineering. The meaning preferred in this study, however, is a
higher or second-order kind of computer aided software engineering. A meta-CASE tool
is therefore a higher or second-order kind of CASE tool. In the context of this thesis a
general definiion of meta-CASE tool is ‘a computer based system used to assist the
development of CASE tools.” The term meta-CASE tool encompasses all tools that are
designed for the sole purpose of developing CASE tools. A more detailed discussion of

meta-CASE tools is given in chapter 2.
1.3 Object-Orientated Software Development Methodologies

Three generations of Object-orientated methodologies have been identified. A
mulaplicity of methodologies was developed in the late 80s and early 90s. Some of the

most prominent first generation object-orientated methodologies are given in Table 1-1.

Methodology Year Methodologist

Object Oriented Analysis 1988  Shlaer and Mellor, 1988

Object Oriented Analysis and Design 1991 Shlaer and Mellor, 1991
Responsibility Driven Design (RDD) 1990 Wirfs-Brock e al, 1990

Object Oriented Analysis, Design 1991 Coadand Yourdon, 1990, 1991a, b
Object Oriented Design (OOD) 1991  Booch, 1991

Object Modelling Technique (OMT) 1991 Rumbaugh etal, 1991

Object Oriented Analysis and Design =~ 1993 Martin and Odell, 1993

Object Oriented Software Engineering 1993 Jacobson ezal, 1993
(OOSE)

Fable 11 - frrsr genceranon obpect-orentared methodeloges
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These first generaton methodologies generally covered the ‘design’ phase of software
development and were atypically developed independently from each other. They
extended ideas from object-orientated programming and also eatlier non object-
orientated methodologies (such as informaton engineering and structured analysis and
design). Many methodologies that were introduced near the end of the first generation

also began to consider analysis.

The first generation methodologies were applied and evaluated. The limitations that were
identfied prompted the emergence of second generation methodologies. Many first
generatdon methodologies were extended to span more of the software development life-
cycle (eg. Booch OOD (Booch, 1991) = Booch OOA&D (Booch, 1994)). New
methodologies were developed which simply ‘borrowed the best from the rest” (Muller,
1997). For example Ian Graham’s SOMA (Graham, 1994) extended Coad and Yourdon
by incorporating business rules. The Fusion method (Coleman ef a/, 1993) extended
®MT by incorporating responsibility driven design (RDD) and in-house techniques
specific to Hewlett-Packard. The Booch method (Booch, 1994) also incorporated ideas
from OMT and RDD. Over fifty different first and second generation object-orientated
methodologies existed by 1995 (Muller, 1997). Some of the most well known second

generatdon methodologies are given in Table 1-2.

Methodology Year Methodologist

@®bject  Oriented  Analysis  and  Design 1994  Booch, 1994
(OOA&D)

Semantic Object Oriented Modelling Approach 1994  Graham, 1994
(SOMA)

Methodology for Object Oriented Software 1994  Henderson-Sellers and

Engineering Systems MOSES) Edwards, 1994

Advanced Object Modelling 1995 Martn and Odell, 1995
Fusion 1993 Coleman ¢fal, 1993
®bject Modelling Technique (OMT) (v2) 1994 Rumbaugh, 1995a, b
Business Object Notation (B@®N) 1994 Walden and Nerson, 1995

Table 1-2 - Second peneration object-orientated merthodologies

/i

> This pertod of time has been referred to as the smethodolows wars” (Henderson-Sellers, 1996).
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Many comparisons of object-orientated methodologies have been published (Arnold ez
al, 1991; Brinkkemper ¢/ al, 1998; Cribbs et a/, 1992; de Champeaux and Faure, 1992;
Fichman and Kemerer, 1992; Fung et a/,, 1997; Hong et a/, 1993; Hutt, 1994; Loy, 1990;
Monarchi and Puhr, 1992; Object Agency, 1998; Sharble and Cohen, 1993; Taylor, 1998;
van den Goor ¢t al, 1992; Yourdon and Argila, 1996). These studies focused on the
differences between methodologies rather than on identfying common aspects

(Henderson-Sellers, 1996).

The results of these studies indicated that whilst many of the methodologies propounded
different sets of terms and notations, there was a common awareness of the goals and
process of object-orientated modelling. Work began on identfying and quandfying the
common aspects of object-orientated methodologies in 1995 (Booch and Rumbaugh,
1995; Rational, 1997a, b; Henderson-Sellers and Bulthuis 1996a, b, 1997; Henderson-
Sellers and Firesmith, 1997a). It was at this tme that the Object Management Group
(OMG) “re-established an OOAD working group/task force to ... standardise ... OO
methodologtes” (Henderson-Sellers, 1996).

The appearance of two third generaton software development approaches was one of

the results of these developments:

¢ Unified Modelling Language” (UML) (Booch and Rumbaugh, 1995; Booch et al,
1999; Douglas, 1998; Fowler and Scott, 1997; Jacobson ez al, 1996, 1999; Muller,
1997; Rational, 1997a, b, 1998; Rumbaugh e a/, 1999; OMG, 1997c-}; Quatrani, 1997,
UML-RTF, 1998; Warmer and Kleppe, 1999).

¢ OPEN (COTAR, 1998; Firesmith ¢ a/, 1997; Firesmith and Henderson-Sellers,
19982, b; Graham and Henderson-Sellers, 1997; Graham ef 2/, 1997; Henderson-
Sellers, 1996, 1997, 1998; Henderson-Sellers and Bulthuis, 1996a, b, 1997;
Henderson-Sellers and Graham, 1996; Henderson-Sellers and Firesmith, 1997a, b;
Henderson-Sellers ez al., 1996, 1997a-d; OPEN, 1996, 1998).

AL o et progroid s particular process so many consider that 1t is not 2 mcthadolan, but a collection of

mterrelared mndelling Lngnigees UM 18 discussed hrctlv ma chapie 2
OPEN 1 dscussod el i clhaprer 2,

10



The appearance of patterns, frameworks and component engineering in the last five years
(Ayoma, 1998; Bergner ef al, 1998; Booch, 1996; Brown, 1997; Brown and Jaeger, 1998;
D’Souza and Wills, 1998; Firesmith, 1993; Fowler, 1997, Gamma ¢ 4/, 1995; Goldberg
and Rubin, 1995; Meyer, 1995, 1997; Pree, 1994; Schmidt and Assmann, 1998; Seacord ez
al, 1998; Short, 1997; Sigfried, 1996; Taylor, 1998; Webster, 1995; Weiderman ez a/, 1997,
Wills and D’Souza, 1997) is significant and signals a new phase in the development of
software engineering. New methodologies have been developed to address the emerging
technology of Components Based Development (CBD) (Ayoma, 1998; Bergner ef al,
1998; Brown and Jaeger, 1998; Schmidt and Assmann, 1998; Short, 1997). An example is
Catalysis (D’Souza and Wills, 1998; ICON, 1998):

“Catalysis.
A next-generation UML-based method for the systematic development of
object and component based systems, using precise modelling techniques

and frameworks, to reflectand supportan adaptive enterprise.”
From the ICON computing website (ICON, 1996)

1.4 CASE Technology

A Computer Aided Seftware Engineering (CASE) tool is any computer based tool for
software planning, development and evolution. This definition includes all examples of
computer-based support for the managerial, administrative, or technical aspects of any

part of a software development project.

The principle objective of CASE technology is to reinforce and support an engineering
approach to software development and evolution by providing computer based
assistance, which translates to low-defect solutons and enhanced productivity (Brough,
1992; Haine, 1992; Nilsson, 1990; Quantrani, 1997; Marttiin, 1994; Senn, 1990; Sumner,
1992; Verhoef et a/, 1991). Sumner (1992) summarised the benefits of CASE as the
introduction of engineering-like discipline into the system development process and the
creation of a common repository of design documentaton. Nilsson (1990) notes that
“the main benefit of CASE is that people who perform requirements gathering and
specification need not use ‘pen and paper’ techniques for drawing diagrams and that the

diagrams can be integrated with a data dictionary”. Senn (1990) states that “CASE tools

11



are important because they speed development, automate tedious tasks, and enforce

standards and procedures.”

CASE tools have been categorised in many different ways. For example they have been
classified in terms of functionality, their relation to the software development life-cycle
and the level of inter-tool integration that they support (Beynon-Davies, 1989; Nilsson,
1990; Pressman, 1997, Wallnau, 1992; Wallnau and Feiler, 1991; Whitten e# a/, 1994,
Zarella, 1990).

This thesis is concerned with CASE tools that implement software development
methodologies and support activities across the entire software development life-cycle.
Whitten e a/. (1994) adopts the term ‘cross life-cycle CASE’ to classify tools that support
activities across the entire software development life-cycle. The name adopted in the

thesis for a CASE tool of this type is a Methodology CASE tool.

Methodology CASE Tool. A CASE tool that supports one or more software
development methodologies and attempts to span most of the software

development life-cycle.

Use of the term CASE tool in the remainder of the thesis specifically relates to
Methodology CASE tools and not to CASE tools in general (such as compilers and
debuggers). This thesis is concerned with tools that support object-orientated software

engineering, so its primary focus is on object-orientated Methodology CASE tools.

Use of the term meta-CASE tool in the remainder of the thesis specifically relates to meta
Methodology CASE tools. A meta Methodology CASE tool is a meta-CASE tool that is
used to develop Methodology CASE tools.

A Brief History of CASE
Table 1-3 describes the history of CASE tools. It is taken from the CASE Tool home
page at the University of Sunderland (Ferguson, 1998).

Early CASE tools addressed mostly form and representation issues of software
development methodologies and focused on capturing a set of diagrams for the software
engineer (Brough, 1992; Verhoef ef a/, 1991). As these tools evolved they supported

completeness, correctness and consistency checking (Sorenson, 1988). These tools mainly

12



supported structured software engineering techniques (Haine, 1992; Hoffman and

Strooper, 1995), focusing on specific phases of the software development life-cycle

(Haine, 1992; Nilsson, 1990).

Early 80s Computer aided documentation
Computer aided diagramming

Analysis and design tools

Mid 80s Automatic design analysis and checking

Automated system information repository

Late 80s Automatic code generation from design specification

Linking design automation

Early 90s Intelligent methodology driver
Habitable user interface reusability as a development methodology

Table 1-3 - Hisrory of CASE tools I erpuson, 1998)

Large-scale software development demanded enhanced support across the entire
software development process from methodologies (Younessi and Henderson-Sellers,
1998) and CASE tool developers (Brown, 1997; Haine, 1992; Nilsson, 1990). Assistance
was required for the requirements definition, design and implementation phases of the
software development life-cycle, testing, documentation and version control (Sorenson,
1988; Sorenson e al, 1988). The term front-end (or upper-CASE) tool was introduced to
classify tools that supported phases of the software development life-cycle up to, and
including, design (Nilsson, 1990; Beynon-Davies, 1989). The term back-end (or lower-
CASE) tool was introduced to classify tools that supported phases beyond design

(Nilsson, 1990; Beynon-Davies, 1989).

At this tme object-orientated methodologies were attracting more attention from the
sof tware development industry (Behforooz and Hudson, 1996). They were being revised
to encompass analysis, domain and business modelling in addition to design (Younessi
and Henderson-Sellers, 1998). CASE tools had to address these developments by
spanning more of the software development life-cycle (Brewn, 1997; Mehandjiska e7 4/,

1994, 1995, 1996b; Page ez al, 1998).
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1.5 Methodology CASE Tools

The evoluton of Methodology CASE tools was investigated during the inception of the
research. Existing CASE tools were evaluated focusing on methodology support, life-
cycle support, functonality and usability. A new evaluation framework, which
encapsulated these evaluation criteria, was derived’ as an extension of the Software
Engineering Institute’s framework for evaluating CASE tools (Mosely, 1992). The central
organising principle of the new framework is the classification hierarchy of CASE tool

categories shown in Figure 1-3.

A. OO CASE Tools

Abstract CASE 100! type

' [ Concrete CASE tool type ]

5 :

B. Methodology C. Multi-Methodology : Super-type
Dependent CASE Toois CASE Tools : ;
: Sub-type
‘ ;
D. Toois that support more E. Meta CASE Tools
than one Methodology R
’%‘” - ‘5§£
F. CASE Too!l Generators G. Modifiable CASE

Envirenmenis

Pwore 1-3 - Classtfication hierarchy of CASE rool caregones

Evaluation criteria are associated with nodes in the classification hierarchy at an
appropriate level of abstracdon and are further classified in terms of usability,
methodology support, life-cycle support and functionality. Each evaluaton criterion is
therefore classified in two ways: a) based on the CASE tool category it is relevant to and
b) based on the type of CASE tool property it evaluates. The structure of the
classification hierarchy permits evaluation criteria to be specialised and refined in a
systematic way. A classificaion based evaluation framework provides the necessary

flexibility needed to cope with changing CASE and software engineering technology and

* A bt wvnopsis of the evaluation framework s presvesed i appendo |
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can be easily extended in the future. Some of the results obtained by applying the new

evaluation framework are presented in (Choi, 1996; Gray, 1995; Phillips e a/, 1998a).

Object-orientated methodology CASE tools (node .4 of the hierarchy in Figure 1-3) can
be categorised as either ‘Methodology dependent CASE tools’ (node B of the hierarchy in
Figure 1-3) or ‘Multi-methodology CASE tools’ (node C of the hierarchy in Figure 1-3).

1.5.1 Methodology Dependent CASE Tools

These tools support a single object-orientated software engineering methodology. They
are often older tools that typically support a single phase of the software life-cycle’.
Examples of tools in this category include ObjecTool (supports Coad and Yourdon),
ShowCASE (supports Booch’91), Objectory (supports Jacobson), OEW (supports
Martin and Odell) (Innovative Software, 1998) and early versions of Rational Rose

(supports Booch’91 and Booch’94) (Rational, 1998).

The most fundamental limitation of tools in this category is that a company is constrained
to adopt a single software engineering methodology. This prevents software development
companies from choosing the most suitable methodology for the problem at hand. In
additon, companies may choose to mix and match concepts from more than one
methodology. It is not possible for a CASE tool vendor to predict these kinds of
decisions and demands. The limited flexibility of methodology dependent CASE tools is

therefore a barrier to the adoption of CASE tools by industry.
1.5.2 Multi-Methodology CASE Tools

Tools of this category (node C of the hierarchy in Figure 1-3) attempt to address the
deficiencies of methodology dependent CASE tools by supporting several different
methodologies. Some tools simply attempt to implement more than one methodology
whilst others provide some type of customisation faciliies to support multiple
methodologies. The techniques used differentdate muld-methodology CASE tools into
two sub categories ‘Tools that support more than one methodology’ (node D of the

hierarchy in Figure 1-3) and ‘Meta-CASE tools’ (node E of the hierarchy in Figure 1-3).

Mutlwdologn dependens s tools may also support more than a single phase of the mofaare dovdlopment bt

cveleot the methondabogy they smplemiens poovides such support.
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15.3 Tools that Support More than One Methodology

Some Object-Oriented CASE tools such as COOL:Teamwork (Sterling, 1998),
COOL:Jex (Sterling, 1998), CASET, MacA&D and WinA&D (ExcelSoftware, 1998),
ObjecTime and System Architect (Popkin, 1998) claim to support more than one
methodology. For example Teamwork supports structured analysis and design as well as

several object-orientated analysis and object-orientated design methodologies.

In general, tools in this category do not support the methodologies completely and
support is restricted to subsets of each methodology. Usually only visualisation of the
users’ project using a range of different graphical notations is provided. The user cannot

customise these tools; only the tool proprietor may extend or modify them.
15.4 Meta-CASE Tools

A meta-CASE tool provides automated or semi-automated support for developing CASE
tools (Alderson, 1991; ASD, 1995a, b, 1998; Coxhead and Fisher, 1994a, b; Coxhead e¢
al, 1994; Demetrovics et al, 1982; Findeisen, 1993, 1994a-d; Gadwal ¢ a/, 1994a, b;
JrCASE, 1998; Lincoln, 1994, 1998; Lo, 1995; Lyytnen ez al, 1994; Maokai and Scott,
1998; MetaCASE consulting, 1996a, b, 1998; Marttin 1994; Martdin ef a/, 1993; mip
GmbH, 1998a-d; Scott, 1998; Smolander ef a/, 1991; Sorenson ez a/, 1988; Tolvanen and
Lyytnen, 1993; Zhuang, 1994; Zhuang e# a/, 1995). Meta-CASE tools are based on an
underlying meta-model, which is used to describe the languages, concepts and relations
propounded by a methodology. The majority of meta-CASE tools use a data model as

their meta-model (e.g. variants of the Entity Relaionship Diagram).

Meta-CASE tools can be further classified as ‘CASE tools generators’ (node F of the
hierarchy in Figure 1-3) and ‘Modifiable CASE Environments’ (node G of the hierarchy

in Figure 1-3). More detailed analysis of meta-CASE tools is presented in section 2.3.
155 CASE Tool Generators

A CASE tool generator is a meta-CASE tool that supports the construction of standalone
CASE tools. Meta-CASE tools of this type often provide a set of libraries and a
programmer API to support the constructon of standalone tools. Some CASE tool

generators allow individual tools to share a common repository. The tools developed by a
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CASE tool generator often exhibit a similar look and feel in their user interface and have
a similar structure in their repositories'. The main advantage of a CASE tool generator is
the greatly reduced development time for an individual tool. CASE tools generated by
these systems often suffer from poor user interfaces as CASE tool generators typically
focus on specifying modelling languages at the expense of due consideration to Human

Computer Interactdon (HCI) principles.

Paradigm+ (Platinum, 1998), Software through Pictures (STP, 1998), Toolbuilder
(Lincoln, 1998) and MetaView (Gadwal ef a/, 1994a, b; Findeisen, 1993, 1994a-d; Lae,
1995; Sorenson ef al, 1988; Zhuang, 1994; Zhuang et al, 1995) are CASE tool

Generators.
1.5.6 Modifiable CASE Environments

Tools in this category attempt to combine the benefits of a meta-CASE tool and a mula-
methodology CASE tool. These tools allow their methodologies to be modified and may
be extended to support new methodologies. Meta-CASE tools of this type usually
provide a set of methodology description languages that are used to define

methodologies.

A modifiable CASE environment has two types of user. Methodology engineers use a
modifiable CASE environment to manipulate descriptions of software engineering
methodologies. Software engineers use a modifiable CASE environment to manipulate

descriptions of software engineering prejects.

The main problem with modifiable CASE environments is poor support for the concept
of methodology. Often the user of such an environment is presented with an extremely
large collection of methodologies (Lyytinen ef a/, 1994; MetaCASE Consulting, 1996a, b,
1998; Smolander ez al, 1991; Tolvanen and Lyytinen, 1993). In additon the relation

between different methodologies and methods is often not clear.

Modifable CASE environments do present significant possibilities for the support of re-
use amongst software development projects as these tools have detailed information

regarding the methodologies they implement. However these tools do not consider re-use

 This 1s of ten 2t consequence of chensng somme tope of date meaded s the mete-nudel,
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explicitly. Any claim for the support of re-use is only ever matched by simple
import/export facilities or by accidental re-use’’ (ASD, 1998; Lyytinen e al, 1994;
MarkV, 1998; MetaCASE Consultng, 1996a, b, 1998; Smolander e 4/, 1991; Tolvanen
and Lyytnen, 1993). Generally these tools only support accidental re-use of methodology

descriptions.

Modifiable CASE environments typically focus on specifying modelling languages at the
expense of due consideration to Human Computer Interacton (HCI) principles and

suffer from poor user interfaces.

Graphical Designer (ASD, 1998), ObjectMaker (MarkV, 1998), MetaEdit+ (Lyytinen ez
al., 1994; MerridanMarketing, 1998; MetaCASE Consulting, 1996a, b, 1998; Smolander e#
al., 1991; Tolvanen and Lyytinen, 1993) are examples of Modifiable CASE environments.

1.6  Limitations of Methodology CASE Tools

CASE tools have promised high gains in terms of enhanced productivity, lower defect
solutions and faster ime to market. Yet many organisations have not adopted CASE
technology (Beynon-Davies, 1989; Bay, 1998; Huff ez o/, 1992; Malmborg, 1992; Oakes ez
al, 1992; Sorensen, 1993; Vessey e/ al, 1992; Wallnau, 1992; Wallnau and Feiler, 1991;
Zarella, 1990; Zarella ef al, 1991). Many of the reasons for the poor adoption of CASE
tools are epitomised by the FreeCASE project (FreeCASE, 1998). FreeCASE is a
methodology dependent CASE tool (Figure 1-3 - Classification hierarchy of CASE tool

categories) that is being developed by volunteers from the free software community.

“FreeCASE will be a first of a kind product. It will be a team orientated tool
for object-oriented analysis and design. It will ... support UML 1.1 ... It will
forward-generate and reverse engineer source code in multiple languages. It
will support a networked repository, allowing for development over the
Internet. It will also provide versioning and code management capabilities.

Additionally, it will support a client running on multple platforms.”

From the FreeCASE website (FreeCASE, 1998)

e desdopers disonver thar corton parse of o prosdues mav e used s smother produet, e o fus boeen

completad” e, 1996
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Whilst the project is in its infancy and, as yet, does not appear to provide anything novel,

itis interesting because of its motives:

“Vendors have been selling products for years that are supposed to promote
reusability, promote better design, and speed time to market. The problem is
that few commercial products actually live up to even significant portions of
their claims. Worse, the price of entry is anywhere from $800 to $5000 PER

USER! T find this to be unacceptable.”

From the FreeCASE website (FreeCASE, 1998)

The very existence of such a project is indicative of the potential of CASE technology

and also of the failure to deliver on that potental.

A large body of work related to the adoption of CASE technology exists (Beynon-Davies,
1989; Day, 1998; Huff e a/, 1992; Malmborg, 1992; Mathiassen and Serensen, 1995;
Oakes e al., 1992; Schottand, 1996; Serensen, 1993, Vessey ez a/, 1992; Wallnau, 1992;
Wallnau and Feiler, 1991; Zarella, 1990; Zarella ¢z af, 1991). Oakes ez al (1992) report that

the major problems associated with the adoption of CASE tools are':

The wide variation in euality and value within a single type of tool.

« The reladvely short time that many types of CASE tool have been in use in

organisations.
« The wide difference in the adoption practices of various organisations.
« The general lack of detailed metric data for previous and current projects.
« The wide range of project domains.

» The confounding impact of changes to methods and processes that are often

associated with the adoption of CASE tools.

« The potential bias of organisations reporting CASE gains or losses.

I

* This st is from o technical report pubhsied by the Software Frgmnecring Instiute /SEL 1998 dealing with the

sdopaun of CASE wols. Therr defininon of CASE 15 the “runge of miterrelated rools that suppart the sofvaare

CIERICTI Py
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Artsy (1995) notes in a position paper for the OOPSLA workshop ‘Meta-modelling in
00

“Very few tools implementing an OOA&D method do have an explicit
meta-model, and even fewer publish it. Without such a model, the tool’s user
cannot know precisely how accurately does the tool view or implement
certain concepts ... Furthermore, even when the tool has an explicit meta-
model, but the tool is not model-driven, it is inflexible to change whenever
the OOM evolves (and since OOMs do evolve relatively often, tools are

becoming obsolete too soon).”

The limitations of CASE tools can be considered from two perspectives. The first is from
the point of view of companies adopting CASE technology (organisational perspective).
The second is from the point of view of CASE tools themselves (CASE Tool

perspective)'”.
1.6.1 Limitations from the Organisational Perspective

These limitations are related to the effect the adoption of CASE technology can have

within an organisation.
+ Highcost of adoption

The adoption of CASE technology can be a major investinent for a company. The
price of CASE tools can vary greatly depending on the functionality and features
provided by the CASE tools. In addition the training costs associated with adopting a

CASE tool can be prohibitive.
+ High learning curve

The learning curve associated with CASE tools can be high. CASE tools are not
simple products to master, especially given their emphasis on collaborative work and

that their affect is across the software development life-cycle.

PO Rl nanaaens of et CASE tonls e prosemicd moclgpnee 20
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Long payback period

The payback period for adopting CASE tools can be long (i.e., years of time). This is
because the advantages of adopting CASE technology may not become clear until the
first products are completed with the assistance of CASE tools. Payback is in terms

of faster time to market, better quality products and lower maintenance costs.
Lack of customisation

Many companies uglise in-house methodologies or processes. Their means of work
may also be a modification or extension of a popular, accepted methodology. Such
practices are not supported well by current CASE technology, as most CASE tools

are rigid and do not allow customisation.
Lack of standards

A plethora of CASE tools exist, which vary significantly in terms of auality, usability
and functionality. This is related to the large number of object-orientated

methodologies, the lack of industry standards and immaturity of the CASE industry.
Culture shock

CASE tools propound a collaborative approach to software engineering and
emphasise the importance of the pre-implementatdon phases of the software

development process. This can be a culture shock for many organisations.

In addition, some people feel that CASE tools will ‘de-skill’ and ‘constrain’ them

rather than enhance their productivity.

Lack of flexibility

Companies have significant investments in legacy systems and existing software
projects documented using different methodologies. Existing CASE tools are
inflexible and do not allow companies to preserve their investments in existing

technology, systems and methodologies.
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In additon, many CASE tools do not integrate well into the existing operation of an
organisation. This means that changes are required to accommodate a new tool.

People in general are resistant to change.

1.6.2 Limitations from the CASE Tool Perspective

These limitadons are related te the characteristics and functonality of current CASE

tools.

Methodology specific

The majority of CASE tools are methodology specific which makes it difficult to
justfy the significant investment required, in terms of time, training and resources, to
adopt CASE technology. Use of such tools also places constraints on an organisation

to use the methodologies they support in order to justify their initial investment.
Limited support for the software development life-cycle

The support of the entire software development life-cycle is limited. Whilst many
tools provide some support for reverse engineering and re-engineering, few support
requirements gathering for example. This is also because of the limited support of the

entire spectrum of software engineering activities by existing methodologies.
Poor support for all aspects of a methodology

The support of a methodology that is provided by a CASE tool is often limited to a
collection of diagram editors, which correspond to the various modelling languages
that the methodology provides. The concepts of process and method are often

ignored.
Poor usability

The usability of CASE tools, from a HCI perspective, is often poor. CASE tools are
generally rigid and force users to conform to a set means of working. In addition the
possibilities that are available with current Human-Computer-Interacion (HCI)

techniques are generally not considered.
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Most CASE tools are simple implementations of existing ‘pen and paper’ techniques
with the addition of correcmess and consistency checking. They do not support

techniques such as logical distortion and novel interaction styles.
Poor support for re-use

CASE tools do not provide support for re-use between user projects. This will
become a more important limitaton in the fature as the trend toward adoption of
object-orientated technology continues. Whilst it is true that object-orientated
technology does not guarantee re-use it is accepted that one of the principle
objectives of object-orientated technology is to enable re-use. This should therefore
also be a key objective of a CASE tool that supports object-orientated

methodologies.
Poor support for migration of software engineering projects

CASE tools do not allow software artefacts to be re-used, if they are built with
different methodologies. Consequently a company cannot effectively make use of

previous modelling results.

Some CASE tools, however, do attempt to implement data interchange formats such
as the Case Data Interchange Format (CDIF) (EIA CDIF, 1994a-h, 1996; Flatscher,
1996). CDIF is discussed in chapter 2.

Lack of intelligence

The level of assistance provided by CASE tools to software engineers is limited to the
capture and consistency checking of a set of diagrams. No consideration is given to
things such as intelligent feedback on work as it is completed, auto-correcton and

quality analysis.

Obijectives of the Research

This research is part of the PGSF funded research project titled “Advancing information
technologies through CASE”, which aims to develop novel methods and techniques for

addressing the limitations of current CASE and meta-CASE technology.
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The objectives of the research detailed in this thesis are:

«  Develop a novel meta-CASE tool methodology representation strategy that:
+ Uses an object-orientated meta~-model.
+ Allows methodology descriptions to be re-used.

+ Minimises the coupling between methodology syntax and semantic descriptions
such that methodology syntax and semantic descriptions can be re-used

independently.

o Permits software engineering projects to be re-used, even if they are built with

different methodologies.

» Design and implement a prototype meta-CASE tool that realises the new

methodology representation swategy via the development of:

o Languages that support the descripdon of syntax and semantics of a

methodology.
¢ The efficient execution strategy of syntax and semantic descriptions.

The new CASE tool that has been developed during the research to satsfy these
objectives is called MOOT (Meta Object Orientated Tool).

1.8 Method

The following steps summarise the approach adopted to satisfy the objectives described

in section 1.7:

A. Compare, contrast and evaluate exising CASE tools and meta-CASE tools to
idendfy limitatons of current CASE technology. A detailed comparison of meta-

CASE tools is presented in chapter 2.

B. Define the rationale and goals of the MOOT project based on the identified
limitations of current CASE technology. Investigate a possible meta-systems

approach based on an object-orientated meta-model.
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C. Devise a representation scheme for methodology descriptions in MOOT.

D. Develop a meta-model of the concept of methodology with the representaton

scheme defined in C.
E. Derive a means of processing the methodology descriptions defined in step C.
F. Design the architecture of a meta-CASE tool based on the work in steps B - E.

G. Realise a prototype of the system defined in step F that is suitable for assessing the

efficacy of the representation scheme for methodology descriptions (defined in step

Q).

H. Validate the meta-systems approach by modelling object-orientated methodologies

and implementing support for design patterns.
1.9  Outline of the Thesis
The overall outline of the thesis is illustrated in Figure 1-4.
The thesis is structured into nine chapters, which are grouped into three sections:
«  Literature review (chapter one and two)
«  Research description (chapter three to chapter seven)
»  Results, discussion and review (chapter eight and nine)

Chapter two presents a review of meta-modelling and meta-CASE tools. Chapters three
to seven cover the research undertaken. The overall architecture and design philosophy
of a new meta-CASE tool is discussed in chapter three. Chapters four, five, six and seven
discuss the languages and mechanisms used to represent and process methodology
descriptions. Chapter six also outlines the faciliies for re-use of methodology
descriptions and user projects that these techniques provide. Chapter eight presents
results of using the prototype meta-CASE tool. Chapter nine is a review chapter in which

the contribution of this research is examined and further work is identfied.



Figure 1-4 - T'hesis outline
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Chapter 2

Meta-Modelling and Meta-CASE Tools

There are two ways of constructing a software design. One way is to make it
so simple there are no obvious deficiencies. And the other is to make it so

complicated that there are no obvious deficiencies.
C A R Hoare

2.1 Introduction

This chapter presents a review of meta-modelling and meta-CASE tools. Initally the
meta-modelling process is discussed in relaton to a four layer meta-modelling
architecture (EIA CDIF, 1994a; Ernst, 1996, OMG, 1997a, 1. A review of some
important applications of meta-modelling in software engineering is presented. The
relation of meta-modelling to meta-CASE tools is discussed and a representative sample
of meta-CASE tools is critically reviewed. A summary of the limitations of existing meta-

CASE tools is derived based on the review.
2.2 Meta-Modelling

Problems cannot be solved at the same level of awareness that created them.

Albert Einstein

Meta-modelling is an activity that is germane to many problem domains
(Metamodel.com, 1998). Examples include modelling business rules (Blanchard, 1995),
the development of databases (Demphlous and Lebastard, 1995; Sahraoui ez @/, 1995) and

the translation of architecture description languages (Barbacci and Weinstock, 1998).

The generally accepted framework for meta-modeling is based on a four layer architecture

(OMG, 19971). The layers, from the most abstract (left) to the least abstract (right), are:

meta-metamodel = meta-model = model = user objects
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Table 2-1 presents a description of each layer. It is taken from the UML semantics guide
(v1.1) (OMG, 1997i). Similar tables may be found in (EIA CDIF, 1994a; Ernst, 1996;
OMG, 1997a).

Layer Description Example

Meta- The infrastructure for a meta- MetaClass, MetaAtiribute,

metamodel modelling architecture. Detines the ~ MetaOperation
language for specifying meta-
models.

Meta-model  An instance of a meta-metamodel. Class, Attribute, Operation,
Defines the language for specifying ~ Component
a model.

Model An instance of a meta-model. StockShare, askPrice,
Defines a language to describe an selll 2mitOrder,
information domain. StockOrderQnoteServer

User objects  An instance of a model. Defines a <Acme_Software_Share_98789>,

(user data) specific information domain. 654.6, sell_limit_order,

<S'tock_Qunote_Svr_32123>

Table 2-1 - Four layer meta-modelling architecture

Figure 2-1 shows that two meta-modelling steps (described in section 1.2.2) are required

to implement the four layer architecture of Table 2-1.

Meta-metamodel

Meta-model E

Model

User Objects

Figure 2-1 - Four layer meta-modelling process
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Figure 2-1 also demonstrates that three languages are required to implement the four
layer architecture. Practically, it is possible that the same language may be used more than
once. Tolvanen and Lyytnen (1993) note “meta-modelling also uses its own methods and
tools which, in turn, can be described on one level higher in meta-metamodels (and so ad

infinitum).”

The nature of the partcular problem a meta-modelling approach is applied to dictates the
choice of languages and methods used and the resulting meta-metamodel, meta-models
and models. Examples'* of the application of meta-modelling in the software engineering

field include:
« The OMG Meta Object Facility (OMG, 1997a, b)

« The Unified Modelling L.anguage (Booch and Rumbaugh, 1995; Rational, 1997a, b;
OMG, 1997c-j; UML-RTFE, 1998)

+  The Common Object Meta-Modelling Architecture (Henderson-Sellers and Bulthuis,

1996a, b, 1997; Henderson-Sellers and Firesmith, 1997a)

« OPEN Modelling Language (Firesmith ez a/, 1997, 1998b; Henderson-Sellers and
Graham, 1996; Henderson-Sellers ¢/ aZ, 1997a, b)

« The OOram meta model developed by Taskon A/S, Reich Technologies and
Humans and Technology (Reenskaug ez a/, 1996; Taskon A/S, 1997)

»  The Case Date Interchange Format family of standards (EIA CDIF, 1994a-h, 1996;
Flatscher, 1996)

«  The ISO/CDIF meta-model (ISO, 1998b)
«  The MetaData Interchange Format Standard (MIDC, 1997, 1998)
2.2.1 The OMG Meta Object Facility

The Object Management Groups (OMG) Meta Object Facility (MOF) defines an

object-orientated meta-metamodel (the MOF model), which is used to define meta-

SO RS ks are alsa an esample of the appheatom of megmodedbng, Thes are discussed nsection 2.3,
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models in various domains (OMG, 1997a, b). Example domains include object-orientated
analysis and design, the applicaton development life-cycle, data warehouse management

and business object management.

“The main purpose of the OMG MOF is to provide a set of CORBA
interfaces that can be used to define and manipulate a set of interoperable
meta-models. The MOF is a key building block in the constructdon of

CORBA based distributed development environments.”
From the Meta Object Faclity (MOF) S pecificatron (OMG, 1997a)

The MOF Model is defined in terms of itself”. The MOF Model is also the meta-
metamodel of the UML submission for the Object Analysis and Design Facility
(OA&DF) to the OMG (OMG, 19971). The OMG MOF specification clearly states the

importance of the MOF development:

“This attempt at OMG to integrate the Meta Object Facility and the Object
Analysis and Design Facility (OA&DF) is expected to be a critical step in
developing meta-data standards that will begin addressing the application
development life-cycle. This standard is even more important now
considering the profound impact that Distributed Objects and the Internet
are having on development methodologies that favour object-oriented and
component-based development environments. The use of repositories and
meta-data management in these environments is a well recognised industry

trend.”’
From the Meta Object Facility (MOF-) S pecification (OMG, 1997a)

The OMG MOF is also being aligned with the meta-metamodels submitted for the
OMG OA&D facility and the EIA CDIF standard.

S The Tiprage used o detme the MO model s the Tingusee defined by the MO model The UM semanties punle
valls this spprouck meta-carcular €ONG, 19971
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2.2.2 Unified Modelling Language

UML is a visual object-orientated modelling language targeted toward describing object-
orientated systems. Its initial development started with the unification of three existing
object-orientated software engineering methodologies: OMT (Rumbaugh, 1991, 1995a,
b), Booch (Booch, 1991, 1994) and OOSE (Jacobson ez al,, 1993).

“The Unified Modelling Language (UML) is a general purpose modelling
language that is designed to specify, visualise, construct and document the
artefacts of a software system. The UML is simple and powerful. The
language is based on a small number of core concepts that most object
oriented developers can easily learn and apply. The core concepts can be

combined across a wide range of domains.”
From the UML Semantics, v1.1 (OMG, 19971)
The UML consists of two patts:

o UML Semantics. A meta-model that defines the abstract syntax and semantics of

UML object modelling concepts.

«  UMIL Notation. A graphical notation for the visual representation of the UM

semantics.

The UML meta-model is expressed in a subset of UML. The implicit meta-metamodel *

is the same as the OMG MOF {Meta Object Facility) model (OMG, 1997a, b).

The UML started as the Unified Method in 1995. The draft specification of the Unified
Method (version 0.8) contains an informal meta-model that encompasses the concepts
and associations used in object-orientated analysis and design (Booch and Rumbaugh,
1995). It also contains a collection of papers on specific aspects of that meta-model. The
Unified Method was then renamed the Unified Modelling Language to reflect that the

process was to be defined at a later stage.

o The UM semantics ruide notes It there = not an vxphick meta-mcetamodel. there 1s an imyplicit meta-metamodel

assoctated with every meta-model” MONGL 1997y
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In January of 1997 UML version 1.0 was submitted to the OMG for the Object Analysis
and Design Facility (OA&DF) (Rational, 1997a, b). The Object Management Group
adopted the UML version 1.1 as a standard for the OMG OA&DF in September of 1997
(OMG, 1997c-)).

UML is currently under revision (UML-RTF, 1998) with a projected completion date, for
version 1.3, of January of 1999. Revision 1.4 is expected to be complete by April of 1999.

2.2.3 COMMA

COMMA stands for Common Object Methodology Metamodel Architecture.
Henderson-Sellers and Bulthuis initiated the project in 1995 (Henderson-Sellers and

Bulthuis, 1996a, b, 1997; Henderson-Sellers and Firesmith, 1997a).

“The major goal of the COMMA project is to highlight the commonaltes of
object-orientated methods by describing their underlying meta-models ... in

order to focus on the areas of agreement.”
From the COMMA project: First steps (Henderson-Sellers et al., 1996h)

The COMMA project consisted of three phases:

+ Identification of the methodologies to be modelled. Derivation of an appropriate
meta-level notation and modelling syntax'" for this purpose.

+ Derivation of meta-models for a number of methodolosies.

+ Construction of a core meta-model.

Fourteen different object-orientated methodologies were modelled during the COMMA

project. The meta-language used during the project was purpose designed .

“When we began the COMMA project in January 1995, we unfortunately
found existing object-orientated meta-modelling techniques to be inadequate
for COMMA, the notatons and semantics usually being extensions of

structured notations and not possessing object-orientated features,

T s corresponads 1o a meta-metamodel, interms of a four Lives mcea mesdelling architecture.

< Irealire, the s luogaaes s smple ebpeet-onentaned Taneoaee, which has exphat support for roles and a notation

thae s amadean: of severad others
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particularly inheritance; for example, OPRR and GOPRR, the notation used
by Bulthuis and the use of ER by Eckert and Golder.”

From An Overview of the COMMA Project (Henderson-Sellers and Bulthuis, 1996a)

The COMMA project greatly influenced the development of the OPEN methodology
and the OPEN modelling language.

2.2.4 Open Modelling Language

The OPEN Modelling Language (OML) is one aspect of the larger OPEN project
(Firesmith ez al, 1997; Firesmith and Henderson-Sellers 1998a, b; Henderson-Sellers and
Graham, 1996; Henderson-Sellers ¢f al, 1996, 1997a, b). OPEN has been derived from
object-orientated software engineering approaches of SOMA (Graham, 1994), MOSES
(Henderson-Sellers and Edwards, 1994), and Firesmith with contributions from a group

of 32 researchers and methodologists, collectively known as the OPEN consortium.

“OPEN consists of a full life-cycle process-centred O@® methodology with
emphasis on /nter aka, reuse, quality, organisational issues including people
and project management ... It has a meta-model and notation which are
collectively called the OPEN Modelling Language — OML has exactly the

same scope as the UML ... ”

From: Evaluating Third generation OO Software Development Approaches
(Henderson-Sellers and Firesmith, 1997b)

The OPEN meta-model is characterised by and emphasises responsibilites,
unidirectional associations and the inclusion of roles (based on the work on OOram
(Reenskaug et al., 1996; Taskon A/S, 1997)). The OPEN meta-model is based on the core
COMMA meta-model.

22.5 OOram

The Taskon A/S / Reich Technologies / Humans and Technology OOram meta-model
was created primarily for its submission to the Object Management Group in response to

the request for proposals for the Object Analysis and Besign Facility (Taskon A/S, 1997).
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“The main conwibutions of this proposal are its overall architecture and its
system abstracion. The architecture is object-orientated and unifies a
number of powerful abstractions. The system abswraction combines the
power of use cases, responsibility driven design, and role modelling; it can be

thought of as an extension of the UML and OML object models.”
From the OOran: Metamodel, v 1.0 (Taskon A/ S, 1997)

The main goal of the OOram meta-model was to contribute concepts that the authors
considered were missing from mainstream object-orientated methodologies. Its primary
focus is role modelling, class modelling, and system relations. The OOram meta-model is

an object-orientated meta-model, which is described in terms of itself.
2.2.6 CASE Data Interchange Format

CDIF (CDIF, 1998) is a standards body sponsored by the EIA (EIA, 1998) (Electronic
Industries Association) and the ISO (ISO, 1998a) (International Standards Organisation),

whose mission is to enable data interchange between modelling tools.

“CDIF has been developed to define the structure and content of a transfer
that may be used to exchange data between two CASE tools. The
fundamental objectives of the CDIF Family of Standards are: to provide a
precise, unambiguous definition of information to be transferred; to define a
transfer that may be read and understood directly (i.e., without interpretation
by a computer); to provide the importer with sufficient information to enable
the importer to reproduce the transferred data consistent with the original
sense.”

From the CDIF CASE Data Interchange Format — Overview, Extract of Interim
Standard (EL4 CDIF, 1994a)

The EIA initated the development of CDIF in October of 1987. The goal of this work
has been to permit the results of modelling work, performed with various techniques, to
be transferred between CASE Tools. CDIF defines a series of meta-models (which are

called subject areas) for modelling techniques, using an Entity Relationship model (the

meta-metamodel) (EIA CDIF, 1994a-h, 1996; Flatscher, 1996).
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In 1991 the EIA CDIF interim standard extended the CDIF meta-metamodel to allow
entity types to be interpreted as ‘classes’ and ‘sub-classed’ in resined meta-models (EIA
CDIF, 1994a). The 1994 standard supported sub-classing of relationship types as well.
Figure 2-2 shows the current CDIF meta-metamodel taken from the ‘Extract of Interim
Standard CDIF Framework for Modelling and Extensibility’ (EIA CDIF, 1994b). Non
directed lines indicate a sub-classing relationship among entity types, where the more
abstract concept is placed physically above the less abstract concept. A directed line

indicates a directed association between two entity types.

1 MetaObject
J . IsUsedIn -
SubjectArea |« CollectableMetaObject
1N 0N
O:N - IsLocalMetaAttributeOf
AttributableMetaObject |« - N MetaAttribute
0:N
HasSubtype
O:N HasSource 11
MetaRelationship > MetaEntity
0:N HasDestination 11
Figare 2 2 - CDIF Meta-metamodel - F1A CIE 11940

CDIF has defined subject areas for modelling technisues such as data modelling, data
flow modelling, state event modelling and object-orientated analysis and design. Work is

under way to integrate CDIF with the UML (Ernst, 19906).
2.2.7 1SO/CDIF Meta-Model

ISO/IEC JTC1/SC7/WG11 (ISO, 1998b) is the internatonal body responsible for
standardising information such as meta-models for software engineering activites. It is
informally known as ISO/CDIF. Much of the work petformed by ISO/CDIF
cotresponds to EIA/CDIF projects. ISO/CDIF also co-ordinates with other

organisations such as the Object Management Group.



2.2.8 MetaData Interchange Facility

The MetaData Interchange Facility (MDIF) is developed by the Metadata Coaliton
MDC) (MDC, 1997, 1998). The goal of the MDC is to create a vendor-independent,
industry-defined and maintained standard access mechanism and standard application

programming interface (API) for meta-data.

“To enable full-scale enterprise data management, different I'T tools must be
able to freely and easily access, update, and share meta-data. The only viable
mechanism to enable disparate tools from different vendors to exchange
meta-data is a common meta-data interchange specification with guidelines
to which the different vendors’ tools can comply. ... The MetaData
Interchange Specification initiative brings industry vendors and users
together to address a variety of problems and issues regarding the exchange,

sharing, and management of meta-data.”
From the Metadata Interchange Specification version 1.1 (MDC, 1997)

The MetaData Interchange Specification uses an ER meta-metamodel to describe the

entities and relationships that are used to represent meta-data in the MDIF.
2.3 Meta-CASE Tools

Two types of meta-CASE tool were identified in section 1.5.4. These were CASE Tool

Generator and Modifiable CASE Environment.
CASE Tool Generator

A CASE tool generator is a meta-tool, which supports the construction of standalone
CASE tools. Figure 2-3 shows two common CASE tool generator configuraton. A tool
descripton is composed of a methodology specificaion and a tool configuration

definition.
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A CASE tool generator is parameterised by a set of CASE tool descriptions. Each tool
description in Figure 2-3 (a) is translated into a separate standalone CASE tool. The
generated tools are completely separate and each has an individual repository for software
engineerng projects. Figure 2-3 (b) shows a slightly different approach, where each of the

generated tools share a common repository.

In both cases, the methodology specification and the software projects do not coexist in

the same repository. Moreover each generated CASE tool supports a single methodology.

Modifiable CASE Environment

A modifiable CASE environment allows methodology descriptons to be modified and
may be extended to support new methodologies. Figure 2-4 shows the common

configuration of a modifiable CASE environment.

The key difference between a modifiable CASE environment and a CASE tool generator

is the integration of methodology descriptions and software projects into one repository.
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Both types of meta-CASE tool provide a meta-model, which is used to define
methodologies. This meta-model is either: explicit and supported by a set of definiton
languages (ASD, 1995a, b, 1998; Coxhead and Fisher ef a/, 1994a, b; Froehlich, 1994
Coxhead ¢# 4/, 1994; Findeisen, 1993, 1994a-d; Froehlich, 1994; Gadwal e/ al, 19944, b;
Lincoln, 1994, 1998; e, 1995; Lyytinen e a/, 1994; Smolander et a/, 1991; Tolvanen and
Lyytinen, 1993; MetaCASE consulting, 1996a, b, 1998; Sorenson ef a/, 1988; Verhoef ef
al., 1991; Zhuang, 1994; Zhuang et a/, 1995) or implicit and supported by one or more
libraries and an application programming interface §rCASE, 1998; Maokai and Scott,
1998; mip GmbH, 1998a-d; Scott, 1998). Figure 2-5 illustrates the relation between the
four layer meta-modelling architecture discussed in section 2.2 and a meta-CASE tool

meta-model.

A software engineer builds descriptions of software that is to be constructed. Each
description corresponds to a software engineering project in Figure 2-5. Each project
consists of a set of models, which collectively define the software. The software
corresponds to the ‘user objects’ level of the meta-modelling architecture and the

software project corresponds to the ‘model’ level.
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Each model in a software engineering project is defined using a modelling language
provided by a software engineering methodology. The modelling languages are meta-
models of the models in the software engineering project and thus correspond to the

meta-model level of the meta-modelling architecture.

Each methodology in a meta-CASE tool is defined in terms of the meta-CASE tool
meta-model. This meta-model provides the language the methodology engineers use to
define methodologies. The meta-CASE tool meta-model therefore corresponds to the

meta-metamodel level of the meta-modelling architecture.
2.3.1 Framework for Discussion of Meta-CASE Tools

The discussion of meta-CASE tools is based on a framework, which has been designed to
evaluate the properties of meta-CASE tools related to methodology representation.
The propertes considered include:

1. Underlying meta-model (representation of semantics)

What is the modelling language supported? How is the modelling language

implemented? Are there any limitations of the meta-model?
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2. Representation of syntax

How tightly coupled are the semantic and syntax descriptions? What are the

limitations of the mechanism for describing syntax.
3. Support for the concept of methodology

Does the tool support the concept of methodology at all? Does the tool support
the concepts of method and process? Does it only support the definiton of

modelling languages?
4. Support for re-use

Does the tool embrace re-use of methodology descriptions? Is re-use of

software projects supported?

Problems and limitations

.LJ‘I

Table 2-2 contains a non-exhaustive, representative sample of meta-CASE tools. Tools
with 2 ¥" next to them will be discussed with respect to the framework. These tools have
been selected because they are widely used and referenced in the literature.'” They utilise a
range of meta-models (for example EARA/GE, GOPRR and Class based) and are

representative of the types of meta-CASE tool.

Research Tool Commercial Tool

MetaView (MetaView, 1998) v/ Alfabet (Alfabet, 1998) v/
Meta-Edit and MetaEdit+ ToolBuilder

(MetaCASE consulting, 1998) v/ (Alderson, 1991; Lincoln, 1998) v

CASEMaker (JrCASE, 1998; Maokai and Graphical Designer (ASD, 1998) v
Scott, 1998; Scott, 1998)

KOGGE ObjectMaker (MarkV’, 1994, 1998)
(Sahraoui ez al, 1995; Ebert ef al., 1996)

Ramauk Paradigm Plus (Platinum, 1998)
MetaPlex Software though Pictures (STP, 1998)

Socrates (Verhoef e a/, 1991)

Table 2-2 Aleta-CASE toels

A am meta-CASE tools ape commeraial rreaduets and detailed technical intormation s ditficult to obtan.
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23.2 MetaView

MetaView is a CASE tool generator (Figure 1-3 - Classification hierarchy of CASE tool
categories). It was developed at the University of Saskatchewan and University of Alberta,
Canada (Gadwal e a/, 1994a, b; Findeisen, 1993, 1994a-d; Froehlich, 1994; Lo, 1995;
Sorenson ¢t al, 1988; Zhuang, 1994; Zhuang ef a/., 1995).

2.3.2.1  Underbing meta-model

MetaView introduces an extension of the entity relationship (ER) data model called
EARA/GE (Entity Aggregate Role Attribute with Graphical Extension). The novel parts
of this meta-model are the support for aggregates, specialisaton and the graphical
extensions (Gadwal ¢f a/, 1994a, b; Findeisen, 1993, 1994a-d; Lo, 1995; Sorenson et al,
1988; Zhuang, 1994; Zhuang et al, 1995).

An aggregate is a heterogeneous collection of entities and relatonships. The entities and
relationships belonging to an aggregate are called its components. EARA supports an
aggregaton relationship, which is a special association between an entty and an
aggregate. This relatonship is also called an entity explosion and is used to represent

hierarchical decomposition.

Each entty, relationship and aggregate has a type. These types can be built into
specialisation hierarchies where subtypes inherit the relationships and attributes of their
super-types. The properties of entities, relationships and aggregates are represented by

attributes.

Methodologies in MetaView are defined in a specially designed language called
Environment Definition Language (EDL) (Gadwal ¢ a/, 1994a). EDL provides features
that correspond to the concepts supported by EARA/GE.

Constraints are defined after an EARA data model, which describes a methodology, is
constructed. The constraints either guard the consistency of the specification (consistency
constraints) or ensure that the software specification is complete (completeness
constraints). Constraints are written in a separate language called Environment

Constraints Language (ECL) (Findeisen, 1994d).
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2.3.2.2 Representation of syntax

Methodology graphical notations are modelled with an extension to the EARA model

called the Graphical Extension (GE) (Findeisen, 1993).

The graphical extension is designed to support two-dimensional, non-animated
diagramming techniques. It introduces the following graphical types: icon, edge and

diagram as subtypes of entity, relationship and aggregation respectively.

The graphical extension provides the following primitives:

»  Puture Pattern and Picture. A geometric figure that may appear repeatedly in a diagram.
Picture patterns are composed of points, lines, arcs and text. A Picture is a picture

pattern with additional constraints such as a position.
»  Label Labels are used to represent attributes of entities, aggregates and relationships.

+  Dragram. Diagrams are used to represent aggregates and correspond to individual

drawing surfaces.

o Iwn. An icon is used to represent an entity. An icon is represented as a rectangular

area. Icons have a fixed size and may be annotated by pictures and labels.

o Cluster. A cluster represents a sequence of entities and is used to express presentation
constraints (e.g. vertical or horizontal alignment). Clusters may be collapsed into a

single icon.

« Edge Edges are used to represent relationships. Edges may be annotated with

pictures and labels.

o Handl. Handles are used to define the positions on an icon, where edges may be

attached.

2.3.2.3  Support for the concept of methodology
Each methodology specification in MetaView defines a collection of diagram types. There

1s no support for the concept of methodology, especially in terms of process.

2324  Support for re-use
MetaView does not promote re-use of methodology components, although it does

support specialisation of entity types. Constraints are defined globally for each
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methodology and cannot be re-used. There is no support for re-use of software

engineering projects.
2.3.2.5 Problems and limitations
«  An entity cannot be owned by more than one aggregate.

+ An entity cannot be involved in more than one aggregation relationship. It can only

be exploded to one type of aggregate.

« Correctness and completeness constraints are totally separate from the entties,
aggregates and relationships. Constraints are also defined globally over all the entities,

aggregates and relationships. This implies computation overhead.

»  The formal nature of the meta-model implies that partially completed models cannot

be built.

«  The syntactic representation is totally integrated with the semantic representation. A
change in the semantics implies a change in the graphical representation and vice

versa. The cohesiveness of syntax and semantic descriptions is therefore reduced.
»  There is no consideration of cognitive support (auto correction, feedback etc).
« Anentty cannot be represented by more than one icon.
« A reladonship cannot be represented by more than one edge.
»  Anicon cannot represent more than one entity or agsregate.
+ Iconsand pictures are of a fixed size.
»  Diagrams are only views of aggregates.

+ MetaView only supports ‘pen and paper’ notations. The syntax description is very

simple and does not support facilities such as logical distortion.
+ There is no support for process.

« Thereis no support for re-use of methodology descriptions or software projects.
2.3.3 Meta-Edit and MetaEdit+

MetaEdit and MetaEdit+ are modifiable CASE environments (Figure 1-3 - Classification

hierarchy of CASE tool categories). These tools were developed as part of the
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MetaPHOR project by the University of Jyviskyld, Technical Research Centre of Finland
(VTT) and University of Oulu (Lyytinen e al, 1994; MerridanMarketing, 1998;
MetaCASE consulting, 1996a, b, 1998; Smolander e7 a/, 1991; Tolvanen and Lyytnen,
1993).

2.3.3.1  Underlying meta-model

The meta-model used in MetaEdit+ is called GOPRR (Graph, Objects, Propertes,
Relationships, Roles). It is an extension of the OPRR model used in MetaEdit
(Smolander e a/, 1991). The OPRR meta-model is founded on “fixed mapping rules

between modelling constructs and their graphical behaviours” (Smolander e/ a/, 1991).

The basic OPRR modelling conswructs are:

« Objects. These are not objects in the object-orientated sense as they are passive.

They are reminiscent of entity types.
«  Properties, which are attributes of objects, relationships and roles.
»  Relationships, which are associations between objects.

+  Roles, which define the ways in which objects participate in specific relatonships.

The GOPRR model adds the concept of Graph to the OPRR model. A graph denotes an
aggregate that contains a set of objects, relationships, roles and other graphs. A graph also
has its own propertes and typically appears as a window. The graph concept has also
been extended into a modelling unit called Project. A Projeet 1s used to manage the

relatonships between the collecton of modelling languages in a particular methodology.

Objects can be arranged into specialisation hierarchies where ‘sub-objects’ inherit the

relationships and propertes of their ‘super-objects’.

2.3.3.2  Representation of syntax

There is a one to one correspondence between GOPRR types (projects, graphs, objects,
roles and relationships) and graphical representations (which MetaEdit+ calls symbols).
Symbols are defined in terms of primitive shapes (ellipse, rectangle, rounded rectangle,
line, polygon, text and bitmap). A symbol may have labels that correspond to the values

of the properties of a GOPRR type.
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2.3.3.3  Support for the concept of methodology

A methodology is mapped to the project concept in the GOPRR meta-model. There is

no support for process.

2.3.3.4  Support for re-use

The GOPRR meta-model supports inheritance of GOPRR types. MetaEdit+ also

supports a symbol library. The definiton of an existing modelling language may be

duplicated and modified. In practice this is only accidental re-use.

2.3.3.5  Problems and limitations

The formal nature of the meta-model implies that partally completed models cannot

be built.
There is no support for the reuse of modelling results.
Only accidental re-use of semantc descriptions is supported.

An explosion of ‘methodologies’ and modelling languages. Each time a methodology
engineer binds a semantc definition to a different syntax a new methodology is

created.
There is no support for process.
There 1s no consideration of cognitive support (auto correction, feedback etc).

Support for project (a type of graph) is an afterthought added to address lack of

support of all aspects of a methodology.

Syntax definition is a function of the semantic description because of the assumed

one-to-one mapping between syntax and semantic elements.

The syntactic representation is totally integrated with the semantic representation. A
change in the semantics implies a change in the graphical representation and vice

versa. The cohesiveness of syntax and semantic descriptions is therefore reduced.

Symbols are of a fixed size and only defined in terms of primitive shapes. There are

no facilities to describe symbols and connections that change size.
Diagrams are only views of Graphs.

MetaEdit and MetaEdit+ only support ‘pen and paper’ notations. The syntax

description is very simple and does not support facilities such as logical distortion.
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234 Alfabet

Alfabet 1s a commercial modifiable CASE environment (Figure 1-3 - Classification
hierarchy of CASE tool categories) produced by mip GmbH & Co. Its primary focus is
‘business modelling” and ‘data modelling’, although it does provide extensions for the

support of UML (mip GmbH, 1998a-d).

“Alfabet is a database-supported meta-modelling system with a powerful
graphical user interface that can describe any kind of information model and
analyse it with various methods. Alfabet offers two different user levels: The
Developer level to develop models in a meta-modelling environment, and

the User level to put these models into action.”

From the ALFABET user manual (mip GmbH, 1998¢)

2.3.4.1  Underbing meta-model
The documentation for Alfabet does not make a specific reference to an underlying meta-
model. The meta-model is implicitly related to the class-based database management

system used by Alfabet.

“Alfabet works on a dass-based technology. This is an object-orientated
approach suitable for modelling that has been developed by mip. This
technology allows users to describe the deep structure of a model that is built
from objects and their relatonships (the meta-model), instead of filling

predefined meta-models with data.”
From the Alfabet user manual (mip GmbH, 1998¢)
The implicit Alfabet meta-model provides the following abstractions:

»  Class. The Alfabet technology overview (mip GmbH, 1998b) equates class to abstract

data-type. Classes contain properties and may be built into inheritance hierarchies.

o Scalar type. Examples include string and integer.
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o Multiple type. According to the Alfabet technology overview (mip GmbH, 1998b) a
multple type is a list of classes. The instances of all of the classes are property values

of the multiple type.
»  Container. Containers are defined for all scalar and abstract types (classes).
»  Event. Init, Put, Get and Clear events can be defined for properties.

2.3.4.2  Representation of syntax

Alfabet provides the following graphical primitives:
»  Nodeitem. Node items consist of various simple geomewic shapes.
«  Useritem. A user item is any combination of Node items.

«  Generator item. These are predefined notation templates for common business

applications (such as Gantt charts).
«  Specal item. These include lines, polygons and textboxes.
+  Link item. Items that are used to connect generator and node items.

Graphical items may be associated with instances in the repository. The Alfabet manual
(mip GmbH, 1998c) states, “in this case the graphical item represents a semantic
instance”. It is not clear how graphical items that are not associated with an instance in
the repository are interpreted. Semantic items are represented by a small set of simple
graphical primitives that may be scaled and combined. Alfabet does appear to provide

notaton frameworks (the generator items) for commonly used data modelling notations.

2.3.4.3  Support for the concept of methodology
Alfabet does not support the concept of methodology at all. The Alfabet Frequenty
Asked Questions states “The philosophy behind Alfabet puts great emphasis on the

integration of important method or notation solutions” (mip GmbH, 1998a).

At best a methodology corresponds to a project in Alfabet. Each project is configured

with a of set diagram types.
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2.3.4.4  Support for re-use
Alfabet does not claim any support for re-use of projects or modelling languages, other

than by accidental re-use.
2.3.4.5 Problems and limitations
o This tool is database driven, not methodology driven.

«  There is no support for methodology or process. Alfabet only supports the denition

of modelling languages and notations.
« Alfabet claims to be object-orientated. This is incorrect, as it is class based.

«  Primary used to support data modelling languages, although support for UML is also

claimed.

«  Implicit meta-model.

« No support for re-use of syntax and semantic definitions.

« Alfabet only supports ‘pen and paper’ notations. The syntax description is very
simple and does not support facilities such as logical distordon.

»  There is no consideration of cognitive support (auto correction, feedback etc).

2.3.5 ToolBuilder

ToolBuilder is a commercial CASE Tool generator (Figure 1-3 - Classification hierarchy

of CASE tool categories) created by Lincoln software (Alderson, 1991; Coxhead and

Fisher e al, 1994a, b; Coxhead e a/, 1994; Lincoln, 1994,1998).

ToolBuilder consists of:

+ A method specification capture component called METHS.

+ A run-ttme methods component called DEASEL.

DEASEL is a generic CASE tool offering fully integrated graphical and textual editing of

data stored in the ‘Lincoln repository’.

23.5.1  Underbing meta-model
Toolbuilder uses an extended entity reladonship (EER) model as its meta-model. Entity

types are built into specialisation hierarchies where subtypes inherit the relationships and
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attributes of their super-types. This data model supports derived relatonships and

derived attributes. Triggers can be associated with attributes and relationships.

2.3.5.2  Representation of syntax
Toolbuilder supports two-dimensional, non-animated diagramming techniques. It

considers each diagram consists of nodes (symbols) and links (connections).
The support for syntax has two components:

« The frame model. This corresponds to the visual presentation of the underlying data

model and consists of a collection of diagrams.
« The notation for each diagram frame.

A set of basic shapes is provided from which more complex shapes may be defined.
These shapes may be combined with other basic shapes, to create symbols and
connections. Symbols and connections may have text fields associated with them.

Toolbuilder supports the definition of the formatting (e.g. alignment) of text fields.

2353  Support for the concept of methodology
Toolbuilder generates standalone CASE tools. Each CASE tool supports a single

methodology. There is no support for software process or method.

2354  Support for re-use
Toolbuilder only supports the generation of bespoke CASE tools, which all have separate
repositories. There is no support for re-use of modelling results or of semantic

descriptions.

2.3.5.5  Problems and limitations

o There is no support for process
«  There is no support for re-use of modelling results.
«  Only accidental re-use of semantic descriptions is supported.

»  Toolbuilder only supports ‘pen and paper’ notations. The syntax description is very

simple and does not support facilies such as logical distortion.
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« A fixed mapping between syntax and semantics is implied.

« The semantic and syntax descriptions are tightly coupled. For example an entity’s
attributes may have an associated show trigger, which defines how the attributes are

to be presented.

«  Symbols are of a fixed size and only defined in terms of primitive shapes. There are

no facilities to describe symbols and connections that change size.

« A total of five languages are used to define a CASE tool (L.L, DDL, GDL, FDL and
EASEL) (Alderson, 1991).

«  There is no consideration of cognitive support (auto correction, feedback etc).

2.3.6 Graphical Designer Pro

Graphical Designer is a modifiable CASE environment (Figure 1-3 - Classification
hierarchy of CASE tool categories) (ASD, 1995a, b, 1998).

Graphical Designer provides a single, function/procedure based, scripting language that
is used to define the syntax and semantics of a methodology. The Graphical Designer
language is used to define all aspects of a CASE tool, including report and code

generation.

2.3.6.1  Underbing meta-model

A CASE tool is described in Graphical Designer as a set of functions that operate on
symbols, attributes, roles and relationships. The meta-model used is the Object Property
Role Relationship (OPRR) model, where Graphical Designer uses the terms Symbol,

Attribute, Role and Relationship respectively.

2.3.6.2 Representation of syntax
Graphical Designer has a single description language that is used to describe the syntax
and semantics of methodologies as well as the behaviour of Graphical Designer itself.

There is a one to one mapping between syntax and semantic concepts.

2.3.6.3  Support for the concept of methodology
Graphical Designer is parameterised by a set of files per methodology. These files define
the set of modelling languages available. Graphical Designer does not consider process

or method at all.
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2.3.6.4  Support for re-use
The only form of re-use supported by Graphical Designer is accidental re-use. There is
no relation between the methodology descriptions in Graphical Designer. New

methodologies must be effectively designed from scratch.

2.3.6.5 Problems and limitations

«  Graphical Designer provides a functon based language that has a high learning curve
associated with it. The underlying meta-model is completely obscured because the
scope of the language covers the syntax and semantics of methodologies as well as

the behaviour of the tool itself.

« The semantic and syntax descriptions are totally integrated. A change in the
semantics implies a change in the graphical representation and vice versa. The

cohesiveness of syntax and semantic descriptions is therefore reduced.

+  There is no support for process.
» Thereis no support for re-use of modelling results.
»  @nly accidental re-use of semantic descriptions is supported.

«  There is no consideration of cognitive support (auto correction, feedback etc).

»  Graphical Designer only supports ‘pen and paper’ notatons. The syntax description

1s very simple and does not support facilities such as logical distortion.

2.4 Limitations of Current Meta-CASE Technology

The discussion of meta-CASE tools in section 2.3 has highlighted a range of limitations.

These include:
« Poor support for the concept of methodology

All meta-CASE tools interpret methodology as a collection of modelling languages.

They make no attempt to support the concept of process or method.



Constraints are separate from the structural definition of methodology

concepts

Most meta-CASE tools partition the semantic deftnition of a methodology into two
parts: a) a data model and b) a global set of constraints that are applied to the
elements of the data model. Often this can imply a significant overhead in terms of

applying constraints, as they are evaluated for 4//instances.
Formal approach can be restrictive

The formal approach adopted by meta-CASE tools does not allow a user project to
be in an incomplete/inconsistent state. This is a barrier to a creative, exploratory

approach to development that software engineers naturally apply.
Syntax description is primitive

Virtually all meta-CASE tools derive syntax elements from a pre-defined set of
graphical primitives. Notation elements are built by scaling and combining these
primitive elements. Typically these notation elements do not resize dynamically as
they are used. Most common symbols, with more than one compartment, are

impossible to describe with such a strategy.
Fixed mapping between syntax and semantics

All meta-CASE tools assume that there is a fixed one-to-one mapping between
syntax and semantc elements. It implies that the structure of the syntax elements is
always the same as the structure of semantic elements. Whilst it is reasonable to
expect a high structural homology between syntax and semantic descriptions, it is

unnecessarily restrictive to assume the structure of each description is identical.
Coupling of syntax and semantic descriptions constrains each other

The coupling between the syntax descripion and semantc description in current
meta-CASE tools is high. The high coupling can compromise the cohesiveness of
the semantic and syntax descriptions. Moreover the structure of the syntax and
semantic descriptions can affect each other. High coupling of syntax and semantic

descriptions is also a barrier to their subsequent re-use.
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No support for re-use of methodology description

The majority of meta-CASE tools do not give any consideraton for the re-use of
methodology descriptions. If re-use is supported it is only in the form of accidental
re-use. Even those tools that support a form of specialisaion do not place any

emphasis on re-using methodology descriptions.
No relation between defined methodologies

This is a direct consequence of no support for the re-use of methodology
descriptions and can result in a large collection of unrelated methodologies. These
methodologies may in fact have a lot in common. In some tools this may also mean
that one or more methodologies are in fact semantically the same, but simply have
different syntax. This is a barrier to re-use because the CASE tool environment

becomes a large collection of unrelated software engineering projects.
No support for re-use of software engineering projects

Meta-CASE tools do not consider the re-use of software projects developed with the

methodologies that they support.

For a CASE tool generator this is simply because each tool that is generated is
considered in isoladon. These tools may provide some form of import/export

facilities, which is not sufficient to support anything other than accidental re-use.

Modifiable CASE environments, however, have the potential to promote re-use.
Unfortunately re-use is not even considered. The effective support for re-use, in a
Modisiable CASE environment, is reliant on an explicit relation between the
methodologies supported. This is currendy not supported by Modifiable CASE

environments.
Focus only on completeness and consistency checking

Meta-CASE tools only focus is determining if the rules of the various modelling
languages have been violated. For example they do not consider supporting
assistance during the development process, quality analysis or auto-correction. This is

also related to the poor support of the concept of methodology.
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2.5 Summary

This chapter has examined meta-modelling and meta-CASE technology. The four layer
meta-modelling architecture has been presented and its relation to meta-CASE tools
described. Applications of meta-modelling in software engineering field have been
examined (OMG MOF, UML, COMMA, OML, OOram, CDIF and MDIF). A review of
several representative meta-CASE tools (MetaView, MetaEdit+, Alfabet, Toolbuilder and
Graphical Designer Pro) has been presented and limitations of meta-CASE tools, from a

methodology representation perspective idenufied.

The limitations of CASE and meta-CASE technology are the basis from which the

research presented in the remainder of this thesis has been derived.
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Chapter 3

Meta Object Orientated Tool

In our profession, precision and perfection are not a dispensable luxury, but

a simple necessity.
Niklaus Wirth, 1997
3.1 Introduction

This chapter presents the philosophy and architecture of a new meta-case tool that has
been developed as a result of this research, MOOT (Meta Object Orientated 70ol). The
major goal of the MOOT research project is to build a useable, customisable CASE tool
which provides a framework within which methodologies can be described. The sub-
systems of MOOT that are related to the representation and processing of methodology
descriptions are identified and issues related to the overall design and architecture of the

new meta-CASE tool are discussed.
3.2 Method
The following is a high level description of the steps taken to develop MOOT.

1. Compare, contrast and evaluate existing CASE and meta-CASE tools to identify the
limitations of CASE technology. The current state of CASE technology is outlined in

chapter 1. A detailed comparison of meta-CASE tools 1s presented in chapter 2.

2. Define the rationale and goals of the MOOT project based on the identified

limitations of current CASE technology.

3. Devise a representation strategy for methodology descriptions in MOOT. This

research includes:



wn

10.

11.

12.

«  The development of languages for the description of the syntax and semantics of

software engineering methodologies.

o Devising a technique that supports late binding of syntax and semantc

descriptons.

Analyse the notatons commonly used by software engineering methodologies.

Derive a new language (NDL) for the representation of methodology syntax.

Investigate a meta-systems approach based on an object-orientated meta-model.

Derive a new language (SSL) for the representation of methodology semantics.

Investigate the binding between NDL and SSL. Derive a technique that supports late

binding of NDL and SSL descriptions.

Derive a meta-model of the concept of methodology with the representation strategy
desined in step 3. Implement the meta-model, with the language deined in step 5, as

a library of re-usable semantic description components.

Derive a meta-model of concepts germane to all object-orientated methodologies
with the representation strategy defined in step 3. Implement the meta-model, with
the language defined in step 5, as a library of re-usable semantic description

components.

Devise a means of efficiently processing methodology descriptions (implemented in

the languages from steps 4 and 5).
Design the architecture of the new meta-CASE tool, MOOT.

Realise a prototype of the system proposed in step 10, which is suitable for assessing

the efficacy of the representation scheme for methodology descriptions.

Validate the methodology representation strategy by modelling object-orientated

methodologies and implementing support for design patterns.



3.3 Rationale and Goals of the MOOT Project

The goals of the MOOT project are defined based on the limitations of current CASE

technology as identified in sections 1.6 and 2.4. These goals are:

1. Support more than one methodology
Rationale: Software engineering companies need to utilise a number of different
methodologies to support their work.

2. Flexibility and customisation
Rationale: Software engineering companies often utilise in-house methodologies
and/or their own extensions to commercial methodologies.

3. Support the entire software development life-cycle

Rationale: The activites of a software engineering company encompass the entre
software development life-cycle (SDLC), from requirements gathering through to the
implementation and subsequent evolution of software systems. CASE tools should

support all software development activities.

4. Support re-use of software engineering projects

Rationale: Whilst it is true that object-orientated technology does not guarantee re-
use it 1s accepted that one of the principle objectives of object-orientated technology
is to enable re-use. Supporting re-use should be a key objective of a CASE tool that

supports object-orientated methodologies.

wu

Support re-use of projects defined with different object-orientated

methodologies

Rationale: The representation of potentially re-usable components, by different
methodologies, should not be a barrier to their subsequent re-use. This goal is related
to the support for re-use and the support of more than one methodology. Software
engineering companies use many different methodologies and hence have a
repository of potentally re-usable components, each of which may be represented

differently.



0. Separation of the syntax and semantic descriptions of methodologies

Rationale: The syntax and semantcs of software engineering methodologies have
different requirements in terms of the most appropriate modelling language for their
description. Providing distinct modelling languages ensures that the descriptions of
syntax and semantics are not constrained by each other. The coupling between syntax
and semantc descriptions is minimised whilst their cohesion is maximised. In
addition, supporting late binding of syntax and semantic descriptions increases their
re-usability. The purpose of this approach is to maximise flexibility, adaptability and

reusability.
7. Support for re-use of methodology descriptions

Rationale: The descriptions of software engineering methodologies may have many
components in common. Object-orientated methodologies, for example, have much
in common that could be described by a set of methodology description components.
New methodologies can be described by re-using and extending a set of existing
methodology description components. These components may be sourced from
existing methodology descriptions and from a pre-built library of core methodology
description components. Maximising the re-use of semantic components between

methodology descriptions is tightly coupled with the support for re-use in general.

The means by which the goals of the research project are addressed is summarised in
Figure 3-1. This diagram illustrates how the various goals of the MOOT system have
been addressed by some of the design decisions made regarding features of the MOOT

system.

The left-hand side of Figure 3-1 lists the goals that have been identified. The right-hand
side lists design decisions made regarding features of the MOOT system. The arrows
illustrate the mapping between the goals and the design decisions. An arrow that starts or
terminates on a box indicates that the mapping relates to all of the goals or design

decisions contained within the box.

MOOT is a Modifiable CASE environment (see Figure 1-3 - Classificaion hierarchy of
CASE tool categories). MOOT supports software engineers who apply a software
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engineering methodology to describe a software artefact and also supports methodology
engineers who create and modify definitons of software engineering methodologies. The
overall aim of a system of this type is to support arbitrary methodologies. This addresses

goals 1, 2and 3.

| Goal ' 'Add.‘resseg by |

Figure 3-1 - Mapping between goals and design decisions made
regarding MOOT

The underlying meta-model of MOOT is an object-orientated language®. The choice of

an object-orientated language as the meta-model of MOOT supports the natural, efficient

20 The MOOT meta-modcl 1s desceribed in full in section 5.5.2 - MOOT Mcta-Modcl.
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and expressive realisaton of object-orientated methodologies. The adoption of a

representation strategy that directly enables re-use addresses goals 3, 4 and 7.

Re-use is further supported in MOOT with the development of two libraries of reusable
methodology description components. The first has been named the Core Knowledge
Base® (CKB). It implements a meta-model of the concept of ‘Methodology’. The second
has been named the Generic Object Orientated Knowledge Base (GOOKB). The
GOOKB implements a meta-model of concepts that are germane to object-orientated
methodologies and is a derivatdon of the CKB. The development of these two libraries of

re-usable methodology descripdon components addresses goals 4 and 7.

Methodologies are defined in MOOT as derivations of the CKB, the GOOKB and from
other methodology definidons. The MOOT approach is to view the entire collection of
methodology descriptons as a set of potentally re-usable methodology components.

This approach further addresses goals 4 and 7.

All object-orientated methodologies support concepts such as class, object, message
polymorphism and inheritance. Moreover these concepts are supported throughout the
entre software development life-cycle (albeit with different levels of expressiveness).
Concepts that are germane to all object-orientated methodologies are defined with the

GOOKRB. This specifically addresses goal 3.

MOOT utilises two separate modelling languages for the description of a methodology’s
syntax and semantics. The semantc representation strategy is an expression of the
underlying MOOT meta-model. The syntax representation strategy is derived from an
analysis of notations used by software engineering methodologies and the consideration
of Human-Computer Interacdon (HCI) principles. The binding of syntax and semantic
descriptions, to compose a complete methodology descripton, is performed as late as
possible. Utlising separate modelling languages and late binding of syntax and semantic
descripdons addresses goal 5. This approach also means that common syntax and,

semantc descriptions need only be defined once, which addresses goal 7.

ST he v of the reem knewledue base 15 imtenonad Tomandy the MOOT svstem will exhibit more nzefligenee and

makc uscof Fxpert Svarent icchmigues, Seetion 94 - Future Work covers aspects of this work.
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The focus of the thesis is on the representaton and execution of methodology
descriptions by MOOT. This includes the representation of methodologies and software
engineering projects, and the design of the CKB and GOOKB. A prototype of the
MOOT system has been implemented in order to facilitate the investigation and

validation of the approach taken to defining software development methodologies.
3.4 MOOT Methodology Descriptions

A methodology description in MOOT is composed of three parts: a description of the
syntax, a description of the semantics and a description of the mapping between the

syntax and semantcs.

Two new methodology specification languages, NDL (Notation Definition Language)
and, SSL (Smantic Specification Language) have been developed during this research.
NDL and SSL allow the definition of the syntax and semantics of a methodology,
respectively, in the MOOT system. Late binding of syntax and semantics descriptions is

captured with a Notaton-Semantic Mapping (NSM) table.

Figure 3-2 shows the relation between syntax and semantic descriptions, the description

of a particular methodology and a corresponding software project in the MOOT system.

-: Description i Methodology . Saftware

Languages :  Description Project
Sem ntics SSL | SSLClasses . SSL Objects
Ay
: .9%;/»4!6{?%2;@.&
Gt NSM Table
. %‘j ‘gv : 1 . .
Syntax . NDL ' NDLScripts . NDL Views

Figare 3-2 - The relation berween software projects, methodology
descrptions and the description kinguages in MOOT

NDL is a scripting language used to define the notation of methodology’s modelling
languages (Figure 3-2). NDL scripts describe how symbols and connections that appear
in diagrams are rendered onto a computer display. An NDL description of a notation also

provides facilities for binding actions to symbols and connections as well as logical
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distortion (Adams, 1998; Clark, 1994; Ham, 1994; Mehandjiska, 1995b; Page e a/, 1994).
A rendered image generated from an NDL script is called an NDL View (Figure 3-2). A

detailed discussion of NDL is given in chapter 4.

SSL is an object-orientated language used to define the semantics of a methodology. This
includes the modelling languages and methods supported, the process and the various
documents that are produced by application of the methodology. A semantic description
of a methodology consists of a collection of SSL classes (Figure 3-2). A software
engineering project (developed with a particular methodology) consists of a collection of

SSL objects (Figure 3-2). A detailed discussion of SSL and its design is given in chapter 5.

A Notaton Semantic Mapping table defines the mapping between notation elements and
semantic concepts (Figure 3-2) and is used to implement late binding of syntax and
semantic descriptions. One role of the table is to translate ‘logical actions’ at the user
interface, to the corresponding equivalent semantic actions and also to transform
semantic actions back into the equivalent logical actions. Notation-semantic mapping is

described in detail in chapter 7.

A methodology in MOOT is defined by a collecion of NDL scripts and SSL classes. A
software project in MOOT consists of a collecion of NDL views and SSL objects
(Figure 3-2). These views and objects are instances of the NDL scripts and SSL classes in
the definition of the methodology used for the project. There is a one-to-many relation
between each NDL script and NDL View and a one-to-many relation between each SSL

class and SSL object.

The example in Figure 3-3 illustrates how a class diagram, which defines some of the
classes for an abstract syntax tree, might be represented, using the MOOT approach. The
modelling language used to generate the class diagram in Figure 3-3 consists of a notation
and a semantc definidon. The class diagram syntax (the notation) in Figure 3-3 is defined
by NDL scripts. The concepts supported by the modelling language (class, inheritance
relation, class diagram and so on) are defined by SSL classes. The software project

consists of instances of the SSL classes (SSL objects) and NDL scripts (NDL Views).
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Methodology .~ SoftwareProject:

‘Description . _
581 Classes SSL Objects
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o 3
- Statement Node © . Expression Node
A =
Loop Node I Node 77

Figure 3-3 - Methodolopy descriptions and oftware eagineenng
prejects

The example in Figure 3-3 shows SSL obijects representing the classes such as 45T Node
in the Abstract Syntax Tree class diagram. It also shows SSL objects representing the
inheritance relations (e.g. Statement Node is a AST Node), associations (e.g. an association
between Statement Node and Logp Node) and an SSL object that represents the diagram
itself. An NDL script defines each of the different views that may be created (class
symbols, inheritance connections and so on). Each NDL script may have many instances
(for example, each rendered class symbol in the Abstract Syntax Tree diagram in Figure

3-3 is an instance of the ‘class symbol’ NDL script).
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The proposed strategy for methodology descriptions in MOOT supports the goal of de-
coupled syntax and semantics descriptions. Syntax and semantc descriptions are
developed separately and bound together with an NSM table. A semantic description can
be bound to many different syntax descriptions and a syntax description may be bound to
many semantic descriptions. An NSM table defines each particular mapping between a

semantic and syntax description.

There are many advantages of this approach:

«  Semantic descriptions are not constrained by particular notatons. No fixed mapping
between elements in the semantic and syntax description is therefore necessary.
Elements of a notaton may correspond to one or more semantic elements and vice-

versa.

«  Methodology engineers can develop libraries of notations. In addition the notation

used for a particular semantic description can be changed at any time.

«  Methodology engineers can develop libraries of methodology semantic descriptions.
New methodologies can therefore be defined as extensions of those already

supported.

«  Syntax and Semantic descriptions may be developed in isolation.

3.5 The CKB and GOOKB

Figure 3-4 shows how the CKB and GOOKRB are related to methodologies in MOOT.

Non OO Methodology C
Knowledge Base

00 Methodology Common to
A Knowledge Methodotogies
Base AandB

00 Methodology B
‘Knowledge Bage




OO Methodology A and OO Methodolygy B in Figure 3-4 are derived from the GOOKB (and
by implication the CKB). They also have features in common. Non-OO methodologies
only extend the CKB and may have features in common. Object-orientated

methodologies may have common features with non object-orientated methodologies™.

Figure 3-5 illustrates the relation between the CKB, the GOOKB, methodologies and
software projects in MOOT.

Core Generic Object Orientated
Knowledge Knowledge Base

Software Project Built by a Software Engineer

Pigure 3-5 - The relation between the CKB, the GOOKDB,
methodologies and software engincering projeces in MOOT

New methodologies in MOOT are derived from the CKB and the GOOKB using
inheritance and aggregaton. A methodology may also be defined in terms of previously
defined methodologies using inheritance and aggregation. A MOOT methodology
semantic definidon consists of a collecdon of SSL classes derived from the CKB,
GOOKB and potendally from other methodology definidons. A software project is
constructed when a software engineer applies a methodology that has been defined in
MOOT. The software project is an instance of the methodology used by the software
engineer and consists of a collecdon of SSL objects, each of which is an instance of an

SSL class in the methodology definition.

S Ewamples inchude Rumbaoged’s use of Dara Flow Thigramis from Structured Saseems valvsis ond the use o st

transition diazrams 1n various object-ortentated sneiinsdologics.
4 ) ;
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Figure 3-6 illustrates how MOOT relates to other meta-CASE tools in terms of the four
layer meta-modelling architecture defined in Table 2-1 - Four layer meta-modelling

architecture.
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Figure 3-6 - Meta-modelling architecture

Fixisting meta-CASE tools define methodologies sol/y in terms of their meta-model. The
MOOT approach, however, is quite different. MOOT introduces two additional layers
between the topmost layers in the four layer meta-modelling architecture. Figure 3-6
shows how the MOOT meta-model is used to define a meta-model of methodology. The

meta-model of methodology is implemented with the Core Knowledge Base (CKB). The
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third layer in Figure 3-6 consists of meta-models that correspond to various approaches
to the engineering of software. In the middle of the third layer is a meta-model of the
object-orientated approach. This meta-model is implemented with the Generic Object
Orientated Knowledge Base (GOOKB). On the left of layer three is a meta-model of

structured development and on the right is 2 meta-model of information engineering”’.

The MOOT meta-model, therefore, is used to define various meta-models, which are in
turn implemented as re-usable SSI. class libraries. Methodologies in MOOT are defined

as extensions of these libraries.
3.6 Addressing the Limitations of Meta-CASE tools

Existing Meta-CASE tools (as discussed in section 24 - Limitations of Current Meta-

CASE Technology) suffer from limitations in the following areas:

L Poor representation of the concept of ‘methodology’ and ‘software process’

IL No relation between defined methodologies

I11. No support for re-use of methodology descriptions

IV. No support for re-use of software engineering projects

V. High coupling of syntax and semantic descriptions. Subsequent lowering of the

cohesion of syntax and semantic descriptions
VI. Syntax description is primitive

VII.  Usability is poor

Figure 3-7 illustrates how the limitatons of existing meta-CASE tools have been
addressed by the MOOT approach. On the left-hand side is the list of limitations that
have been previously identified. The right-hand side lists design decisions made regarding
the features of the MOOT system. The arrows illustrate the mapping between the
limitations and the properties of the MOOT system that address them. An arrow that
starts or terminates on a box indicates that the mapping relates to all of the limitations or

design decisions contained within the box.

=" These two meta-models have not been wnplemienied and are shown o illustrate the overall plilosophy. This is further

discussed i section 9.4 - Future Wk
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Figure 3-7 - Addressing the limitations of meta-CASE tools

The MOOT system addresses limitation I by explicitly supporting the concepts of

methodology and software process within the derived Core Knowledge Base (CKB). The

69



CKB implements a meta-model of ‘Methodology’ and explicitly defines ‘Methodology’,
‘Modelling Language’ and ‘Process’.

All methodologies in MOOT are derived from the CKB. MOOT also provides explicit
support for object-orientated methodologies with the development of the Generic Object
Orientated Knowledge Base (GOOKB). The GOOKB is derived from the CKB and
implements a meta-model of concepts germane to all object-orientated methodologies.
All object-orientated methodologies have the GOOKB in common. This addresses

limitation II.

Methodology semantic descriptions (including the CKB and GOOKB) are defined in
terms of the MOOT meta-model and implemented in SSL. The MOOT meta-model is
an object-orientated modelling language and thus provides facilites such as classes,
inheritance, message passing and polymorphism. SSL is an object-orientated language

that implements all the facilides of the MOOT meta-model. This addresses limitaton III.

The GOOKB and the CKB constitute a set of re-usable SSL classes from which all
methodologies in MOOT are derived. Moreover the MOOT approach is to consider that
all methodology descriptions consist of potentially re-usable components. This addresses

limitation III.

The strategy for supporting re-usable methodology components means that there are
relations between the different methodologies in MOOT. Object-orientated
methodologies in partcular always have the components in the GOOKB in common.
Software projects can be re-used because they always share a common definition. This

addresses limitation I'V.

Limitation V has been addressed by the development of separate syntax and semantic
representation schemes for methodologies (NDL — syntax and SSL — semantics). The
association of syntax and semantic descriptions is achieved with the development of
NSM tables. Reducing the coupling between syntax and semantic descriptions addresses
limitations III. The separation of syntax and semantic descriptions in MOOT also means
that the independent re-use of syntax descriptions is possible, which further addresses

limitation III.
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Limitation VI is addressed in two ways. Firstly, NDL is designed to support the
description of interacsive diagrams and provides facilities for the use of colour, logical
distortion, hotspots and so on. NDL thus supports ‘screen’ notations rather than ‘pencil
and paper’ notations. Secondly, the faciliies NDL provides is based on the analysis and

modelling of notations used in software engineering.

In brief”, limitatdon VII is addressed by a detailed examination of the usability of meta-
CASE tools, which has been conducted in association with other researchers. A CASE
tool evaluation framework® has been developed, applied and documented in (Choi, 1996;
Phillips e a/, 1998a). The design of the MOOT software engineer’s user interface, based
on this evaluation and on subsequent task analysis, is presented in (Adams, 1998; Philips

et al., 1998b, c).
3.7 Architecture of MOOT

MOOT has two distinct types of user. Software engineers utilise MOOT to build
descriptions of software artefacts. Methodology engineers utilise MOOT to build
descriptions of software engineering methodologies. MOOT supports each type of user
by performing two distinct roles (MOOT as a CASE tool and MOOT as a methodology

development tool). The two roles of the MOOT system are illustrated in Figure 3-8.

MOOT as a MOOT Meta-model
Methodology

Development

Tool Methodology Engineer

Defines

 Software 'Develo'bm'e'nt
Methodologies

Software Engineer

Creates
Software Development MOOT as a
Project CASE Tool

Figure 3-8 - The two roles of the MOOT system

+\ detailed discussion ot usalnlity 1s outside the scope of the thesis. The reader s directed to (Adams, 1998 Chot,
1996: Clrar 1993 Phillip= ez e/, 1998, b. ¢ for more tormation.

2 A high level overview of the evaluation framework s prosented o agspemdin |,
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The MOOT system is divided into two logical sub-systems (Figure 3-9) that correspond
to the two roles of MOOT. These are the methodology development sub-system and the

CASE tool sub-system.

The methodology development sub-system is an integrated tool-set allowing a
methodology engineer to specify, modify and test methodology descriptions.
Descriptions created using the methodology development sub-system are represented
using SSL classes (for the semantic description) and NDL scripts (for the syntax

description).

The CASE tool sub-system is the methodology CASI. component of the MOOT
environment. It is an integrated tool-set that allows a software engineer to develop
software by applying methodologies described using the methodology development sub-

system.

CASE Tool Sub-System

MOOT Core
Software ? Methodology
Engineering Persistert Engineering
Tools Store Tools

Methodology Development Sub-System
Figure 3-9 - Mootsystem
Both the CASE tool subsystem and the methodology development subsystem make use
of the MOOT Core, which insulates the underlying, shared, repository (Persistent Store).

Software engineering projects and software development methodologies are both stored

in the Persistent Store.

The high-level system overview given in Figure 3-9 is further decomposed in Figure 3-10,
which shows the derived architecture of the MOOT system. The Arrows in Figure 3-10

indicate that a communication pathway exists between two components.
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: Methodology Development Sub-System I-

Figure 3-10 - Proposed, top level, system architecture
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MOOT has a three-tier architecture where presentation, application logic and data are
distributed across three levels, interconnected over a network (I-Kinetics, 1998). The
presentaton level corresponds to the CASE tool client and the methodology
development tool. The application logic level corresponds to the MOOT core, which is

responsible for isolating the persistent store (the data level).

Each of the components in Figure 3-10 is briefly discussed in the following sections.
3.7.1 CASE Tool Client

The CASE tool client provides the user interface of the CASE tool sub-system. It is a
‘light weight’” or thin client and is oz/y responsible for the presentation of a software
engineering project. It is essentally a user interface shell that is parameterised by NDL
descriptions of modelling language notatdons. The CASE tool client provides a set of
drawing tools that allow a software engineer to construct diagrams. The set of drawing
tools available is based on a set of generic tools appropriate for the construction of
arbitrary diagrams, and the notation elements that are deftned in NDL specifications. A
software engineer creates diagrams by selecting drawing tools that represent notation
elements and placing instances of these onto a drawing canvas. The corresponding
methodology semantic descriptions are managed by a corresponding instance of a
methodology interpreter in the MOOT core. The CASE tool client is responsible for
mapping physical user input to ‘logical actions’. Actions that affect the meaning of the
model being built (e.g. creating a connection) are propagated to the server. The client
handles actions that do not affect the meaning of the model being built (such as resizing a

symbol).

Multple clients may interact with the CASE Tool server via the Tool Manager of the
MOOT Core. The Tool Manager functons as a server, processing one thread of control
for each CASE Tool client. The Tool Manager maintains an instance of the Methodology
Interpreter for each software engineering project that is open in each client. The Tool

Manager and the Methodology Interpreters are, in turn, clients of the Persistent Store.

The client is implemented in Java so MOOT may be used from any computer on a
network that has a Java interpreter (SUN, 1998). The design and implementation of the

CASE tool client has been completed in association with another researcher and is
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outside the scope of this thesis. A detailed discussion of the CASE tool client, its design
and implementason, HCI issues etc, is presented in (Adams, 1998; Phillips ez a/, 1998b,
c). Aspects of this work, relating to NDL and the execution of NDL scripts, is covered in

detail in chapter 4.
3.7.2 Methodology Development Tool

The methodology development tool is used to maintain the collection of methodology
descriptions. It provides a notation editor that is used to define notations and a semantcs
editor that is used to define the semantics of methodologies. The methodology editor is
used to associate notation descriptions to semantic descriptions in order to provide

complete methodology definitions.

The notation editor uses a visual programming approach where the user draws example
‘pictures’ of the notation”’. The notation editor then generates an NDL description of the
symbols and connections that comprise the notation, based on the examples drawn by
the user. The notation editor itself is not in the scope of the thesis. Initial work on the

notation editor tool is documented in (Ham, 1994; Mehandjiska ez a/, 1995b).

The semantics editor is used to define the semantic specification of a methodology. This
includes the various modelling languages, documents and the process supported by the
methodology. The semantics editor generates SSL descriptions. The semantics editor

itself is also outside the scope of the thesis.

SSL is compiled to a platform independent binary representation for reasons of
efficiency. The SSL compiler translates SSL into SSL-BC (the platform independent

binary representation) and is discussed in chapter 5.

The methodology editor is used to associate particular notations (defined in NDL) and
methodology semantic definitions (defined in SSL) via NSM tables. The development of

the methodology editor is also outside the scope of the thesis.

= The Notation Editor s sinular to the more recent Buildi$e3Wise svstem duescerbsed T Mugrndpe o2 o/, 1998 Waraack of
<. 1990 . BukiBviiee generates a collection of favaliean components that vorregpuad o notatene, w wedl as an
viliror Javalsean. The notation cditor, - contrast. generates an NDL descrprion of the nontam onlv, which s

sulbisg ey mmrerpreted by the CASE tool chient.
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373 MOQOT Core

Tool Manager

The tool manager facilitates communication between the MOOT Core and the CASE
tool clients. The tool manager is responsible for co-ordinating access to shared resources,
and for monitoring the system’s operation. There is a single instance of the tool manager
operating, for a particular instance of the MOOT system. The tool manager is responsible
for maintaining details specific to each client (such as the software engineering project
that is open, the methodology in use and so on) and the corresponding methodology
interpreter. Messages from the clients (such as: delete a class, add an operation or create a
new state) are accepted by the tool manager and bound to a message to an SSL object

and executed with a particular methodology interpreter.

Methodology Interpreter

Each CASE tool client is supported by an instance of the methodology interpreter. It is
responsible for processing methodology semantic descriptions written in SSL. It applies
the description of the active methodology, defined in SSL, to the user’s project in

response to logical actions at the user interface.

SSL is compiled to a platform independent binary representation (SSL-BC) for reasons of
efficiency. The methodology interpreter executes the intermediate representation on a
purpose built virtual machine (SSL-VM). SSL-BC, the SSL-VM and the SSL compiler are

discussed in chapter 5.

Notation, SSL Class and SSL Object Servers

There is only one instance of each server executing at any time. Each server is responsible
for isolating the persistent store from the rest of the system and for maintaining a cache.
They all must ensure mutually exclusive access when appropriate. For example, the SSL
Object server must ensure that an SSL object cannot be updated by more than one client

at the same time.

Persistent Store
The persistent store is the repository for the MOOT system, both at the methodology
description level, and at the user-project level. Methodologies are stored in two different

partitions in the persistent store. Methodologies that have been developed and tested are
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stored in the Methodologies-In-Use section. Methodologies-In-Use have been completely
defined and tested, and are ready to be used to create user projects. These methodologies
can not be modified, as this would affect the projects that use them. The Methodologies-

In-Use section is read-only.

The Methodologies-Under-Development section contains methodologies that are in the
process of being specified, tested and refined. It is not possible to use these
methodologies to develop projects until they are deployed and become part of the

Methodologies-In-Use section.

Software engineering projects are stored in two partitions in the persistent store. Software
engineering projects (and portions of software engineering projects) that have been
completed can be placed in the “re-use pool”. These components are available to all
other software engineering projects in the MOOT system to be re-used. The re-use pool
is read only as re-usable components can only be extended, not modified. The User
Projects area contains all software engineering projects that are in the process of being

developed.

A Company may wish to distribute software projects, or parts of them, to clients without
disclosure of their methodology. Methodology descriptions exported with a project are

stored in the separate In-Transit area, and are not viewable on the target system.
38 The MOOT Prototype

The focus of the thesis is on the representation and execution of methodology

descriptions by MOOT. Work has been carried out in the following areas:

» Development of the syntactic representation of software development methodologies
which is addressed by the development of a new language, NDL. NDL and a

prototype NDL interpreter are described in chapter 4.

+ Derivation of the semantic representation of software development methodologies
which is addressed with the development of the MOOT meta-model and a new

language, SSL. The MOOT meta-model and SSL are described in chapter 5.
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« Design and implementation of the methodology interpreter, which includes the
development of the intermediate binary representation of SSL (SSL-BC), the design
of a new virtual machine that SSI-BC executes on (the SSL-VM) and a compiler that
translates SSL to SSL-BC. The development of SSL-BC, the SSL-VM and the SSL

compiler are discussed in chapter 5.

e Design and implementation of two libraries of re-usable methodology semantic
components, the Core knowledge Base and the Generic Object Orientated

Knowledge BASE. The development of these libraries is described in chapter 6.

« Development of a technique that supports late binding of syntax and semantic

descriptions (NSM tables). The function of NSM tables is discussed in chapter 7.

The support for re-use of software development methodologies and software engineering

projects is discussed throughout chapters 4, 5, 6 and 7.

A prototype of MOOT has been implemented in order to facilitate the investigation of
the approach to defining software development methodologies. The architecture of the
MOQOT prototype is shown in Figure 3-11. All further discussion of MOOT in the thesis

is in relation to this prototype.

The current implementation of the MOOT core is a single server. All of the components
of the MOOT core execute in a single process, rather than being distributed over a
network. The Server accepts connections from multple clients. The SSL compiler
currently accesses the persistent store directly. The persistent store is implemented as a

collection of files.

The components of the MOOT core and the SSL compiler are discussed in chapters 4, 5,
6 and 7. The Java CASE tool client is based on the NDL interpreter discussed in chapter

4 and is implemented in association with another researcher (Adams, 1998; Phillips ez a/,

1998b-c).
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CASE Tool Client

Figure 3-11 - Architecture of the NIOOT prototype

3.9 Summary

This chapter has presented the approach taken in the research to address the limitations

of methodology CASE tools and meta-CASE tools. This included:

« A proposed architecture of MOOT system. This architecture describes a distributed,
three layer, database centric system. The architecture has been designed to effectively
support the two categories of user for the MOOT system — software engineers and
methodology engineers. The persistent store at the lowest layer stores methodologies

and software engineering projects. The second layer consists of a collection of

79



distributed components that isolate the persistent store. The top layer consists of thin

CASE tools clients and methodology specification tools.

An outline of MOOT methodology descriptions. The syntax and semantics of
methodologies are described completely separately in the MOOT system. Two new
languages have been developed during this research for this purpose. The Notation
Definiton Language (NDL) is used to define syntax and the Semantc Specification
Language (SSL) is used to define semantics. A complete methodology description, in
the MOOT system, is made by associating an NDL and SSL. description with a
Notaton Semantic Mapping (NSM) table.

An outline of the Core Knowledge Base and the Generic Object Orientated
Knowledge Base. These are two libraries of re-usable methodology semantic
components that are implemented in SSL. All methodologies have the CKB in

common. Object-orientated methodologies also have the GOOKB in common.

The description of the architecture of a prototype of MOOT that has been built

during the research detailed in this thesis.
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Chapter 4

Notation Definition Language

By relieving the brain of all unnecessary work, a good notation sets it free to

concentrate on more advanced problems
Booch 1991
4.1 Introduction

This chapter investigates the framework within which the syntax of a methodology is
defined in the MOOT system. A new language has been developed to support the
description of the visual syntax of the modelling languages supported by a methodology.
The derived language (Notation Definidon Language - NDL), is presented along with

the implementation of a prototype system used to assess the language.
4.2 Method
The following is an outline of the steps followed during the development of NDL.

1. The graphical notations of software engineering methodologies are explored and their
components identified. The modelling languages considered in the analysis are from
the software engineering literature. Some of the modelling languages considered
include:

« UML class diagrams (Booch and Rumbaugh, 1995; Jacobson ez 4/, 1996; OMG,
1997g; Ratdonal, 1997b)

+ Coad and Yourdon class diagrams (Coad and Yourdon, 1990, 1991a, b; Coad and
Nicola, 1993)

o Data flow diagrams (Rumbaugh e a/, 1991; Whitten 7 al, 1994)
«  State transition diagrams (Feylock, 1977; Booch, 1991, 1994)

2. The requirements for a language that allows the description of arbitrary notations are

derived based on the analysis of notations in step 1. The language must support all
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the components of visual notations of the various modelling languages used in

software engineering.

3. A new language is derived which satisfies these requirements. This new language is
called NDL (Notation Definition Zanguage). NDL is required to support more than
the static reproduction of a notation on a computer display. It must also support
many facilites often not considered by methodology developers such as logical

distortion and the use of coloutr.

4. A means of efficiently processing NDI. descriptions is developed and implemented.
4.3 Models and Notations

A notation is the visual syntax used to document a model. A particular modelling
language may be used for many different purposes. It is therefore possible for the same
modelling language to have more than one notation. It is also possible for a single
notation to be used for many different modelling languages. Hence a many-to-many

relation exists between the concepts modelling language and notation.

The majority of notations supported by the modelling languages common in software
engineering methodologies are graphs containing nodes (symbols) connected by paths

(connections).

A notation consists of:

« Symbols that represent semantic concepts

+ Connections that represent semantic relations between concepts
» Text associated with the symbols and connections

+ Constraints that specify the way symbols and connections are created and

manipulated

Examples of symbols include Coad and Yourdon’s Class&Object, Booch’s Bubble and
Rumbaugh’s Process Bubbles. Examples of connections include Gen-Spec relations in

Coad and Yourdon, Using relations in Booch and Associations in Rumbaugh. Some
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symbols are compositions of other symbols; examples are subject areas (Coad and

Yourdon), class categories (Booch) and packages (UML).
An Example: The State Transition Diagram

State transition diagrams are utilised in diverse areas of computer science. Feylock (1977)
uses state transition diagrams as a representational basis for Computer Assisted
Instruction systems. Booch (1991, 1994) utlises state transition diagrams to model the
dynamic behaviour of objects. The state transiion diagram used by Feylock and Booch

both have the following properties:
« A single start state
« Multple end states

« Transitions between states. A transition is labelled with an event that causes it to
occur. A transition may be optionally labelled with an action that is carried out when

the transitton occurs

The semantics of the state transition diagram used by Feylock and Booch is the same, as
they both use the Mealy model (Booch, 1991) where actions are bound to the events of

the transitions. Two kev differences exist in the utilisation of state transition diagrams by

Booch and Feylock:

1. State transition diagrams are used for verv different purposes. Feylock uses state
transition diagrams as a representational basis for Computer Assisted Instruction
systems. Booch utilises state transition diagrams to model the dynamic behaviour of

objects.
2. The notation of the state transition diagrams is different.

Figure 4-1 is an example of two state transition diagrams, which represent the operation
of drawing a rubber-band line”". The topmost diagram uses Booch’s notation and the
bottom uses Feylock’s notation. The underlying meaning of the two diagrams is identical

although the notation used in each is different.

2 T'o draw a rubber band line the user tirst selects the start pome on the drawing surtace s depressmg a button on the
mouse. 4 rubber band hine 1s drawn from the start pesinn 16 the current position when the mouse 18 moved. "The

actual linc 15 drawn when the mouse button s released.
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Booch’s
Notation
Move

Bution Down update line to current point
record point A

3
Move Button Up
draw line to current point record point B,
draw the line

Feylock’s

Notation Move

Button Down update line to current point
record point A

z : Q
Move Button Up

draw line to current point record point B,
draw the line

Figure 4-1 - A snure rransinon diagrwm drawn in the notaton of
Besoch and Fevlock

The meaning that is being conveyed in both diagrams of Figure 4-1 1s:

State 1is a start state, state 2 and state 3 are normal states and state 4 is a
stop state

If there is a Button Down event in state 1then

go to state 2and record point A
If there 1s a Move event in state 2then

go to state 3and draw line to current point
If there is a Move event in state 3then

go to state 3 and update line to current point
If there is a Button Up event in state 3 then

go to state 4and record point B, draw the line

The representation of start and stop states is different in both notatdons. Booch uses a
special symbol for both the start and stop states. A start state, in Feylock’s notation, has
an incoming transiton that does not originate from another state. Booch represents a
start state with a double circle. The symbol Feylock uses for a stop state is used for a start

state in Booch. A transition is composed of straight line segments in Feylock’s notation

and curves in Booch’s notation.
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This simple example illustrates the many-to-many relation that exists between the
concepts modelling language and notation. It also serves to demonstrate that a notation
defines the syntax of a partcular representation of a model and is not the same as the

model itself.

It is clear that NDL must allow a notation to be defined in a way such that the notation is
not tightly coupled to the modelling that is represented. For example the mechanism
should allow the notations of Feylock and Booch state transition diagrams to be defined
and associated with a single semantic description of the State Transiion Diagram. In
terms of this research this means that the semantics of state wansition diagrams would be
defined once in SSL (see chapter 5) and NDL would be used to define the notations of
Feylock and Booch.

4.4 Analysis of Notations

The analysis of notations focuses only on the visual syntax, and not on the meaning the
modelling languages are capable of conveying (the semantics). It is important to avoid a
simple static view of notations during the analysis and note that computer presentations
of models need not be reswicted to simple ‘pictures’. They may include, for example,
facilities for logical distorton and animation (Apperley and Chester, 1995; Smith and
Anderson, 1996)*. Only two-dimensional notations are considered in the analysis as
three-dimensional layout and navigation is currently not practical on desktop machines.

This limitation has also been adopted by UML, for the same reason:

“Note that the UML notation is basically 2-dimensional. Some shapes are 2-
dimensional projections of 3-d shapes (such as cubes) but they are still
rendered as icons on a 2-dimensional surface. In the near future 3-
dimensional layout and navigation may be possible on desktop machines but

it is currently not practical.”

From the UML Notation Guide, version 1.0 (Rational, 1997)

>\ detatled consideration of human computer interaction in the context of CASE tools 1s not the focus ot the thesis.
The reader1s directed to “Audwms, 19980 Amuler, 19980 ypperley and Chester, £995: Briwch. 1992; Choi. 1996: Gray,
1995; McWhirter, 1998 AleWhirter and Nutt. 1994: Minas and Vichstacdt, 1995: Mugmidie e a/, 1998 MultiView,
1998: Myers et al, 1997 Phillips ezal, 1998a-c. Purchasie. 1998 Read and Marlin, 1996. 19982 Warwick « o/, 1996, tor
morc information on [CT issues related to CASE and meta-CASE tools,
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The analysis of notations is presented by consideration of: Symbols, Connections,

Docking Areas, Groups, Presentation and Actions. Each is discussed in turn.

4.4.1 Symbols

Figure 4-2 is an example of a class diagram, taken from Gamma ¢ 4/ (1995), related to
the Visitor pattern. The same diagram is drawn with the UML, Coad and Yourdon and

Booch notations.

Booch
Visitor : . ConcreteVisitor8
VisitConcreteElemnentA (ConcreteElementA) . ) VlanoncrmeEler.nenlA (ConcreteEiementA) -
VisitConcreteElementB (ConcreteElementB) g~ . VisitConcreteEiementB (ConcreteElementB)

VisitConcreteEiementC{ConcreteEiementC) . Vig:tGoncretn Diement G Con o eipElements)

Coad and Yourdon

ConcreteVisitorA
VisitConcreteEjiementA (Coﬁcreer!ementA)
VisitConcreteEiement® (ConcreteElementB)

VisitConcreteElementC(ConcreteElementC) ViNTANCreeT e
V. EnCANG atat g

UmL . Corcreeisined | Congratphimitgrid

Wisge om0 El AT El VigCorergeE BmenAiConcrata S-emariA)
. W s torcreleFlarse 11 HIConcralat e H vigzCorcretel. amgntM Concrate E-amam §)
WoetCo Slarmprt AT, WLy Wigiat EipmantCiCor = ementCh WiztCeo it 1ariCiConc et et iememsy
VistDgnoreled. prupe ! 31 g £; ) : o

Vs tooncreleSemarl SiConern e emerts:

Congplevisiors Congrray-s.15H

VesitarcralaSemarlaiGonrreielipment Ay VistOonoreles ememsai Dotrrate Cierme b
VstCanoreieSemr e (Conc et erertlly  VisiConen Mgt A Cor treta Sigaety)
.5 IConoretel vy £ 0 WistConcraleT emeSiCotcreles erani)

Frowre 42 - simple digram drawn with UMIL, Coad and Yourdon
and Booch notations

Symbols are composed of lines and arcs and enclose text tields. Symbols have a well
defined boundary or border that is typically visually represented. The boundaries of all
the symbols in Figure 4-2 are explicitly shown as a series of lines and arcs that encompass
them. In many instances the boundary is coincident with the position to which
connectons may adhere themselves. The example in Figure 4-2 illustrates one exception
to this general rule; inheritance connections penetrate the boundary of the Coad and

Yourdon Class&@bject symbol.

Text fields describe properties of the concept the symbol represents (such as class name
and operations for the classes in Figure 4-2). Typically the height and width of symbols

vary depending on the content of the text fields. Symbols may expand to contain other
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things, such as lists of strings or other symbols. Many symbols are divided into
compartments. A symbol often contains a field that represents a property related to the

identity of the concept depicted. The class name fields in Figure 4-2 are an example of

such a field.

Figure 4-3 shows three different UML class symbols. The overall size of the UML class

symbol (height and width) is related to the size of the text it encloses.

aClass fmaSecondCIass | aClass
anAttribute janAttribute i ‘anAttribute
S — .aSecondAttribute
anOperation() 'anOperation{) | :
! i :anOperation()

‘aSecondOperation( )
|

Figure 4 3 - Three examples of a UML class ssmbaol

The size and position of each subpart of the UML class symbols in Figure 4-3 depends
on the enclosed text, and on other parts of the symbol. For example the overall width of
the symbol is related to the maximum length of the class name, attribute and operation
compartments. The position of the class name text field is always centred in the symbol
and is also related to the widths of the three text fields. The height of the symbol is
related to the sum of the heights of the individual text fields. Figure 4-4 shows a

topographical description of an UML class symbol based on these observations.

(0,0)
2 + height(A) S, 1 g
¥ ¥
F Y
4 + height(A)
+ height(B)
_ 1,
¥
[ A .
F
8 + hieght(A) 0—“'
+ height(B)
+ height(C) J2
. -
X _ "
ey > .
1 2 + max( length(A), length(B), length(C) 1

..... i D
Figure 4-4 - Topographical description of a UMIL class

87



The start and endpoints of the line segments in Figure 4-4 are all functions of the sizes of
text-fields A, B and C (which enclose the class name, the attributes and the operations
respectively). For example the overall height and width of the symbol could be defined by

the following expressions.

SymbolWidth = 2 + max(length(A),length(B),length(C))
SymbolHeight =8 + height(A)+ height(B)+ height(C)

Many symbols have sub-parts in common. In Coad and Yourdon the Class&Object
symbol is the same as the Class symbol with an additional bounding round rectangle (the
first two symbols in Figure 4-5). The Booch Class, Parameterised Class and Instantiated

Class all have the Booch bubble in common (the last three symbols in Figure 4-5).

—
kS
(_
[ .,

Froure 4-5 - Coad and Yourdon and Booch svmbaols showing
common suls prrrs

4.4.2 Connections

Figure 4-6 shows two example connections. The first is a Coad and Yourdon inheritance
connection. This connection has a special symbol (the half circle) and consists of a series
of recta-linear line segments. The second shows a transition connection from a Booch
state transition diagram. It has an arrow-head at one terminus of the connection and it

also has some associated text (the event-action pair for the transition).

Connection Terminators ) .
Connection Terminators

Special Symbol

7N Button Up
— - record point B,
draw the line

Line Segment Property of the Connection

Iygnere 4-6 - Two example connections
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Connections are a visual depiction of a relation between one or more concepts> and are a
composition of three parts: connection terminators, an optional special connection
symbol and a series of interconnecting line segments and arcs. Connections do not exist
in isolaton and must attach to at least one symbol. Text may be associated with a
connection to define concepts such as cardinality or role names. In addition connections
may have other symbols as annotations (for example the triangle in the whole-part and
semi-circle in the inheritance relations in the Coad and Yourdon notation). This
definition of connection does not constrain the manner in which a connection is
constructed or drawn. UML has adopted a more restricted definition of connection than

that described here. The UML notation guide states:

“Paths™ are sequences of line segments whose endpoints are attached.
Conceptually a path is a single topological entity, although its segments may
be manipulated graphically. A segment may not exist apart from its path.
Paths are always attached to graphic symbols at both ends (no dangling
lines). Paths may have ferminators, that is, icons that appear in some sequence

on the end of the path and that qualify the meaning of the path symbol.”
From the UML. Notation Guide, version 1.0 (Ratienal, 1997)

The UML notation guide does not consider that a connection may have one or more
floating endpoints. A start state, in Feylock’s notation for example, has an incoming
transition that does not originate from another state (see the example in Figure 4-1). It is
better to state that a connection must be associated with at least one symbol
Furthermore the phrase ‘Paths are always attached to graphic symbols at both ends’ also
implies connections can only occur between two symbols. Rumbaugh’s ternary relation,

for example, belies this assumption.

Some connections visually appear to be grouped in a diagram. Figure 4-7 shows an

inheritance connection in UML. The single tree-like connection actually represents two

2 A connection mav express a relatton that g coneept has with 1esclf.
¥ Path is the egpvalent UMIL term for connection,
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separate inheritance relations”. The Gen-Spec connection in the Coad and Yourdon

notation is another example of ‘grouping’ connectons.

This diagram contains two conceptually ]
separate inheritance relations
ConcreteVisitorA is a Visitor
ConcreteVisitorB is a Visitor

Figure 4-7 - Inheritance connection 1n UNL

It is clear that the mapping between semantic relations and connections is not necessarily
one-to-one. This example also emphasises that the appearance of a connection is a

presentation issue only. The UML notation guide supports this view:

“In some relationships (such as aggregation and generalisation) several paths
of the same kind may connect to a single symbol. In some circumstances
(described for the particular relationship) the line segments connected to the
symbol can be combined into a single line segment, so that the path from
that symbol branches into several paths in a kind of tree. This is purely a

graphical presentation option; conceptually the individual paths are distinct.”
From the UML Notation Guide, version 1.0 (Rational software, 1997)

In many instances the orientation of a connection is constrained. Some notations support
recta-linear line segments whilst others prefer smooth curves. Consider the UML
sequence diagram in Figure 4-8. Connectons in the UML sequence diagram are
constrained to being horizontal only (except for the special case of a message to self). The

message name and sequence number, as a group, is centred on the connecton.

3 UMLL does allow multiple, separate. inheritance connections as well.
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— - —_—— . ——— e —

aConcreteSubiect aConcreteQbserver - AnotherConcreteObserver |

. 1: SetState —
1 SetStateq _

2: Notify{) .

3: Update{)
4: GetState()
5:Update)
e ———— .__>.
6: GetState()
;<_ e o e e

Figrure -8 An example UML sequence diagram??

The sequence diagram is an interesting example where the coupling between syntax and
semantics is very high, as the relative vertical position of the message invocations has

meaning. This is discussed further in section 9.4.
4.4.3 Docking Areas

Many notations constrain the valid positions a connection may attach (or dock) itself to a
symbol. The inheritance connection in Coad and Yourdon may only attach to the top and
bottom of Class&Object symbols for example. In addition whole-part connections only
attach to the sides of Class&Object symbols. The valid connection point (or docking

area) between a connection and a symbol is therefore also part of the notation.

Connections to the Actor and Use Case symbols in Jacobson’s OOSE methodology
(Jacobson ef al, 1993) adhere to the boundary of the symbol. Figure 4-9 shows a simple
Use-Case diagram with the boundaries of the symbols shown in grey. The Actor is also a

prime example of a symbol whose boundary is not explicitly rendered.

R A T

VAN
SN

Customerg\\_ Returning item

Figure 49 - A Jucobson Use Case diagram?

e Sequeace Digeran s taken from Gamma ‘Gamma ef of | 195
e Use £ lge Diogram s a diagrant fragment taken from  facolson ef al, 1993,
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The UML notation guide states:

“Paths are connected to two-dimensional symbols by terminating the path
on the boundary of the symbol. Dragging or deleting a 2-d symbol affects its

contents and any paths connected to it.”
From the UML. Notation Guide, version 1.0 (Rational, 1997a)

It is clear that UML considers that the docking area coexists with the boundary of a
symbol. Whulst this is typical of graphical notations it is not universal. The boundary of a

symbol and the docking areas do not have to overlap.

Consider the composite pattern (Gamma ez a/, 1995) drawn using the notation of Coad

and Yourdon (Figure 4-10).

1

Docking Areas

|

Pigure 410 Docking areas on Coad and YVourdon Cliss@&Obec

svmbigls

In the Coad and Yourdon notation whole-part connections (and instance connections)
adhere to the outside round rectangle (which represents objects)’’. The inheritance
relation may only adhere to the innermost round rectangle (as inheritance is a relation
among classes). Neither of these connections may adhere to the curved portion of the
Class&Object symbol. Connections are always rectilinear and orthogonal in Coad and

Yourdon.

* It may also adhere to the mner round rectangle, but only foran abstract class.,
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44.4 Groups

Symbols may also appear to be compositons of other symbols. These symbols are
interesting as their shape and size depends on one or more other symbols (each of which
1s dependent on its own properties) as well as properties of their own. The subject area
symbol in Coad and Yourdon is an excellent example. Figure 4-11 shows two possible
states for a Coad and Yourdon subject area, in a diagram that describes the composite

pattern (Gamma ez a/, 1995).

3 AL RO AN Gl A B SE NI AL o Aoy R RO L G DR U 3l R S A rin O

i1 1

Cormponent
Operation()
Add(Component) .
Remove(Component)
GetChitd()
:7 Composite Pattern
Component
Leaf
i ' j : C it
Leaf Composite : ompostte
Operation( ) Operation( )
. Add(Component) _
Remove(Component)
GetChild()

i

o1 ]

o

Fagure 4 11 Coad and Yourdon subject Arcar expanded fletr and
collapzed cright

On the left-hand side of Figure 4-11 is a small class hierarchy surrounded by a grey
border that delineates the subject area. The subject area may be collapsed into the single
symbol shown on the right-hand side in Figure 4-11. The term used here for a notation

element of this type is a composite symbol.

Composite symbols should not be confused with symbols that may be ‘exploded’ into
another canvas or drawing surface. That is an example of a simple symbol that is linked
to separate diagram or model. For example a UMK package may be exploded into a
separate class diagram. A process in a data flow diagram may be exploded into either a
process specification or another data flow diagram. The various states of a composite
symbol, such as the Coad and Yourdon subject area, must all appear on the same drawing

sutface.
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4.4.5 Presentation

One of the common problems associated with any computer representation of complex
data, is the relatively small window through which an information space can be viewed.
CASE tools, which generally provide multiple orthogonal representations of a model
being developed, share this problem. The small window effect gives rise to difficulties in
locating a given item of information (navigation), in interpreting an item once it has been
located, and in relating a given item to others, if that item cannot be seen in its full

context.

A range of distortdon-oriented presentaton techniques have evolved to overcome some
of these difficulties, (Apperley and Chester, 1995, Leung and Apperley, 1993, 1994;
Leung ez a/, 1995; Smith and Anderson, 1996). The common feature of these techniques
is to allow a user to examine a local area in detail (e.g. a number of classes with their
attributes and operations), whilst presenting a global view in order to provide an overall

context and facilitate navigation.

Many CASE tools support distortdon orientated presentation by allowing portions of a
diagram or symbol to be elided (this is an example of logical distortdon). For example

Ratonal Rose allows various compartments of a symbol to be hidden (Figure 4-12).

. . ) iv) Nothing suppressed
i) Attributes and operations

suppressed 5 aClass
e ‘anAttribute ; anotherClass
aSecondAttribute : anotherClass
aThirdAttribute : anotherClass

aClass |

i) Operations suppressed éan Gperafion)

‘anotherOperation()

aClass

anAttribute : anotherClass . ) )
aSecondAttribute : anotherClass | V) Nothing suppressed, operation signatures shown

aThirdAttribute : anotherClass

aClass
iii) Attributes suppressed anAttribute : anotherClass
aSecondAttribute : anotherClass
aClass aThirdAttribute : anotherClass
:rrloot?e:aéloer:(a)tion() anOperation(arg1 : anotherClass, arg2 : aClass) : anotherClass
P anotherOperation()

Figure 4-12 - A UMNL class expressed with varving levels of detail
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Figure 4-12 shows the same UML class symbol in various levels of detail ranging from (i)
attributes and operations being suppressed to (v) all compartments visible, with operation

signatures displayed.

Facilides for logical distordon are not commonly part of the definition of the notatdon of
a methodology. One notable excepton to the rule is UML that includes a descripton of

‘Presentaton options’ in the UML notation guide.

“Presentation options: Describes various options in presenting the model
information, such as the ability to suppress or filter information, alternate
ways of showing things, and suggestions for alternate ways of showing
informaton within a tool Dynamic tools need the freedom to present
information in various ways and we do not want to reswrict this excessively.
In some sense we are defining the ‘paper notation’ that printed documents
show rather than the ‘screen notation’ ... Note that a tool is not supposed to
pick one of the presentation options and implement it; tools should give the
users the option of selecting among various presentaton optons, including

some that are not described in this document.”
From the UML. Notation Guide, version 1.0 (Rational, 1997a)

The explicit consideraton of ‘presentation options’ by UML is a significant development
in the evolution of CASE technology. It signals the recognition by methodologists of the
importance of CASE support for software engineering methodologies, presentation and

human computer interaction issues.
4.4.6 Actions

Actions correspond to the tasks a user performs at the user interface whilst developing a
model. Some actions may affect the semantics of a model (such as deleting and editing)

and some only the syntax (such as formattng, querying and resizing).

Methodologists do not consider the concept of actions. Their primary concern is to
define the static pen-and-paper notation for their methodologies. The ‘screen’ notation,
however, need not be static and can therefore include a description of ‘hotspots’ (or

active areas) on the symbols and connectons. Further it may be possible for a notation to
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include a definition of actions related to these hotspots. Two possibilities are illustrated in
Figure 4-13. In the first example the user has selected the text area, which causes an
update box to appear. In the second example, selection of a hotspot causes the symbol to

modify its appearance to show more information.

~ Stack | lSLackn Stack ¢ ¢ Stack | Items
Push
E Pop
Top
. . Is Empty
(1) (11)

Figure 413 - Two example active areas

The use and visual appearance of hotspots is only limited by the imagination of the
notaton designer. Two primitive actions that must be supported are update actions

(example (i) in Figure 4-13) and transition actions (example (i) in Figure 4-13).
4.5 Notation Definition Language

One of the design philosophies of the MOOT methodology representation strategy is to
separate the description of the syntax and semantics of a methodology as much as
practical. NDL is only used to define the syntax of the modelling languages supported by
a methodology. Similarly SSL is only used to define the semantics of the modelling
languages supported by a methodology. The MOOT approach is to have a single ‘editor’
(the CASE tool client), which is dynamically parameterised by NDL notation descriptions

of the syntax .
4.5.1 Requirements of NDL

NDL must provide the necessary facilities to describe how symbols and connections may
be rendered and manipulated to describe the types of notations discussed thus far. NDL

must support the ‘screen’ notation by supporting:

1. Graphical primitives such as lines, arcs, text, regions, #ill and pattern styles, fonts and

font size, colour. These are the building blocks of symbols and connections

*This can be contrasted to systems such ax DiaGen MAlinas and Viehstaedt, 1995, MutiView Marhin o7 a/. 1993;

Atarling, 1996: MultiView, 1998; Read and Marlin, 1996, 1998, and BuildBvW ire Mugmdpe o o/, 19980 Warwick o o/,

1940 that tocus on gencrating bespoke cdiors B pacticular notation.
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2. Relations between subparts of a notation element. For example the size and position

of a line may depend on the length of one or more text fields

3. Grouping. This allows shapes common to several symbols and/or connections to be

defined once
4. Connection docking areas and annotations
5. Logical distortion
6. Hotspots/Active areas

7. Transition and update actions
4.5.2 Designof NDL

A template strategy has been designed to support the elements of a notation. The NDL
templates are blueprints for creating notation elements. NDL provides template types
that correspond to each type of notation element. For example, symbols are defined with
symbol templates, connections with connection templates and lines with line templates.
Figure 4-14 presents a UML class symbol and illustrates how NDL templates represent

the corresponding notation elements.

Symbol template  ~——mmm oo - .

Line template

Text template

Line template

Text template
Class name P

. Class name An attribute

. An attribute : ¢ A second attribute
A second attribute :

Line template

Line template

aredwar aury

Text template

An operation
A second operation
A tbird operation : ' —— 'Linc template

An operation
A second operation
I' A third operation

. o o .
Feure 4 14 - (1) A svmbeol ‘i exploded Svimbiol i, templates

Figure 4-14 (i) shows the notaton elements that comprise the UML class symbol in

Figure 4-14 (i). Figure 4-14 (iif) shows the one-to-one mapping between templates and

the notation elements that they describe. In additon Figure 4-14 demonstrates that the

composition of templates in a symbol template parallels the composition of notation

elements in a symbol.
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A complete NDL description of a notation consists of a collection of templates to define
the symbols and connections of that notation. The example in Figure 4-15 illustrates how

a symbol template is applied to generate a symbol in an arbitrary notation.

Class
name: Stack
attributes:  Items —| Symbol template
operations: Push
Pop Graphical templates e
Top |||||||| | Stack  ~
isEmpty ooo— | — |~ — Items
Docking area templates Build ‘ Push
e Pop
ooooQ ~Top
Active area templates |sEmpty

oooan

Figure 4-15 - Applying a template

The symbol template in Figure 4-15 describes a class symbol. In this example the symbol
template creates a symbol when it is provided the properties of an instance of a concept
(a class in this example) and a context. The size and position of the lines, text fields,
hotspots and docking areas depend on the properties of the concept. In addition the
generated symbol is also dependent on the context within which it is to be rendered (a
Macintosh, or a system running X-windows for example). In general a template produces

a notation element when provided a concept and a context.

The context in Figure 4-15 is an abstraction of the environment within which symbols
and connections are rendered and acts as an interface between a notation specification
and a drawing surface. It abstracts the dependency between the underlying graphical
system (e.g. the Macintosh toolbox, or X-windows) and the notation specification. One
of the responsibilities of the context, for example, is calculating the size, in picture

elements, of a string of characters.

Fach notation defines a set of identifiers (NDL ID) that correspond to the properties of
concepts that are needed in the notaton. In the example in Figure 4-15 the identifiers are

name, attributes and operations. These identifiers only exist within the context of the
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notation and in no way constrain the way in which these properties are represented in
SSL (Semantc Specification Language). Mapping NDL identifiers to the values of SSL

propertes is a responsibility of the NSM table and is discussed in detail in chapter 6.

The advantage of this design is twofold:

1. The description of notation elements is separated from the properties of the semantic

concepts they represent.

2. The description of notation elements is separated from the environment within

which the symbols and connections are rendered.

Currently a minimal set of graphical primitives (lines, arcs and text boxes) is supported by
NDL. This minimal subset has been chosen, as it is sufficient for constructing notation
elements and determining the efficacy of the proposed approach to defining the syntax of

a methodology.
4.5.3 Describing Symbols in NDL

A UML class symbol will be defined in NDL to assist illustrate how NDL is used to

define symbols in general. See appendix II for a complete definidon of NDL syntax.

Figure 4-16 shows a topographical description of a UML class symbol. The symbol has
three fields (A, B and C) where text may appear. The height and width of these text fields

depend on the text they contain.

Width
>
|1

WYY Yy - :
iU Single line of text
ol =
(T @ »[A]
|2
. Multiple lines of text
£
=
: ¢ >8]
A
Multiple lines of text
&
v

Figure 4-16 - Topographical description of a UNML class svmbol
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Each text box in Figure 4-16 has two propertes, a height and a width. NDL provides two
functions (height and width) that are used to dynamically determine the size of a text field.

The value of H7, H2, H3, H4 and Height can be calculated by using the hezght and width

functions. All NDL expressions are in reverse polish.

Hl1 = + 1 height( A )

H2 = + 1 H1

H3 = + + 1 H2 height( B )
H4 = + 1 H3

Height = + + 1 H4 height( C )

The overall width of the symbol in Figure 4-16 is dependent on the widths of all three
text fields. NDL supports a function, max, which returns the maximum value of its
arguments. The width of the symbol in Figure 4-16 can be calculated in the following

way:

Width = + 2 max( width( A ), width( B ), width( C ) )

The position of the class name text field in Figure 4-16 can be derived from the overall

width of the symbol and the width of the class name field in the following way:

Wl = div - Width width( a ) 2

So far this example has shown that the basic arithmetic operations (add, subtract, multiply
and divide) are all supported by NDL. It has shown that two functions (beight and wzdth)
are used to represent the dynamic properties of text fields. It has also demonstrated that

the max functon is used to capture relaions amongst sub-parts of a symbol.

The UML symbol in Figure 4-16 is comprised of three lines and three text boxes. Two of
the lines separate the various compartments and the third is a poly-line that represents the
boundary of the symbol. NDL supports statements that correspond to each npe of

primitive notation element. These are represented in NDL in the following way:

LINE (0,0) (wWidth,0) (Width,Heignt) (0,Eeignt) (0,0)
LINE (0,H1) (wWidth,H1)

LINE (0O,H3) (Width, H3)

TEXT A (W1,1)

LISTTEXT B (1,H2)
LISTTEXT C (1,H4)
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This example shows the /ine, text and Jisttext statements respectively™. Lines must define at
least two points (the first line in this example defines five). The text statement defines a
text field that may only contain a single line of text. The listtext statement defines a text
field that may contain multiple lines of text. Both the text and listtext statements

introduce an NDL ID for that field that may be used elsewhere to reference that field.

A symbol may also define one or more hotspots or active areas. Figure 4-17 is an
extended topographical description of the UML class symbol of Figure 4-16, with four

actve areas.

g o
0 N I ¥t
po -
Y O——D“ Active Area B |
. :
I
~
I -
y O——»| Active Area C
W 0544 Active Area D |

Froure 4 17 % UML class wi mbol with acnve areas

Two default actions, that may be associated with an active area, are supported by NDL. A
Transition actdon specifies that the symbol should be rendered with another template
(where the symbol shows less information, for example). An Update action specifies that a
change has been reequested of one more text areas. These four areas are defined in NDL
in the following way:
ACTIVE AREA (0,0
ACTIVE AREA (0,1

(0,0)
(0,1)
ACTIVE AREA (0,H2
ACTIVE AREA (0,H4

(Width, 1) TRANSITION TO <Targe:rTemplate>
(Width, H5) UPDATE A
) (Width,H6) UPDATE B
) (Width,H7) UPDATE C

The steps that are carried out in response to an action are the responsibility of the user

interface, not the notation. The notation only defines where actions are generated. Active

*ONDIE dlses sapports arec staremient,
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areas are currently defined as rectangles for the purpose of the initial research. In general

an active area will be defined as a region.

A symbol may also define one or more docking areas. A docking area defines a place on a
symbol that connections may attach themselves to. The UML class symbol of Figure 4-16
and Figure 4-17 may accept connections at any point around its perimeter. A single
docking area is therefore sufficient to define the UML class symbol. A docking area is

defined in NDL in the following way"":

LINE DA (0,0) (Width,0) (Width,Height) (0,Height) (0, 0)

This docking area defines a poly-line that is coincident with the boundary of the UML
class symbol. NDL actually supports three types of docking area. Each wall be discussed

in more detail in section 4.5.5 - Docking Areas.

A complete template that describes a UML class symbol is given in Figure 4-18.

Symbol_Template UML_CLASS_SYMBOL
{

H1 = + 1 height(A)

H2 = + 1 H1

H3 = + + 1 H2 height(B)

H4 = + 1 H3

Height = + + 1 H4 height(C)

wWidth = + 2 max(width(A),width(B),width(C))
® =~ 1 Wl = div - Width width(A) 2

[ »TEXT A (W1,1)
$LISTTEXT B (1,H2)
$LISTTEXT C (1,H4)
% BLINE (0,0) (Width,O0)
(Width, Height) (0, Height) (0,0)
$LINE (0,H1) (Width, H1)
_l $»LINE (0,H3) (Width, H3)
‘-: L pACTIVE AREA (0,0) (Width,1)
TRANSITION TO <TargetTemplate>
® L_»ACTIVE AREA (0,1) (Width,H5)
UPDATE A
—»ACTIVE AREA (0,H2) (Width, H6)
UPDATE B
ACTIVE AREA (0,H4) (Width,H7)
UPDATE C
L s

DOCKING AREA
(0,0) (Width, 0) (width,Height)
(0,Height) (0,0)

}

Figure 4-18 - Template describing a UML class symbol

¥ This docking arca template has been simphitied for the sake of discussion. .\ complete deseripuion of docking arca

templates 11 made in 4.5.5 - Docking \reas.
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A, B and C are NDL IDs that are unique within the context of the notations as is the
name given to the template. The arrows show the mapping between notation elements

and the templates that define them.
4.5.4 Support for Grouping

NDL provides group templates to support the definiton of common sub-components of
symbols and connections. Group templates are used to define icons that may appear on
connectons or as annotatdons on a symbol. Consider the pseudo Coad and Yourdon
notation of Figure 4-19 where there are two versions of the class and Class&Object

symbols.

Class Symbols Class&Object Symbols

aps -

Figure 4-19 - Coad and Yourdon class and Class&Object symbols

The two versions of each symbol show different levels of detail. One only shows the
class name whilst the other shows all three compartments. They grey area at the top of
each symbol is an active area which causes a transition from one form of the symbol to
the other. It would be possible to create this notation in NDL with four completely
separate symbol templates. This would, however exhibit some redundancy in the
descriptions. Figure 4-20 shows the pseudo Coad and Yourdon notadon of Figure 4-19
with the identification of common sub-parts. An NDL definiton of these symbols can be

simply achieved by using NDL group templates.

S SR -
<:> . . Class Symbol

Class&Object
Symbol

Figure -+-20 - Identified common sub-parts in Coad and Yourdon’s
notation
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Group templates are defined in exactly the same way as symbol templates except they

may not define docking areas. Figure 4-21 shows NDL definitions of two group

templates complete with active areas.

Group_Template CLASS_NAME

¢

»TEXT A (1,1)

e ——ACTIVE AREA (0,0) (+ 2 width(a), 1 )
TRANSITION TO ALL_COMPARTMENTS
V¥——3»2C7TIVYE AREA (0,1) (+ 2 width(A), + 1 height(Aa))
UPDATE A

]
Group_Template ALL_COMPARTMENTS
P
H1l = + height(a) 1
H2 = - H1 1
H3 = + + H2 height(B) :
H4 = + H3 1
Height = + + H4 height(C) 1
Width = + max(width(A),width(B),width(C)) 2
Wl = div - Width width(a) 2

TEXT A (Wl,1)
. B LISTTEXT B (1,H2)
-— LISTTEXT C (1,H4)

#LINE (0,H) (Width,H1)
#LINE (0,H3) (Width,H3)

»ACTIVE AREA (0,0) (Width, ]

TRANSITION TO CLASS_NAME
——»ACTIVE AREA (0,l) (Width,H5) UPDATE A
— @ ACTIVE AREA (0,H2) (Width,H6) UPDATE B
——®»ACTIVE AREA (0,H4) (Width,H7) UPDATE C

fure 4210 Giroup remplares

The group templates in Figure 4-21 can be used to create the symbols in Figure 4-19.
Figure 4-22 shows an NDL definition of the Coad and Yourdon class symbol that uses
the group templates in Figure 4-21.

Sympo. _Templase |CLASS

;}—FGROU? grp (C.assName||AllCompartments)
V0.0 T

ALY e SR S R g One —LINE (0,0) (groupwidth(grp),0)
(groupwidth(grp) ,+ groupheight(grp) 1)
(0,+ groupheight(grp) 1) (0,0)

DOCKING AREA (0,0) (groupwidth(grp),0)
(groupwidth(grp) , + groupheight (grp) 1)
(0,+ groupheight(grp) 1) (0,0)

L

Urgure 4-22 - Coad and Yourdon class svmlind
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Symbol templates can additionally contain a group reference statement. Each group
reference statement contains a list of all possible group templates that may constitute its

state. The first group template in the list is the default.

The class symbol template in Figure 4-22 consists of a single group (g7p) and a line for the
border. The first template listed in the group reference statement of Figure 4-22 is the
ClassName group template. This means that a new Coad and Yourdon class symbol would
only show the class name field when it is initially created. If a notation designer wished all
three compartments to be visible by default they would place the .AUCompartments group

template first in the list.
p

The docking area in Figure 4-22 is co-incident with the border as in the previous
examples. Both the border and the docking area are defined using the groupheight and
groupwidth functions. These functions are used to dynamically determine the size of a
group reference. They imply a rectangular boundary around all groups, which may be
unnecessarily restricive. The empirical evidence gained from using NDL has not proven

this to be so.
45.5 Docking Areas

Docking areas represent the positions on a symbol that a connection can attach itself to.
NDL supports three docking areas of different shape. These are point, line and arc

docking areas.

All docking areas allow the following to be constrained:

»  The number of permissible connectons.

»  The types of connection that may be attached.

«  The direction connections can approach from, in order to attach.

The last constraint is implemented by defining what is ‘inside’ and what is ‘outside’ of a
docking area. The purpose of this constraint is to avoid a connection crossing the interior

of a symbol, to attach at a docking area.



Point Docking Area
A point docking area represents a single point on a symbol that can accept a connection.

Figure 4-23 shows two examples of connections attached at a point on a symbol.

I'ypure 4-23 - Docking at a point

The example in the left-hand side of Figure 4-23 shows a desirable connection. The
example in the right-hand side of Figure 4-23 shows an undesirable connection that
crosses the symbol. Figure 4-24 shows a symbol that has a point docking area on the top-

left corner.

Point docking area

valid invocation
connection

invalid invocation
connection

C270°
Froure 4 24 Satomy of a point docking are

A fragment of NDL code that could be used to describe the docking area in Figure 4-24

is given below.

POINT DA (0,0) 1 CONNECTION ARC(90,90) (invocation)

The first property of a point docking area is its position. In this example (0,0} coincides
with the top-left corner of the symbol. The next property specifies the maximum number
of connections that may be attached to this docking area. In this example only a single
connection may be attached at a time. A value of # is used to specify that any number of
connections may attach at this point. The next property defines the connection arc,
through which all valid connections must pass. A connection arc is specified as a start

angle — extent pair. The co-ordinate system for connection arcs is shown in Figure 4-24.
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The final property is a list of connection types that may attach at this point. Each element
in the list is the name of a connection template (connection templates are discussed in
section 4.5.0). If this list is empty then any connection may attach at this point. In this

example only connections of type snvocation may attach at this docking point.
p Y yp Y g p

Line Docking Area
A line docking area represents a line on a symbol that can accept connections. Figure

4-25 shows a symbol with two connections that have attached along its left-hand side.

i
i i P

Prgure 4-25 - Docking on a line

The connection coming from the left in Figure 4-25 is a desirable connection. The
connection coming from the right in Figure 4-25 is undesirable as it crosses the symbol.

Figure 4-26 shows a symbol with a line docking area on it left-hand side.

Line docking area

(0,0)

valid invocation -
connection

invalid invocation
connection

g
>

{0.y)
Frgure 4-20 - Aoy of a line docking area

A fragment of NDL code that describes the docking area in Figure 4-26 is given below.

LINE DA (0,0)(0,y) u 5 f(invocation)

The first property of a line docking area is its position, which is represented by a series of
points. In this example the line docking area coincides with the left-hand side of the
symbol. The direction of the line docking area is used to encode the valid direction from
which a connection may come to attach to the docking area. Figure 4-27 shows how this

is achieved.
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Lef-hand side B Right-hand side

Outside

Inside A Outside

Figure 4+-27 - Representing valid directions for a line docking area

The right-hand side of line segment 4B, as viewed looking along the line from .4 to B, is
taken as the outside of the line (Figure 4-27). The left-hand side of the line (and the line
itself) is taken as the inside of the side. Only connections that approach from the outside
of a line docking area may be attached. The right-hand side of Figure 4-27 shows how
this property of line docking areas can be used to approximate the inside and outside of a

symbol *.

The next property of a line docking area specifies the maximum number of connections
that may be attached. The value #, in this example, means that the number of connections
is unconstrained. The next property specifies a minimum inter-connection distance. The
final property is a list of connection types that may attach to the line docking area. In this

example only connections of type invocation may attach at this line docking area.

Arc Docldng Area
An arc docking area describes a curve along which connections may attach themselves.

Figure 4-28 shows some examples of how an arc might be used as a docking area.

(1) Using the concave side (i) Using the convex side

Figure 4-28 - Docking on an arc

e onl any approximistion hecase the sum of the ourskde remons of all the line Jocking arcas could mtersect with

the taterenr of 4 svmbol thar bos concavines
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The connections that cross over the symbols in Figure 4-28 are undesirable. Figure 4-29
shows how an arc docking area can be used. This particular example shows a single arc

docking area that is coincident with the boundary of a circular symbol.

(0.0)

Arc docking area

0t

{w.h)

Frgure 429 Anatomy of un are docking areas

A fragment of NDL code that could be used to describe the docking area in Figure 4-29

is given below.

ARC DA (0,0)(w,h) (0,360) CONVEX u 5 {invocation)

The first property of an Arc docking area defines its positon and shape. In this example
the arc is bounded by a box from (0,0) to (w)h). The shape of the arc is defined by a start
angle — extent pair. In this example (0,360) describes a circle. The next property is used to
define the direction connections may approach the arc and attach themselves. Figure 4-30
shows how the two possible values for this property (Comvex and Concave) define the

inside and outside of an arc docking area.

Convex side Convex side
outsude) i (inside) T
;’ Concave side " oncave side
: (inside) (outS|de)
(1) ‘Convex’ Arc docking area (ii) ‘Concave’ Arc docking area
Frgure 4-30 - Representing valid directions for an arc docking area

A value of ‘convex’ means that the convex side of the arc is to be interpreted as its
outside (example (i) in Figure 4-30). A value if ‘concave’ means that the concave side of

the arc is to be interpreted as its outside (example (i) in Figure 4-30).

The next two properties of an arc docking area specify the maximum number of
connections that may be attached and a minimum inter-connection distance. The final

property is a list of connection types that may attach to the arc docking area.
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4.5.6 Describing Connections in NDL

Connections in NDL are composed of a single, optional, connection symbol template
and a collection of connection terminator templates. Each type of template will be

discussed in turn, followed by the definition of an NDL connection template.

Figure 4-31 shows an example of Coad and Yourdon’s notation with a Gen-Spec
connection and a message connection. Both types of connection will be defined in NDL

to assist illustrate how NDL is used to define connections in general.

)

Line Connection terminators Line
segments segments

£

Connection symbol [ ]

Figure 4+-31 Two exumple connections

A Coad and Yourdon Gen-Spec connection consists of two connection terminators, a
special connection symbol and some line segments (Figure 4-31). A message connection
consists of two connection terminators (one of which is an arrow head) and a collection

of line segments.

Connection Symbols
An NDL connection symbol template for the Coad and Yourdon Gen-Spec connection
symbolis given in Figure 4-32.

CONNECTION_SYMBOL Inheritance_Segment
{

;——DTOP (20, 0)

ARC (0,0) (40,40) (0,180)
LINE (0,20)(40,20)

| I_pLTNE DA (0,20)(40,20) u 10 () EXTEND

Figure 4-32 - Connection svmbal template
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A connection symbol has one incoming line segment. In the case of a Coad and Yourdon
Gen-Spec connection this is from a super-class. It may have several outgoing line
segments. In the case of a Coad and Yourdon Gen-Spec connection these lines go
towards sub-classes. The first statement of the connection symbol template speciﬁes
where the connection symbol attaches itself to the incoming line segment. The arc and
line template statements define the shape of the connection symbol. The last statement of
the connection symbol template is a line docking area from which all the outgoing line
segments start. A line docking area for a connection symbol has an additional property
that defines whether the line docking area is permitted to change its length, to support

more line segments. Figure 4-33 illustrates this property with two examples.

3 o -

W

(1 (i)
i'igure 4-33 - Coad and Yourdon connection svmbol line docking
area (1) with a stngle connection 111 with prliple connections

The connection symbol line docking area is shown by an arrow on the inheritance
connection symbol in Figure 4-33. In the example on the left-hand side of in Figure 4-33
the line docking area is big enough to maintain a single connection. In the example on the
right-hand of in Figure 4-33 side the line docking area has been extended past the
boundaries of the connection symbol. Connection symbol line docking areas will

automatcally extend in this way if the last property of the line docking area has the value

Extend.

Connection Terminators
Figure 4-34 shows NDL connection terminator templates for the different types of

connection terminator in the Coad and Yourdon Gen-Spec and message connections.
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CONNECTION_TERMINATOR plain
{

p LINE (D,3){12,3)

— HEAD (0, 3)

—» TAIL (12,3)

H
CONNECTION_TERMINATOR Message_Destination
{
— LINE (10,6) (16,6)
—p» LINE (0,6) (10,0)(10,122)(0,6)
— HEAD (0, 6)
—» TATL (16,6)

N
I

Frgure 4-34 - Connection terminator templates tor Coad and
Yourdon Gen ®pec and message connections

A connection terminator consists of a collecion of primitive template segments (in this
example lines and arcs). The last two statements define the head and tail positions on the
connection terminator. The head position is where the terminator will attach to a docking

area. The tail position is where the terminator attaches to a line segment.

Connection Template

Each connection in a notation is defined by a separate connecton template. A
connection template specifies the arity” of the connection, an optional connection
symbol template and a list of terminator templates. NDL connection templates that

implement Coad and Yourdon Gen-Spec and message connections are given in Figure

4-35.

CONNECTION_TEMPLATE CONNECTION_TEMPLATE
Inheritance_Connection Message_Connection
{ {
ARITY 2 ARITY 2
CONNECTION_SYMBOL TERMINATOR
Inheritance_Segment (p_ain,Message_Destination)

TERMINATOR (plein,plain) 3

Figure 4-35 - NDL connection termplaies for Coad and Yourdon
Gen-Spec and message connections.

The order of the terminator templates in the terminator list corresponds to the order with

which the portions of the connection are created. The message connection template in

¥ The ariy of a conneenon specitics the number of svnylsds that mav be involved in the connection,
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Figure 4-35, for example, specifies the sequence plain followed by Message_Destination.
This means that a p/azn terminator is used at the beginning of a message connection and a

Message_Destination terminator is used at the end of a message connection.
4.6 NDL Interpreter

An NDL interpreter has been built to verify that the approach taken with NDL is
efficacious. Fach notation is written in NDL and stored in a file. The grammar of NDL is
presented in appendix II. The interpreter is a simple drawing tool that allows a user to
place symbols and connections that are defined in a notation file. A high level

architecture is given in Figure 4-30.

Figure 4-36 - Components of the NDL interpreter

The NDL interpreter parses a notation file and builds an abstract syntax tree (which is an
instance of the Composite pattern (Gamma efal, 1995)) for each Template. These abstract
syntax trees are also instances of the Interpreter pattern as they can execute themselves.
FEach Template requires an SSI. object proxy and a Context to generate its corresponding

notation element.

An SSL object proxy is a stub that takes the place of the MOOT server in this prototype.
Liach proxy encapsulates a map of NDL identifiers and propertes. For example the map

in an SSL. object proxy representing a class would contain three elements, which would
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correspond to the NDL identifiers ‘classname’, ‘attributes and ‘operations’. SSL object proxies

perform no semantic validation.

The NDL wvews in Figure 4-36 are the symbols and connections that have been generated
from templates. An NDL wewis a collection of primitive notation elements (such as lines,
active areas and text fields). NDL wews know how to draw themselves on a drawing

surface with the assistance of a Context object.

The Context is an instance of the Visitor pattern (Gamma e @/, 1995). It hides the
propertes of the drawing surface (for example how long a string actually is, in drawing
units, on the drawing surface) from the interpreting mechanism. Templates use this
behaviour when generating notation elements. The Comtext also provides facilities for

drawing primitive notation elements on a drawing surface.

The NDL interpreter as a whole can be ported to a different windowing interface
environment by updating the specific interface elements (windows toolbars etc) and the
Context. The Context is implemented as an abstract super-class, which defines the interface
needed by Templates and NDL views. Implementations of the interpreter specialise Context

as appropriate.

The user interface is implemented in tcl, the notation file in NDL and the rest of the
components in C++. The CASE tool client (Figure 3-11 - Architecture of the MOOT
prototype) is based on the design of the NDL interpreter.

4.7 Design of the NDL Interpreter
4.7.1 Representing Expressions

All templates are defined in terms of a series of expressions (see Figure 4-4, Figure 4-16,
Figure 4-17). The types of expression supported in NDL include:

»  arithmetc expressions and numerical constants

«  maximum and minimum function

«  height and length functions

« groupheight and grouplength functions
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The different types of expression are represented in the inheritance hierarchy given in

Figure 4-37.

Context

Exbression . SSLObjectProxy length(s : string)
Evaiuate(p : SSLObjectProxy, c : Context) GetProperty(id : NDL_ID) height(s : string)
e > drawline()
drawArc()
drawString()
1.7
Function Value TextFunction
Evaluate(p : SSLObjectProxy, ¢ : Context) “txt 1D : NDL ID
Maximum Minimum GroupFunction

Evaluate(p : SSLObjectProxy, c: Context) Evaluate(p : SSLObjectProxy, ¢ - Context) grp_ID : NDL_ID

Height . Léngth
Evaluate(p : SSLObjectProxy, c : Context)  Evaluate(p : SSLObjectProxy, ¢ : Context)

' ArithmeticExpression GroupHeight GroupLength

Evaluate(p : SSLObjectProxy, c : Context)  Evaluate(p : SSLObjectProxy, ¢ : Context)

Add Multiply
Evaluate(p : SSLObjectProxy, c : Context) Evaluate{p . SSLObjectProxy, c : Context)

Subtract Divide
Evaluate(p : SSLObjectProxy, ¢ Context) Evaluate(p : SSLObjectProxy, ¢ Context)

Figure 4-37 - The Mspression class luerarchy

All expression objects respond to the message evaluate with arguments of an SSL object
proxy and a Context. Arithmetic expressions include all basic operations involving two
operands (which are both expressions) and an operator. The arithmetic expressions

supported in the initial prototype include addition, subtraction, mubiphcation and division.

Text functons calculate either the height or width of a string or a list of strings. A text
funcdon knows the NDL name of the property it is to be applied to. The width and
height of a text item depends on the context it 1s viewed in. This includes the particular
font, the font size for the block of text. Text functions delegate the responsibility for
performing their calculation to a Context object. The Context object can calculate the

physical size (in drawing units) of a string.



Four functions are used to capture conswaints between sub-parts of a view. The
GroupHeight and GroupLength functions calculate the physical size (in drawing units of a
group reference. The Maximum and Minimum functions calculate the maximum and

minimurmn value of their argument expressions respectively.
4.7.2 Segment Templates

Segment templates correspond to the primitive notation elements such as lines and arcs.

They are implemented in the interpreter with the class hierarchy given in Figure 4-38.

 Context SSLObjectProxy
length(s : string) jGetProperty(ld : NDL_ID)
height(s : string) A
drawLine() — 3
drawArc() K=-e e |
drawStrin E— . ; ;
|drawString() | SegmentTemplate <<instantiates>> Segment
|Build(p : SSLObjectProxy, c : Context) ~ D i
SimpleSegmentTemplate 1 P SegmentTemplateList 0\
| ’ . |Build(p : SSLObjectProxy, ¢ : Context)
0.*
‘ i)
GraphicalSegmentTemplate | : =
GroupReferenceSegmentTemplate

|Build(p : SSLObjectProxy, ¢ : Context) \

ActiveAreaSegmentTemplate . L

LineSegmentTemplate | |
Build(p : SSLObjectProxy, ¢ : Context)

ArcSegmentTemplate : | ‘
Build(p : SSLObjectProxy, c : Context)

TransitionSegmentTemplate | l
| Build(p : SSLObjectProxy, ¢ : Context) |

| TextSegmentTemplate | \
|ID: NDLJDx UpdateSegmentTemplate i
'\ Build(p : SSLObjectProxy, ¢ : Context)
SingleTextSegmentTemplate ListTextSegmentTemplate DockingAreaSegmentTemplate

Build(p : SSLObjectProxy, c : Context) | Build(p : SSLObjectProxy, ¢ : Conlext)‘

PointDockingAreaSegmentTemplate ArcDockingAreaSegmentTemplate LineDockingAreaSegmentTemplate |
Build(p : SSLObjectProxy, ¢ : Context) || Build(p : SSLObjectProxy, ¢ : Context) | Build(p : SSLObjectProxy, ¢ : Context)|

Figure 4-38 - Template segment hierarchy
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The leaf classes in the inheritance hierarchy in Figure 4-38 correspond to the different
components of a view that are supported (lines, arcs, text, active areas and docking areas).
The SegmentTemplate class defines an operation called build, which takes an SSL object proxcy
and a Context as arguments. A SegmenfTemplate object responds to the Bui/d message by
creating an instance of the Segment class. Segments are the primitive components of views
and correspond to notation elements such as lines, arcs and text fields. Instances of
ArcSegmentTemplate and [ ineSegmentTemplate conswuct arc and lines respectively. A
SingleTextSegmentTemplate defines a single line of text. A ListTextSegmentT emplate builds a list
of text items. Segments know how to draw themselves with the assistance of a Comtext
object. An inhemritance hierarchy of segment classes corresponding to the segment

template hierarchy is also defined, but not shown for brevity.
4.7.3 Group Templates

Group templates are implemented by the classes GrompReferenceSegmentTemplate and
SegmentTemplatel sst  (Figure 4-38). An instance of  GmupReferenceSegmentTemplate
encapsulates a reference to a segment template list (which contains a collection of
segment templates). An instance of SegmentIemplatel ist may also contain instances of
GroupReferenceS egmentTemplate. A group template may, therefore, be defined as a collection

of simple segment templates and other group templates.

A template segment list also contains a collection of active area segment templates. The
two types of active area (transiton and update) are supported with the classes
TransitionSegmentTemplate and UpdateSegmentTemplate (Figure 4-38). Active area segment
templates know which template they belong too. A Transition template segment
additionally knows which template to transform into. An update segment template knows

which properties are to be updated.
4.7.4 Connection and Symbol Templates

The components of a notation are supported with the classes in Figure 4-39. A notation
is composed of templates. An instance of class Template responds to the message Build by
creating an instance of the class [77ew. The Template class defines the view construction

protocol that is implemented by its sub-classes.
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Vlew 1
Draw(c Contexl)

Nowin
. Context.

length(s : string)

<<instantiatess> height(s : string) <<instantiates>>
; drawLine()
; _7 drawArc()

» drawString() ™

1

Template SegmentTemplate

'Bund(p SSLOb)ectProxy‘c Context) Bu:ld(p SSLObJectProxy,c Contex‘t)
~\__~_\.. -]
SSLObjectProxy

GetProperty(id NDL'_'I'D)

1“*
ConnectlonTemplate SegfnentTernp)ateContainer
Bund(p SSLOb)ectF’roxy, c: Context)
0.1 -.\\1.."
SymbolTemplate
) Build(p : SSLObjectProxy, c : Context)
1. 1.0
ConnectlonSymbolTempIate ConnectlonTermmatorTempIate

Bund(p SSLOb)ectProxy,c Context) BUIld(p SSLOb)ectProxy,c Context)

Figure 4-39 - The different types of templare

The immediate sub-class of Template is SegmentIemplateContainer. This abstract super-class

maintains a collection of segment templates. The sub-classes of SegmentTemplateContainer

are ConnectzonSymbolTemplate, ConnectionTerminatorTemplate and Symboll emplate.

Instances of ConnectionSymbolTemplate describe connection symbols (such as the waiangle in

the UML inheritance connection and the semi-circle in the Coad and Yourdon Gen-Spec

connection). Instances of ConnectionT erminatoremplate describe the terminators that appear

at the ends of connections. Finally, instances of Symbo/Template describe symbols such as
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process bubbles in a data flow diagram, classes on a class diagram and states on a state

transition diagram.

Templates for building connections are represented by the class ConnectionTemplate. A
connection template is composed of a collection of connection terminator templates and

an optional connection symbol template.
4.8 Implementation of the NDL Interpreter

The NDL interpreter has been implemented on a Sun SparcSERVER 1000e running
Solaris 2.5 using SparcWorks C++ 2.0, Tcl 7.3, Tk 3.6 and xf 2.3. Tcl is a general-purpose
interpreted programming language. Tk is an extension to Tcl that supports graphical
windowing applications. Xf is an interface development tool that allows the construction
of applications based on Tcl and Tk. Together these tools allow the rapid construction of

graphical interfaces.

Figure 4-40 shows two snapshots of the system processing NDL descriptions of the
Rumbaugh instance and object diagram. Figure 4-41 shows a snapshot of the system

processing an NDL description of the Coad and Yourdon class diagram.

Froure 4-40 - NDL interpreter usanp an NDIL description of the
Rumbaugh instance and obycet diagrian
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This chapter has presented the development of NDL. It began with an overview of
graphical notations that are used in software engineering methodologies. A clear
distinction was drawn between the syntax of a model and its meaning. A notation only
facilitates the communication of meaning. It is not the ‘meaning’ itself. The requirements

and design of NDL were discussed and a prototype NDL interpreter, from which the
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development of the CASE tool client is based, was presented.
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Chapter 5

Semantic Specification Language

Good languages not only rest on mathematical concepts which make logical
reasoning about programs possible, but also on a small number of concepts
and rules that can freely be combined. If the definition of a language requires
fat manuals of hundred pages and more, and if the definitdon refers to a
mechanical model of execution (i.e. to a computer), this must be taken as a

sure symptom of inadequacy.
Niklaus Wirth 1997
5.1 Introduction

This chapter presents the design and philosophy of a new language that is used to
implement methodology semantic descriptions in the MOOT system. The new language
has been named SSL (Semantic Specification Language). The major goal of development
of SSL is to derive a language that directly supports the MOOT meta-model, provides
facilides for re-use of methodology descriptions and is suitable for a programmer to use.
An aspect of this research is the development of an efficient and portable mechanism for

executing SSL.

5.2 Method

The following is a high level description of the steps taken during the design and
development of SSL.

1. Derive the requirements for a language that allows the descripton of methodology

semantcs.

2. Investgate existing languages. Clarify the goals and design a new language, SSL.

3. Derive an executon strategy for SSL. Consider space-time efficiency and platform

independence of the execution strategy.
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Design an intermediate, platform independent binary representatdon for SSL (SSL-

BC).

Design and implement a new virtual machine after consideration of other virtual

machines - SSL-VM (8SL Virtual Machine).
Develop and implement a compiler that translates SSL into SSL-BC.

Test SSL, and the SSL-VM with some simple examples.

5.3 Rationale and Goals of SSL

The goals of SSL are derived from some of the limitatons of meta-CASE tools as

described in chapter 2. They address limitations related to the use, number and separation

of the specification languages used by exissng meta-CASE tools. These goals are:

Integrate the description of structure and behaviour

Previous meta-CASE tools provide two or more separate languages for the
specificaion of methodologies. One is used to define structure and the second to
define constraints on the structure (a form of behaviour). There are several problems
with this approach: a) there are multiple languages for the same task b) the coupling
of methodology semantic specifications increases and c¢) the cohesion of

methodology semantic specifications decreases.

Support more than completeness and consistency checlding

Current meta-CASE tools only focus on checking the rules of the various modelling
languages. There is no consideration of things such as auto-correction, quality analysis
or guidelines. The behavioural aspects of SSL can include more than checking

constraints, and be used to implement auto-correction etc.

Emphasise ‘programming the semantics’ rather than formally defining them

Most meta-CASE tools provide either an extremely formal set of languages or a large

application programmer interface (API).

Formal languages can be difficult to understand and use. The use of formal languages
also means that supporting inconsistent models is often not possible. This is a barrier

to an exploratory approach to design that software engineers naturally use.
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Meta-CASE APIs obscure the underlying meta-model and place no emphasis on
specification. A large portion of the API is also generally related to the user interface
and the underlying repository. This means the API itself provides facilities that are at

different levels of abstraction with respect to the meta-CASE tool.

If SSL provides some of the facilides of a general purpose programming language
then it will be more flexible and comprehensible. SSL should be sufficiently flexible
that programmers feel comfortable using it, yet it should never imply it is a general

purpose programming language.

Support re-use

Existing meta-CASE tools do not place any emphasis on re-use of methodology
descriptions. They only support accidental re-use, where existing methodology
descriptions may be duplicated and then changed. There are several problems with
this approach: a) it is wasteful in terms of resources and development effort; b) there
is no clear relation between methodology descriptions that are similar; c¢) support for
re-use of software engineering projects is difficult; d) a very large and unstructured

pool of methodology desctipsons exist.

Space/time efficiency

SSL must support methodology descriptions whose execution is efficient in terms of

space and time. This includes the language and its run-time representation.

Platform independence

Both methodology specificatons and user projects must be completely portable
across platforms. Methodology descriptions and software engineering projects can

then be distributed to other users of MOOT without translation.

Hide persistence of SSL objects

Software engineering projects are represented by collecdons of SSL objects in the
persistent store. This fact should be completely hidden from users of SSL. Object

persistence is transparently addressed by the SSL-VM.
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Figure 5-1 illustrates how the various goals of SSL have been addressed by some of the

design decisions made regarding the features SSL.

Figure 5-1 - Mapping between goals and design decisions made
regarding features of SSI.

5.4 Requirements of SSL

There are two types of requirements for SSL. The first type (MOOT specific

requirements) is related to supporting the MOOT philosophy for the description of
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methodology semantics. The second type (SSL specific requirements) is related to

addressing the limitations of other meta-CASE specification languages.
MOOT Specific Requirements

« Provide all the faciliies of the MOOT meta-model. The MOOT meta-model is an

object-orientated meta-model. SSL must, therefore, be an object-orientated language.

«  Support the description of behaviour. This requirement is satisfied by the decision to
develop SSL as an object-orientated language. Behaviour is supported with message

passing, methods and constraints.

» Suitable for ‘programmers’ to use. SSL provides some of the facilities of a general-
purpose object-orientated programming language. For example it provides classes
and supports sequence, selection and repetition. It does not provide facilities such as

input/output.

« Used as a specificaton language. The choice of facilites that SSL supports must

ensure that it is not considered to be a general-purpose programming language.

« Support the expression of constraints. Each SSL class may define a constraint. A

constraint is a boolean expression that is a functon of the state of an object.

»  Support re-use. SSL is an object-orientated language. Re-use is supported with
inheritance and polymorphism.

SSL Specific Requirements

« Previde the following basic primitive types: Real, Integer, Boolean and String. SSL
supports primitive types to facilitate time-efficient execution of SSL.

« Provide facilities for collatng sequences of items. The support should be as simple as
possible and at least permit adding and removing items as well as the traversal of a

sequence.
«  Address the global namespace polluion common in other meta-CASE tools.

« Provide a clean separation of interface and implementatdon. The public interface of
SSL classes only consists of a collection of operations. The attributes and methods

are not accessible to other classes.



«  Support multple entry points. Conceptually the execution of an SSL description may
start at any operation.

SSL does not require:

»  Input/output facilities. Supporting input and output is the responsibility of NDL.

«  Concurrency”’. Supporting concurrency in SSL could have several negative effects: a)
the language becomes more complex; b) the langnage resembles a general purpose

programming language; c) the MOOT meta-model becomes obscured.
5.5 Semantic Specification Language

5.5.1 Overview

SSL is an object-orientated language, with extensions to explicitly support the description
of methodologies. It is an executable specification language whose primary purpose is to
provide all the facilities of the MOOT meta-model. SSL is strongly typed, statically typed
checked, implements late binding, provides a module system and supports a simple

automatic memory management system.
The execution profile expected of SSL is:
» A large number of messages

« Each message will take a small amount of ume to process

« Frequent creation and destruction of objects
5.5.2 MOOT Meta-Model

A model of the MOOT meta-model (a meta-metamodel) has been derived and is shown

in Figure 5-2.

SSL Classes

SSL classes have an interface”, a collecton of attributes and a collecdon of methods.

3

Muldple inheritance is supported; an SSL class can inherit from one or more super-

Omcurrency wil be addresseld mosecton B3 Funee Work
' The current meta-model supports a one-to-one mappinz between a class and its terface.
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classes. The interface of an SSL class consists of the list of operations and defines the
name of the class. Operations are overloaded based on the order, number and type of
parameters in the parameter list. Each method corresponds to one of the operations in
the interface of the class. A method consists of a collection of statements. The types of

statement support sequence, selection, iteration and assignment.
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Figare 5-2 - MOOT meta-metamodel
Constraints

In additon to attributes and operations, each class may define a constraint for its

instances (an invariant which is a function of an object’s state). The constraint is
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evaluated after an object receives and processes a message. If the constraint is violated the

state of the object is restored to the state it was in prior to the message being invoked.

SSL Objects

An object contains a set of values, which correspond to the attributes defined by its class.
It also contains a collection of objects that correspond to the super-classes of its class.
Values can be instances of built-in types (integers, strings and so on), iterator instances,
collectdon instances and objects. The state of an SSL object only changes as a result of

accepting and processing messages.

Extensions to support the descripson of Methodologies

The MOOT meta-model defines a set of built-in variables called current_project,
curvent_model and current_diagram. The values of these variables define the context the user
is in as they carry out actions at the user interface. They are analogous to the se/f in
Smalltalk and #hzs in C++. Figure 5-3 shows how the values of these variables define the

context (the project, model and diagram) the user is in whenever they perform an action.

The user has selected an active area on a symbol in Figure 5-3. As discussed in chapter 4,
an action is generated and propagated to the MOOT core (see Figure 3-11 - Architecture
of the MOOT prototype). Current_model is a reference to the model that is the context
from which the action occurred. Current_diagram is a reference to the corresponding
diagram of the arnt_model. Finally current_project is a reference to the software engineering

project.

Curren Project corresponds to Project A
Current Model coresponds io Model A

Current Diagram corresponds to Diagram A

i
i
I \MM—E

I'yrere 3-3 - The builtan SSI1. vanables
Expressions
The MOOT meta-model provides boolean, integer, real and string fundamental types.

The collection and iterator types together provide support for sequences of items.

Expressions include values, self, the built-in SSL variables, unary and binary expressions
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and message-send expressions. Messages may be sent to an object, a collection instance
and an iterator instance. Each message has a name and a set of arguments. The message

name corresponds to the name of an operation.
5.5.3 Module System

All SSL classes belong to a module. All module names must be unique in the scope of the
CASE environment. Modules are implemented in two parts in SSL. Interface modules
provide a public list of class interface definitions. Each class interface only defines the
class name, a set of operations and any super-classes. Implementaton modules provide
the corresponding implementaton for each class. This includes the attributes and
methods implemented by each class. The SSL module is similar to a Booch Class
Category, a C++ namespace, an Ada95 package and a category in the Smalltalk

programming environment. There are two major differences:
»  SSL modules are separated into interface and implementation modules

« SSL interface modules only define a collecton of class interfaces
5.5.4 Memory Management

SSL provides a simple, automatic, memory management system. It is a simple adaptation
of the reference counting algorithm (Jones and Lins, 1996). Each SSL object maintains a
count of the number of other objects that reference it. SSL objects are given an initial
count of 1, as they are created. The count is incremented for each new reference to the
object and decremented each time a reference is broken. SSL objects delete themselves,

once their reference count reaches zero. This scheme has been adopted because:

« It distributes the memory management overhead by interleaving the garbage

collection with the execution of SSL.
« The response time, with respect to execution of SSL, is regular.

+ The execution profile expected of SSL (high number of requests for computation and
small execution time of each computation) suggests that the memory overhead of
storing reference counts and the computation overhead from updating reference

counts would not be an issue.
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SSL objects are created by sending a create message to a class™. There must be at least
one create operaton implemented for each class. Create operations are implicitly meta-
level operations whose sole purpose is to provide an appropriate initial state for SSL

objects. Create operations may be overloaded.

Each class may define a single destroy operation. Once the number of references to an
SSL object reaches zero a destroy message is automatcally sent to it and the SSL object is
released. Destroy messages are automatcally sent to the objects that correspond to the

super-classes of its class.
5.5.5 Messages

A message in SSL, as in other object-orientated languages, represents a request to
perform an operation. A message has two parts: a message selector and an argument list.
The message selector corresponds to the name of an operaton to be performed. The
argument list is a collection of SSL objects, collections, iterators and simple values

required to perform the operation.

All messages in SSL are dynamically bound. Late binding is implemented via a method
lookup table per class to avoid the run-time overhead of searching the inheritance

hierarchy for an appropriate method to bind to a message.
5.6 Semantic Specification Language Definition

The following discussion uses a simple implementation of the Sieve of Eratosthenes™ in
SSL to aid the fllustration of the facilities SSL provides. The syntax of SSL is presented by
using examples in the remainder of the chapter. The SSL grammar is presented in
appendix III. Two complete SSL implementations of the Sieve of Eratosthenes are given

in appendix IV.

SSL provides the following simple built-in types: Integer, Real, Boolean and String, It also
provides two parameterised types: collecton and iterator. The definition of a class
introduces a new type. New types are also added by providing concrete parameters for

the collection and iterator types.

< hiE e currently the cndy =g thas ne Be sent o oa class

130



SSL variables, whose type corresponds to a class™, are similar to variables in Smalltalk
and Java and contain a reference to an SSL object. These variables are initialised to a
special value (no_obyect) before their first use. Variables of a collection type also contain a

reference. Variables of an iterator type and variables of a simple type contain values.

Variables of a class type may contain a reference to an SSL object defined by the class
type of the variable itself. It may also contain a reference to an object defined by any of
the sub-classes of the variable’s class. The only messages which may be sent via a variable
of class type are those that are defined in the interface of the class of the variable, or one

of its super-classes. This restriction is imposed because SSL is statically type checked.
5.6.1 Collections

SSL provides built in polymorphic collection and iterator types. These two types operate
together to provide sequences of elements of an arbitrary type. SSL collections support
insertion deledon and traversal of collections. No particular ordering of items in a

collection can be assumed. The interfaces of the Collection and Iterator types are given in

Figure 5-4.
. ltemType ...__I.tem'l.'ype. .
Ce e CO“ECHOH____ lterator o
add(toAdd : ltemType) shtem() - temType

remove(tcRemove  Iterator)’
front{) : lteratar
empty() : Boolean

next(}
end() : Boolean

I'ipure 54 SSIL collecnion and 1rerator types

A collection item type may be any of the built-in SSL types (including iterators and
collections) as well as SSL objects. The interface of the SSL collection and iterator types,

as shown in Figure 5-4, is the minimum needed to support collections.
5.6.2 Simple Expressions

The types of expressions in SSL include: simple values, special SSL values, arithmetic
expressions, relational expressions, boolean expressions, string expressions, scope

resolution expressions, create object expressions and message send expressions.

= e Seve of Paarosthenes 1= 0wl huow i extrenwdy elegant adgonthm for cadeulinng prime numbers,
# Such vartables are subseguently retersed 1o as variables ot class type.
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Sirmple Values
SSL values may be any of the following:

« A constant. This includes constant integer values (e.g. 10), real values (e.g. 10.2),
boolean values (true or false) and strings (e.g. “a string”)

«  The result of a message

« A reference to an attribute, a local variable of a method or a message argument

«  Self, which is a reference to the current object

»  One of the built-in, pre-defined variables. These are current_project, current_model

and current_diagram

The following special values are also defined in SSL.

True Boolean true
False Boolean false
No_object Empty reference to an object

Arthmetic Expressions

SSL supports the following arithmetic operators:

+ Additon / Division
- Subtraction Div Integer division
* Mulaplicaion Mod Integer modulus

All operators are overloaded for the basic built-in arithmetic types except the 4w and mod

operators, which are only defined for integers.

Relational and Boolean Expressions

SSL supports the following relational operators:

< Less than <= Less than or equal to
> Greater than = Equal to
>= Greater than or equal to <> Not equal to

The values of all built-in types may be compared with the relational operators. Both of
the values compared must be of equivalent type. The type of a relational expression is

boolean. The following boolean operators are also supported:

And Logical conjunction
Or Logical disjunction
Not Logical negation

132



These operators may only be used with boolean values and expressions.

String Expressions
Strings concatenation is performed with the overloaded addidon (+) operator. The

relational operators may also be used with strings, as expected.

Scope Resolution Expressions

Module scope resolution operator

Class scope resolution operator

The module scope resolution operator is used to qualify a class name with its owning
module to overcome class name clashes. The class scope resolution operator is used to
qualify a message name with a class to overcome message name clashes. For example two
modules may define a class with the same name. They can be referred to by fully
qualifying the class name with the module name (for example aModuleName::aClassNane).
The class scope resoluton operator can be used in an analogous way (for example

aClassName:anO perationNarie).

Message Send Expressions

Message send operator

A message-send expression is composed of three parts: an object (the message receiver),
the message-send operator and a message. The message consists of a message name and a
list of arguments. The message-send operator is used to bind the message to a particular
operation of the receiving object. The type of a message-send expression is that of the
result type of the requested operaton. A message-send expression can be used anywhere
a value of its type may be used® (e.g. on the right hand side of an assignment, or as an
argument to another message). Message-send expressions are evaluated eagerly™; all of

the actual arguments are evaluated before the message is sent.

Create Object Expressions
Objects are created in SSL by sending a create message to a class. The result is the

creation of an instance of the class the message is sent to. Each class may implement

# Currently messages that return more than one object as a result may only appear on the right hand side of an
assignment statement This restriction 1s in place to speed up the implementation.

0 Al arguments are evaluated tirst, before the message-send expression is evaluated.
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several create operations. They are overloaded by the order and type of the arguments.
The following example illustrates how objects are created.

// alList 1is of type list

alist = list.create();

alist.cons( listItem.create( 10 ) };

// anotherList is of type list

anotherList = list.create( alList ) ;

// anltem 1s of type listItem

anltem = listItem.create( 20 );
anotherList.cons( anltem );

5.6.3 Interface Module

An interface module provides a public collection of class interfaces. All interface modules
must have unique names. The names of classes defined within each interface module

need only be unique within the scope of the module.

Fach module starts with the module keyword and is followed by a name. A ‘uses clause’
declares the modules and classes that are used in a module. Class names are always
qualified by the name of the module they are defined in. Using a class name without

qualification is a shortcut for identtying a class defined within the current module.

module moduleName;
uses otherModule: :otherClass, anotherModule;

This uses clause specifies that the class otherClass, and any of its sub-classes, may be used
within moduleName, It also declares that any of the classes defined by the module
anotherModule may be used. A ‘uses clause’ can be used to introduce a local name (an alias)
for a class. The scope of the alias is the module the alias is defined in.

module MyMethodology Model_Elements;

uses OOM_A_Model_ Elements::class = OO_A_class;
uses OOM_B_Model_Elements::class = 0O0_B_class;

In this example two modules that both define a class called sass are used. Two local

aliases (OO_.A_class and OO_B_class) are introduced as a syntactic convenience.
5.6.4 Class Interface Definition
A class interface defines the set of operations that may be performed by an instance of a

class. It consists of a class name, an optional list of super-classes and a list of operations.
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className : superClass, anotherSuperclass
i
integer operationOne /()
integer operationOne( integer X )
operationTwo ()
operationTwo( integer X, integer Y )

In this example the class dassName has two super-classes (superClass, anotherSuperclass). It
also defines four operations. The operations are overloaded based on the operaton name

and on the order and type of the arguments.
5.6.5 Implementation Module

Each interface module has an associated implementation module, which defines the

implementation of each class listed in its corresponding interface module.

The implementation module starts with the keyword module and is followed by its name.
The name of the implementaton module is the same as its corresponding interface
module. Implementation modules may also have zero or more uses lists. The rest of the

module consists of a list of class definitions.
5.6.6 Class Definition

Each SSL class definition in the implementation module corresponds to an SSL class
interface in the interface module. An SSL class definition consists of a class name
followed by the definition of the attributes, methods and an optional constraint. The
following is an example that shows a definiion of a list class (from the Sieve of

Eratosthenes example in appendix IV), where the method bodies are empty.

list
attributes
listnode 1;
! operations
i new () {1}
i cons( integer value ) {}
listIterator front/{() {}
tail () {1}
‘ boolean isEmpty() {}

Froure 5-5  Partial SS5L implementation of a list class

135



The attributes secdon consists of zero or more attributes. The type of an attribute may
either be a built-in SSL type, a class, a collection or an iterator. The aggregation relation in
Figure IV-1 - Sieve of Eratosthenes version 1, is captured by the /Zstnode attribute / in
Figure 5-5. The operations section lists the implementation of the operations (the
methods) in the class interface. Each SSL class may optionally define a single constraint,
which is a list of boolean expressions that are functions of the state of an SSL object.
Evaluating the constraint for an object includes evaluating the constraints defined in the

class of the object and in each super-class.
5.6.7 Methods

The methods for an SSL. class are defined inside the body of the class. Each method
definition has five parts: a result type, a name, a formal argument list, a local variable list

and a body.

The formal argument list follows the method name and is a comma-separated list of type
-argument name pairs. All arguments are passed by value. Variables of simple built-in SSL
types and iterators contain values whilst variables of class and collection types contain
references. The formal argument list is optionally followed by the defnition of any local
variables that are used in the body of the method. Finally, the method body consists of a

sequence of SSL statements.

SSL. methods may return zero or more objects as a result. In the following example the

class aClass defines four methods, each of which returns a different number of objects as

a result.
aClass
<|.
attributes
operations
methodOne () {}
integer methodTwo () {}
(integer, integer) methodThree() {}
(integer, integer, integer) methodFour() {}

}

A complete SSL class implementation of the list class in Figure IV-1 - Sieve of

Eratosthenes version 1, is given in Figure 5-6.
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list
{
attributes
listnode 1;
operations
new() { 1 = no_object; }
cons( integer value )
listitem 1;
1 = listitem.create( value );
1l = listnode.create( 1, 1 );
listIterator front() {
return listiterator.create( 1 );
tail() ¢
if( not { 1 = no_object ) )
{
= 1l.next();
boolean isEmpty() { return 1 = no_object; }
Figure 5-6 - SS1. implementation of the list class
Create Methods

The purpose of create methods is to provide an appropriate initial state for newly created
objects. An object is created, in SSL, by sending a create message to a class. The create
message names one of the create operations in the interface of the class. This causes the

corresponding create method, defined by the class, to be executed.

The default’ behaviour of sending a create message, with no arguments, is to return a
new instance, which has all attributes of class and collection type initialised to #o_obyect.
This default behaviour can be replaced by implementing a create operation that takes no

arguments.

Each class may implement multiple overloaded create operations. Create operations are

overloaded by order and type of arguments. The example in Figure 5-7 shows the

A detault miplemiomanion of the e arginnents” create aperation @ autemancdls prosdod if one does not exist.
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implementation of a class (aC/ass) that defines two create operations. The first initialises

the ataibute anlnt to zero. The second initialises anlnt with the value of its single integer

argument.
aClass
{
attributes
integer anlnt;
operations
create()
{

anInt = 0;

create( integer I )
=> superClass.create( I ),
anotherSuperClass.create( I + 10 );

anlnt = I;

Fusure 57 [mplemennng SS1 creaty operations

The super-classes of a class are initialised by sending a create message to each super-class.
The second create method in Figure 5-7 shows how these create messages are specified
(the super-class create list). The SSL compiler is responsible for ensuring that the super-class

create list Is correct.

Destroy Methods
A destroy message is automatically sent to an object when the number of references to it
reaches zero. Destroy messages received by an object with one or more references are

ignored.

A class may only implement the destroy operation once. The purpose of the deswoy
method is to permit an object to perform any necessary tasks before it is released™. The
default” behaviour of the destroy operation is to assign the special value, 7o_object, to all
variables of class and collecton type. The destroy operation must be explicitly

implemented if any other behaviour is required.

> This would include tasks such as mrirnvng i obweers of s wnpenading demisce.

¥ The SSEcompuler provides a detault snplementanos of the destress operunor only 1t one does not exase.
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5.6.8 Statements

The following statements are available in SSL:
Message send Return Assignment
If Loop Debug_Print
Message Send Statement
The message send statement is a special case of a message-send expression where the

message being sent does not return any instances as a result.

Return Staterment
The return statement signals the end of execution of a method. The value returned must
match the return type of the method. A method may contain more than one return

statement. Methods that do not have a return type do not require a return statement.

Assignrnent Statement

The assignment statement is used to update the value of an l-value. L-values include
attributes, method parameters and vanables local to a method. The right hand side of an
assignment statement is an expression. The result of evaluating the expression, the 1-
value, is used to update the l-value. The types of the l-value and r-value must be
compatible. An l-value may also be a tuple, for assignment of the result of a message that
returns more than one result. In the following example an object is sent three different

messages that each return three values as a result.

(X,Y,Z2) = aPoint.getCartesianOrdinates{) ;
(r,theta,Z) = aPoint.getCylindricalOrdinates();
(r,theta,pni) = aPoint.getSphericalOrdinates();

Tuples are an additional type in SSL that is currently only supported with the assignment

statement and return types of methods.

If Statement

The if statement consists of the 7/ reserved word, a condition, a statement block and an
optional else part that consists of the e/se keyword and a statement block. The condition
must be a boolean expression. If the conditon evaluates to #rue, then the if statement
block is executed. If the condition evaluates to falee, and there is an else part of the

statement, then the else statement block is executed.

139



Loop Statement

The loop statement consists of the /ogp reserved word followed by a loop body. The loop
body consists of a statement block that contains a single endloop clause. The endloop
clause consists of the reserved words endlogp when, followed by a boolean expression. The
endloop clause may appear anywhere in the body of the loop statement. The loop body is
repeatedly executed until the endloop condition is true. Execution continues from the
statement following the loop. Figure 5-8 shows the implementation of the fndprimes

method of the sieve class in Figure IV-1 - Sieve of Eratosthenes version 1.

// find the prime numbers contained in the list ints
findPrimes ()

integer step, upperllimit;

listiterator 1;

listitem 1;

step = Z;
vpperi,imit = top div 2;
loop
¢ [
= skip( ints.front(), step - 2); i
i if( not I.end() )
I o= item() ;
1f{ isprime() )
{
mark( ., step );

step = step -~ 1:
endloop when( step = upperl mit );

Frgure 3% Joxample loop and 1f statements

Debug Print Statement

The debug_print statement exists for debugging purposes during the development of
SSL. It was added since SSL itself does not need to support any input/output. The
debug_print statement evaluates its single argument and displays the result onto the

standard error stream. Both the expression type and the result are displayed.
5.7 SSL Compiler

The SSL compiler translates SSL interface and implementation modules into SSL Byte

Code (SSL-BC). The main components of the SSL compiler are presented in Figure 5-9.
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SSL Compiler

‘Annotated
abstract syntax
tree

Interface Mgdua

Figure 5-9 - SSI. compiler
SSL source code and compiled SSL are both maintained in the persistent store. The

persistent store provides version control facilities and ensures mutually exclusive access

to SSL classes. The Store Proxy isolates the compiler from the persistent store.

The syntax analyser is responsible for performing lexical analysis and syntax checking.
This component was built using PCCTS (Purdue Compiler Construction Toolkit) (Parr,
1997; PCCTS, 1998). The parser is an LL(k) parser, which dynamically adjusts the look-
ahead depth (k) as it parses.

The semantics analyser is responsible for performing type checking. It also builds and

checks the method lookup table for each class.
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The code generator is responsible for translating SSL into SSL-BC for each class and

compiled interface modules. The code generator can also be used to print the annotated

abstract syntax tree and to produce SSL assembler™".

Figure 5-9 also shows the steps in the compilation process. These are:

U

The compiler is invoked. It accepts a list of module names to be compiled as input.
Each module is compiled in two phases. In the first phase steps 2 — 6 are performed
for the interface module. In the second phase steps 2 — 6 are performed on the

corresponding implementation module.

The compiler determines if the interface and implementation module source code has
been updated since the last ime it was compiled. It does this by asking the store
proxy to compare the modification dates of the source code and compiled module. If
the source need to be compiled the compiler asks the store proxy to retrieve the

interface and implementaton module source code from the store.

The lexer and parser then process the module source code and buld an abstract

syntax tree. Any lexical and syntax errors are reported.

The type checker traverses the abstract syntax tree and annotates each node in the
tree with type informaton. It also generates method lookup tables from class
interface definitions in the interface module. This includes checking for operations
that cannot be disambiguated from each other and detecting the inheritance of the
same operation from two or more super-classes. Type errors, ambiguous operations

etc are reported.

The code generator traverses the annotated abstract syntax tree generated by the

semantics analyser and generates SSL-BC code for each class and interface module.

The compiler then asks the store proxy to place the compiled SSL into the persistent

store.

Finally the results are reported. This will be a simple list of all the interface modules

and implementation modules that were successfully compiled.

A description of the implementation of the SSL compiler is given in appendix VI.

Tl smremliler o stmple human readable version ot SSL-BC that 1s presaded for Jdebugging, purposes. T s not

discussed further i the thesis.
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5.8 Executing SSL

Figure 5-10 shows a more detailed view of the components of the methodology

interpreter and the tool manger.

CASE Tool Client

Figure 5-10 - Processing actions

There is one tool manager for the overall system, which acts as a server for multiple
virtual machines. The tool manager insulates the rest of the system from the persistent

store and the CASE tool clients from their corresponding virtual machines.

The tool manager maintains an instance of the virtual machine for every active user. Fach
instance of the SSL-VM has only one thread of control. This means that incoming

messages are queued until the SSL-VM completes processing the current message.

The Message Request Broker accepts message requests from clients and messages sent as

a result of the interpretation of a method. It is responsible for ensuring mutually exclusive
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access to objects (through object level locking). It is also responsible for detecting

deadlock situations and resolving them in a manner transparent to the message senders.

The SSL class server maintains a cache of SSL classes. If a requested class is not present
in the cache it is retrieved from the persistent store. This class replaces the least recently

requested class in the cache, if the cache is full.

The SSL object server is responsible for caching SSL objects in a manner similar to the
SSL class server. It provides a transparent reference counting mechanism and garbage
collection for SSL objects in the persistent store. It also maintains consistency between

copies of the same object.

The SSL class client maintains a cache of SSL classes in a manner similar to the SSL class
server. The difference is that the class client is executing as part of the same process as
the virtual machine. The purpose of this cache is to minimise inter-process

communicaton.

The SSL object client manages temporary (non-persistent) SSL objects. Any updates to or
requests for persistent objects are passed directly to the SSL object server. Temporary
objects that are assigned to attributes of persistent objects become persistent themselves,
and are passed to the SSL object server to be placed in the persistent store. The
Methodology Interpreter does not distinguish between temporary, local and persistent
objects. Responsibility for all accesses and updates is delegated to the SSL object client,
which determines if the operation needs to be passed to the SSL object server or dealt

with locally.

The following lists the steps taken in processing an action (see Figure 5-10):

1. The server proxy in the CASE tool client propagates an action at the user interface to
the tool manger. The server proxy implements the communicaton protocol between
the CASE tool client and the MOOT core. The message request broker initally

translates the user action into a corresponding semantic action.

2. The message request broker delegates the responsibility for finding this semantc
acdon to an NSM table. The NSM table returns a message as a result. Note that each

methodology has its own NSM table and that the role of the table is to provide a
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mapping between notations and semantcs descriptons. NSM tables are the topic of

chapter 7.

3. The message is propagated to the SSL Virtual Machine. The SSL-VM binds the

message to a particular method and executes it.

4. Any messages that are sent during the execution of the method are inigally
propagated to the message request broker. The message request broker is responsible
for ensuring mutually exclusive access to objects and for detecting deadlock

situatons.

5. The result of the inital acton is returned to the CASE Tool client once the

corresponding message found in step 1 has been processed.

The message bandwidth between the message request broker and the methodology
interpreter is high as the execution of SSL methods typically cause many messages to be

sent. Whilst not an issue for the prototype”, it is an important consideration for the final

MOOT system.

The proposed architecture (Figure 3-10 - Proposed, top level, system architecture) could
be implemented in many different ways. For example each component could execute as
separate processes and could conceivably execute on different machines. It is more likely
that the persistent store, the SSL class server and the SSL object server will execute as
separate processes, possibly on separate machines. The tool manger and methodology
interpreters will most likely execute as a single process, possibly on a separate machine,

with one thread of control used for each methodology interpreter.
5.9 SSL Virtual Machine

Much work has been done previously on virtual machines for object orientated-
programming languages. Two examples are Smalltalk (Deutsch and Schiffman, 1984,
Goldberg and Robson, 1983) and Java (Lindholm and Yellin, 1997). The requirements
for the SSL-VM were found to differ significantdy from the virtual machines adopted in

other programming language systems. The differences are:

+ Each operation in the interface of a class can be used as an entry point.

S The protorype has been primarily built to test the efticacy of the NMOOT methodology representation scheme. The
prototype implements the NMOOT core and persistent store as a single process, without the use of threads.
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o There is only a single thread of control required in the SSL-VM. However multiple
instances of the SSL-VM can be active at the same time processing messages from a
common pool of SSL objects.

+ Support for persistent objects and object-level locking is required.

+ SSL is designed to be a specification language, and thus does not require many of the
facilities of general-purpose languages.

« Lixisting virtual machines are too low-level, in terms of abstraction.
Appendix VII describes the implementation of the SSL-VM.
5.9.1 Requirements of the SSL Virtual Machine

The SSL-VM is required to provide support for a multi-user environment. The SSL-VM
must ensure that separate updates are not being performed on the same object at the
same tume (ie. that mutual exclusion is guaranteed, at the object level). This allows the
possibility of a model being open for writing, but individual components in it being read-
only (locked). A collorary of this is that the SSL.-VM must be able to detect and resolve

deadlock situations.
5.9.2 Architecture of the SSL Virtual Machine

The SSL Virtual Machine has a stack based architecture (Figure 5-11).

SSL virtual machine

Figure 5-11 - Architecture of the SSL virtual machine

The stack stores message arguments and results, which allows nested message calls. It is

also used to perform expression evaluation. All pushes onto the stack are balanced by
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pops off the stack. The SSL-VM has an instructon counter which always points to the
next SSL-BC instruction. The instruction counter is modified via instruction execution. It
has three special registers (methodology registers) that each contain the SSL ID of the
current project, model and diagram. These registers correspond to the SSL variables

current_project, current_model and current_diagram respectively.

The SSL-VM provides explicit support for all the types available in SSL. All values are
stored with the most significant byte first. The sizes for the SSL-VM types correspond to
the sizes of equivalent types on the development architectures used (various 32-bit

platforms). No #nal, long term, decisions about the sizes of these types have been made

The SSL-VM types are shown in Table 5-1.

Type Size Comment

Boolean Onebyte  Value is stored in the least significant bit

Integer Four bytes

Real Eight bytes

String - Null terminated sequence of bytes

Collection Four bytes  The unique SSL ID of a collection

terator Eightbytes An SSL ID of a collection and an offset into the
collection

Object reference Four bytes  The unique SSL ID of an object
Table 51 381 UM opes

5.9.3 SSL Virtual Machine Instruction Set

The SSL-VM instruction set includes instructions for stack operations, arithmetic
operations, string operations, comparison operations, conditional branching, issuing
message calls and manipulating collections. Instructions may operate on the stack, local
variables, message arguments, object attributes, the instructon counter or methodology

registers.

There are 29 instructions (Table 5-2). A complete list of all SSL-BC instructions, with

explanations is given in appendix V.

Instructons on the SSL-VM have an address mode and a type mode. The address mode

specifies the location of any operands.
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There are three address modes:

« Implicit (no operand for this instruction)

« Immediate (operand follows the instruction)

« Indirect (a reference to the operand follows the instruction)

The type mode is used to specify the data type that the inswuction will operate on. The

type modes supported on the SSL-VM include: boolean, integer, real, string, collection,

iterator and object reference.

DBG  Debugprint RTN  Return from message
PSH  Push item onto stack POP  Pop item from stack
ADD  Add SUB  Subtract

MUL  Mulaply DIV Divide

MOD  Integer modulus NEG  Negation

CNV  Convert type AND  Legicaland

OR Logical or NOT  Logical negation

EQ Equal NEQ Not equal

LSS  Lessthan GRT  Greater than

BRT  Branchif true BRF  Branchif false

MGS  Message send CMG  Create message

SMG  Scoped message send FNT  Frontof collection
END  End of collection I™  Item from collecion
PRJ  Current project MDL  Current model

DGM  Current diagram
Table 5-2  SS1.-BC instruction set

5.9.4 Internal Representation of Classes, Objects and Method's

All SSL classes and SSL objects have a unique ID. The creation of the unique IDs is the
role of the persistent store. The design of the internal representation of SSL classes and

objects relies heavily on the proxy pattern (Gamma ef 4/, 1995). The SSL class proxy
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encapsulates a reference to the Methodology interpreter class client and an SSL class ID.
The SSL. object proxy encapsulates a reference to the Methodology interpreter object
client and an SSL object ID. All references to SSL objects and SSL classes are managed

through proxies. The reference counting mechanism is implemented via the proxies.

Representation of SSL classes
Figure 5-12 shows the components of an SSL class. An SSL class consists of a unique ID,

a description of its attributes, a vector of super-classes, a method lookup table and a

method table.

Figure 5-12 - SSL class

The SSL class ID corresponds to the unique fully qualified name of the class. An ID is
used instead of the complete class name to minimise the memory required to store SSL
classes and SSL class proxies (which also contain an SSL class ID). The attribute
description defines the number of attributes of each type the class has. Iiach class also
contains a vector of all direct and indirect super-classes of the class. The super-class
vector is a tlattened version of the inheritance lattice with respect to the class and is
generated by the SSL. compiler. This approach implies some redundancy but simplifies
class instantdation and the implementation of late binding. The method lookup table is a
map of operations and SSL class proxies. The table contains all operations (including
those inherited from super classes) accessible from the class. Each operation is mapped
to an SSL class proxy that identifies where that operation is implemented. Finally the
method table is a map of operations and methods. This table contains all the operations

implemented (i.e. the methods) in this class.
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There are several advantages to this design:

o Accessing a leaf class in an inheritance hierarchy will not cause the retrieval of the
entire inheritance hierarchy from the persistent store. The use of SSL class proxies

ensures that a class will only be retrieved when it is actually needed.

o The method lookup table simplities the implementation of late binding. The onus of

building the lookup table, however, is on the compiler.

Representation of SSL Methods

Figure 5-13 shows the components of an SSL. method. Fach method has a name,

arguments, local variables and a method body.

SSL Method

- % SSBC code

Constant strings

ey

e B i i it T R et
R o T S i i

Figure 5-13 - SSI. method

The method name is the same as the name of the operation that the method implements.
The argument description defines the number of arguments of each type the method has.
The local variable description defines the number of local variables of each type that the
method uses. The method body consists of two parts: a block of SSL-BC code and a list
of constant strings. The constant string list contains constant literal strings and class
names that are used in the method. The block of SSL-BC code references a constant

string in the string list via an absolute offset to the first character in the string.

Representation of SSL objects

Figure 5-14 shows the components of an SSL object. It consists of a unique ID, a proxy
for its class, its state and object proxies corresponding to the super classes of its class.
The unique ID defines the identty of the object. Creating new IDs is the responsibility of
the persistent store. The class of the SSL object is represented by an SSL class proxy. The

state of the object corresponds to the values of the attributes detined by the class of the



object. The super-state of the object is a vector of SSL object proxies that correspond to

instances of the direct and indirect super classes of the class of the object.

SSL obééct

Figure 5-14 - SSI. object

5.9.5 Processing Messages on the Virtual Machine

Figure 5-15 is a more detailed view of the methodology interpreter shown in Figure 3-10,
Figure 3-11 and Figure 5-10. It depicts the steps taken and the components involved in
processing a message with the methodology interpreter and SSL. virtual machine. The
components involved include the SSL interpreter, the SSL. Virtual Machine, SSL classes
and SSL objects. The reader is directed to appendix VII for a detailed description of the

implementation of the SSL virtual machine.

The SSL interpreter is responsible for managing the execution of a method on the virtual

machine. It does this by executing the SSL-BC instructions contained in a method body.

The steps taken to process a message are illustrated in Figure 5-15.

1. The SSL interpreter receives a message and a proxy to the SSL object to which the
message has been sent. The interpreter obtains a reference to the SSL object via its
proxy. It then pushes the SSL. ID of the object onto the stack of the Virtual machine

(this is the implicit ‘self’ argument).

2. The SSL interpreter requests the object to accept the message. The result of the
object accepting the message will be: a) a method suitable for processing the message
and b) the state of the object. The state of the object is part of the context the

message will be processed in.



Figure 5-15 - Processing messages on the SSI.-VM
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In order to find an appropriate method the object asks its class to bind the message
to an appropriate method. The object first obtains a reference to its class via the SSL
class proxy it contains. It then delegates the method binding responsibility to its class.
The class uses its method lookup table to search for a proxy to the class that defines
an appropriate method. If the proxy refers to a super class then the method will be
fetched from the super-class method table. Otherwise the method is fetched from the
local method table. Note that the code generation and type-checking steps of the
compilation process are responsible for ensuring that there will always be a method

to bind to a message.

The SSL interpreter receives the method and the state of the object as a result of
steps 2 and 3. I't builds the context within which the method will be executed. This
context is composed of three parts: a) the actual message arguments b) space for any
local variables the method requires and c) the state of the object. The method and

context are then used to execute the method.

The SSL-VM performs a fetch-decode-execute cycle where each of the instructions in
the method body is executed on the virtual machine in turn. These instructons will

cause changes in the Virtual machine instruction counter, stack, and in the context.

The method execution finishes once a RTN SSL-BC instruction is executed. The SSL
interpreter then evaluates the object constraint to see if the object is still valid. If the
constraint is satisfied then the object is updated with the new state that is contained in

the context. Finally the result of the message is returned to the tool manager.

510 Summary

This chapter has described the development of SSL.. The goals of SSL and the M@OT

meta-model (the facilities of which SSL provides) were discussed.

SSL is an object-orientated language that supports a subset of the facilities of a general

purpose programming language. It is a statically type checked language that provides

clean separaton between ‘class interface’ and ‘class implementatdon’. SSL supports

dynamic binding, multiple inheritance, built-in primitive types, polymorphic collection

and iterator types and provides a module system.




Chapter 6

The Core Knowledge Base and Generic Object Orientated
Knowledge Base

Myth #9: Software re-use will just happen.
Tracg 1988
6.1 Introduction

This chapter presents two libraries of re-usable methodology semantic description
components that have been developed as part of this research. The libraries are called the
Cere Knowledge Base (CKB) and the Generic Object Orientated Knowledge Base
(GOOKB). The primary objective of these two libraries is to provide a pool of re-usable
components that methodology semantic descriptons will be defined as extensions of.
There are two major goals to be realised by this approach. Firstly, the effort required to
define new methodologies is reduced. Secondly, all methodology definitions share a
common sub-set, which provides distinct advantages in terms of reasoning about the

methodologies and re-using software engineering results.

6.2 Context of the Core Knowledge Base and the Generic Object Orientated
Knowledge Base
The information processed by MOOT can be classified into three groups:

+ Meta-descriptions of ‘methodology’ and software engineering approaches (meta-

models of methodology, object-orientated development, information engineering etc.).

» Descriptions of methodologies built using the methodology development sub-system

(specific methodologies).

+ Descriptions of software built using the CASE tool sub-system (user projects).

These categories of information are arranged in three tders, as shown in Figure 6-1.
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Meta-Model of Modelling Language

V Methodology Development sub-system
Meta-Model of Methodology

A Methodology

A Modelling Language

User Project : Instance of a Methodology

A Model

CASE tool sub-system

Figure 6-1 - The three tier structure of the information processed by
NMOOT




The methodology engineer’s view is from the top where methodologies in ter two are
defined in terms of der one. This view is provided by MOOT’s methodology engineering
sub-system. The software engineer’s view is from the bottom where a user project in ter

three is defined in terms of ter two. This view is provided by the CASE tool sub-system.

In the top der of the structure depicted in Figure 6-1 is the meta-model of methodology
described by the Core Knowledge Base (CKB). The classes at this level define an
abssracton of methodologies. The Generic Object Orientated Knowledge Base
(GOOKB), which is an extension of the CKB for object-orientated methodologies, is

. . 2
also defined in ter one®.

Methodology engineers create their own methodologies in der two by sub-classing SSL
classes within tier one. They may also inherit from other classes previously defined in ter
two. All methodologies in tier two have classes from the CKB defined in tier one in

common as they are all directly or indirectly defined in terms of it.

Software engineers build descriptions of software artefacts at tier three by instantating
the SSL classes defined in tier two. Thus the semantic content of a user project consists

of a collecdon of SSL objects.
6.3 Development of the Core Knowledge Base
The Core Knowledge Base has been designed by adopting a meta-modelling approach.

6.3.1 Meta-Model of Methodology

Each methodology has a collecdon of modelling languages, documents and provides a

process.

A software engineer uses the modelling languages supported by a methodology to express
and investgate the relevant abstractions in the problem domain. Various modelling
languages are available to the software engineer to use. Each modelling language has an
associated method, which at least is ‘do not break the rules of the modelling language.” It

may also include quality guidelines and direction for how a modelling language is best

32 Other sottware engineering approaches can also be meta-modeclled and supported i tier one. This work s discussed
mn section 9.4 - Turture Work.
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applied to build models of software. The method subsumes the guidelines, suggestions
and strategies that may be contained in the description of the modelling language. The
evolution of software development methodologies has resulted in many methodologies
providing the same modelling language with variation in interpretation, application or

appearance (Henderson-Sellers, 1996).

Documents are produced during the process of applying a methodology to a particular
problem. These documents may vary in terms of scope, content and their intended
audience. The structure of these documents is not necessarily defined by a particular
methodology. A Company may choose to adopt an in-house standard for the

documentation or may choose to use a more widely used document standard.

A software engineering process is a suggested framework that the software developer
applies whilst building a software artefact. The process may define the order with which
models of the software are derived and may also provide quality guidelines. Ideally the
process provides a systematic approach to constructing models. It may include guidelines
regarding the suitability of modelling languages for particular tasks and suggestions and
strategies for problem solving using the methodology. The process of a methodology is
more than a suggested software development life-cycle. It also subsumes the guidelines,

suggestions and strategies that may be contained in the description of the methodology.

Figure 6-2 shows a meta-model of methodology. FEach Methodology has a Process, zero or
more Documents and one or more Modelling [.anguages. Each Process, Document and Modelling

Language may be used in more than one Methodolo gy.

— g - —
i Document e Methodoiogy 1 i Process
: — - e ST —
o . e (RS R
e
¢
Modelling Language 1 :  Method
1
Figure 66 2 Methodology mera-model

The relation between Methodology and Process and between Modelling 1 anguage and Method

has been modelled with an association in Figure 6-2. Henderson-Sellers (1996) notes “We
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have seen that, on the one hand, a process has three constituent parts, one of which is
methodology and, on the other hand, that a methodology must contain a process. These
two reladonships between methodology and process are, on the face of it, contradictory.
Which is right? Well they both are!” It is expected that software engineering processes
may be attached to more than one methodology and methods to more than one
modelling language. Moreover it is possible that a modelling language may be used in
associadon with a different method, when used to model different classes of problem.
For example the method used to apply a state transition diagram in the context of Booch
object-orientated design, is likely to be different to the method used to apply the same
modelling language as a representatonal basis for Computer Assisted Instructon systems
(Feylock, 1977). The research to date has yet to consider meta-modelling of software
process and method in detail. Such research closely is related to the cognidve support of

software engineering discussed in secdon 9.4 - Future Work.

Models do not exist in isolaton. Different models can be used to investigate different
dimensions of a problem. There may be relations between parts of a model and relatons
between different models in a software engineering project. For example a package on an
UML class diagram may be exploded into a separate UML class diagram. Transigons
correspond to the possible paths of navigation in a methodology. The classes Intra-Model

Transition and Inter-Model Transition in Figure 6-3 represent these navigation paths.

Process |

Intra Mode! Transition

Figure 6-3 - Transitions

6.3.2 Meta-Model of Modelling Language

A modelling language provides one or more diagrams (for example a DFD model

consists of a context diagram, DFD diagrams as well as process specificadons). Diagrams
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may contain zero or more model elements. Specialised model elements include concept
(such as a class), relaton (such as an association between two classes) and composite
(such as a Coad and Yourdon Subject Area). Model elements must exist in at least one
diagram but may be used in several others. Figure 6-4 shows a meta-model of modelling

language.

Modelling Language

Concepts, relations and
1. composites must belong
" to at least one diagram

1
0.” 0.~

> Diagram k>
N

Mode!_Element <> 9.%F % composite should have at
4 least one item in it, either a ‘

concept or another composite

i
|

1.0 1 1.7

Relation <> Composite > ; Concept

L
0." 1“\'\\_\\ 0.* i ? 0" 0. 0.*
\\

1 = 3 1
> Relation_Terminator >

Figure 6-4 - Meta-model of modelling language

A modelling language consists of one or more diagrams. Each diagram is part of one
modelling language. An instance of Diggram contains a collecdon of instances of the
modelling elements that are supported by the modelling language. A composite is a group
of concepts and relatdons and other composites. Each modelling element must be used in

atleast one diagram.

Relations have been represented with two classes, Re/ation and Re/ation Terminator in Figure
6-4. The Relation Terminator class models the end points of a relation. It may be sub-
classed to implement specialist roles (e.g. whole, part, message sender, message receiver
etc). Each instance of Re/ation Terminator knows the relation it is part of and the concept it
attaches itself to. A Relation object contains instances of Relation Terminator for each
endpoint of the reladon. Figure 6-5 illustrates the structures involved in representng

relations with an example that uses the classes in Figure 6-4.



(=)

' Class B :

 Part “Helation -
Terminator |

5
- Whole :Eelation

Terminator | T

Figure 6-5 Representing a whole-part relation

Figure 6-5 shows a whole-part relation expressed using Coad and Yourdon. This is a
directed binary relation where one class (4 in Figure 6-5) takes the role of ‘whole’ and the
other class (B in Figure 6-5) takes the role of ‘part’. The two classes are represented by
instances of Concept. Each end of the relaton is represented by an instance of Relatzon
Terminator. The whole-part relaton itself is represented by an instance of Reltion. Figure
6-5 describes the whole-part relation only in terms of the classes in Figure 6-4. In practice
descendants of classes defined in the GOOKB, or in extensions of the GOOKB, would

be used to represent such a relation. The object structure, however, would be the same.

Figure 6-6 shows how a simple diagram that represents the composite pattern (Gamma ef

al., 1995) could be represented with instances of the classes in Figure 6-4.

The Coad and Yourdon class diagram in Figure 6-6 (a) involves three concepts (the
classes A, B and C) and three relatons (an inheritance relaton between class .4 and class
B, an inheritance relation between class .4 and C, and a whole-part relation between class
Aand C). All of the concepts and relations belong to a diagram, which in turn is part of a

‘Coad and Yourdon class diagram’ model.

Figure 6-6 (b)(i) shows the objects involved in representing the inheritance relation
between class .4 and class B in Figure 6-6 (a). Each end of the relation is represented with
an instance of Relation Terminator”’. The inheritance relation itself is represented with an
instance of Re/ation. Figure 6-6 (b)(if) shows a similar collection of objects that represents
the inheritance relation between class .4 and class C. The object structure highlighted in

Figure 6-6 (b)(ili) represents the whole-part relation between class .4 and class C.

e names of Jusses i subsequent diagres relating 1o the CKB and GOOKB will be prctined with the name of the

Bawow]e d_l_'& brase thew LRI LI FIEN 111

160



F
' % CKB:Relation Terminaor *

-,

i

>
SWhoie rt re!alloﬂetween A andVC
: CKB::Relation li

oMo vroeoihl
. CKB:Relatipn Terminalor

C.
————— @ CKB::Conceptfg

B
) , —
CKB:Eoncegl
B..g.
iis Aas asuperclass of B ; iii; A@sasuperclassof C:
GKB:Relaton_Tarmynater . LB Relatign_Terminaior !
b_._;7~_____hh,4'Elj___-_ .............................. lﬁl ....... .
< N - ~
. /- L
|inh.er tlanca\%a.ﬁb.r; between Aand B '!nﬂher'i'ia'ncé !r!Emdﬁ betwee.ﬁ'A and G
| ;. CKB;;Refation . CKB:;Aefation .
|
. . [ [ ¥ - -
d &
. - rd
B as a subclass of A Cas asubclassof A
CHB: FAelaton Terminato! . . C%B;Relabon_Termenaer -
F .
.
_:_QKEIL:MuUeIIing E :CKB:;Dségram‘ o
) Language X

Pigure 6-6 Represennng a class dirpram wath instances of classes

from the CKB

The collection of Relation Termunator objects that is maintained by each instance of the

Concept class in Figure 6-6 corresponds to the roles that each concept plays in the diagram

of Figure 6-6 (a). For example, object .4 in Figure 6-6 (b) has links to three Relation

Terminator objects. They represent the roles class .4 plays in the diagram of Figure 6-6 (a) |

(A as a superclass of B, A as a super-class of C, A as a part of C).

The Coad and Yourdon ‘class diagram’ model of Figure 6-6 (a) is represented by the two

objects in Figure 6-6 (b)(iv). The instance of Modelling 1 anguage represents the whole

model. This object has a link to a single instance of Diagram. The Diagram obiject

maintains links to the three Concept objects, and the three Directed Binary Relation objects.
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Figure 6-7 shows the meta-model of modelling language (Figure 6-4) in more detail. The

Critic class in Figure 6-7 is discussed in section 6.3.3.

. CKE: Modelling La.r.*:au.age .
AdaCragram(d . CK3 Diagram} CKB:Critic

L ”CkB.::l.C.rulc.
state Boglean

R . 150K - Boolean
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o
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Frgure 6070 Dennled meta model of modellnyg language

The meta-model in Figure 6-7 has been specialised in Figure 6-8 with additional classes
that represent the various types of relations that may exist. They have been classified in

terms of the number of concepts involved in the relation and the direction of the relation.
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The relations supported in Figure 6-8 include Bznary Relation, Directed Binary Relation, One to

Many Relation, Many to Many Relation, Directed Many to Many Relation and Nary Relation.

Relation Terminator has been sub-classed to provide a terminator that additionally provides

a role name and cardinality. Figure 6-9 shows the classes in the Core Knowledge Base.
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6.3.3 Handling Exceptional Situations

The user performs many logical actions whilst applying the methodology process to build
a description of their software artefact. These actions are related to tasks such as creating
and updating models, searching the current and existing projects, checking their work for
correctness, completeness, quality and so on. The sizuation in Figure 6-10 corresponds to

the response to a request made by the user.

) User Ioc_licat actronﬁ@h Inference N me_ssage@_ ﬁ;::g:ﬁ:?gg
‘%}* Interface e e Mechanism s e Bas s
; result situation B e
A AR R R S AR e e B3 .

Figure 6-10 - Situations

What occurs in response to the generaton of a situaton is under the control of the
inference mechanism and is a funcdon of the situation itself. It may be that a simple
warning is passed to the user as a result or that some form of auto-correction is applied.
For example consider the situation where a class is created with a name that is in use by
another class. It is up to the methodology engineer to allow or disallow this situation.
They may decide that this is a fatal error and disallow it. Or they may simply change the

requested name automatically and report the situation to the user.
Some of the situations and responses that might occur include:

+  reporting an erroneous state to the user

«  suggesting corrective action to the user

«  performing auto-correction

« providing comments about the suitability of the users project, model or model

element

« providing a link to an aspect of the methodology process or the method of a

modelling language

The inference mechanism in Figure 6-10 is outside the scope of the definiton of
methodologies that existing meta-CASE tools provide. The ARGO project (Robbins ez
al., 1996, 1997, 1998) has considered some of these issues with the development of a
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methodology dependent CASE tool called ARGO/UML. The ARGO project refers to
the facilities described here as ‘cognitive support’ for software engineers. Implementing

these facilities in the CKB was relegated to future work once the existence of the

ARGO/UML project was identified.

Simple explanation facilities have been implemented with the Critic class in the CKB. The
majority of the operations in the CKB return a result that is an instance of the Critic class.
Critics are used to signal the result of an operation in the CKB. The Critic class hierarchy

given in Figure 6-11 is an instance of the composite pattern (Gamma ez a/, 1995).

CKB:Cntic
state : Boolean
igOKI) : Boglean

‘Exptain(} ; Stang
changeSiatusi{newStatus | Boolean)

CKB SimpleCriic o 'CKB:CompositeCriic
descriphion - Steng T T Exptan() : String D ‘
Explain() : String

changeExplanation(newDescription : String)
Frgure 6-11 - Crinies
The abstract class Crztic in Figure 6-11 encapsulates a boolean flag that signals the success
or failure of an operation. The SimpleCritic class extends the Critic class with a string that
contains an explanaton. The explanation could be the reason an operation was
unsuccessful or perhaps some feedback relatng to the success of an operation. The
CompositeCnitic class maintains a collection of other critic objects. Composite critics are
used in situations where the success of an operation is dependent on the result of several

sub-operations. The explanation given by a composite critic is the concatenation of its

component critic’s explanations.
6.4 Development of the Generic Object Orientated Knowledge Base

This Generic Object Orientated Knowledge Base (GOOKDB) is an extension of the CKB

that contains classes that represent concepts germane to object-orientated methodologies.

All  object-orientated methodologies encompass the concepts of encapsulation,
information hiding and hierarchical decomposition, and are founded on the concepts of
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classes, objects, inheritance, message passing and polymorphism. The nature of the object
model is consistent across what is traditionally described as the four phases of the
software development life-cycle: analysis, design, implementation and maintenance. There
is a basic core of commonality between all object-orientated analysis and design
methodologies due to this consistency even though each methodology has its own

variations in its expression of the ‘object model’

“The OMG Object Model defines a core set of requirements that must be
supported in any system that complies with the Object Model standard. The
set of required capabilities is called the ‘Core Object Model’ ”

(OED, 1992)

This statement indicates that object-orientated methodologies have properties that are

generic and can be modelled with the generic object-orientated knowledge base.

The method used to derive the classes in the GOOKB was designed by consideting
existing comparisons of object-orientated methodologies. The objective was to identfy
potential methods for the comparative analysis and subsequent meta-modelling of object-

ortentated methodologies.

This research pre-dates the COMMA project, the development of UML and submissions
to the OMG OA&DF, all of which have a similar objective — understanding the common

aspects of object-orientated methodologies.
6.4.1 Object-Orientated Methodology Comparisons

Many object-orientated methodology comparisons have been conducted in the past.
Notable research includes (Arnold ez a/, 1991; Brinkkemper ez a/, 1998; de Champeaux
and Faure, 1992; Cribbs ez a/, 1992; Fichman and Kemerer, 1992; Fung e a/, 1997,
Henderson-Sellers and Bulthuis, 1996a, b, 1997, Henderson-Sellers and Firesmith, 1997a;
Hong et al., 1993; Hutt, 1994; Loy, 1990; Monarchi and Puhr, 1992; Object Agency, 1998;
Rumbaugh ez a/, 1991; Sharble and Cohen, 1993; Taylor, 1998; van den Goor e al., 1992,
Wirfs-Brock and Johnson, 199@; Yourdon and Argila, 1996).
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Existing methodology comparisons were analysed, evaluated and conwasted. A taxonomy
of object-orientated methodology comparisons was subsequently derived as a result

(Dasari et al,, 1995; Mehandjiska ez a/, 1996a-c) and is presented in Figure 6-12.

OO comparisons

H
H

s
v \ 4
Evaluate OOM performance Compare features
provided by OOM’s

5

i
# 3
i i

i
i
$

Build the same system with Informal comparison Formal comparison
different methodologies = ;
Identify a common superset Meta-model OOM's
Key: %g’
A Identify common ‘features’ Identify a checklist of
Approach modeling tools

Figure 6-12 - Taxonomy of object-orientated methodology
comparisons

The purpose of methodology comparisons that have been conducted in the past was to
either evaluate the performance of different methodologies or to compare and contrast

their features. Attempts were also made to establish a common understanding of object

technology.

Typically the performance of an object-orientated methodology has been evaluated by
modelling a single problem with multiple methodologies and comparing the resulting

analysis, design and implementation models.

The features provided by object-orientated methodologies have been compared formally
by meta-modelling or informally by identfying common modelling tools and features.
Comparisons of object-orientated methodologies have been classified according to the

approach taken to the comparison and the objectives of the comparison.
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The consideration of object-orientated methodology comparisons has highlighted the

following issues:

Each methodology has its own set of definitions, processes, notatons and tools.
Concepts may be named differently for each methodology and the richness of

support of a concept may vary between methodologies.

Comparisons that involve a simple matching of ‘terms’ are inaccurate as many
methodologies use the same ‘term’ but with disunct interpretation. Ideally a
methodology comparison should involve matching the defzmition of ‘terms’ as many

methodologies support the same concepts with different names.

Comparing methodologies ‘two by two’ is time consuming, as the number of discrete
methodology comparisons (N¢) for a set of Nz methodologies is large (Figure 6-13).
For example, 1225 discrete comparisons would be required to evaluate the fifty
(Muller, 1997) object-orientated methodologies that existed by 1995.

n=Nm

N
Ne= 3 (n=1) or Ne=">-(Nm-1)
n==1

figure 6-13 Number of compurtzons for N methodulogtes

Researchers evaluating methodologies are often biased in their review results as they
attempt to evaluate methodologies within the context of their own development

background.

Many comparisons initally involve identifying a genernc list of properties that a
methodology should support. Methodologies are then compared to this generic list
of properties. Different researchers may choose a different set of representative
properties and may use different definitions for those properties. Different
comparison results are produced due to the difference in the choice of representative

concepts and defnitons.
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6.4.2 Method used to Design the Generic Object Orientated Knowledge Base

Based on the review of the methodology comparisons it was decided that the method

used to identify the components in the generic Object Orentated Knowledge Base

would:

Use a formal meta-modelling approach. This is an obvious decision given the desired

result is a meta-model.

Use a small sub-set of methodologies. Whilst meta-modelling every object-orientated
methodology would produce an appropriate meta-model it was decided that a small
subset would be sufficient. Existing comparisons support the view that there is a
high degree of similarity in the interpretation of object-orientated principles amongst

object-orientated methodologies.

Be carried out relative to a set of methodology independent object-orientated terms.
This was done to avoid a two-by-two approach to meta-modelling. The terms chosen

consarute a first-guess at the components expected in the meta-model.

The method adopted is:

1.

.(J‘I

Idenufy candidate generic concepts defined by the Object Management Group
(QED, 1992; OMG, 1991, 1992).

Identfy equivalent OMG concepts in a subset of object-orientated methodologies.
Each methodology defines and uses distinct terms for the fundamental object-
orientated concepts. The concepts identified by the OMG provide a consistent

vocabulary that is not methodology specific.
Model the identfied concepts in a single homogenous object-orientated meta-model.
Identify the portion of the meta-model that is not methodology specific.

Re-define the generic portion of the meta-model as an extension of the Core

Knowledge Base.
Implement the GOOKB in SSL.
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In-house experience and knowledge of object-orientated methodologies, especially those
that were new (such as UML and OPEN) and were not considered in the literature

dealing with methodology comparisons, was used throughout the process.

The results of the meta-modelling work in steps 1 — 4 is presented in (Mehandjiska ef a/,
1996a-c). The remainder of this section will cover the last two steps and present the inital

design of the GOOKB as an extension of the CKB.
6.4.3 Generic Object Orientated Knowledge Base

Figure 6-14 shows the classes in the GOOKB that are used to represent the object-

orientated concepts of class and object.

CKB::Concept
Attachis - CKB:Reianon_Terminator) CKB:.Crtic
' Detach(r : CKB::Relation_Terminator) : CKB::Critic

GOCKE::Objecy

’ G0.0RB::C.Ia.ss T create(theClass Class)
"create(name - String) ' _|s“v.a|.d.(] ’ CTIIF .
isvalid() - CKB::Critic i
changeClassName(newName : String) : CKB::Critic

. . .className() : String

e -1 add(a : GOOKB.:Attribute) - int
100 add(o : GOOKB.:Operation) . int
instantiate{) . GOOKB::Object
newAttribute() : GOOKB::Attribute
newOperation{) . GOOKB::Operation

GOOKE: Intertace

1
GOOKB::(.)pera.tlon

.0
, GOO«B:Message " CKB:Property | GOOKB::A tribute
createdn | Ogeration)
1svaledf) : Cntc
GOOKB::BehaviourProperty GOOKB::Stru;:lurePréperay .

create(name : Striry) sreate(name - String)

isvalid() : Critic isvalid() : Critic
Fagure 6-14 - Representmg classes and objecrs
The GOOKRB introduces four sub-classes of Concept. These are Object, Class, Interface and
Message (Figure 6-14). It also introduces two direct sub-classes of Property. These are

BehavionrProperty and StructureProperty. Operation and Astribute are defined as sub-classes of

BehavionrProperty and StructureProperty respectively. An Interface consists of a collecton of
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Operations. A Class has a single Interface and has zero or more Attributes. A Class may have

zero or more instances. Each Obyect is an instance of a single Class.

Figure 6-15 shows the classes in the GOOKB that are used to represent inheritance,

aggregation and association.

CKB::Relation_Terminator
Create{m : CKB:Concept, r : CKB::Relation)
Destroy()
DetachConcept()
DetachRelation()
i getConcept() : CKB::Concept
' getRelation() : CKB::Relation

GOOKB::SubType GOOKB::SuperType

GOOKB:'Superciass
C - |§vél|d[} : CKB:Cribe
GOOKB:Subclass . ‘\ -
1svaid(} CKB:Crtie

h CKB:: Benia ryR JIétlbn o
.geiAssociates()

'CKB:Directed_Binary Relaton

' isV.éIid(.j " CKB:Critic

GetStart() : CKB::Relation_Terminator

GetEnd() - CKB::Relation_Terminator

. A .GOOK.B::.'nhérr:ance
CKB:Ordmary Relalon Terminaior isvahd() CHB Crtc

: cardinality : Collection< integer >
rolename : String

getFolename() ; Sinng
getCaring iy} : Caollection<imegers

GOOKS: Part
1svalidi) : CR3 -Crihe

GOOKB:Whole <~
isvalid() : CKB::Critic

. GOOKB::Asséc;atlon
1svald{) : CKB:Crtie

GOOK-E..WHoIe Pan
.|5val|cj() CCkKS:Crtic

Fraure 6-15 - Representing object onentated relations

Association 1s defined as a sub-class of Binary Relaon. Each end of an association is an

instance of Ordinary Relation Terminator (or an instance of a sub-class). The Ordinary Relation

Terminator defines a role name and cardinality. Inheritance is defined as a type of Directed

Binary Relation. Subclass and Superclass represent the terminuses of an inheritance relation.

Aggregation has been defined as a Directed Binary Relation and as a specialised association.

Whole and Part represent the terminuses of an aggregation relation.

Figure 6-16 shows all of the classes that are defined by the GOOKB.
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CKB Concept
Astach(r : CKB::Relation_Terminator) : CKB::Critic

e Detach(r : CKB::Relation_Terminator) : CKB::Critic

isvalid() : Griic “createfname : String)

e 77w, ClassName() © String

1 add(a : GOOKB::Attribute) : int
add(o : GOOKB::Operation) : int

instantiate() : GOOKB::Object

~ GOOKB::Operation

GOOKB.:StructureProperty
create(name : String) -
1svalid() : Critic

CHKd::Relatar: Termminator
Create(m : CKB::Concegt, r ; CKB . Hetation)
Destroy()

DetachConcept()
DetachRelation()
getConcept() : CKB::Concept
getRelation() . CKB::Relation

i GOOIKé:t'SUDType ' GOOKB::SuperType

GtJ.OK.B::éupercla.ss
1isvand() - CKB::Cnuc
™

GOOKB: Subclass

isvalid() : CKB::Critic |

newAttribute() . GOOKB::Attribute
! newOperation() : GOOKB::Operation

S0
0"

! " 1GOOKS: Object

- GDOKE:Attribute - crearé.f.meCI.ass.ClassJ )

isvalid() : Critic

CKB Bmary Aelation
g'el'Assbc'l'a'ses{] )

CKB::.Dir.ecié.U Emary Relalion
1sValid() : CKB::Critic
GetStart() : CKB::Relation_Terminator

GetEnd() : CKB::Relation_Terminator

GOOKS Inhentance

CKB: Orchrary Relation Terminator
cardimahty : Colietion< integes >
solename : Sinng <

getholename() | String
getCardinality() : Collecton<iniggers

GOOKa:Part
gvahd) : CKB..Critc
GOOKB:Whole  «
’ ;suatau{] . CKB::Critic

GOOKB::Ob]ecLModeI

1svailt{) 1 CKB: Cntic

GODKS:'.Assoﬁmatuon .
:swalid(y . CKB:Crnitg

GOGK.B.:.:Who.'e_ Part
o I5vatd(] CKB.Critic

CKE:Modelling Language T 1 oKB Diagram

e GOOKE: Object Diagram

{1pure 6-16 - The Genenc Object Ornentated Knowledpe Base
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Figure 6-17 (a) shows a Coad and Yourdon class diagram that represents the composite
pattern (Gamma ez a/, 1995). Figure 6-6 previously showed how instances of classes in
the CKB could be used to represent this model. Figure 6-17 (b) shows how instances of
the classes in the GOOKB could also be used. The object structure described in Figure
0-6 (b) and Figure 6-17 (b) is identical. The only difference is the class of the objects

involved.
a) A
3 =
‘ B C
GOOPE_::CEass
. GOOKB Buperclass | GOOKB :Siperclass ™ sookB Part

./'.

: GOOPE:ln heritance

o0 nhermance o o,
) : Part ﬂ )

B

" ol sniass o0 Soveians " o whoe

E R .-

. GOO?Zg::C!ass GOOP'(E:;CIass e
143 e e et '
Modol I Disoram

Figure 6-17 - Represennng an object model with classes from the

GOOKB
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The objects in Figure 6-17 (b)(i) represent the inheritance relation between class .4 and
class B in Figure 6-17 (a). The objects in Figure 6-17 (b)(ii) represent the inheritance
relation between class .4 and class C in Figure 6-17 (a). The objects in Figure 6-17 (l)(iii)

represent the whole-part relation between class .4 and class C in Figure 6-17 (a).
6.5 Implementing the Knowledge Bases

A conventon has been adopted for the SSI. module structure used to implement the
knowledge bases. Each methodology knowledge base is partiioned into the following

modules, where KB Name 1s the name of the knowledge base.

KB_Narme KB_Name_Model
KB_Name_Model_Element KB_Name_Transistion
KB_Name_IDocument KB_Name_Process

KB _Name_Critic

Figure 6-18 shows the SSI. module structure of the CKB and GOOKB.

ke, & ;
T Model i _
- N
P B — GDOKE Model
s ~_ Element :

Ca Ve

- CxrB Mode: -

The GOOKB extends the CKB_Mode/, CKB_ModelF:lement, CKB_Transition and
CKB_Critic modules. The GOOKB_Patterns module provides support for patterns and is

described in section 8.3 - Supporting Patterns.
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6.6 Summary

This chapter has presented the development of the Core Knowledge Base (CKB) and the
Generic Object Orientated Knowledge Base (GOOKB). The CKB was derived using a
meta-modelling modelling approach and implements a meta-model of methodology. It
also provides simple facilities for cognitive support. The GOOKB was derived by meta-
modelling and implements a meta-model of concepts that are manifest with all object-

orientated methodologies

One of the significant benefits of the Object-Oriented paradigm is the support for re-use.
Re-use of methodology components is supported through the inheritance and
aggregation mechanisms of the SSL class descriptions. The support of re-use in MOOT
is fundamentally different to that of other Meta-CASE environments, which only support
accidental re-use. The re-use strategy of MOOT is a reflection of the underlying meta-

model (Mehandjiska ez a/, 1995a, 1996a-c).
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Chapter 7

Realising Methodologies and Software Engineering Projects in
MooT

We all agree that your theory is crazy, butis it crazy enough?
Niels Bohr
7.1  Introduction

This chapter presents the design and philosophy of the mechanisms for realising
methodology descriptions and software engineering projects in the MOOT system. There
are two aspects to this research: a) the development of a communication protocol
between the MOOT core and CASE tool clients and b) the de-coupling mechanisms that
have been developed to support late binding of syntax and semantic methodology
descriptions. The syntax-semantic de-coupling is achieved in two parts: a) A table of
methodology descriptions, which has been named the Methodolegy Description Zable
(MDT, and b) a mapping table, which is named the Notation Semantic Mapping (NSM)
table. This chapter presents a high-level description of the communication between

CASE tool clients and the MOOT core. The MDT and NSM tables are also described.
7.2 Interaction Between CASE Tool Clients and the MOOT Core

The interaction that occurs between a CASE tool client and the MOOT core can be

classified, based on the direction of the interaction.

CASE Tool Client = MOOT Core

The communication in this direction corresponds to a software engineer trying to
perform a task. This includes:

»  Logging-in and logging-out

»  Manipulating software engineering projects, models and diagrams
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«  Creating, deleting and updating notation elements in diagrams

Each action is implemented as a request that is sent from a CASE tool client to the

MOOT core.
MOOT Core = CASE Tool Client

The MOOT core is responsible for processing requests from CASE tool clients. It is also
responsible for determining if any other CASE tool client should be notified of the result

of a successful request. Communication in this direction includes:

o Responses to requests generated by CASE tool clients
Responses correspond to the MOOT core informing CASE tool clients of the
success or failure of satisfying a request. Each and every request is matched by a

response.

o Directives from the MOOT core to CASE tool clients
Directives support the broadcast of information to CASE tool clients. This ensures
that clients are aware of important events that have caused a change in the state of
the software engineering projects they are using. Directives are matched by an

acknowledgement by clients. Directives are assumed to be successful if received™.

Figure 7-1 shows some of the requests, responses and directives that are transferred
between CASE tool clients and the MOOT core. The requests and directives in Figure
7-1 have been subdivided into project-level requests and directives and model-level

requests and directives.
7.2.1 CASE Tool Client Requests

The general requests, in Figure 7-1, generated by the client include:

«  Getting a list of all the available methodologies, so a software engineer may select

one and create a new software engineering project.

«  Getting a list of all the available software engineering projects, so a software engineer

may open an existng project.

3 The NOOT core manages the semantic state of a software engineering project, whilst a CASE tool client manages the
syntactic state. The MOOT core, theretore, only generates directives that correspond to a correct semantic state.
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CASE Tool Client

Responses Model Level Project Level
Permission to Directives Directives
General Project Level Model Level perform requests Create and delete Create, delete and
Requests Requests Requests Error Messages %ymbolf‘ and rcnan:ic g)ro Jegts,
Log-in Create, delete, Create and delete U 0(;11:60}:1_0{1; mq els an

Leg-out open, save and  Symbols and pdate Fields diagrams
List available  rename projects, Connections
methodologies models and Update Fields
List available diagrams

projects

MOOT Core
Fagure 7-1° The communication berween CASE tool clients and the

AMOOT core

Project-level requests correspond to actions (at the CASE tool client) on whole projects,
models and diagrams. This includes creating, deleting, opening, closing and renaming

software engineeting projects, models and diagrams.

General and project level requests are satisfied by the MOOT core with the assistance of
the Methodology description table (MIDT). The MIDT table is discussed in detail in

section 7.3.

Model-level requests correspond to actions, at the CASE tool client, on the elements of
diagrams. This includes:

»  Placing new symbols and connections

«  Deleting symbols and connections

»  Updatng text fields

The MOOT core uses an NSM table to translate these requests into semantic actions on

the collecion of SSL. objects that define the state of the user’s software engineering

project. NSM Tables are discussed in detail in secton 7.4.
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7.2.2 MOQOT Core Directives and Responses

Project-level directives correspond to the MOOT core broadcasting the results of
successful project-level requests to other CASE tool clients. This includes broadcasting
the creation, deledon and renaming of software engineering projects, models and

diagrams to CASE tool clients.

Model-level directives correspond to broadcasting two types of result to CASE tool
clients. The #rst type is the result of successful model-level requests. The seconds relates
to actions performed by the MOOT core, which have knock-on effects that must be
propagated to CASE tool clients. The model-level directives (shown in Figure 7-1),

generated by the MOOT core include:

« Directing a CASE tool client to create a new symbol or connection on a diagram that

corresponds to semantc elements (SSL objects) created by the MOOT core.

« Directing a CASE tool client to delete a symbol or connection from a diagram that

corresponds to semantc elements (SSL objects) removed by the MOOT core.

« Directing a CASE tool client to update a text field in a diagram based on the change

in state of semantic elements (SSL objects) by the MOOT core.

Project-level directives are generated by the MOOT core with the assistance of the
methodology description table. Model-level directives are generated by the MOOT core

with the assistance of NSM tables.

The responses, in Figure 7-1, are generated by the MOOT core as a result of processing a

request. There are two types of response:

»  Permission to carry out general, project-level and model-level requests. Responses of

this type include any relevant information that the CASE tool client requires.

« Errors that correspond to disallowing a general, project-level and model-level

request. An error response is always accompanied by an explanation.

A communication protocol has been defined that supports the requests a CASE tool

client may make of the MOOT core and the directives and responses the MOOT core
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sends to CASE tool clients. It is simple hand-shaking protocol that has been
implemented on top of TCP/IP. A description of the protocol can be found in (Adams,
1998).

7.3 Methodology Description Table

The Methodology Description Table (MDT) provides a list of methodologies supported
by MOOT and corresponds to an index of the methodologies in the persistent store.

Each element in the table specifies:

« The SSL classes that define the methodology

+  The modelling languages supported by the methodology

»  The diagrams supported by each modelling language

»  The notation, defined in NDL, to use for each modelling language
« An NSM table

7.31 Composition of the Methodology Description Table

Figure 7-2 shows the composition of the methodology description table. It is a map of
Methodology descriptions that is indexed by methodology name. Each element of the
table corresponds to a methodology in the MOOT system. The structure of the MDT
corresponds to the upper level of the Core Knowledge Base (CKB). A methodology has
one or more modelling languages, one or more documents and a process. Each modelling

language provides one or more diagrams.

Each methodology in Figure 7-2 has a name that is unique within the MOOT system.
The methodology name is a descriptive string that identifies the methodology. Each
methodology description in the MDT references:

» A methodology type name that corresponds to its semantic definiton

«  An SSL class that defines its semantics

«  An NSM table that defines the mapping between syntax and semantics

» A list of model descriptions
181



Figure 7-2 - Methodology Description Table

The methodology type name is a descriptive string that identifies the semantic definition

of a methodology™. Fach SSL class that corresponds to a methodology definition (that is

55 The methodology type namc is currently automatically derived from an SSL class name.
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the Methodology SSL class defined in the CKB, or one of its sub-classes) has a
corresponding methodology type name. The name that a software engineer will see, for a
methodology, is the conjunction of the methodology name and the methodology type
name. Consider the situation where the MOOT system has two vanants of UML with the
same semantic definition, but with different syntax. The UML semantic definition has a
descriptive type name (say ‘UML’). Each methodology will also have a descriptive name
(say ‘Company X’ and ‘Standard’). The names that the software engineer will see, at the
CASE tool client, would be ‘Company X (UML)’ and ‘Standard (UML)’. The purpose of
the methodology type name is to make it explicit to the software engineer that the two
methodologies are both semantcally identical. This approach also avoids the problem
with other meta-CASE tools where a ‘same semantics’ with ‘different notation’ implies a
‘new methodology’. In MOOT this situation is simply viewed as ‘same methodology’ but

‘different notation’.

Each modelling language description has a name that is unique within the context of its
methodology description. This name is a descriptive string that identifies the modelling
language and is the name that a software engineer will see, at the CASE tool client. Each

modelling language description references:
»  An SSL class that defines its semantics
«  An NDL notation description that defines its syntax

« A list of diagram descriptions

The modelling language description list defines the set of modelling languages that are
available with this methodology. It is possible that the list may contain a subset of all the
modelling languages defined in the semantc description. The name of each diagram
description is unique within the context of the modelling language description. This name
is a descriptive string that identifies the diagram and is the name that a software engineer
will see at the CASE tool client. The diagram description maps the diagram name to the

SSL class that defines its semantcs.

Each methodology may have one or more documents. The name of each document

description is unique within the context of the methodology description. This name is a
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descriptive string that identifies the document. Document descriptions map document

names to the SSL classes that define them.

The last element in a MDT entry is a process description. It consists of a descriptive
name that identfies the process and an SSL class that defines it. Any references made to
the process, at the CASE tool client user interface, will be made with respect to the

process name.

This thesis has not concerned itself with detailed modelling of documents and software
development processes (see section 9.4 - Future Work). The coupling between a
methodology and its documents and process is much lower than that between a
methodology and its models. It is expected, therefore, that methodologies with the same

semantc definition may be able to have different documents and processes.
7.3.2 Applying the Methodology Description Table

Figure 7-3 describes the scenario of opening a new software engineering project. For the
purposes of this discussion the network communication between the Clent object and

ClientM anager object is represented by the interchange of messages.

Client CASE Too! C emMarage- . Me&ﬁ:ooiogy ciassEarMet-odeogy '
Chent Descnpuo- Table S8t Class

getMethodoigyNames! ) getMethodolgyNames{ )

— -
successResponse(iist)
=
createProject(mName)
. getMethodoiogy Ciass( )
. =g
ingta~igel

>_ .

SCrER N Fow P

Createl )
- accep:|
. oetauitCreareMessage;:

T

gatlDi )

success®esponse(newlD)

Figure 7 3 Creanng a new software engineering project

184



ClientManager 1s a singleton object (Gamma ef a/, 1995) that is part of the tool manager
(see Figure 3-11 - Architecture of the MOOT prototype). It is responsible for managing

communicaton between the MOOT core and CASE tool clients.

Inidally a software engineer creates a new software engineering project. The first sub-task
performed is to choose a particular methodology. The Clent initially requests a list of
methodology names from the MOOT core. The ClentManager object delegates the
responsibility of generating this list to the MDT. The ClentManager sends a successResponse
to the Client, with the list of names as an argument. The software engineer then selects the

methodology they wish to use from this list.

The Clent then requests that the MOOT core creates a new project. It provides the
methodology name, selected by the software engineer, as an argument of a request sent to
the ClientManager. The ClientManager initially must determine the SSL Class that
corresponds to this methodology by interrogating the MIDT. Once it has the appropriate
SSL class, it then creates an instance of it. The resulting SSL object (INewProject in Figure
7-3} is the root of the new software engineering project. The last step of the process is to
return the unique SSL ID of NewProject to the client as an argument of a sucessResponse
message. Any future references the Clent makes to the new software engineering project

will include this SSL ID as an argument.
7.4 Notation Semantic Mapping Tables

The Notadon Semantic Mapping (NSM) table defines the mapping between notation
elements and semantc concepts (see Figure 3-2 - The relation between software projects,

methodology descriptions and the description languages in MOOT).
7.4.1 NDL vs. SSL

The syntax of a methodology is defined using the Notation Definition Language (NDL).
NDL is a scripting language that is based on composition of a fixed set of template types.
Template types are parameterised by a set of text fields, each of which has a unique NDL
ID. The syntax definition of a methodology consists of a set of NDL scripts. The visual
representation of a software engineering project consists of a collection of NDL views,

grouped into a collection of diagrams.




The semantics of a methodology is defined using the Semantic Specification Language

(SSL). SSL is an object-orientated language based on classes, inheritance, aggregation,

association, polymorphism and message passing. The semantic definition of a

methodology consists of a set of SSL classes. The state of a software engineering project

consists of a collecton of SSL objects. The MOOT core processes SSL by executing SSL

methods on the SSL virtual machine. It does this in response to the tasks the software

engineer performs using the CASE tool client.

The NSM table is responsible for defining a particular mapping between a syntax and

semantic definition. Table 7-1 shows the correspondence between elements that support

syntax and elements that support semantics in MOOT.

Project
Structure
Elements

Structural
Elements

Dynamic
Elements

Syntax

Project editor of the CASE tool
client

Model edstor of the CASE tool

client

Diagram editor of the CASE tool
client

NDL template
NDL wview
Text fields

Creating and destroying NDL

Semantics

Instance of the Methodology SSL
class (and sub-classes)

Instance of the Modeliing Langnage
SSL class {and sub-classes)

Instance of the Diagram SSL class
(and sub-classes)

SSL class
SSL object
Andbutes of SSI. classes

Creating and destroying SSL

views objects
Values in Text fields SSL obiect state
Actions on ND L views Messages to SSL objects
Table 7-1 - t orrespondance benveen synrax and semantic elements

The mapping of the structural and dynamic elements shown in Table 7-1 is supported by

NSM tables. The mapping of project structure elements is supported with the

Methodology Description Table.
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7.4.2 Composition of NSM Tables

An NSM table consists of six associative arrays (maps). Fach map supports one aspect of
the mapping between an NDL description and an SSL description.

The names of the six maps contained in an NSM table are:

1. ‘Create concept’ map

2. ‘Create relation’ map

3. ‘Add’ map

4. ‘Action’ map

5. ‘SSL object creation’ map

6. ‘SSL object update’ map

Create Concept Map

The create concept map (Figure 7-4) defines the mapping between NDL symbol

templates and SSL classes.

Create Concept Map

NDL Symbol Template Name @ —— SSL Class Name SSL Create Message
NDL Symbol Template Name @ —— SSL Class Name SSL Create Message

NDL Symbol Template Name @ ——» SSL Class Name SSL Create Message

Figure 7-4 - The create concept map

The left-hand side is a list of NDL symbol template names. The right-hand side is a list of
SSL class names and SSL. create message pairs. A request from the client to create a
particular symbol (that is represented by an NDL symbol template) is satistied by
instantiating the corresponding SSL class. The corresponding create message is sent to

this class to initialise the new SSL. object.

biach NDL symbol template may only appear once in the map. The current
implementation of the NSM table assumes a one-to-one mapping between an NDL
symbol template and an SSL class. Only SSL classes that correspond to an NDL symbol

template will appear in this table.
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Create Relation Map

The create relation map (Figure 7-5) defines the mapping between NDL connection

templates and SSL classes.

The left-hand side of Figure 7-5 is a list of NDL connection template names. The right-
hand side is a list of SSL class names and SSL create message pairs. A request from the
client to create a particular connection (that is represented by an NDL connection

template) is satisfied by instantiating the corresponding SSL class.

Create Relation Map

NDL Connection Template Name ®—» SSL Class
Name
Connection Start Connection End
NDL connection Arity NDL connection Arity Sa: s(;r:aete
terminator name terminator name 9

NDL connection Arity NDL connection Arity
terminator name terminator name

NDL connection Arity NDL connection Arity
terminator name terminator name

Figure 7-5 - The create relation map

tiach create relation entry in the create relation map (Figure 7-5) is composed of one or
two parts. The connection start defines items that may appear at the beginning of a
connection. The connection end defines items that may appear at the end of a
connection. This structure implies the convention that all relations have a ‘start’ and an
‘end’. Nary connections (which do not have a start or end) are represented with the
connection start. The distinction between start and end parts is important for directed

relations, but not for bi-directional relations.

Fiach item in the connection start and connection end parts is composed of an NDL
template of a connection terminator and an arity. The arity defines how many connection

terminators may be involved in a connection.

The current implementation of the NSM table assumes a one-to-one mapping between
an NDL connection template and an SSL class. Only SSL classes that correspond to an

NDL connection template will appear in this table.
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Add Map
The add map (Figure 7-6) is used to add models to projects, diagrams to models and

concepts and relations to diagrams.

Add Map

Figure 7-6 - The add map

Models and diagrams are created with the assistance of the MDT, which provides a
similar service as the create concept and create relation maps. The add map is used to
find the SSL. message that is used to add models to projects and diagrams to models. The
first two maps, in Figure 7-6, provide a mapping between model and diagram names and

the appropriate SSI. message.

Creating a new concept or relation is achieved in two steps. The first is to create a
corresponding SSL object. This is supported with the create concept and create relation
maps. The second step is to add the new SSL object to a diagram. The add map is used to
find the SSL. message that is used to add an item, that corresponds to a particular NDL
template, to a diagram. The message is sent to the SSL object that represents the diagram,

with the item as an argument.

Action Map
The action map (Figure 7-7) helps translate ‘logical actions’ at the software engineer user

interface, to the corresponding equivalent semantic actions.

NDL text fields can be considered as the visual representation of the properties of

concepts and relations (such as the role name on an association connection, or the class

189



name in a class symbol). The propertes correspond to attributes of SSL classes. The

values of the properties correspond to the state of SSL objects.

- NDL Action NDL FieldID @ ——» SSL Message
\
NDL Action NDL FieldID @& ——» SSL Message

Action Map
NDL Action NDL FieldID @ ——» SSL Message

Figure 7-7 - The action map

An NDL action on a particular field is mapped to an SSL. message. NDL actions do not
reference the state of SSL objects directly, as this would break encapsulation. This

mechanism supports the binding of arbitrary NDL actions to SSI. messages.

SSL Object Creation Map
The SSL object creation map (Figure 7-8) performs the reverse operation of the create

concept and create relation maps.

SSL Object Creation Map

SSL Class Name =~ NDL Template Name
SSL Class Name =~ NDL Template Name
SSL Class Name = NDL Template Name

Figure 7-8 - The SSI. object creation map

The SSL. object creation map identifies those SSL classes whose instances should be
reflected by visual representations in clients. It is used when the server creates SSL
objects, without a request from a client. For example an SSL object representing a
context diagram in a Data Flow Diagram (DFD) model may automatically create an SSL
object for the system process. SSL classes in this category are a subset of all the SSL

classes in a methodology description.

SSL Object Update Map
The SSL object update map (Figure 7-9) performs the reverse operation of the action
map for updates of the state of an SSL object. It maps SSL. messages to one or more

NDL fields (each of which has a unique identitication number — an NDL ID). When an
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SSL object on the server sends a message that appears on the left-hand side of the map,
the NDL fields on the right-hand side need to be updated with new values. Such changes

are broadcast by the MOOT core to affected clients.

| SSL Object Update Map
' SSL Class Name SSL Message @ > NDL Field IDs

SSL Class Name SSL Message @ ——>» NDL Field IDs

~ SSL Class Name SSL Message @ NDL Field IDs

Figure 7-9 - The SSI. object update map

7.43 Applying NSM Tables

The complete NSM table is shown in Figure 7-10. The arrows indicate sub-parts of the
table that are related to each other, in terms of satistying requests and satisfying the
issuing of directives. The lower section shows the NSM table elements that provide

reverse operatiorls.

The top four maps are related to communication from CASI: tool clients to the MOOT
core (the requests), whilst the bottom two maps are related to communication in the

reverse direction (the directives).

The create concept and create relation maps are both used to translate NDL templates
into SSL classes and support the creation of new symbols and connections on diagrams.
The SSL object creation map provides the reverse operation of translating SSL classes

into NDL templates.
The add map is used to specify how new concepts and relations are added to a diagram.

The action map is used to translate logical actions at the CASE tool client into semantic
actions (messages to SSL. objects). The SSL object update map provides the reverse

function of the action map, for update actions.
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Figure 7-10 - The Notation Semantic Mapping Table
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Several scenarios that illuswrate how NSM tables are used follow. These are: creating a
new model; creating a new concept; the successful update of a text field; a failed attempt

te update a text field and the propagation of a server side update to CASE tool clients.

Creating a New Model
The scenario in Figure 7-11 (creating a new model) illustrates the use of the NSM table

add map. It also further shows the use of the Methodology Description Table (MDT).
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Prgure 7 11 . Creating a new model

The software engineer has already created a new software engineering project, or opened
an existing one, and has decided to create a new model. The Clent requests a list of

modelling language names from the MOOT core™. The ClientManager delegates this

Y The Chent actealiv requests this list when the user selects s methodoloe It s shown here so all the steps mvolved in

creating a new model can be eaploned in the same context.
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responsibility to the MDT. The argument to the getModellingl angNames message
corresponds to the methodology of the user’s project”. The ClentManager then sends a
successResponse message to the Clent with a list of modelling language names as an

argument.

Once the software engineer has chosen the modelling language to use, the Client sends a
createModel message to the ClentManager, with the modelling language name as an
argument. The ClientManager uses the MDT to find the appropriate SSL class for this
modelling language (the dassForModel object in Figure 7-11). It then creates an instance of

this class (INewModel in Figure 7-11) by sending classForModel an instantiate message.

The ClientManager now uses the NSM table object (Table in Figure 7-11) to find the SSL
message which is used to add the newly created model (NewMode/ in Figure 7-11) to the
current project (the pryject object in Figure 7-11). The add message is then sent to the
project object with NewModel as an argument. The ClientManager then sends a successResponse

message to the Client with the unique SSL ID of the newly created model as an argument.

The Clent also needs the notaton that corresponds to the new model. If it does not
already have the notation it sends a getNotation request to the ChentManager, with the
modelling language name as an argument. The ClentManager determines the NDL script
that is required by interrogating the MDT. It then requests the notation from the
NotationServer object™. The ClientManager finally sends a successResponse message to the

Client, with the notation as an argument.

Creating a New Concept
The scenario captured by Figure 7-12 illustrates the use of the NSM table create concept
map. This scenario occurs whenever the software engineer places a new concept into a

diagram (e.g. a new class on a class diagram, or a new state on a state transition diagram).

37" I'he ClientM anager actually maintains a vector ot ChentProxy objects (one tor cach connected client). Fach ClientProxy
object maintains details such as the user and the active project. The ClientProny objects have been omitted from these
diagrams for breviey,

38 The MOOT protorvpe implements this as a direct request to the persistent store.
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Pgure 7 12 - Creating a new conceprt

The Client sends a createNewConcept message to the ClientManager. The arguments to this
message include the SSL IBs of the model and diagram® where the concept is to be
placed and the name of an NDL symbol template. The ClentManager performs two tasks
on receipt of the createNewConcept message. It first asks the NSM table (the Tabk object in
Figure 7-12) to translate the NIDL symbol template name into a cerresponding SSL class
name (conceptClass in Figure 7-12). It then asks the NSM table fer a create message. The
create message is used to initialise the new concept (mewConcept in Figure 7-12). Once the
object has been created the ClentManager asks the NSM table fer an add message. The
add message 1s used to add the new concept to the diagram (diagram in Figure 7-12)

identified in the original areateNewConcept message.

“ s assumed that 1 client can nnly seeess astngle progeet at any tne. b pracniee all messages from the Clen? also
include the SSLD of the project. The tuphe proscer T miexdod (130 Jagrame 1D unigrede identifies the contexe
within wlivi an action occurs,
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The ClentManager then sends a successResponse message to the Client with the unique SSL
ID of the new concept as an argument. In this example all steps are successful. In general
each step may fail and result in a_f@/Response message being sent to the Client. An example

that includes a fa/response is given on page 197.

The Successfil Update of a Text Field

The next two scenarios demonstrate the use of the NSM table action maps. In Figure
7-13 the software engineer has changed the value of a text field on a diagram. Text fields
correspond to the properties of concepts and relations. This scenario corresponds, for
example, to changing an attribute name in a class diagram or renaming a store in a data

tlow diagram.

Client : CASE CloniMarager Jabe NSM ' source.SSL otherClient : CASE
Too! Chent Tabn Obee ZopiClen

. changeElement{mode!, diagram, action, element, squrce. args}

setAction{action, element)

— T

accept{updateMessage args)

processMessage! )

<

Rt b

>

accepl{;sOKMessage)

“‘)..

perform{project, mode!, d«agvam, action. element. source. args)

successResponse( )

4ing Ation 5 SLCCETS IREN oiner s
Ci:Eris may AEEN 0 Khow 200LT

Feure 7213 - Successful updire of a field

Initally the client sends a changel=/lement message to the ClentManager. The arguments to
this message include the SSL IDs of the model and diagram on which the updated field is
placed. It also includes IDs that identfy the action to be performed, the text field that has
been altered and the SSL ID of the concept or relation that owns the text field. The
model, diagram, element and source IDs uniquely identify the field to be updated. The

action ID defines what is to be done to the field.
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The ClientManager asks the NSM table to translate the action and element ID into an SSL
message (#pdateMessage in Figure 7-13). The update message is then sent to the object that

corresponds to the source argument of the original message (soxrce in Figure 7-13).

Figure 7-13 shows that the update message has resulted in the creation of a critic object
(resultCretic in Figure 7-13). The resultCritic SSL object is then interrogated to determine the
result of the update message. If the resu/tCritic indicates a success the ClientManager sends a
successResponse to the Client to indicate that it can commit the update. The ChentManager

can now broadcast the change to any other CASE tool clients that may be interested

(otherCleent in Figure 7-13).

A Failed Attempt to Update a Text Field
Figure 7-14 shows the same scenario as Figure 7-13 except that the result of processing
updateMessage indicates that the update is not valid. For example changing the name of an

attribute so it is the same as another might be considered illegal.

Clent . CASE CrertManager Tape KRSV Souice 55
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accept{update Message ,args)

. .
e processMessage( )

< -
create : . .
SEUTREE>”  resunCrine ; SSL
Opeot
accent.sOK Message)
T
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“{t the Virlua: maghing Slack nas a eole
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<ar imerogale o 5ee wral hasoend

Figure 7-14 Failed attemprt to updare a field

The resultCritic object in Figure 7-14 has indicated that an error occurred (the sOKMessage

message has returned false). The ClentManager interrogates the resuiCritic object for an
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explanation. A faz[Response message is sent to the Client with the explanation as an

argument. The Client can then present the explanation to the software engineer”"

Propagation of a Server Side Update to Other Clients
The final example (Figure 7-15) illustrates the use of the SSL object update map.

'5er|:i-f'-q UE]‘EC’. ' recé.wnq abjes: Tame RS C.e-::Man&qe' piherCaent CASE
. 35L Omer:

SSL Object Tage ’ Tow: Cien

ascept(Tessage}
processhMessane: |

‘ginierpslingMessage{nesszge;

..... >

geodaielirecivel messags!

propagaxeupdate(upd&éD;rectwe)
perform(project, mogel, grlagram, action, element, source, args)

Figure 7 15 - Propugating server side upduic

The SSL object sending object in Figure 7-15 has sent a message (message in Figure 7-15) to
another SSL object (recezving object). Once receving object has finished processing the message
it then interrogates the NSM table to see if the message might cause an update that is of
interest to CASE tool clients. The message is translated into a collecion of NDL field
IDs by the NSM table. Recesning object then asks the ClientManager to propagate update
directives to any CASE tool clients that may be interested. The ClientManager sends a
perform message to all interested clients (ozherClient in Figure 7-15). The perform message
includes the SSL ID of the source object and the element ID of the field. The Clenr is

responsible for updating all views that correspond to the source object.

#In the prototype tnplemeniinon of the CASE tool client caplanatims are collated mnto o separate teedback window

so the software vngnees Can rrace what they have done.
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7.5

Summary

This chapter has discussed the realisation of methodologies in the MOOT system and

illustrated how syntax and semantic descriptions are associated with each other to form

complete methodology descriptions. The syntax-semantic association involved:

The relation between a software engineering project, in terms of its models, diagrams

and documents, to the methodology used to create it.

The relation between the syntax and semantic descriptions expressed with NDL and

SSL.

The relation between logical actions performed using the CASE tool client and

semantic actions processed by the MOOT core.

The three aspects of the syntax-semantic mapping have been supported by:

The Methodology Description Table (MDT). Each element of the MDT
corresponds to a methodology. The saructure of the MDT corresponds to the upper
level of the Core Knowledge Base (a methodology has a collecion of modelling
languages, a collection of documents and a process. Each modelling language has a

collection of diagrams).

Notation-Semantic Mapping tables. Each NSM table defines the mapping between a
NDL notation description and SSL semantic description. This includes mapping
NDL templates to SSL classes, NDL Views to SSL objects and logical actions on

NDL views to messages to SSL objects.

The communication protocol between the CASE tool client and MOOT core. This
protocol is based on the requests and directives that are passed between the CASE

tool client and the MOOT core.
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Chapter 8

Validating the MOOT Approach

Give me a fruitful error any time, full of seeds, bursting with its own

corrections. You can keep your sterile truths for yourself.
Vilfredo Pareto

8.1 Introduction

The research described in this chapter is representative of work carried out to validate the
initial MOOT prototype and to investigate the efficacy of the MOOT approach. A range
of results that illustrate the application of the principles, techniques and ideas

propounded in this thesis are presented. This includes:

»  The implementaton of the Coad and Yourdon methodology (Coad and Yourdon,
1990, 1991a, b). The description includes fragments of NDIL code, SSL. code, a

portion of an NSM table and an entry from the Methodology Description Table.

«  An extension of the Generic Object Orientated Knowledge Base, which implements

support for patterns (Gamma et al., 1995).
+  Defining the core UML meta-model as an extension of the CKB and GOOKB.

»  Development of the semantics editor using MOOT. Two modelling languages are
proposed for this purpose — the SSI. module structure modelling language and the
SSI. method modelling language. The semantics of these modelling languages are
defined as an extension of the Core Knowledge Base (CKB) and the Generic Object
Orientated Knowledge Base (GOOKB).

«  Development of the Joosten workflow methodology foosten, 1995).
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8.2 Defining the Coad and Yourdon Methodology

The Coad and Yourdon methodology can be readily defined as an extension of the
Generic Object Orientated Knowledge Base (GOOKB). The GOOKB already defines
SSL classes for class, attribute, operation, inheritance, whole-part and association. The

only additional relation that must be added is message connection.

Figure 8-1 shows the SSL classes that have been added to implement Coad and Yourdon.

GOOKB Object Diagram 7 cKe-Relation Termunator
AddCiass(c : Ciass) - CKB::Critic 'Cr'éate('m -'CKE::C'o}iééb't:'r' : .CKé::.I;q'e!a:'.lon}
Addinheritance{r : GOOKB::inheritance) : CKB::Critic | Destroy()
AddWholePari(r : GOOKB::Whole_Part) : CKB::Critic ' DetachConcept()
AddAssociation(r GOOKB::Association) : CKB::Critic ! DetachRelation()

getConcept() . CKB::Concept
getRelation() : CKB::Relation

) Coad and Y(ﬁu'rd.bn'::ot:.jéc.t__ Duagrérﬁ
AdaMessageConnection{me : Coad and Yourdon:Message Connection) - CKB Critic
t..‘.,KB::[.)'i rec.red_ _Biﬁéry .Rela.t:on

‘GatStant} | CKB: Retaton, Terminator

: Coadfahd_ vYourdo'n'::M'ességé;hé-cén)er '
GetEndl) : CKB..Reiation Terrinator

o

. Coag and -‘i’ourdbn::l\.ﬁessage Conr!e.CTI.O.ﬂ >. Coadéand&.our"dbn:;Mes.s.ag.;.e;séndérm

invoocahon number lmege',r
Figure B 1 - sapporung the Coad and Yourdon

The Message Connection class in Figure 8-1 is a type of Directed Binary Relation. Its end points
are modelled with two sub-classes of Relation Terminator - Message Receiver and Message
Sender. Object Diagram has been sub-classed and extended with behaviour for handling

message connections. This example illustrates two important points:

»  The definition of Coad and Yourdon is straight forward. Whilst it can be said that
Coad and Yourdon is one of the simplest methodologies, the semantic definition of

Coad and Yourdon only required four new classes.

»  The SSL module system prevents an explosion of SSL class names. For example the
two O¢ject Diagram classes in Figure 8-1 are disambiguated by the knowledge base

they are defined in (GOOKB and Coad and Y ourdon).

Figure 8-2 shows an entry in the Methodology Description Table (MDT) for Coad and
Yourdon. The first line is the name that a software engineer will see when using the

CASE tool client. The second line is the SSL class that is instantiated when a new Coad
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and Yourdon project is created. Line three specifies how many modelling languages are
supported. In this example Coad and Yourdon supports a single modelling language.
Lines four to nine define the single modelling language. Line four is the descriptive name
for the modelling language that the software engineer will see. The next line is the
corresponding SSL class that is instantiated when a new model is created that uses this
modelling language. Line six is the name of an NDL notation to be used for the
modelling language. Line seven specifies that this modelling language consists of a single
type of diagram. Line eight contains a descriptive name that the software engineer sees,

for this diagram and line nine is the corresponding SSL class.

Line 1. coad and yourdon

Line 2. ckb:methodology

Line 3. 1

Line 4. coad and yourdon class diagram
Line 5. gookb_model:object_model

Line 6. coadyourdon_classdiagram

Line 7. 1

Line 8. class diagram

Line 9. coadyourdon_model:object_diagram

Figure 8-2 - Methodology description table for Coad and Yourdon

Figure 8-3 shows a snapshot of the CASI: tool client ‘select methodology’ dialogue box.

Selecf methodology

coad and yourdon

_OI%J CANCEL |

Figure 8-3 - The select methodology dialogue box

The example in Figure 8-3 shows that the software engineer has three methodologies to
choose from, when creating a new project®'. The last item in the list (coad and yourdon)
corresponds to the entry in the MDT in Figure 8-2. The text displayed in this dialogue

box is from line one of the Coad and Yourdon entry in the MDT.

The NDL description to be used for the Coad and Yourdon class diagram modelling

language is given in line 6 of the Coad and Yourdon entry in the MDT. This NDL

6! The other entries will be discussed 1n subsequent sections of this chapter.
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description contains definitions of the symbols and connections that are used for the
syntax of the Coad and Yourdon class diagram modelling language. Figure 8-4 (a) shows
a Coad and Yourdon Class&Object symbol rendered by the CASE tool client. The

corresponding NDL specification, from which the Class&Object symbol is generated, is

given in Figure 8-4 (b).
a)
Class&Object 4

attribute 1
attribute 2
an extremely long operation name
operation 2

b)

Symbol_Template class

{
hght = + 4 grpHeight(grp) # 0: classheight
wdth = + 4 grpWidth(grp) # 1: classwidth
dy = - hght 5 # 2: dockingyY
dx = - wdth 5 # 3: dockingX

# (i) components

GROUP grp (_classnamegroup||_classgroup) AT (2, 2)
LINE (5, 0) (dx, 0)

LINE (wdth, 5) (wdth, hght)

LINE (dx, hght) (5, hght))

LINE (0, dy) (0, 5)

ARC (0, 0) (10, 10), 90, 90

ARC (- wdth 10, 0) (wdth, 10), 0, 90

ARC (0,- hght 10) (10, hght), 180, 90

ARC (- wdth 10,- hght 10) (wdth, hght), 270, 90

BOUNDING RECT (wdth, hght)

# (ii) docking areas
# instance, whole-part, message connection
LINE DA 0 (0,5) (0, dy) u 10

(instance whole-part message)
LINE DA 0 (5,hght) (dx,hght) u 10

(instance whole-part message)
LINE DA 0 (wdth,dy) (wdth,5) u 10

(instance whole-part message)
LINE DA 0 (dx,0) (5,0) u 10

(instance whole-part message)

#inheritance

LINE DA 0 (2,5)(2,dy) u 10 (inheritance)

LINE DA 0 (5,- hght 2) (dx,- hght 2) u 10 (inheritance)
LINE DA 0 (- wdth 2,dy) (- wdth 2,5) u 10 (inheritance)
LINE DA 0 (dx, 2) (5, 2) u 10 (inheritance)

DEFAULT TEXT (grp,9) # text field contained in grp

Figure 8-+ - Symbol template for the Coad and Yourdon
Class&Object symbol
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Figure 8-4 (b)(i) consists of a collection of segment templates™. The first segment
template is a group reference. The default group template (_classnamegronp) defines the
three inner compartments and a surrounding round rectangle. Clicking on the arrow in
the upper right-hand corner of the symbol in Figure 84 (a) will cause this group to
change to an instance of _classgroup. The remaining eight segment templates define the

outer round rectangle of the symbol (which denotes the ‘objects’ in Coad and Yourdon).

Figure 8-4 (b)(ii) lists eight docking areas. The first four define where whole-part, instance
and message connections may be attached. These types of connection may be attached
anywhere on the outer round rectangle of the symbol (except on the curves). The second
group of four docking areas define that inheritance connections can only attach at the

inner round rectangle (but, again, not on the curves).

Figure 8-5 (a) shows an example Coad and Yourdon message connection rendered by the
CASE tool client. The corresponding NDL specification, from which the message

connecton is generated, is given in Figure 8-5 (b) and Figure 8-5 (c).

Three types of template are used to define connections in NDL (connection template,
connecton symbol template and connection terminator template). Figure 8-5 (b) shows
NDL connection terminator templates for the Coad and Yourdon message connection.
The first (_defanlt) describes a single line. This connection terminator template is used for
connections that do not have a symbol at their end points (that is the inheritance,
instance and whole-part connections in Coad and Yourdon). The second connection
terminator template defines a simple arrow head. The arrow head can be seen attached

to the Destination class in Figure 8-5 {a).

Figure 8-5 (c) shows the NDL definition for the Coad and Yourdon message connection.
The line templates and the bounding rectangle are used to draw an icon for a button that
will appear on the CASE tool client toolbar”. The next NDL statement specifies that the
message connection is a binary connection. The terminator list specifies the connection

terminator templates that are used for each end point of the connection™. In this example

v The ts T svmibol 1s used to indicate a comment in NI
= eons for sambol remiplane are currently sotomatically pencrared by rendermg the svmbol onto the toolbar button.
4 The connecaon sembol template entrv 1 oprionag It appears before the terminator bistif needed.
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the _defanlt connection terminator template is used at the beginning of the connecton

and the _messageDestination connection terminator template is used at the end.

a)
~ Destinatior]
Source —,—[>
b)
Connection_Terminator _default
{

LINE (0,3)(12,3)
BOUNDING RECT (12,6)
HEAD (0,3)
TAIL (12,3)

}

Connection_Terminator _messageDestination
{

LINE (10,6) (12, 6)

LINE (0,6) (10,0)(10,12)(0,6)

BOUNDING RECT (12,12)

HEAD (0,6)

TAIL (12,6)
}

c)
Connection_Template message
{
# toolbar icon
LINE (3,3)(12,3)
LINE (0,3)(3,0)(3,3)(0,3)
BOUNDING RECT (12,6)
ARITY 2
TERMINATOR _default _messageDestination

Figure 8-5 - Representing the Coad and Yourdon message
connection

A portion of the Notation Semantic Mapping (NSM) table used to associate the syntax
and semantic descriptions for the implementaton of Coad and Yourdon is given in

Figure 8-0.

Figure 8-6 (a) is the acdon map. The number O indicates an update action. The second
number is a unique NDL ID that corresponds to a text field. The last part is the SSL
message that corresponds to the action. The first entry in the acdon map, for example,

specifies that the SSI. message changeclassname-S# will be used to implement an update
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action on the text #eld with ID 9 (the field with ID 9 contains the class name in this

example).

a)

0 9 changeclassname-S#
0 12 addattribute-S#

0 15 addoperation-S#

abstract_class addclass-Vgookb _modelelement:class##
inheritance

adeinrerictance-Voookh modelelerent:inheritance##
whole-part

gdawno_epart- Voooxko_mocelelaeren, twhivle Darci#
instance

addassociation-Vgookp_modele_erent:association##
mes sage

b)
class gookb_modelelement:class create-#
abstract_class gookb_modelelement:class create-B#
inheritance gookb_modelelement:inheritance 2
! _default 2
i craegte-Vgookp_mode.elerent:class#Vgookb_modelelement:class##
| whole-part gookb_modelelement:whole_part 2
i _default 2
: create-Vgookb_modelelement:class#Vgookb_modelelement:class##
{instance gookb_modelelement:association 2
{ _default 2
i create-Vgooko_modelelenenc:class#Vgookb_modelelement:class##
fmessage coadyourdon_modelelement : messageconnection 2
f _default 1
= _messageDestination 1
i Ccreaie-Vgooko_modelelement:class#Vgookb_modelelement:class##
|
| e)
i class addclass-Vgookb_modeielement:class##
|

addrelationshlip-Vocoadyourdorn_rode.element:messageconnection##

Fioure ¥ 60 NEAM table tor Coad and Yourdon

Figure 8-6 (b) contains the create concept and create relation maps. The Coad and
Yourdon Class and Class&Object symbols (line one and two respectively of Figure 8-6
(b)) are both represented by an instance of Class in the GOOKB. The two different
create messages are used to ensure that Class symbols represent abstract classes, whilst

Class&Object symbols represent concrete classes.

Figure 8-6 (c) contains a portion of the add map. The six entries in the add map define

the SSL message that is used to add an item that corresponds to a particular NDL
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template, to a diagram. This message is sent to the SSL object that represents the

diagram, with the item as an argument.

Figure 8-7 shows the implementation of the add 4#tribute operation (an SSL method) that

is referenced in the second line of the action map in Figure 8-6 (a).

// implmentation of operation addattribute for
// gookb_modelelement:class

critic addAttribute( string a )
[ Attribute toAdd, current;
ComplexCritic addCritic;
SimpleCricic s;
Iterator AttribDute] attr;

// a) create a new attribute
toAdd = self .newAttribute( a );
addCritic = ComplexCritic.create( toAdd.isvalid() );

// b) check to see if it is a duplicate
attr = theAttributes. front () :;
loop

endloop when( attr.emnd() );

current = attr.item() ;
if{ toAdd.isSameAs( current ) )
{

addCritic.add(
SimpieCritic.create( false,
“there s already an attribute called "+a )
)

3

attr.next () ; i
}
if( addCritic.1isOX () ) { theAttributes.add( toAdd ) ;
return addCritic;

Fioure 37 Implementanon of the add Atnibute operanou

The add 4ttribute method given in Figure 8-7 is a method of the SSL class ‘Class, detined

in the G@OKB. It is executed whenever a new attribute is added to the class.

In Figure 8-7 (a), a new SSL object (0.444) is created to represent the new attribute. This
is achieved by sending the new.Attribute message to the self object”. The new SSL object is

then sent an 7s51”a/id message, which returns an instance of Critic as a result.

= e e A ferhate cperatien may be overridden m sub-classes to generare an mstance of an approprane S8 s,
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The code fragment in Figure 8-7 (b) determines if the newly created attribute is unique
within the context of the class. It does this by iterating over the collection of attributes in
the class (theAttributes) and comparing each one to the newly created attribute. If the new
attribute (f0.41dd) is found to be a duplicate a Crizzc object is created, with an appropriate
explanation. Figure 8-8 illustrates these steps by showing an example of the CASE tool

client in action.

£ MOOT GUI Client - [unnamed|coad and y... [M[=] E3 ||l % t00T GUI client - [unnamed|coad and v... I [=] E3

Project

5| OO0 FEEE] |

Testclass

attribute 1

attribute 1 attribute 2

attribute 2

attribute 2|

(a) the user tries to duplicate an attribute (b) the action has been disallowed
ke Feedback for David i=1E3

Placed: class
Mistake : there is already an aftribute called attribute 2

(c) the explanation generated by the MOOT core
Figure 8-8 - Adding an attribute

In Figure 8-8 (a) the software engineer has created a single class. The first message in the
feedback window (Figure 8-8 (c)) corresponds to the successtul creation of the class. The
user has then started to add several attributes. The software engineer is entering a third
attribute in Figure 8-8 (a), but has mistakenly duplicated the previous attribute name.
When the software engineer presses the enter key, or de-selects the class, a request to
create a new attribute is propagated from the CASE tool client to the MOOT core. The
MOQOT core uses the NSM table in Figure 8-6 to determine that an addAtribute message
must be sent to the SSL object that corresponds to Test class in Figure 8-8 (a). The result
of processing the addAttribute message will be a Critic object that indicates an error has
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occurred. The resulting explanation is returned to the CASE tool client with a fail
response. Figure 8-8 (b) shows that the CASE tool client has cleared the offending text

field and added the explanation to the feedback window in Figure 8-8 (c).

Figure 8-9 shows a screen snapshot of MOOT used to capture a model of Object-

Orientated Analysis (page 205 of Coad and Yourdon (1991a)).

¥, 4OOT GUI Client - Junnamed|coad and yourdon class diogram| Dovid |- junNamed|class diogram| David)

Project
[&] (1o FI=T=1=] i

Select abjects |
Subjecf] Add object »
00A Mode - :
Number instance
Name  bF—<}—IName ~— inheritance
Symbol ‘whole-part
message
Structurd|
e Name
Instance Connectio 1P Symbol
Amount Or Range 1
Amount Or Range 2
Symbol Class-&-Object (or Classf]
Name
Symboi
Object State Diagram =
Message Connectio: [Gen-snec SUUtture'J ‘Whole-Part Structuré
Symbol Amount OrRange 1
Amount Or Range 2

Altribute ] Service ‘|
Name Name
Description Parameters
Constraints Buliet List

Figure 8-9 - An Object-Orientated Analysis model of Object-
Onentated Analysis (Coad and Yourdon, 1991a)

8.3  Supporting Patterns

Patterns are an important concept that has gained much interest in the object-orientated
literature (Gamma e 2/, 1995; Fowler, 1997; Pree, 1994). The idea behind patterns is very
simple yet extremely powerful. It provides a standard vocabulary for software engineers
to use when developing systems. System developers can now talk in terms of larger
components than class and object and understand phrases such as “Abstract Factory”,

“Adapter” and “Chain of responsibility.”” The advent of patterns is so important that a
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technical decision has been made to support patterns with MOOT. This is the first step

toward the support of Component Based Development.

“One thing expert designers know #o# to do is solve every problem from first
principles. Rather they re-use solutions that have worked for them in the
past. When they find a good solution, they use it again and again. Such
experience is part of what makes them experts. Consequently you’ll find
recurring patterns of classes and communicating objects in many object-
oriented systems. These patterns solve specific design problems and make

object-oriented designs more flexible, elegant, and ultimately reusable.”

From Design Patterns: Elements of Reusable O bject-Ortented Software
(Gamma et al., 1995)

There are several requirements that the support for patterns in MOOT had to satisfy.

1. It should be possible to instantiate a pattern on any class diagram. This must include

class diagrams created with modelling languages that have not yet been defined in

MOOT.

2. There should be a well-defined protocol or method for adding new patterns in the

future.

The support for patterns was implemented in the GOOKB by a set of abstract super-
classes, which satisfies requirement 1. The classes involved define the protocol for the
instantiation of a pattern on a class diagram. The protocol between these classes satisfies

requirement 2.

A new class (Pattern) has been defined in the GOOKB. The interfaces of some of the
existing classes have been extended (Object Model, Object Diagram and Class). The

implementation of patterns is shown in Figure 8-10.

Concrete patterns are implemented as sub-classes of the abstract super-class Pattern
(Figure 8-10). Each pattern implements the instantiate operation®. The instantiation
process uses an instance of Objet Mode/ and an instance of Object Diagram. A pattern

object instantates itself onto the Object Diagram object with the assistance of the Object

6 They may also overload mstantiate with an operation that takes addinonal arguments.
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Model object. The Pattern hierarchy is an example of the Template method pattern
(Gamma et al,, 1995), where the entire instantiation process is different for each sub-class

of Pattern.

Object model builds classes and relations (such as inheritance) in association with a pattern object
Class builds attributes and operations in association with a pattern object

This role of Object Model and Class is an instance of the factory pattern (p87)

The pattern hierarchy is independent of the type of object model (and hence the type of classes and relations)

/

GOOKB::Inheritance

i

G OOKB::Class |
create(name : String) A

isvalid() : CKB::Critic /
changeClassName(newName : String) : CKB:Critic |
className() : String

add(a : GOOKB::Attribute) ; y 4 ©
add(o : GOOKB::Operation) <<instantiates>> / '
Instantiate() : GOOKB::Object /
newAttribute() : GOOKB::Attribute
newOperation() : G OOKB::Operation
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<<instantiates>>
\\

\

\, | I} A -

GOOKB::Object_Model

Create()

newClass() : GOOKB::Class

newW holePart(whole : GOOKB::Class, part : GOOKB::Class) : GOOKB:Whole_Part
newlnheritance(superclass : GOOKB::Class, subclass : GOOKB::Class) : GOOKB:Inheritance
newAssociation(associate_a : GOOKB::Class, associate_b : GOOKB::Class) : GOOKB::Association

A pattern object instantiatesa =~
yZ i design pattern onto an object
GOOKB::Object_Diagram ; diagram.
AddClass(c : Class) : CKB::Critic :
Addinheritance(r : GOOKB::Inheritance) : CKB::Critic It is an instance of the template
AddWholePart(r : GOOKB::Whole_Part) : CKB::Critic i pattern (gamma p325), where the
AddAssociation(r : GOOKB:Association) : CKB::Critic = | entire instantiation process is
< 3 different for each subclass of
= |
N ! | pattern

GOOKB::Pattern

Instantiate(om : GOOKB::Object_Model, od : GOOKB::Object_Diagram) : CKB::Critic
/"‘..
[\

)

+ other patterns T

Pattern::VisitorPattern i
| Instantiate(om : GOOKB::Object_Model, od : GOOKB::Object_Diagram) : CKB::Critic

Pattern::FacadePattern
Instantiate(om : GOOKB::Object_Model, od : GOOKB::Object_Diagram) : CKB::Critic

Figure 8-1@ - Extending the GOOKB to support Patterns
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The Object Diagram class in Figure 8-10 provides operations for an Object Diagram object to
add new classes and relations to itself. The interface of Object Mode/ has been extended
with operations for creating new classes and relations. A pattern object delegates the
responsibility for creating classes and relations to an Obyect Model object. This role of Object
Model is an example of the Abstract factory pattern (Gamma e a4/, 1995, p87). The
interface of Class has been similarly extended with operations for creating new attributes
and operations. This role of Class is also an example of the Abstract factory pattern
(Gamma ef al, 1995). The use of the Abstract factory pattern in Object Model and Class
ensures that the Pattern hierarchy is independent of the type of object model (and hence

the type of classes and relations).

New types of object model that are implemented in MOOT are always defined as
extensions of the Odject Model class in the GOOKB. Extensions of Object Mode/ must
override the newclass, newInberitance, newW holePart and new.Assocation operations to support
patterns. New types of class are always defined as extensions of Class in the GOOKB.
Extensions of Class must override the new.Attribute and newOperation operations to support

patterns.
8.4 Supporting UML

Work in progress to support the UML v1.1 meta-model (OMG, 1997c-)) as an extension
of the CKB and GOOKB is documented in Figure 8-11, Figure 8-12 and Figure 8-13.

Figure 8-11 shows how the following packages from the UML specificaton (OMG,
1997i) have been modelled as extensions of the CKB and GOOKB:

« UML v1.1 Foundation: CORE: Backbone

« UML v1.1 Foundation: CORE: Extension Mechanisms

« UML v1.1 Foundation: CORE: Auxilhary Elements

Figure 8-12 and Figure 8-13 show how the following packages from the UML
specificaion (OMG, 1997i) have been modelled as extensions of the CKB and GOOKB:
« UML v1.1 Behavioural Elements: Collaborations

« UML v1.1 Behavioural Elements;: Common Behaviour
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! CKB::Model_Element '

UML Tagged\(alue B : r !
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H !
| CKBrRelation CKB:Composile CKB: Concept :

UML: Model _element

OML: Consvaint ¢ o LML Foature
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LownerScope | Scopaking |
< wigibility : VisibilityKind

:pody : BooleanExpression

¥ : I :
UML::GeneralizableElement & i . GOOKB Atipute | ' ‘! GOOKB: Class
Root : Bopiean Lo — , e f0.0
: Lea! : Boolean :
: % i lisAbstact : Boolean .
. 5, L —— e ———— K
o g
/,f GOOKB: BehaviourPropeny
;JI. '
- N B Ve
S UML Stereotype i : 4 o
‘baseClass - Name ; s i
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T e multiplicity : Mumpncny . _,-"
changeabls : ChangeableKind ;
‘targetScope | ScopeKind

UML ‘Method

specmcatlon Unmt.erpre{ed )
body .ProcedureExpressmn .

iisPolyrnorphic : Boolean
i oncurrency ; CaifConcurremmed

Figure 8-11 - UML v1.1 Feundatien: C@RE: Backbene +
Feundatien: CORE: Extensien Mechanisms + Feundatien: C@RE:
Auxilary Elements
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Figure 8-12 - UML v1.1 Behavioural Elements: Collaborations
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Fipure 8-13 - UML v1.1 Cemmon Behaviour: Common Behaviour

The definidon of the core UML meta-model as an extension of the CKB and GOOKB
validates the novelty, flexibility and extensibility of the MOOT appreach as UML is an

example of a new methodology that did not exist when the research commenced.
8.5 Preliminary Development of the Semantics Editor

The Semantics editor (Figure 3-10 - Proposed, top level, system architecture) is used by
methodology engineers to desine the semantics of methodologies in SSL. The
development of the semantics editor by using MOOT is a bootstrapping approach where

NDL and SSL are used to develop a tool for building SSL specifications.

Two modelling languages are proposed to support the development of SSL

specifications. These are:
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»  SSL module structure modelling language. The purpose of this language is to define
the class and module structure of an SSL specification. It supports the construction

of a collection of diagrams, each of which corresponds to an SSL module.

+ SSL method modelling language. The purpose of this language is to define the

implementation of an operation shown in an SSL. module structure model.

Figure 8-14 shows how the two modelling languages are supported in MOOT.

| CKB:Methodology |

. CKB:imer-Modei Trangiton

ey e P : S
L

| 8SL:Module model : | SSLiMethod Modal

N A

. SSL:Meathod Diagram

; CKBuintra-Model Transition | .

Figure 8 14 =81 modelling languages

The two modelling languages are represented by sub-classes of Modeling Language (Module
Model and Method Model). ImplementOperation is an inter-model transition between an SSL
Module Model and an SSL Method Model. The implementation of an operation in a SSL
Module Model by a method is represented by an instance of ImplementOperation. U selnterface
is an intra-model saransition between two SSL module structure diagrams. This transition

corresponds to using a class in a module that is defined in another module.

Figure 8-15 documents work in progress, to define the semantics of SSL as an extension
of the GOOKB. This extension is called the SSL Knowledge BASE (SSLKB). The

SSLKB is partially designed and has not been implemented in SSL.
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Figure 8-15 - Representing SS1. as an extension of the GOOKBS

Figure 8-15 represents the module structure of SSL. An Interface Module contains zero or
more Interfaces. Implementation modules contain zero or more SSL Classes. Each Class in an
implementation module corresponds to an interface in an interface modul. The SSLKB defines an
extension of GOOKB Class (SSL Class) as SSL classes also have a conswaint. SSL Class is
also a sub-class of Type. The other Sub-classes of Type include Collection and Iterator.
Inheritance and assodation are already supported in the GOOKB. Figure 8-15 shows an

extension of GOOKB Whole_Part and GOOKB Part that permits any SSL type to take the

role of ‘part’ in a whole-part relation.

The development of NDL specifications for the two proposed modelling languages have

been conducted independently from the development of the SSLKB.
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8.5.1 Notation for the SSL Module Structure Modelling Language

There are two symbols in the notation of the SSL module structure modelling language.

class name

operation one
operation two

class name
operation one

attribute one
attribute two

class constraint

Interface symbols represent SSL class interfaces. An interface symbol
has two compartments, one for the class name and one for the
operations. Each use of a class from another SSL. module corresponds

to an interface in an SSL module model.

The Class symbol has three compartments. The top compartment
contains an interface. The last two compartments contains the

attributes and a constraint.

The current implementation of the SSL. module modelling language uses elements from

the CKB as its semantic definition. SSL classes and interfaces are represented by an

instance of CKB concept. Inheritance and Using relations are represented by instances of

CKB Directed Binary Relation. A porton of the NSM table used is given in Figure 8-16.

a)

0 11 setlabel-S#

0 12 setlabel-S#

0 13 setlabel-S#

0 14 setlabel-S#

b)

Interface ckb_modelelement:concept create-#

Class ckb_modelelement:concept create-#

Inheritance ckb_modelelement:directed_binary_relationship 2
_plain 1
_inheritance_end 1
create-Vckb_modelelement:concept#Vckb_modelelement :concept##

Uses ckb_modelelement:directed_binary_relationship 2

_plain 1

_arrow_end 1

create-Vckb_modelelement: concept#Vckb_modelelement :concept##
c)
Interface addconcept-Vckb_modelelement : concept##
Class addconcept-Vckb_modelelement : concept##
Inheritance addrelationship-Vckb_modelelement:relationship##
Uses addrelationship-Vckb_modelelement:relationship##

Figure 8-16 - NS\ table for the SSL module modelling language

Figure 8-16 (a) shows the NSM action map. The update of each field is mapped to a

setlabel message (which takes a single string argument). Figure 8-16 (b) contains the create

concept and create relation maps. Classes and interfaces are represented by an instance of

Concept from the CKB. All relations are represented by an instance of Directed Binary

219



Relation from the CKB. Figure 8-16 (c) contains a portion of the add map. These entries
specify the message that is used to add an item that corresponds to a particular NDL

template to a diagram.

Figure 8-17 shows a snapshot of MOOT being used to draw an SSL. module structure

diagram that corresponds to the Crzie module of the CKB (see Figure 6-11 - Critics).

Modelling languages avallable Models in project:

[lunnamed|SSL Module Mode
SSL Module Modei

w4
Ll Project

el CIENEE

4 with Mode
L}

Model Iterator
Traverse
AddSituation
Critic GetResult

BExplain result

1SOK visited
L.

status result i= no_object

F\ Model Element

/ L\

visit

GetNext

Simple Critic Complex Critic
Explain Explain

Placed a Class gescription Adsiustion
Placed a Class situations
Placed a Class
Placed a Class
Placed a Interface
Placed a Uses connection

M Placed a Uses connection
Placed a Uses connection
Placed a Inheritance connection
Placed a Inheritance connection

Figure 8-17 - Supporting SSL. with MOOT

The example in Figure 8-17 shows the CASE: tool client and the MOOT core running on

the same machine. A description of each window is given below.

MOOT CASE Tool Clrent

Project Manager

The interface of the CASE Tool client consists of a

Mmoot MOOT CASE Toal drawing surface, a toolbar and a menu bar. The toolbar is
Core Client

generated automatically from the NDL specification for

Feedback Window the current modelling language. This example also shows

Java Console

inheritance and uses connections.
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MOOT Core
The output displayed in the console corresponds to the translation of actions at the

CASE tool client.

Feedback Window
Explanations generated by the MOOT core and feedback related to the successful

creation of symbols and connections are displayed in this window.

Project Manager

The project manager is used to manipulate the models in a project.

Java Console
The output displayed in the console corresponds to success response packets sent from

the MOOT core in response to a request by the CASE tool client.
8.5.2 Notation for the SSL Method Modelling Language

The proposed SSL method modelling language is used to define the SSL code in the body
of an SSL method. The notation described here is a proposal, whose primary purpose is

to demonstrate that a notation of this type can be described successfully with NDL.

The proposed notation has fourteen symbols and three connections. The symbols
correspond to SSL statements, SSL operators and values. The connections represent

invocation, value and part relations. The symbols and connections are discussed below.

Statement block

This symbol represents a sequence of statements, which
are connected to the statement block with invocation
connections. The order of the invocation connections

represents the order of execution of the statements.

T
If statement
P The boolean condition is attached to the bottom of the if
F_

symbol with a value connection. This example shows a

\n

Ib onlean .} condit Un’ variable symbol whose name is condition and whose type is

boolean. Single statements can attached to the T and F parts

of the if symbol.
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Loop statement
The get-out condition is attached to the bottom of the
symbol with a value connection. In this example the get-

out condition is a boolean variable called get-out condition.

Return statement

The retarn statement indicates the end of a method. The
values that are returned a result of the method are attached
at the bottom of the symbol with value connections.
Assignment statement

The assignment statement is used to update the value of a
variable. This example can be read as ‘I-value zs given the
value of r-value’.

Arithmetic operators

Each arithmetic operator symbol may accept multple
value connections at the top and have one or two value
connectons at the bottom.

Message send operators

The two message-send operators are used to represent the
binding of messages to an SSL object, SSL collectdon or
SSL iterator.

Part connection

The part connection is used to associate an assignment
operator with its l-value and r-value and to associate a
message send operator with its message receiver and
message. In this example the message message is being sent
to an object called recezver.

Value connection

Value connections represent the evaluadon of an
expression. This example shows a message with two

arguments argument 1 and argument 2.
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—"

Invocation connection

O The invocation connection represents the execution of a

statement. In this example a loop statement and then a

|

|[>//L\\ return statement are being invoked, from within a

statement block.

Figure 8-18 shows SSL code for the Explazn method of the CompositeCritic SSL Class

defined in the Core Knowledge Base. A ComplexCritic object encapsulates a collection of

other critic objects. The Explain method concatenates the explanations generated by the

component critic objects.

if
{

}

{

// Explain method from CKB::CompositeCritic

string Explain()
string explanation;
Iterator[ Critic ] sit;
Critic c;

// 1f there is no problem return ok

(

return "ok";
else

// otherwise build an explantion

explanation = "";

// situations is a collection of critic objects
sit = situations.front() ;

loop

{

}

// return the result
return explanation;

isOK () )

// finish when we have checked everyone
endloop when( sit.end () );

c = sit.item();

// update the explanation

explanation = explanation + c.Explain();
sit.next () ;

Figure 8-18 - Explain method of the Comp/lexCritic class in the CKB

Figure 8-19 shows the corresponding SSL method model and shows how the explain

method can be captured using the proposed notation.
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Figure 8-19 - An example SSL method model

Whilst no claim is made to suggest that MOOT should be used to implement visual
programming languages, this result is interesting because the development of the notation

for the SSL. method modelling language (with 14 symbols, three types of connection and

logical distortion) was achieved in a matter of hours.

8.6 Toward Supporting Joosten Workflow Modelling

This work started after an expression of interest, by another researcher, to use MOOT to

model and implement several workflow methodologies. The aims of this work are to:

«  Model several workflow methodologies.

« Derive a meta-model of workflow methodologies. This work is similar to the

GOOKRB in scope and intent.

+ Assess the MOOT approach when used to model a non object-orientated

methodology.
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This research is in its preliminary stages. An NDL specificatdon of the Joosten (Joosten,
1995) workflow methodology has been derived. An example Joosten trigger model

(Joosten 1995) which has been drawn using MOOT is given in Figure 8-20.
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Figure 8-20 - Joosten trigger model (Joosten, 1995)

87 Summary

This chapter has presented a series of examples showing how the results of the research,

as discussed in chapter 3 - 7, can be applied. This included:

»  Describing Coad and Yourdon
+ Implementing the support for patterns as part of the GOOKB
» Inival work on describing the UML meta-model as an extension of the GOOKB

+ Initial work on supporting the semantics editor (as described in the description of the

proposed architecture in chapter 3) using MOOT

+ Inidal development of the Joosten Workflow methodology
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The successful modelling and implementation of patterns and UML (recent advances in
object technology), which did not exist when the research commenced, shows the
innovative and original nature of the approach and the new methodology representation
strategy. This research is a significant move toward building adaptive systems; the

ultimate future of software engineering.
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Chapter 9

Conclusion and Future Work

If we knew what it was we were doing, it would not be called research, would it?

Albert Einstein
9.1 Introduction

The objectives of the research, as stated in section 1.7, are:

« Develop a novel meta-CASE tool methodology representation strategy that:
¢ Uses an object-orientated meta-model.
+ Allows methodology descriptions to be re-used.
¢ Minimises the coupling between methodology syntax and semantic descriptions
such that methodology syntax and semantic descriptions can be re-used
independently.
» Permits software engineering projects to be re-used, even if they are built with
different methodologies.
o Design and implement a prototype meta-CASE tool that realises the new
methodology representation strategy via the development of:
o Languages that support the descripion of syntax and semantics of a
methodology.

¢ The efficient execution strategy of syntax and semantic descriptions.

This thesis presents the development of a new modifiable CASE environment designed
to satisfy these objectives (Meta Object Orientated Tool). The results of this research are
manifest in the existence of NDL, SSL, SSL-BC, the SSL-VM, NSM tables, the CKB, the
GOOKB and the MOOT prototype.

The thesis is summarised in section 9.2 and a critical evaluation of the study is presented
in Section 9.3. Some of the future work that has been envisaged is outlined in section 9.4.

Final concluding remarks are made in section 9.5.
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9.2 Summary of the Thesis

Chapter 1 introduced and defined fundamental terms used throughout the thesis. The
type of CASE tool that is the subject of the research was defined (methodology CASE
tool). A classification hierarchy of methodology CASE tool categories was derived and a
review of CASE tools was presented with respect to the hierarchy. The limitations of
methodology CASE tools were discussed from organisational and CASE tool

perspectives and the goals of the study presented.

Chapter 2 examined meta-modelling and meta-CASE technology. In particular the

following limitations of meta-CASE technology were identified:

«  Reliance on data models

»  Separation of ‘swuctural’ and ‘behavioural’ elements of semantic descriptions, which
decreases the cohesion of semantic descriptions

« High coupling between the syntax and semantic descriptions, primarily because of an
assumed, fixed, mapping between elements of syntax and semantic descriptions

«  No consideration of software process

» No consideration for re-use of methodology descriptions or software engineering
projects

«  No relation between supported methodologies

«  Very poor usability

Chapter 3 presented the approach taken to address the limitations of methodology CASE
tools and meta-CASE tools. The proposed architecture of a new modifiable CASE
environment (MOOT) was presented. The methodology representation strategy

supported by MOOT was outlined and a prototype of MOOT described.

Chapter 4 presented the development of NDL (Notation Definition Language). An
overview of graphical notatiens used in software engineering methodologies was
presented. The requirements and design of NDL were discussed and a prototype NDL

interpreter (the basis of the MOOT CASE tool client) was presented.

Chapter 5 described the development of SSL (Semantic Specification Language). SSL
implements the MOOT meta-model; integrates the description of ‘structure’ and

‘behaviour’; supports more than completeness and consistency checking; emphasises
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programming, rather than formally defining the semantcs; supports re-use and provides

efficient execution and platform independence.

SSL is an object-orientated language that supports a subset of the facilities of a general
purpose programming language. It is a statically type checked language that provides
clean separation between ‘class interface’ and ‘class implementation’. SSL supports
dynamic binding, multiple inheritance, built-in primitive types, polymorphic collecton

and iterator types and provides a module system.

Chapter 6 presented the development of the Core Knowledge Base (CKB) and the
Generic Object Orientated Knowledge Base (GOOKB). The CKB was derived using a
meta-modelling approach and implements a meta-model of methodology, which provides
simple facilides for cognitive support. The GOOKB was derived by meta-modelling and

implements a meta-model of concepts germane to all object-orientated methodologies.

Chapter 7 discussed the realisation of methodologies and software projects in MOOT.
The derived Methodology Description Table (MDT), Notatdon-Semantic Mapping
(NSM) tables and the communication protocol between the CASE tool client and
MOOT core were presented. It was shown that the association of syntax and semantic
descriptions involved: the relation between a software engineering project, in terms of its
models, diagrams and documents, to the methodology used to create it; the relatdon
between the syntax and semantic descriptions expressed with NDL and SSL; the relation

between logical actons performed using the CASE tool client and semantic actions

performed by the MOOT core.

Chapter 8 presented a series of examples showing how the results of the research can be
applied. This included: implementing Coad and Yourdon’s methodology; implementing
support for pattems as part of the GOOKB,; initial work on describing the UML meta-
model as an extension of the GOOKSB; initial work on supporting the semantics editor

and inital development of Joosten’s Workflow methodology.

Table 9-1 summarises the practical work and the publicatons completed as a result of

this research.
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Chapter  Practical Work Implementation Details  Related Pubkcations
3 Prototype of the = 90 classes Page ezal, 1997, 1998
MOOT Core ~ 8000 lines of C++  Mehandjiska ef al, 1997
4 Prototype NDL ~ 80 classes Page ¢t al,, 1994
Interpreter = 5000 lines C++ Mehandjiska et al, 1995}3,
1996a
=1600 lines tcl
= 450 lines of PCCTS
grammar
5 SSL Compiler ~ 80 classes Page ezal, 1997, 1998
=~ 5000 lines of C++  Mehandjiska ez 2/, 1997
= 800 lines of PCCTS
grammar
6 Core Knowledge Base = 45 classes Page ez al, 1998
and Generic Object =~ 1000 lines of SSL Mehandjiska ez al, 1996b,
Orientated Knowledge 1996¢. 1997
Base ’
7 Communication = 10 classes Mehandjiska ez al, 1997
prowocolin the CASE - _ g1 Ji1 s of fava  Phillips f at, 1998b, 1998¢
tool client

Table 9-1 - Practical werk completed during the research

9.3 Discussion

The discussion summmarises the novel meta-CASE tool methodology representation
strategy. The overall MOOT approach is critically reviewed and the new modelling

languages (NDL and SSL) are discussed in turn. Finally the two re-usable libraries of

semantic methodology descriptions (the CKB and GOOKB) are considered.

9.3.1 The Novel Meta-CASE Tool Methodology Representation Strategy

The novelty of this research is the philosophy and implementation of the new

methodology representation strategy for meta-CASE tools.

Novel Principles of the Methodology Representation Strategy

« A language for modelling methodology syntax. This is an advantage in contrast to

existing approaches, which only provide simple support for ‘pen and paper’

notadons.
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« A single modelling language for representing methodology semantics. This is an
advantage in contrast to existing approaches, which are typified by ‘data model and

separate constraints.’

« Independent development of syntax and semantic descriptions. This is supported by
the scope of the modelling languages and late binding of methodology syntax and

semantic descriptions.
« Re-usable methodology description components.
«  Explicitrelation between methodology descriptions.

«  Facilities such as auto-correction, intelligent feedback and cognitive support.

Novelty of the Implementation

e An object-orientated meta-model used for a meta-CASE tool.

« NDL, a new language for describing methodology notations.

« SSL, a new language for describing methodology semantics.

«  SSL-VM, a new virtual machine which supports efficient processing of SSL.

« CKB and GOOKSB, two libraries of re-usable methodology semantic description

components.

9.3.2 The MOOT Approach

The approach described in the thesis addresses issues related to CASE tools and meta-
CASE tools. Positive and negative ramifications of the novel methodology representation
strategy and its implementation in MOO'T have been identified based on empirical results
gained by using the MOOT prototype. The positive ramifications are related to: the
adoption of an object-orientated meta-model, the scope and separation of NDL and SSL,
and the emphasis on re-use. The negative ramifications are common to all meta-systems

and are related to redundancy, efficiency and complexity.

9.3.2.1  An Object-Orsentated Meta-Model
The integration of state and behaviour
Previous meta-CASE tools typically provide two or more separate languages for the

semantic specification of methodologies. One is used to define ‘structure’ and the second
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to define constraints on the structure (a form of behaviour). There are several problems
with this approach: a) there are multiple languages for the same task b) the coupling of
methodology semantic specifications increases and c) the cohesion of methodology
semantc specifications decreases. MOOT addresses these issues by providing a single

language (SSL) that integrates the description of structure and behaviour.

Inberitance and polymorphism

Using inheritance is the logical extension of the support for ‘sub-typing’ that the majority
of meta-CASE tools provide. The integration of state and behaviour in SSL, combined
with inheritance and polymorphism, fosters a ‘model by derivation’ approach to
methodology meta-modelling in MOOT. This approach has significant advantages in
comparison to some meta-CASE tools, which only support accidental re-use of previous

methodology meta-modelling results.

Support for re-use

An object-orientated approach promotes re-use, as widely propounded in the literature.
The benefits of an object-orientated approach, in terms of fostering and enabling re-use,
applies to MOOT methodology semantic descriptions, as MOOT incorporates an object-
orientated meta-model and meta-modelling is simply modelling, at a different level of

abstraction.

9.3.2.2  Separate Syntax and Semantic Modelling Langnages

Key benefits of the separation of the syntax and semantic modelling languages in a meta-

CASE tool include;

o Syntax and semantic descriptions can be developed in isolation
The new approach to meta-modelling in MOOT allows syntax and semantic
descriptions to be derived separately. Methodology engineers with sound HCI skills
can develop notations whilst those with sound modelling skills can derive
methodology semantic descriptions. This permits the development of effective
‘screen’ notations to be considered. If it can be said, “to a user of a system, the
interface is the system” (Apperley and Duncan, 1994), perhaps it can analogously be

said, “to a user of a methodology, the notation is the methodology.”
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o Increased cobesion and reduced coupling
This is a direct consequence of ensuring that the syntax modelling language can only
be used to model syntax and the semantic modelling language can only be used to
model semantics. Therefore, the cohesiveness of syntax and semantic descriptions
must be the same as, or better than, that achieved with other meta-CASE tools. The
coupling between the descriptions is certainly low as each may be developed

independently.

o Syntax and semantic descriptions can be p lugged together
The MOOT approach fosters a culture of ‘develop the semantics once’ rather than
developing similar semantic descriptons with different syntax, which in turn
emphasises that ‘different syntax’ and ‘same semantics’ is not the same as ‘different

methodology.’

o The modelling languages may be extended in the future without affecting each other
A complete separation of NDL and SSL ensures that each language may be extended

independently in the future.

9.3.2.3  Viewing Methodology Descriptions as Potentially Re-usable Components

The development of the CKB and GOOKB was driven by the realisaion of the
homology of object-orientated methodologies. The fact that the CKB and GOOKB can
be built at all is evidence of the potential of the MOOT approach. These two libraries have
successfully been used to derive Coad and Yourdon’s methodology, the semantics of

SSL, the UML meta-model and support for patterns.

9.3.2.4 Redundancy

The existence of two separate languages in MOOT may lead to redundancy in the
methodology descriptions. For example, the developer of a syntax description for an
object-orientated methodology constrains inheritance connections to occur between
classes, a feature also captured by the semantic description. However, MOOT syntax and
semantc descriptions serve completely different purposes. Therefore the scope and
representaton of similar concepts (in syntax and semantic description) is different. The
MOQOT approach increases the cohesion of methodology descriptions and reduces the

syntax — semantic coupling,
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9.3.2.5 Efficency

Meta-systems typically suffer with respect to efficiency in time and space because of the
additional layers of representation they entail. There are three aspects of the MOOT
system where efficiency should be considered: processing NDL specifications, processing
SSL messages and mapping syntax and semantics with NSM tables. The time/space

efficiency considerations include:

o Processing NDL spectfications

Empirical experience gained thus far, from using MOOT, indicates that the
additional overhead in terms of time is not noticeable in the client. For example
NDL is used to dynamically update symbols, as a user types text directly onto the
drawing surface. An NDL template is subsequently interpreted, in between
keystrokes, to resize affected symbols and connections. However, no delay noticeable

by users of the CASE tool client” has been observed.
»  Size of NDL specfications

The space overhead of NDL specifications is insignificant. For example, a complete
textual NDL definidon of Coad and Yourdon, including support for logical
distortion, is approximately 4500 bytes. The major overhead in the client is the space
it takes to represent NDL templates in memory. Currently the client parses the NDL
specification and builds an abstract syntax tree for each template. The overhead is,

however, not large.
o Processing S5 L messages

Two aspects of processing SSL messages have been considered. The #rst is the time
taken to execute the body of a method. SSL is compiled to a platform independent
binaty representation to address this issue. The second is the time it takes to bind a
message to an SSL object. SSL is statically type checked to address this issue. In

addidon the SSL class run-time representation includes a method lookup table.

This research has not been concerned with multi-user access, so the current

68

prototype only implements very primitive multi-user facilities”. The impact of object

" For example on a low-end computer, such as an Intel Pentium 150 based machine runniy: Windows-95.
> Mutbople users can connecet to the MOOT core and all requests foraccess to SSL objects auromaricall succeed.
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level locking, therefore, cannot be qualitatively or quantitatively assessed at this time,

although it is expected to be significant.
o Sizeof SSL specifications

The space overhead of maintaining semantic specifications (SSL classes in MOOT) is

no greater than that of other meta-CASE tools”.
o Appling NSM tables

Empirical evidence gained from using MOOT shows that the run-time cost of
implementing late binding of syntax and semantc descriptions, with NSM tables, is

not significantin comparison to processing NDL and SSL.

o Size of NSM tables
The space overhead of NSM tables is insignificant in comparison to the NDL and
SSL specifications that comprise a methodology description and the NDL views and

SSL objects that comprise a software engineering project.

9326 Compleaty

MOQOT is more complex than a methodology CASE tool and soze existing meta-CASE
tools as two languages are needed to describe a methodology (NDL and SSL). However,
the contention of the MOOT approach is that the scope and separation of these
languages provide significant advantages to the methodology engineer, which compensate

for the complexity.

The current MOOT prototype requires a methodology engineer to write code in NDL,
SSL and develop NSM tables by hand. Iearning two new languages constitutes a
significant learning overhead. This issue can be resolved by providing visual editors to aid
the methodology engineer in the task of creating methodology specifications (see the
Semantics editor, Notation editor and Methodology editor in Figure 3-10 - Proposed, top

level, system architecture).

9.3.2.7  Structure of the Persistent Store
The meta-modelling approach adopted requires careful design of the MOOT repository.

Methodology descriptions consist of a collecdon of SSL classes, NDL specifications, an

# |-xeept that MOOT supports more than compleroniess and consistenes choecking.
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NSM table and an entry in the Methodology Description Table. Software engineering
projects consists of a collecion of NDL views and SSL objects. The persistent store
contains instances of the C++ classes that implement SSL class, SSL object and so on.
The structure of the persistent store, whilst logically is very rich (it corresponds to the
SSL class hierarchies), is physically flat (as it contains instances of approximately four
C++ classes). The significance of this becomes apparent when browsing of software
engineering projects is considered. The MDT provides sufficient indexing to locate the
SSL objects that correspond to individual projects, models and diagrams. However,
browsing a software engineering project is also concerned with browsing the content of the
models that have been derived. A method for supporting browsing of software engineering
projects in MOOT, at granularity finer than that of the diagram, has not yet been

proposed.
9.3.3 The Notation Definition Language

NDL allows notations to be described and supports the ‘screen notation’ in contrast to

the limited support for ‘pen and paper’ notations provided by other meta-CASE tools.

The limitations of NDL are related to supporting operations over groups of symbols and
connectons, facilities that are not supported by the syntax representaion mechanism
adopted by other meta-CASE tools. Some notations represent semantic information by
the relative positions of symbols and connections (e.g. RDD). Whilst NDL can be used
to describe the symbols and connections of such notations, it does not provide facilities
to capture such a spatial relation. Composite symbols such as the Booch bubble (where a
class bubble may appear inside another Booch bubble) and the Coad and Yourdon
subject area cannot be represented. This is the purpose of the NDL composite template,

which has yet to be implemented.
Each of these limitations are addressed in secdon 9.4 - Future Work
9.3.4 The Semantic Specification Language

Existing specification languages and virtual machines were investigated to determine their
applicability to the implementaion of MOQOT. The main reasons for deriving a

specialised language for MOOT were:
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The approach adopted by other meta-CASE tools only focuses on completeness and
consistency checking. MOOT was required to support additional features such as

cognitive support and auto-correction.

The formal approach adopted by other meta-CASE tools does not allow a software
engineering project to be in an inconsistent state. This is a barrier to an exploratory

approach to development that software engineers naturally use.

A new language can be readily extended and modified based on results gained form

its use and future research ideas.

The SSL execution strategy was developed based on the requirement for efficient

execution of SSL specifications and platform independence. The decision to translate SSL

to a platform independent representation and execute it on a virtual machine was a

natural one.

Existing object-orientated virtual machines were investigated (e.g. the Smalltalk virtual

machine and the Java virtual machine). The following issues were noted:

Exisung virtual machines implement representatons of general-purpose
programming languages and therefore provide facilities that SSL does not require

(such as support for input and output).

The support required for concurrency is different to that of existing virtual machines.
SSL requires only a single thread of control to be active in the SSL-VM, yet multiple
instances of the SSL-VM can be active at the same time processing messages from a
common pool of SSL objects. Object-level locking is therefore required and is tightly

coupled with the virtual machine.

In contrast to other virtual machines, the SSL-VM only required a small instruction

set and a close correlation to SSL.

9.3.5 Core Knowledge Base and Generic Object Orientated Knowledge Base

One of the primary goals in developing the CKB and GOOKB was to demonstrate the

feasibility of producing libraries of re-usable methodology semantic components for a

meta-CASE tool.
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The CKB is a base, from which other meta-models may be derived in the future. It is
similar in scope and intent to the OMG Meta Object Facility. For example the GOOKB

has been defined as an extension of the CKB (see section 9.4 — Future Work).

The focus of the GOOKB is limited to static modelling of class hierarchies and the
various types of association supported by object-orientated methodologies. The GOOKB
was designed to model concepts germane to a/ object-orientated methodologies. Its
scope is similar to the latter COMMA project, which was for a “critical minimality that
could be supported by all methods” (Henderson-Sellers and Bulthuis, 1996a).
Implementing the support for behavioural modelling in MOOT is addressed in section

9.4 — Future Work.

Meta-modelling of ‘software process’ is a significant research task in its own right and is
on-going in the MOOT project. The inclusion of the process and document classes in the
CKB acknowledges the importance of these concepts, which is an improvement over

existing meta-CASE tools.
9.4  Future Work

The overall goal of MOOT is to support all phases of the software development life-
cycle, promote re-use and support component based software engineering

methodologies. The planned future work can be classified as:

1. Extending the MOOT prototype so it completely implements the architecture
proposed in chapter 3.

2. Extending the methodology representation swategy.

3. Extending the scope of MOOT.
Subsequent sections describe future work related to categories two and three.
9.4.1 The Notation Definition Language

Extenston of existing NDL facilities

« Introduce a module system and improve the scope rules for NDI. Currently
template names and NDL IDs are unique within an NDL specification. Therefore,

portions of an NDL specification can not be easily re-used. Experience gained by
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using NDL indicates that the group template mechanism is very useful and that

building libraries of group templates is efficacious.

«  Consider supporting format specification for text areas. Currently text fields contain
strings in an ‘unparsed’ form. The CASE tool client transfers the content of the text
fields to the MOQOT core, which translates them. The communication between the
CASE tool client and the MOOT core can be reduced if the CASE tool client can

check the syntax of text fields.

« Introduce a general action template to improve user-defined actions. NDL supports
two built-in action types, update and transition. User defined actions are currently
supported by permitting a user defined action ID to be associated with an active area.
These actions are propagated by a CASE tool client to the MOOT core but cannot

have any arguments.

Adding new faclities to NDL

«  Support parameterised symbol and connection types. For example a class symbol
could be parameterised by an outside and an inside group template. A parameterised

template could be instantiated to create a concrete template type.

+  Consider manual re-sizing of symbols. This could be implemented by simple scaling,
However this would lead to symbols that are distorted. A better solution would be to
include optional ‘stretch in x” and ‘stretch in y’ properties for the primitive template

types that correspond to graphical elements.

« Support repetitive subgroups in symbols. This would allow a greater range of
notations to be described and also simplify the description of others. This technique
could also be used to replace the multi-line-text template segment type.
Implementing the support for repetitive subgroups would provide better targeting of

events and actions to sub-parts of symbols.

« Allow ‘position information’ to be propagated to the MOOT core. One possible
technique is to apply a logical grid over a diagram with a ‘snap to grid factor’. The
origin of this grid would be relative to the #rst symbol placed in a diagram.

« Support constraints on item placement. One possible technique is to use the

MetaView idea of Clusters.
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Investigate supporting animation of diagrams. This is something that is outside the

initial scope of NDL.

9.4.2 The Semantic Specification Language

Extension of existing SSL factlitses

Permit SSL classes to define local methods, which have the same visibility as the
atwibutes and are only relevant to the class implementation. This ensures the class
interface does not become polluted with operations that are on/ related to the class

implementation.
Add support for parameterised types to SSL.

Extend the use of the SSL tuple type.

Adding new faalities to SSL

Consider implementing the CKB classes Methodology, Model, Diagram, Concept and
Relation as built-in SSL types. This work implies an extension of the SSL-VM.

Address optimisation of compiled SSL.

Investigate the need to support concurrency in SSL. MOOT allows multple
instances of the SSL-VM to be active at the same time, processing messages from a
common pool of SSL objects (a form of concurrency). Supporting concurrency in
SSL would require more than one thread of control in the SSL-VM and perhaps in
SSL objects. Two approaches are: a) provide explicit programmer support (e.g. a
programmer API or programming language constructs, related to concurrency) b)

automate the support for concurrency.

The preferred method for supporting concurrency in SSL would be the second

approach.

9.4.3 Notation Semantic Mapping Tables

Two avenues of future work are envisaged for NSM tables:

NSM tables could be extended with a simple scripting language (NSM-SL). The

elements on the right-hand-side of the majority of table entries would consist of a

240



block of NSM-SL code. This would support mapping the creation of an NDL view
to the creation of one o7 more SSL objects; mapping the server side creaton of an SSL
object to instances of one or more NDL templates and mapping an NDL action to

several messages to several SSL objects.

+  Generalise the NSM table to permit representations other than NDL to be bound to
SSL. For example a simple command-line client has been implemented and

associated to an SSL semantic description via an NSM table.
9.4.4 Support for Re-use

A significant amount of research has already been conducted on adopting re-use
swategies and on the problems of building, indexing and searching through, a collection
of re-use assets (Yu, 1999). Future research must consider how these techniques can be

applied and extended within the context of MOO'T. This includes:

» Descriptions of re-usable components in the re-use pool. One possibility is to extend
SSL to permit descriptions of ‘meaning’ to be attached to SSL objects. Another is to

use a separate language for describing the components in the re-use pool.

+ Assistance in selecting re-usable components, which includes intelligent searching of

the re-use pool and the promotion of new items into the re-use pool.
+  The management of re-usable components over their lifetime.
+ Implementation of a re-use pool browser.
This work must also consider the requirements of emerging, component-based,
development methodologies (D’Souza and Wills, 1998; Wills and D’Souza, 1997) and
technologies such as SOM, COM, DCOM, CORBA, javaBeans IIOP and ActiveX

(Forman et al., 1995; 1-Kinetics, 1998; LaMonica, 1997; Montgomery, 1997; OMG, 1991,
1992, 1998; Orfali ef a/., 1996; Siegel et al., 1996; Soley, 1998).
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9.4.5 Cognitive Support

This future work involves implementing the ARGO/UML" scheme for cognitive
support (Robbins ez a/, 1996, 1997, 1998), in the context of the Core Knowledge Base.

This would be an extension of the Cri#ic SSL module of the CKB to support:

Building user models.

Providing a change history. The CASE tool client currently implements this in a
primitive way. It records the request-result pairs that correspond to communication

with the MOOT core and displays them in a separate window for the user to view.
Supporting auto-correction.

Introduce support for ARGO/UML style Critics. The ARGO scheme allows critics

to be active and monitor the user as they work.

The ARGO/UML approach is specific to object-orientated methodologies and focuses

on the support of design. The scope of the ARGO/UML scheme must be re-considered

in terms of:

Generalety. MOOT i1s a meta-CASE tool that aims to support arbitrary methodologies.

Secope. MOOT is intended to support methodologies across a wide portion of the life-
cycle. Ultimately this includes tasks such as requirements gathering and

implementation.

94.6 Meta-Modelling

Core Knowledge Base and Generic Object Orientated Knowledge Base

The CKB and GOOKB should be compared to other meta-modelling
developments, as they become stable. Further modelling of the UML™" meta-model
(see section 8.4 - Supporting UML) and the OPEN meta-model as extensions of the
GOOKB is necessary. A compatrison of the OMG Meta Object Facility to the CKB

1s also of particular interest.

Ao UM s xomcthodotogy dependene CASE tool Tigure -3 - Classifieation hwrarchy of CARE ool categories,

thar has buen developed as part of a rescaredy project related to support the cognutive needs of desigmers.

" The current smplementanon of the UMIL meta-model has not requised any modifications to the CKB or GOOKB.
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o Meta-modelling of software engineering process

The result of this research will be a software process meta-model, which can be
defined in SSL as a part of the Core Knowledge Base. This research is also related to
the future work on cognitive support for software engineers as it deals with the

suggestions and guidelines implicit in the software process.

o Meta-modelling the behavioural modelling langunages supported by object-orientated methodologies

This research will consider the behavioural modelling languages adopted by object-
orientated methodologies. It will also consider the COMMA project, the UML meta-
model and the submissions for the OMG OA&D facility.

o Meta-modelling other approaches to software engineering

The original intent of the MOOT project was to solely address object-orientated
methodologies. The subsequent development of the CKB, however, suggested that
the MOOT approach is more widely applicable than was initially intended.

The objective of this research is to determine if meta-models of other software
engineering approaches can be implemented as extensions of the CKB. These meta-
models will have the same scope and intent as the GOOKB. Examples include
Workflow methodologies (preliminary work on this is described in section 8.6) and

Information Engineering.
9.4.7 Validation of a Complete Implementation of MOOT

A complete implementation of the MOOT CASE architecture (proposed in chapter 3)
must be validated with respect to the two types of user that MOOT supports; it must be
validated as a CASE #oo/and as a meta-CASE tool.

An evaluation framework has been derived (appendix I) to support validaton of a
complete implementation of MOOT. The results of applying the evaluation framework
to MOOT will be compared to evaluation results already generated for other CASE and

meta-CASE tools (Choi, 1996; Gray, 1995; Phillips e# a/., 1998a).
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9.5 Conclusion

This research has demonstrated the efficacy of adopting an object-orientated approach to
the development of a methodology representation strategy for meta-CASE tools. The
novel methodology representation strategy reinforces fundamental object-orientated
principles:
o Encapsulation
Everything related to the description of a methodology’s syntax is written in a single,
separate, purpose built language (NDL) and grouped together. Everything related to the
description of a methodology’s semantics is written in a single, separate, purpose

built language (SSL) and grouped together.

o Information Hiding
The implementation of syntax and semantic descriptions of a methodology are totally
hidden from each other. Semantic elements do not know, and do not need to know, how
they are visualised. Syntax elements do not know, and do not need to k£now, what they

represent.

s Polymorphism and Late Binding
An NDL specification can be bound to any SSL specification via an NSM table.

ReUse
Re-use is promoted by viewing methodology specifications as potentially re-usable

components and by the development and subsequent use of the CKB and GOOKB.

The results of this research are manifest in the existence of NDL, SSL., SSL-BC, the SSL-
VM, NSM tables, the CKB, the GOOKB and the MOOT prototype. Empirical results
gained from applying the MOOT prototype demonstrated the flexibility, extensibility and
potendal of the novel methodology representation strategy. This appreach permitted the
implementation and modelling of UMLL and patterns, two recent advances of object

technology that did not exist when the research commenced.

The novel strategy presented in this thesis is more than an untried theory. It has been

implemented, applied and is being evaluated. Simply, it is real and it works.
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Appendix I

Evaluation Framework

I.1  Existing Evaluation Frameworks

A CASE tool Evaluation Framework should support both qualitative and quantitative
assessment. The framework should provide the swucture from which a set of questions

can be generated that are designed to assess the functionality, methodology support and

usability of CASE tools.

Examples of evaluation frameworks that have been developed in the past include the

work of Misra (1990), Mosley (1992) and Ovum (1996).

These approaches suffer from several important problems. Existing evaluation

frameworks:
« Do not address all the features and characteristics of CASE tools.
o Are often out of date with respect to CASE and software engtneering technology.

« Cannot be systematically modified to address new advances in CASE technology.

Their structure is not conducive to simple extension or refinement.

« Cannot be easily targeted toward tools of a particular type. For example some of the
evaluation criteria related to meta-CASE tools are not relevant to a methodology

dependant tool.

« Are difficult to use to focus on one particular dimension of the properties of CASE

tools (e.g. usability).
I.2 A New Evaluation Framework

A new evaluation framework has been developed, as a part of this research, to address

the problems identified with existing evaluation frameworks (Phillips, 1998a).
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The new evaluation framework:

1. addresses usability, methodology support, life-cycle support and information

exchange
2. can be easily extended in the future to allow for emerging technology
3. copes with the plethora of different methodologies and tools

The new evaluation framework is based on a classification hierarchy of OO CASE tool

categories (Figure 1-3 - Classification hierarchy of CASE tool categories).

Each node in the hierarchy represents a CASE tool category and has a set of associated
evaluation criterion. Each node inherits evaluation criteria from parent nodes. The

hierarchical structure permits the framework to be extended to support new types of

CASE tool.

A classification based evaluation framework provides the necessary flexibility needed to
cope with changing CASE and software engineering technology. This structure also
prevents the evaluation framework from becoming unmanageable, as evaluation criteria
are always associated with a node in the classification hierarchy of an appropriate level of
abstraction. This structure also permits evaluation criteria to be specialised and refined in

a systematic way, in less abstract CASE tool categories.

Evaluation criteria are further classified with respect to usability, methodology support,
life-cycle support and information exchange. The four evaluation criteria hierarchies are
orthogonal to the CASE-tool-category classificaion hierarchy (Figure I-1). Each
evaluation criteria hierarchy is further structured into a hierarchical series of categories.
Evaluation criterion is therefore classified in two ways a) based on the CASE tool

category it is relevant to and b) based on the property of CASE tools it addresses.
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Figure I-1 - Dimensions of the evaluation framework

For further information on the evaluation framework and its applicaton see (Choi, 1996,

Gray, 1995, Phillips e# a/, 1998a).
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Appendix II

I\II)]; (;rannnnar

II.1 Introduction

The following grammar is an abridged version of the PCCTS grammar used by the CASE
Tool Client. This grammar uses version 2.x of the PCCTS syntax.

A description of PCCTS can be found at the PCCTS web site (PCCTS, 1998).

II.2 Reserved Words

NOTATION CONNECTION_TERMINATOR_TEMPLATE
CONNECTION_SYMBOL_TEMPLATE CONNECTION_TEMPLATE
{ } ;

= { )

, GROUP_TEMPLATE SYMBOL_TEMPLATE
DEFAULT TEXT ARITY

LINE ARC LISTTEXT

GROUP DA ACTIVE

AREA TRANSITION TO

UPDATE POINT BOUNDING

RECT UNCONSTRAINED TOP

HEAD TAIL WIDTH

HEIGHT GROUPWIDTH GROUPHEIGHT
MAX MIN SYMBOL
TERMINATORS

I.3 Operators

II.4 Grammar

notation
NOTATION IDENTIFIER
( group )*
( symbol )*
( connectien_symbol }*
( connection :“erminateor )*
( connection )*

’
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group
GROUP_TEMPLATE IDENTIFIER
BEGIN
expressions graphical_components active_areas
bounding_region
END

.

template
expressions graphical_components bounding_region

r

symbol
SYMBOL_TEMPLATE IDENTIFIER
BEGIN
template active_areas docking_areas
{ default_text_property )?
END

v

default_text_property
DEFAULT TEXT
OPENBRACKET IDENTIFIER COMMA IDENTIFIER CLOSEBRACKET

flag
INTEGERVAL

i

connection_symbol
CONNECTION_SYMBOL_TEMPLATE IDENTIFIER
BEGIN
template TOP point docking_areas
END

connection_terminator
CONNECTION_TERMINATOR_TEMPLATE IDENTIFIER
BEGIN
template HEAD point TAIL point
END

’

connection
CONNECTION_TEMPLATE IDENTIFIER
BEGIN
tempiate
ARITY INTEGERVAL
( SYMBOL IDENTIFIER ) ?
TERMINATORS IDENTIFIER ( IDENTIFIER )*
END

Fl

expressions
( IDENTIFIER EQUALS expression ENDEXPR )*

.
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expression

(

PLUS expression expression
| MINUS expression expression

term

term :

TIMES expression expression
DIVIDE expression expression

( INTEGERVAL | function | IDENTIFIER )

i

function
{
WIDTH OPENBRACKET
HEIGHT OPENBRACKET

|
| GRP_WIDTH OPENBRACKET
i GRP_HEIGHT OPENBRACKET
| MAX argument_list
| MIN argument_list

argument_list
OPENBRACKET

IDENTIFIER CLOSEBRACKET
IDENTIFIER CLOSEBRACKET
IDENTIFIER CLOSEBRACKET
IDENTIFIER CLOSEBRACKET

expression ( COMMA expression )*

CLOSEBRACKET

H

graphical_components

(

LINE point point ( point )*
I ARC point point point
| TEXT IDENTIFIER point

{ LISTTEXT IDENTIFIER point

active_areas

Group IDENTIFIER IDENTIFIER point

{ ACTIVE AREA point point action )*

:

action

{
UPDATE IDENTIFIER

i TRANSITION TO IDENTIFIER
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docking_areas
( POINT DA point connection_count point
allowable_connectors
| LINE DA flag rect_area connection_count INTEGERVAL
allowable_connectors
ARC DA rect_area point flag connection_count
INTEGERVAL allowable_connectors
)*
rect_area
point point

connection_count
{ UNCONSTRAINED ] INTEGERVAL )

:

allowable _connectors
OPENBRACKET ( IDENTIFIER )* CLOSEBRACKET

.

bounding_region
BOUNDING RECT point

’

point
OPENBRACKET expression COMMA expression CLOSEBRACKET

’
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II1.1 Introduction

Appendix III

S S L Gl‘ ammar

The following grammar is an abridged version of the PCCTS grammar used by the SSL

compiler. This grammar uses version 1.33 of the PCCTS syntax. A description of PCCTS

can be found at the PCCTS web site (PCCTS, 1998) and in Terrance Parr’s PCCTS book

(Parr, 1997).

II1.2 Reserved Words

MODULE
OPERATIONS
}

[

BOOLEAN
ITERATOR
DEBUG_PRINT
CURRENT_DIAGRAM
IF

ENDLOOP

II1.3 Operators

II1.4 Grammar

moduleinterface

USES

CONSTRAINT
{

1

INTEGER
STRING

CREATE

SELF

CURRENT_PROJECT

ELSE

WHEN

MODULE IDENTIFIER

uses_lists

classinterfacedefs

:

uses_lists

{ use_clause )*

’
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ATTRIBUTES
{
)

REAL
COLLECTION
DESTROY
CURRENT_MODEL
NO_OBJECT
LOOP

RETURN

mod
>=

not




use_clause
USES uses_item ( COMMA uses_item )* ENDSTATEMENT

3

uses_item
( IDENTIFIER MODULESCOPE IDENTIFIER EQUALS IDENTIFIER )
| IDENTIFIER

i

classname
{ IDENTIFIER | IDENTIFIER MODULESCOPE IDENTIFIER )

:

classinterfacedefs
( classinterfacedef )*

:

classinterfacedef

IDENTIFIER
{ superclasslist }
BEGIN
( operation ) *
END
operation

(
DESTROY LPAREN RPAREN
| ( CREATE | { operation_result } IDENTIFIER )
parameter_list

module
MODULE IDENTIFIER
uses_1lists
classdefs

.

classdefs
( classdef )*

classdef
IDENTIFIER
BEGIN
ATTRIBUTES { attribute_list ENDSTATEMENT )*
OPERATIONS [ method ) *
CONSTRAINT ( expression ) *
END

.

superclassliist
ISA classname

(
COMMA classname

)*

r
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attribute_list
type IDENTIFIER
( COMMA IDENTIFIER ) *

Fl

type :
INTEGER
| REAL
| STRING
| BOOLEAN
! classname
| COLLECTION LSQBRACKET type RSQBRACKET
| ITERATOR LSQBRACKET type RSQBRACKET

’

method
operation
( attribute_list ENDSTATEMENT ) *
block

i

statementlist
( statement )*

Fl

block
BEGIN statementlist END

’

operation_result
type
| LPAREN type { COMMA type }* RPAREN

¢

parameter_list
LPAREN
{ type IDENTIFIER ( COMMA type IDENTIFIER )* }
RPAREN

T

statement
{

send_message ENDSTATEMENT

! destroy_message ENDSTATEMENT
i return_statement
! assignment
{ selection
| iteration
| debugstatement

debugstatement
DEBUG_PRINT LPAREN expression RPAREN ENDSTATEMENT

Fl
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lvalue
IDENTIFIER
| LPAREN IDENTIFIER ( COMMA IDENTIFIER )* RPAREN

i

assignment
lvalue EQUALS expression ENDSTATEMENT

Fl

return_statement
RETURN ( expression ( COMMA expression )* ) ENDSTATEMENT

H

send_message

{ ( IDENTIFIER | SELF | DIAGRAM | PROJECT ) DOT }
{ LSQBRACKET classname RSQBRACKET }
IDENTIFIER

LPAREN { expression ( COMMA expression )* } RPAREN

*

Create_message :
classname DOT CREATE
LPAREN { expression ( COMMA expression )* } RPAREN

il

destroy_message:
IDENTIFIER DOT DESTROY LPAREN RPAREN

il

selection
ifstatement

’

iteration
loopstatement

.

ifstatement
IF condition block
fpragma approx
{ ELSE block }

H

loopstatement
LOOP
BEGIN
statementlist
ENDLOOP WHEN condition ENDSTATEMENT
statementlist
END

r

condition
LPAREN expression RPAREN

’
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expression
arithmetic_expression
{ ( EQUALS|NOTEQUALS|LESS|LESSEQ|GREATER |GREATEREQ )
arithmetic_expression

arithmetic_expression
multiplicative_expression
( ( PLUS|MINUS|OR )
multiplicative_expression
)*

.

multiplicative_expression
factor
( ( TIMES|DIVIDE|DIV|MOD|AND )
factor
)*

i

factor :

INTEGERVAL

| BOOLEANVAL

i STRINGVAL

i CURRENT_MODEL
" CURRENT_DIAGRAM
CURRENT_PROJECT
NO_OBJECT
SELF
IDENTIFIER
send_message
i Create_message
LPAREN expression RPAREN
NOT factor
| MINUS factor
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Appendix IV

SSL Examples

IV.1 The Sieve of Eratosthenes Version 1

This implementation of the Sieve of Eratosthenes™ was written during the development
of SSL to test the efficiency of object creation, object destruction and message binding, It
1s not intended to be an efficient implementation of the Sieve of Eratosthenes. The

classes involved in this example are given in Figure IV-1.

Sigve

_tT)El Imeger

- stan{) ;. Imeger

inumPrimes () - Imeger

‘mit(integer)

firdpnmes()

»mark(Listiterator : from, Integer : step) i
: skipfListiterator : from, Integer : step) : Listiterator:

<<Uses>>

<<instantiates>>

irew()
‘cons{imeger) :
iHront} - Listiterator

exi}

;isEmpry{] : Boolean e nd() - Boslean
iy [ i _—
- T
G o L Lsen
ustNode T iprime : Boolean :
___________________ e ‘valug | Imeger ..
new(Listlilem. ListNode] - o
'ﬂa'ﬂ(()  Listltem : i :new(Integer) !
: e iseiiBoolean) i
nemi) ' i List, ListNode and Listitem Oy isPrms() - Boolean |
1 j:"; —”‘"—"—\‘ ; - E?otnectéve?y implement a linked : valve() : rﬁeger |
/ g i lis : FR .
Jf’l “' !
/ \
L L

Figure V-1 - Steve of Eratosthenes version 1

In this example a sieve object maintains a linked list of boolean flags of a fixed size. The
lined list is implemented with the IZs#Node and Listltem classes. The sieve object uses

instances of the Listlterator class to perform traversals of the list.

T he Sieve of Fratosthones 1 2 well-known and exrremedy desant algonrha for ealcoiuting prime numbers.
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IV.1.1 Interface Module

module sieve

list

{
new ()
cons( integer value )
listIterator front()

tail()

boolean isEmpty ()
].
listItem

-
4
L

new( integer value )
set{ boolean isPrime )}
boolean isPrime /()
integer value()

}

1l istNode

{
new( listItem 1, listnode n )
listItem item()
listnode next ()

'|-

listIterator

{
new( listnode p }
listItem item()
next ()
boolean end()

}

sieveClass
{
integer start()
init( integer top }
findprimes ()
mark( listiterator 1, integer step
integer numPrimes ()
listiterator skip( listiterator 1,

IV.12 Implementason Module

module sieve
sieveClass
{

attributes

list ints;
integer top;
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operations

integer start()
listitem 1;
listiterator 11i;

)

init( 1000 );

findPrimes () ;

return numPrimes() ;
b

init( integer t )
integer c;

top = t;

c = top;

ints = list.create();
ints.new() ;

loop

{

ints.cons( c );
endloop when{ c = 2 );
c =c - 1;

findPrimes ()
integer step;
integer upperlimit;
listiterator 1;
listitem 1i;

step = 2;
upperlimit = top div 2;
loop
{
1 = skip( ints.front(), step - 2);
if( not l.end() )
{
1 = 1.item();
if( i.isprime()
{

debug_print( step );
mark( 1, step );
}
step = step + 1;
endloop when( step = upperlimit );

f—
——
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mark( listiterator 1, integer s
listitem 1i;

{
loop
{
1 = skip( 1, s );
endloop when( 1l.end() ):
i = 1l.item(});
i.set( false );
}
}

integer numPrimes ()
integer total;
listiterator 1;
listitem 1i;

—~—

total = 0;
1 = ints.front();
loop
{
endloop when( l.end() );
i = 1l.item() ;
if( i.isprime() )
{

total = total + 1;
1l.next();
3
return total;
!

listiterator skip( listiterator
integer c;
!
c = 0;
loop
{
endloop when( 1.end() OR (c
1.next();
c =c + 1;
}

return 1;

listNode
{

attributes

listItem item_;:
listNode next_;

operations
new( listItem i, listnode n )

{

item_ = 1; next_ = n;

L]
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listItem item()

{
return item_;
}
listnode next()
{
return next_;
}
}
list
{
attributes

listnode 1;

operations
new ()
{
1 = no_object;
}

cons( integer value }
listitem 1;
listnode newl;

1 = listitem.create() ;

i.new( value );

newl = listnode.create();

newl.new( 1, 1 );
1l = newl;

}

listIterator front()
listiterator 1it;

i1t = listiterator.create();

it.new( 1 );
return it;

}

tail()
{

if( not ( 1 = no_object )

{
1 = l.next();
}
}
boolean isEmpiy ()

{
return 1 - no_object;

)



listItem

{
attributes

boolean prime;
integer val;

operations

new( integer value )
{

prime = true;

val = value;

set( boolean isPrime )
{

prime = isPrime;

[—

boolean isPrime()

{

return prime;

integer value/()
{

return val;

listIterator

attributes
listnode pos;
operations

new( _istnode p )
{
pos = p;

listItem item()
{

return pos.item() ;

next ()
{
if( not ( pos = no_object } }
{
pos = pos.next();
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boolean end()

{

return pos = no_object;
}

Sample output from executing this implementation of the Sieve of Eratosthenes

algorithm with an early prototype of the SSL virtual machine is given below.

> mooto -c sieve:sieveclass -p 2
No message specified, using start-#

There are 1 item(s) in the stack.
Item 1 is an integer (168)

Total number of opcodes interpreted : 3367969
Total time (seconds) : 352
Opcodes/Sec : 9568

A total of 2498 objects were created

A total of 617047 messages were processed

>

It was executed on a Sun Sparc Server 1000e. On average, 10000 SSL-VM instructions

and 1800 messages were processed per second.
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IV.2 The Sieve of Eratosthenes Version 2

This implementation of the Sieve of Eratosthenes was written during the development of

SSL to test the SSL collection and iterator types. The classes involved in this example are

given in Figure IV-2.
S =L
top : integer
-start(} : integer
-------- <= numPrimes() | integer
1 iniiiinieger)
findpnmes(}
mark{lterator<Listlem: : from, Integer : step)
skip{iteratorListitem= : from, Integer : step) : lterator<Listitem>
i <<Instantiates>>
e LiStEM
prime : Boolean
-value : Integer <<Uses>>
newlinteger)
M,;set(BDolean)
" 1sPrime{) : Boglean ¢
valuel() - Integer
— s <<Instantiates>>
<t . R, >
- ......_____...V..___riem:r_‘,r_pe _
Colection and lerator are bien . teratgf ™
S8L types “item() : ltem Type
removeitoRemove - terator) 5 nexd() | void
tromt() © lterator e e s e e 4L L et it S i i end() : Boolean
‘emply() : Boolean e

Figure IV'-2 - Sieve of Eraresthenes version 2

IV.2.1 Interface Module

module sieve2

listItem
{

new( integer value )
set( boolean isPrime }
boolean isPrime()
integer value()
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sieveClass

{
integer start()
init({ integer top )}
findPrimes()

mark( iterator[listitem] 1, integer s
iterator[listitem] skip( iterator[listitem])

integer numPrimes ()

}

1Vv.2.2 Implementation Module

module sieve2

sieveClass

{
attributes

collection[listitem] ints;
integer top;

operations

integer start()

{
init( 1000 );
findPrimes() ;
return numPrimes() ;

}

init( integer t )
integer c;
listitem i;

(e} t;

(e}
NS

’

oop

~ Qo

1 = listitem.create();
i.new( c );

ints.add( i );

endloop when( ¢ = 1000 );
c=c+ 1;
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findPrimes()
integer step;
integer upperlimit;
iterator[listitem] 1;
listitem 1i;

step = 2;

upperlimit = top div 2;

debug_print( "Working ...... ")

loop

{
1l = skip( ints.front(), step - 2 );
if( not 1l.end() )

i =1l.item{);
if( i.isprime() )

debug print( step );
mark( 1, step );

}
step = step + 1;
endloop when( step = upperlimit );

mark( iterator[listitem] 1, integer s )
listitem 1i;

loop
{
1 = skip( 1, s );
endloop when( l.end() );
i = 1l.item();
i.set( false );
integer numPrimes|()
integer total;
iterator[listitem] 1;
listitem 1i;

total = 0;
1 = ints.front();
loop
{
endloop when( l.end () );
i =1l.item();
if( i.isprime() )
{
total = total + 1;
}

1l.next();
debug_print( "number of primes under 1000
debug print( total ) ;
return total;
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iterator[listitem]

skip( iterator([listitem] 1,

integer c;

c = 0;

loop

{
endloop when( 1.end{()
1l.next();
c =c + 1;

1
4

return 1;

s

listItem
{

attributes

boolean prime;
integer val;

operations

new( integer value )
{

prime = true;

val = value;

}

set ( boolean isPrime )}
{

prime = isPrime;

boolean isPrime()
{
return prinme;

integer value()

{

return val;

f—
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Appendix V

SSL-VM Instruction Set

V.1 Introduction
Instructions described here have the following format:
Name Type-mode Address-mode  [Operands]

Name is the instrucdon name. Type-mode corresponds to the type that an instruction

operates on. Addrss-mode specifies where the instruction’s arguments are.
Type-mode is one of the following:
Boolean Int Real String
Collection Iterator ObjRef
Address-mode 1s one of the following:
Imp (Implicit) Imm (Immediate) Ind (Indirect)

V.2 Instruction Set

Mgs 'Senda message to an object

Format = Mgs ObjRef  Ind aReference ~ aMessage

Retrieve the object reference indicated by aReference from the context. Send
. aMessage to the object identified by the object reference.

Cmg . Send a create message to a class

Format - Cmg  ObjRef Imm  classname

" Create an instance of the class with the name indicated by classname.

269



Send a scoped message

Format Smg ObjRef Imm  aReference  classname aMessage
+ Retrieve the object reference indicated by aReference from the context. Send
. aMessage to the object identified by the object reference, as if it were an
- instance of dassname.
Rmn - Return from message
Format ' Rtn Void Imp
~ Set the instruction counter (IC) to ~1 (end of a message).
Psh Push item onto the stack
Format - Psh Int Imm anlnt
~Psh Int Ind aReference
Psh Real Imm aReal
Psh Real Ind aReference
Psh Boolean Imm aBoolean
Psh Boolean Ind aReference
Psh Collection Ind aReference
Psh String Imm aString
- Psh String Ind aReference
Psh ObjRef Imm anObjRef
" Psh ObjRef Ind aReference
' Psh Iterator Ind aReference

It AddrMode is Ind, get the value from context and push it into stack. If
- AddrMode is Imm, get the following value and push it into stack.
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Pop

Pop an item from the stack

Format - Pop Int Ind aReference
: Pop Real Ind aReference
- Pop Boolean Ind aReference
| Pop Collectdon Ind aReference
. Pop Swing Ind aReference
Pop ObjRef Ind aReference
- Pop Iterator Ind aReference
. Reset the variable indicated by aReference in the context, with the value on
. the top of the stack. Remove the top item from the stack.
Add - Addidon
Format  Add Int Imp
Add Real Imp
- Add Swing Imp
Add Collection Ind aReference
- Add Iterator Ind aReference
Intand Real

The top two values are popped off stack and added together. Push the
result onto the stack. The two values of the stack must have the same type.

String

- The top two values are popped off stack and appended. The result is
~ pushed back onto stack.

" Collection

Pop the item off the stack and add it into the collection indicated by
. aReference in context.

" Iterator

© Move the iterator indicated by aReference forwards along the list it points to.
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Sub - Subtraction
Format Sub Int Imp
Sub Real Imp

. Sub Collection Ind

Int, Real

Pop the top two items off stack. Subtract them and push the result onto
stack. Both items must be of the same type.

* Collection

Pop an zerator off the stack and remove the item that the #erator points to

- from the collection.

Mul  Multiplication

Format  Mul Int Imp
- Mul Real Imp
Pop the top two items off stack. Maltiply them and push the result onto

stack. Both items must be of the same type.

Div Division

Format  Div Int Imp
- Div Real Imp
Pop éle toé twouemsoff stack If the second operand is zero, a maximum
. value is pushed onto stack. O therwise divide them and push the result onto
- stack. Both items must be of the same type.

Mod . Modulus

Format Mod Int Imp

“ Pop the top two items off stack. If the second operand is zero, a maximum

value is pushed onto stack. Otherwise apply the modulus operation and

¢ push the result onto stack.

272



Cnv

" Convert type

Format

Cnv Real Imp

Cnv Int Imp

- Pop a value off stack, convert its type from In to Rea/ or from Rea/to Int,
+ and push the result back to stack.

Unary minus

Format

Neg Real Imp

: Change the sign of the topmost value on stack.

Neg Int Imp

- Boolean And

Format

Or

And Boolean Imp

Pop two boolean values off stack. Push the logical conjunction of these
values onto the stack.

Boolean Or

Format

Not

Or Boolean Imp

- Pop two boolean values off stack. Push the logical disjunction of these

values onto the stack.

: Boolean Not

Format

: Not Boolean Imp

. Pop topmost boolean value off stack. Push the logical negative of it onto
~ the stack.
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Eq

- Typed equal comparison

Format | Eq Int Imp
Eq Real Imp
Eq Boolean Imp
' Eq String Imp
* Pop two values off stack. If their value and type is equal push #e onto the
- stack otherwise push false.
Neq . Typed not equal comparison
Format - Neq Int Imp
: Neq Real Imp
- Neq Boolean Imp
Neq String Imp
 Pop two values off stack. If their value and type are not equal push e
onto the stack otherwise push fa/se.
Grt . Greater than
Format  Grt Int Imp
Grt Real Imp
Grt String Imp

Pop two values off stack. If the first is greater than the second one push
#rue onto the stack otherwise push false. Both operands must have the same

- type.
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Lss

Less than

Format

Brt

Lss String Imp

Lss Int Imp

+ Lss Real Imp

" Pop two values off stack. If the first is less than the second one push #rxe

onto the stack otherwise push fale. Both operands must have the same

type.

" Branch if true

Format

Brf

" Brt Boolean Imm anAddr

Pop top value off stack. If it has the value #7we, set the IC to the address
- anAddr.

Branch if false

Format

Fnt

Brf Boolean Imm anAddr

. Pop top value off stack. If it has the value fals, set the IC to the address
~anAddr.

Create an iterator

Format

End

_ Fnt Collection Ind aReference

~ Create an iterator that points to the first item of the collecson indicated by

aReference in the context. Push the iterator onto stack.

. Test if the iterator is at the end of a collection

Format

* End Tterator Ind aReference

 If the iterator indicated by aReference refers to the end of a collection, push

¢rue to stack. Otherwise, push fa/s to stack.
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Itm f De-reference an iterator
Format  Itm Iterator Ind aReference
" Push the item that the iterator refers to onto the stack. If the iterator is at
~ the end of a list, push #o_object onto the stack.
Prj Get the value of the project register
Format Prj Void Imp
Push the value of the project register onto the stack.
Mdi - Get the value of the project register
Format - Mdl Void Imp
Push the value of the model register onto the stack.
Dgm Get the value of the project register

Format

Dgm Void Imp

Push the value of the diagram register onto the stack.
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Appendix VI

SSL Compiler

V1.1 Introduction

This appendix describes the design and implementation of the SSL compiler (SSLC).
V1.2 The SSL Compiler

The SSL compiler (SSLC) is a command line tool that accepts a collection of SSL module
names as input. It inidally compiles each interface module and then compiles the
corresponding implementation modules. Any additional interface modules that are used
by these modules are also compiled, if needed. SSLC generates SSL-BC and SSL-

assembler for each class.

SSLC was developed using:

o Gnug++ 2.7.2 for Solaris 2.5

«  Microsoft Visual C++ 5.0 for Windows 95/NT
« PCCTS 1.33 (Parr, 1997, PCCTS, 1998)

PCCTS (Purdue Compiler Construction Tool Set) is a public domain tool that aids in the
construction of language recognisers and translators. It consists of a parser generator
(ANTLR) and a lexical analyser generator (DLG). PCCTS generates LL(k) parsers that
dynamically adjust the token look-ahead depth (k). PCCTS v 1.33 generates lexical

analysers and parsers in C and C++.
An abridged PCCTS grammar for SSL is given in appendix IIL

The major components of the compiler are shown in Figure VI-1.
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Figure VI-1 - The mam components of the SSL compiler

SSL Compiler is a singleton (Gamma ef a/., 1995) class that is responsible for parsing the

compiler command line and generating a vector of SSL modules that need to be

compiled. It directs the action of the parser, type checker and code generator.

SSL ParserBlackBox is a parameterised class that is responsible for binding a parser and
lexer object together. The parsing sub-system of the compiler is made by instantating the
Lexer and Parser type arguments of SSL ParserBlackBox with SSL Lexer and SSL Parser
respectively. The SSL Lexer class is the lexical analyser that is generated by the DLG and
ANTLR tools. The SSL Parser class is the parser that is generated by the DLG and
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ANTLR tools. The interface of SSI_Parser consists of a set of member functions, which

correspond to the rules in the SSL grammar (appendix III).

Actions (such as creating nodes for an abstract syntax tree) can be associated with the
rules in a PCCTS grammar. The embedded actions are copied into the related member
functions of the PCCTS generated parser. These actions have been placed into a
singleton class (Parser Adtion) so the entire parser does not need to be regenerated and

recompiled each time an action is modified.

Type Manager is a singleton class that stores details relating to the SSL classes, SSL
collections, SSL iterators and SSL tuples as they are recognised by the parser. It provides
facilities for searching for and registering new types, checking to see if a type is defined

and for deducing the type of an expression. It is used during type-checking.

The PstoreProxy class isolates the compiler from the persistent store. It provides facilities

for retrieving and storing classes, interfaces, modules and their compiled representations.

Symbol Table is a singleton class that stores details related to attributes of SSL classes, local

variables of SSL methods and message arguments.

Visitor is an abstract super-class that implements the Visitor pattern (Gamma ef a/, 1995).
SSL Type Checker, SSL Bytecode Generator and SSL _Assembler Generator are all sub-classes of

Visztor. The use of the Visitor pattern is discussed in more detail in section V1.4,
V1.3 Representing Types in the SSL Compiler

Figure VI-2 illustrates how types are represented in the SSL compiler. All primitive types
are represented by a single instance of SSL Simple Type that is managed by SSL Type
Manager. Classes, collections, iterators and tuples are represented by sub-classes of SSL
Simple Type. The type manager is responsible for maintaining all instances of the type
classes. It provides facilities for checking to see if types have been previously defined and

for registering new types.
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Figure VI-2 - Representing rvpes in the 881, compiler

V1.4 Representing Statements and Expressions in the SSL Compiler

Figure VI-3 shows how statements and expressions are represented by the SSL. compiler.
The parser (SSL Parser in Figure VI-1) builds Abstract Syntax Trees (AST) for each

method. The types of node in the AST are defined by the sub-classes of AST Node in
Figure VI-3.

The interface of the abstract [Zstor class of Figure VI-3 defines a visit operation that
corresponds to each sub-class of AST_Node. Concrete classes of the AST node hierarchy
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implement the .Awept operadon defined in AST Node. The sub-classes of Vistor
implement specific operatons of the compiler (such as type checking and code
generation). The type checker and code generators are related by the order in which they

visit nodes in an AST (i.e. the traversal algorithm is the same).
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VI.5 Representing Modules in the SSL Compiler

Figure VI-4 shows the classes involved in representing SSL modules in the compiler.
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The classes in Figure VI-4 can be grouped into three categories:

o Classes that represent interfaces (SSL Module Interface, SSL Class Description and SSL
Operation Description).

« Classes the represent implementations (SSL Module Implementation, SSL Class
Implementation and SSL Method).

« Classes that represent compiled implementations (SSL Compiled Class, SSL. Compiled
Class ASSM, SSL Compiled Class BC, SSL Compiled Method, SSL Compiled Method
ASSM and SSL Compiled Method BC).

SSL Module Interface represents an SSL interface module. It contains a collection of SSL
Class Description instances (one for each class interface in the interface module) and is

associated with an instance of SSL Module Implementation.

All Class Description objects have an associated instance of SSL ClassName. Class names are
always fully qualified by a module name. SSL Alias extends SSL ClassIName by overriding
and overloading the isEgual/ operaton. An instance of SSL Alias corresponds to a local

alias introduced with a modules uses list.

The interface of an SSL class contains all of its operations and defines its super-classes.
Operations are represented with an instance of SSL Operation Description. Each operation
parameter is represented by an instance of SSL I7arRef (a sub-class of . 45T Node in Figure
VI-3).

A class’s method lookup table is derived based solely on its interface. The Method Lookup
Table class encapsulates a collection of Lookupltem objects, each of which is an SSL Class

Name — SSL Operation Description pair.

SSL Module Implementation (Figure VI-4) represents SSL implementation modules. It
contains a collecion of SSL Class Implementation instances, one for each Class Description

instance in its associated SSL Module Interface object.

Each SSL Class Implementation object has a Variables Description object that defines the
number of attributes, of each type, the SSL class has. The operations that are

implemented by the SSL class are represented by a collection of SSL Method objects. The
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body of the method is represented by an instance of SSL Statement (a sub-~class of AST
Nodein Figure VI-3).

SSL Module Implementation, SSL Class Implementation and SSL Method all provide a Generate
Code operation, which takes an SSL Code Generator object as an argument. SSL _Assembler
Generator ovesrides the newClass and newMethod operations to create instances of SSL
Compiled Class ASSM and SSL Compiled Method ASSM respectively. SSL ByteCode Generator

overtides the newClass and newMethod operations to create instances of SSL. Compiled Class

BC and SSL Compiled Method BC respectively.

SSL Compiled Class (Figure VI-4) defines the internal representation of compiled SSL
classes. Its sub-classes (SSL Compiled Class ASSM and SSL Compiled Class BC) override the
name method to produce file names for classes compiled into assembler or SSL-BC. The
current implementation only uses a different format for the methods (i.e. assembler vs.
SSL-BC) so the write method in only defined in SSL Compiled Class. SSL Compiled Class
ASSM and SSL Compiled Class BC may override the write method in the future.

SSL Compiled Method defines the internal representation of compiled methods. Its sub-
classes (SSL Compited Method ASSM and SSL Compiled Method BC) override the write
method to produce SSL assembler code and SSL BC code respectively.
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Appendix VII

The SSL Virtual Machine

VII.1 Introduction

This appendix presents the design and implementation of the SSL Virtual Machine. The
initial implementation of the SSL virtual machine is presented in (Griffin, 1997; Page et
al, 1997, 1998; Mehandjiska ez a/, 1997).

VII.2 The SSL Virtual Machine

The SSL-VM was developed using:
e Gnugt++ 2.7.2 for Solaris 2.5 and Linux

e Microsoft Visual C++ 5.0 for Windows 95/NT

The primary design goal of the SSL-VM was that it be easy to modify, especially with
respect to its instruction set. The SSL-VM design makes heavy use of patterns (especially
the proxy pattern). The SSL-VM implementation makes heavy use of the C++ STL
(Standard Template Library).

The major classes in the design of the SSL-VM are given Figure VII-1.

The class Virtual Machine has a stack (Appha Stack) and three registers (Project Register, Model
Register and Diagram Register). All message requests that occur whilst a method is executing
on the SSL-VM are satisfied via the Reguest Bmker, which is implemented using the

singleton pattern (Gamma e a/, 1995).

The classes SSL Instance Manager and SSL Class Manager correspond to the SSL Object
Client and SSL Class Client of the Methodology Interpreter (Figure 3-10 - Proposed, top
level, system architecture and Figure 3-11 - Architecture of the MOOT prototype). SSL
Class Manager and SSL Instance Manager are responsible for isolating the SSL-VM from the
persistent store.
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II-1 - Components of the SSL-VM

1 provides facilities for tracing the messages and SSL-

VM instructions that are executed by an instance of the SSL-VM. It also provides

profiling of methods.

The MsggCall class represents a 1

virtual machine. It encapsulates a

equest for a particular message to be executed on the

message selector, a message receiver and a reference to

the SSL-VM that the message is to be executed on: A more detailed description of

binding and message execution is presented in sections VIL5 - Processing Messages and

VILG6 - Binding.
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VII.3 Representing SSL Types

The SSL types are implemented in the following manner:

Type Implemented with

SSL integer C++ long

SSL real C++ double

SSL boolean C++ bool

SSL String C++ STL string

SSL Collection C++ STL map

SSL Iterator C++ STL pair

SSL Class C++ class called SSL Class

Table VII-1 - Implementatien of SSL types m the SSL-VAI

Varables of the primitive types (integer, real, boolean and string) contain instances of the
corresponding C++ types. Variables of SSL Collection and SSL Class contain a proxy
object. Variables of an SSL iterator contain an instance of STL pair, where the first item is
a collection proxy and the second is an index into the collecdon. The classes involved in

representing SSL classes and SSL objects are discussed in secdon VIL4 - SSL Proxies.

VII.4 SSL Proxies

One of the goals of the design of the SSL-VM was that the persistence of SSL objects
should be completely hidden. To achieve this goal, access to instances of SSL Class and
SSL Collection is always via a proxy object. SSL proxies are an example of the Proxy

design pattern (Gamma ez a/, 1995).

Proxies encapsulate a unique ID and a static reference to a manager object. The manager

object is responsible for resolving unique IDs into concrete objects and collections.

The SSL instance manager is responsible for managing instances of classes and

collections. The SSL class manager is responsible for managing classes.
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An instance of SSL Class encapsulates a 1Varable Info object that describes the number of
attributes, of each type, that the class defines. Instances of an SSL Class encapsulate a
Variable Space object that defines the state of the object. A Variable Space object contains
collections of instances of the basic types and collections of proxy objects for SSL
Collections and SSL Objects. The sizes of the collections are defines by a VVariable Info

object.

An instance of SSL Class encapsulates a collection of SSL Class Proxy objects that identfy
its direct and indirect super-classes. An instance of SSL Object encapsulates a collection of
SSL Instance Proxy objects that correspond to the state described by the super-class SSL

Class Proxy collection defined in its class.
VII.5 Processing Messages
Figure VII-3 shows the classes involved in processing a message on the SSL-VM.

A MsgCall object identifies a method to be executed for an object, on a particular SSL-
VM.

The Context class encapsulates the context a method is interpreted in. It includes the
attributes of seff (the object that receives the message), the message arguments and local
variables that are used within the method. The attributes are represented with an instance
of Variable Space. Message arguments and local variables are represented with a second
instance of Variable Space. SSL-VM instructions that change the value of an attribute, local

variable or message argument act on an instance of Context.

Methods are executed by sending an Interpret message to an instance of the Method class.
The method body consists of a sequence of bytes that corresponds to a set of SSL-VM

instructons and their operands.
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Figure VII-3 - The classes involved 1n processing a message on the

Figure VII-4 shows an abridged fragment of C++ from the Interpret method in the

Method class.

SSL-VM
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Long IC = 0; // Instruction Counter
do
{

if( IC < 0 {| IC »>= Size ) { /* signal an error */ }

// Fetch
Opcode next = GetInstruction(Code + IC);

// Decode
Instruction *Instr = InstructionTable() [next.instCode()];

// Execute

IC = Instr->Execute(
theContext,
VM,
IC,
Code + IC + sizeof (Opcode),
next.addrMode () ) ;

3

while( IC != ReturnFromMessage ) ;

Figure VII-4 - Executing a method on the SSL-VM

Figure VII-4 shows the fetch-decode-execute cycle that is performed for each SSL-VM
inswuction. The first step (fetch) involves wanslating the byte located at the Instruction
Counter (IC) into an SSL-VM opcode. The next step (decode) involves rewieving the
corresponding instance of the Instruction class from the InstructionTable (Instr). The
Instruction class, and its sub-classes, are instances of the Flyweight design pattern (Gamma

et al, 1995). The last step (execute) is performed by the Opcode object (Inst7) itself.
VII.6 Binding
Figure VII-5 shows how a message is bound to method and executed on the SSL-VM.

The message binding process starts when the message request broker receives a request

to dispatch a message to a particular object. The request will be accompanied by:
o An SSL Instance Proxy object
« An instance of the MsgCall class (see Figure VII-3)

The SSL Instance Proxy object identifies the object that is to receive the message. The
MsgCall object identfies the method to be executed and the particular SSL-VM itis to be

executed on.
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—_— e
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!
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Figure VII-5 - Binding a message to a method on the SSL-VA

The following steps are performed to bind a message to a method and execute it on an

SSL-VM:

1.

3.

The message request broker first de-references the proxy to the receiving object
(proxcy to message receiver in Figure VII-5). It then asks the message receiver object to

accept the message.

The message receiver object (message receiver in Figure VII-5) delegates the
responsibility of finding an appropriate method to its class. It must first de-reference
the proxy that defines its class (proxy to class of receiver in Figure V1I-5). The message
receiver then sends a Dispatch Message message to its class (class of receiver in Figure

VII-5), with the message and a proxy to itself as arguments.

The class of the message receiver (c/ass of recerver in Figare VII-5) uses its Method
Lookup Table to determine which class defines a method that can be bound to the

message.
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4. ‘The dass of recezver object then de-references the proxy to the method defining class
(proxy to defining class in Figure VII-5). The method defining class (defining class in Figure
VII-5) is then asked to provide a method that corresponds to the message (method to

execute in Figure VII-5).

'QJ‘I

The class of receiver object then asks the message recezver object to return a proxy to the
instance of the method defining class (proxy fo instance of defining class in Figure VII-5).
The proxy returned will either: correspond to the message receiver, or to the instance
of one of the super-classes, of the message receiver’s class (that is part of its inherited

state).

6. Finally the method to execute object is asked to interpret itself (message number 10 in

Figure VII-5).
VII.7 Garbage Collection

The garbage collection scheme is completely transparent to the Virtual machine. It is a

simple adaptation of the reference counting garbage collection algorithm (Jones and Lins,

1996).

Figure VII-6 shows the classes involved in the reference counting garbage collection

scheme used in the SSL-VM.

The classes SSL Instance Server and SSL Class Server correspond to the SSL Object Server
and SSL Class server in Figure 3-10 - Proposed, top level, system architecture and Figure

3-11 - Architecture of the MOOT prototype respectively.

In the prototype implementation of the MOOT core SSL Instance Manager and SSL Class
Manager simply forward requests directly on to the corresponding server object. SSL
Instance Server maintains a map of SSL Objects (indexed by their SSL Instance ID) and a
map of SSL Collections (also indexed by their SSL Instance ID). It maintains two maps of
reference ceunts (indexed by an SSL Instance ID), one for the Instance Map and one for the
Collection Map. When a collection or object is registered for the first ime a new entty is

added to the appropriate Reference Count Map with an initial count of 1.
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Figure VII-6 shows that the SSL Class Server maintains a map of SSL Classes (indexed

their SSL Class ID). The SSL Class Server also maintains complementary maps of SSL

class names and SSL Class IDs.
SSLInstanceProxy
1D : SSLinstancelD
SSLCollectionProxy
1D : SSLinstancelD SSLInstanceProxy(Thelnstance : SSLObject)
SSLinstanceProxy(toCopy : SSLinstanceProxy)
SSLCollectionProxy{toCopy : SSLCollectionProxy) SSLinstanceProxy(InstancelD : SSLinstancelD)
SSLCollectionProxy(InstancelD : SSLinstancelD) Dereference() : SSLObject
SSLCollectionProxy(CollectionlD : SSLInstancelD) C IsValid() : boolean
Dereference() : SSLCollection IsEqual(comp : SSLInstanceProxy) : boolean
IsValid() : boolean GetlD() : SSLInstancelD
isEqual(comp : SSLCollectionProxy) : boolean 1
GellD() : SSLInstancelD
SSLClassProxy +StheSSLInstanceManager +StheSSLinstance Manager
name : SSLClassID
SSLInstanceManager
SSLClassProxy(cName : string) Register(id : SSLinstancelD)
SSLCiassProxy(TheClass : const SSLClass) UnRegister(id : SSLInstancelD)
Dereference() : SSLClass RegisterColiection(id : SSLinstancelD)
IsValid() : boolean UnRegisterCollection(id : SSLInstancel D)
isEqual(comp : SSLClassProxy) : boolean 1 |Increment(id : SSLInstancelD)
GetName() : SSLClassID Decrement(id : SSLInstancelD)
3 IncrementCollectionRef(id : SSLInstancelD)
DecrementCollectionRef(id : SSLinstanceiD)
ResolvelD(id : SSLinstancelD) : SSLObject
ResolveCollectionID(id : SSLinstancelD) : SSLCollection
1| +StheSSLClassManager NewiD() : SSLinstancelD
SSLClassManager NewCollectionD() : SSLInstancelD
Register(name : string) : SSLClassID
UnRegster(id : SSLClassID)
GetName(id : SSLClassID) : string
ResolveName(id : SSLClassID) : SSLClass
T
1
|
|
]
) SSLInstanceServer
]
! Regrster(ID : SSLinstancelD)
1 Unregister(ID : SSLInstancelD)
v RegisterCollection(ID : SSLinstanceiD)
SSLClassServer UnRegisterCollection(id : SSLInstancelD)
Register(cName : string) : SSLClassID Increment(ID : 'SSLInslancelD)
Unregister(Name : SSLClassID) Decrement(ID : SSLinstancelD)
GetName(Name : SSLClassID) : string IncrementCollectionRef(id : SSLInstancelD)
ResolveName(Name : SSLClassID) : SSLClass DecrementCollectionRef(id : SSLinstancelD)
ResolvelD(ID : SSLInstancelD) : SSLObject
1 ¢ L Qu 1 ResolveColiection!D(ID : SSLInstancelD) : SSLCollection
1 GetNewlID() : SSLinstancelD
| GetNewCollectionID() : SSLInstancelD
ClassNameMap ; 3 Q T T
4 find(ID : SSLClassID) : string il
ClassMap
find(ID : SSClassID) : SSLClass L b
Class|DMap Instance Map
find(1D : string) : SSLClassID find(ID : SSLInstancelD) : SSLObject \
s
-Spersistent store | 1 CollectionMap

Store

DeleteObject( : SSLinstancelD)

GetObject(ID : SSLInstancelD) : SSLObject
putObject(Ob] : SSLInstance)

getCollection(ID : SSLtnstancelD) : SSLCollection
putColiection(c : SSLCollection)

GetClass(cName : stnng) : SSLClass

GetNextID() : SSLInstancelD
GetNextColiectionID() : SSLInstancelD
getNSMTable(tName : string) : NSM_Table
getNotation(notationName : string) : string

1

N

[ﬁnd(lD : SSLinstance) : SSLCollection

ReferenceCountMap

find(ID : SSLInstancelD) : Long

==

-Spersistent store

Figure VII-6 - Implementation of the reference counting garbage

collecmon scheme
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The SSL Instance Proxy and SSL Collection Proxy classes in Figure VII-6 drive the reference
counting process. Proxy objects notify their manager whenever they are created, copied
and deleted. Creating and copying proxies corresponds to incrementing a reference count
and deleting a proxy corresponds to decrementing a reference count. Such a scheme is

easily implemented as shown in Figure VII-7.

// a proxy with ID zero corresponds to no object
SSLInstanceProxy: :SSLInstanceProxy () : ID(0) {}

// contructed from an exisiting object
SSLInstanceProxy: :SSLInstanceProxy (

const SSLObject &Thelnstance ) : ID( Thelnstance.GetID() )
{

assert( Isvalid() ):

Manager->Increment ( ID );
}

// create from an exisiting SSL ID
SSLInstanceProxy: :SSLInstanceProxy (

const SSLInstancelID &InstancelID ) : ID( InstancelD )
{
assert( Isvalid() ); assert( InstanceID != 0 );
Manager->Register( ID );
Manager->Increment( ID ) ;
}

// copy constructor
SSLInstanceProxy: :SSLInstanceProxy (

const SSLInstanceProxy& toCopy ) : ID( toCopy.ID )
{

assert( Isvalid() ):

if( ID ) Manager->Increment( ID );
}

// destructor
SSLInstanceProxy: :~SSLInstanceProxy ()

{
assert( IsValid() );
if( ID ) Manager->Decrement( ID );
}
// assignment operator
SSLInstanceProxy &SSLInstanceProxy::operator = (
const SSLInstanceProxy &Copy )
{
if( this != &Copy )
{
assert( IsValid() );
if( ID ) Manager->Decrement( ID );
ID = Copy.GetID();
if( ID ) Manager->Increment( ID );
}
return *this;
}

Figure VII-7 - Implementation of the SSL Instance Proxy class
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An instance of SSLInstanceProxy (Figure VII-7) sends Increment and Decrement messages to
its manager in the constructors, destructor and the overloaded assignment operator.
These C++ member functions collectively define the primitive operations on a type in

C++ (ie. duplication, instantiation, deletion and assignment).
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Errata Sheet

Spelling Errors and Clarifications

page 6, Fig 1.2 The arrow with the ‘Meta’ label only points from the ‘modelling process’ on
the left to the ‘modelling process’ on the right

page 8, line 16 ‘Some of the most prominent’ should read ‘Some prominent’

page 14, line2 ‘Existing CASE tools’ should read ‘Several existing CASE tools’

page 29, line 19 ‘CASE Date’ should read ‘CASE Data’

page 30, line 19 ‘tool configuration’ should read ‘tool configurations’

page 48, line 7 ‘Primary’ should read ‘Primarily’

page 64, Fig 3.3 Directed arrows correspond to inheritance relations

page 75, footnote Warwick efal 1996 should read Mugridge ez a/ 1996

page 87, Fig 4.4 ‘hieght’ (bottom left of figure) should read ‘height’

page 93, line 13 ‘to separate’ should read ‘to a separate’

page 124, Fig 5.1 ‘persistance’ (bottom right of figure) should read ‘persistence’

page 128, line 17 ‘currnt_miodel ahould read ‘curvent _modef

page 129 The memory management scheme has reference loop detection

page 137, Fig 5.6 listiterator and listlterator are the same as SSL is not case sensitive

page 210, section 8.3 Instantiate i1s overridden to achieve different behaviour for pattern
instantiation (see footnote page on page 211)

page 213 Consistency between models is achieved by the meta-modelling approach
supported by MOOT
page 313 Reference Warwick, B., Mugridge, B., Hosking, J.G. and Grundy, ].C.

(1996) should read Mugridge, W.B., Hosking, ].G. and Grundy, J.C. (1996)

Systems Relating to Graphical Notations

Additional information about some of the systems noted in chapter 4 — Notation Definition
l.anguage, 1s given below.

DiaGen (Minas and Viehstaedt, 1995)

This system is used to generate a bespoke editor for a particular graphical notation. Notations are
defined using hypergraphs, hypergraph grammars and layout constraints. The role of NDL in the
MOQOT system is similar to role of the hypergraphs, hypergraph grammars and layout constraints in
the DiaGen system.

BuildByWire (Mudgridge et al., 1996, 1998)

BuildByWire generates a collection of JavaBean components that correspond to a notation, as well as
an editor JavaBean component. BuildByWire is similar to the MOOT Notation Editor, which
generates NDL descriptions of notations that are subsequently interpreted by the CASE tool client.

Amulet (Amulet, 1998; Myers et al., 1997)

Amulet is a User Interface development toolkit. It does not have a separate language for describing
visual notations, but provides an extendable hierarchy of widget classes. The coupling between
application and notation presentation logic is much higher in Amulet than between NIDL and SSL.

Escalante (McWhirter, 1998; McWhirter and Nutt, 1994)

Escalante is an environment for specifying and generating applications for graph based visual
languages. A language (and its notation) is described via elements of a type hierarchy that provide the
base classes for the various components of graph based languages. These include structural and
visual language constructs (eg. nodes and edges) and a set of structured graphics objects. Escalante 1s
used to build bespoke visual language systems. The coupling between application and notation
presentation logic 1s much higher in Escalante than between NDL and SSL.
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