
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

IT1.E9.EB.T

IT1€TA E9Bl€CT
EBRI€NTAT€D TEBEBL

A NEBV€L IT1€TA--CAS€
TEBEBL IT1€THEBDEBLEBGY

R€ PR€ S € NTATI EB N
STRATEGY

A dissertation submitted in partial fulfilment of the

requirements for the degree of

Doctor of Philosophy in Computer Science

Massey University, New Zealand

David Charles Page

1998

Abstract

This thesis presents an investigation into current meta-CASE technology. The research

focuses on CASE tool support for the concept of methodology, the representation of

methodology syntax and semantics, and the support for re-use of methodology

descriptions and software artefacts. A novel methodology representation strategy for

meta-CASE tools is proposed and implemented with the development of a new meta­

CASE tool (MOOT- Meta Object Orientated Tool).

The novel strategy propounded in this thesis uses an object-orientated meta-model and

views methodology descriptions as potentially re-usable components. The coupling

between methodology syntax and semantic descriptions is minimised so they can be re­

used independently.

Two new modelling languages have been derived, to support the definition of syntax

(NDL - Notation Definition Language) and semantics (SSL - Semantic Specification

Language) of software engineering methodologies. Semantic descriptions are compiled to

a platform independent representation (SSL-BC), which is executed on a purpose built

virtual machine (SSL-V:M). Late binding of syntax and semantic methodology

descriptions is implemented with the development of Notation Semantic Mapping

(NS!vf) tables. Two libraries of re-usable methodology description components, the Core

Knowledge Base (CKB) and the Generic Object Orientated Knowledge Base (GOOKB),

have been derived during this research.

Empirical results gained from applying the MOOT prototype demonstrated the

flexibility, extensibility and potential of the novel methodology representation strategy.

This approach permitted the implementation and modelling of UML and patterns, two

recent advances of object technology that did not exist when the research commenced.

The novel strategy presented in this thesis is more than an untried theory. It has been

implemented, applied and is being evaluated. Simply, it is real and it works.

DEDICATION

This thesis is lovingly dedicated to my parents

MichaelJulius Page and Susan Evelyn Page

TABLE OF CONTENTS

INTRODUCTION 1

1.1 Introduction 1

1 .2 Fundamental Terms 2
1.2.1 Software Engineering Development Methodology 3
1.2.2 Meta-Modelling 6
1.2.3 Computer Aided Software Engineering (CASE) 7
1.2.4 CASE Tool 7
1.2.5 Meta-CASE and Meta-CASE Tool 8

1.3 Object-Orientated Software Development Methodologies 8

1.4 CASE Technology 11

1.5 Methodology CASE Tools 14
1.5.1 Methodology Dependent CASE Tools 15
1.5.2 Multi-Methodology CASE Tools 15
1.5.3 Tools that Support More than One Methodology 16
1.5.4 Meta-CASE Tools 16
1.5.5 CASE Tool Generators 16
1.5.6 Modifiable CASE Environments

1.6 Limitations of Methodology CASE Tools

1.6.1 Limitations from the Organisational Perspective
1.6.2 Limitations from the CASE Tool Perspective

1. 7 Objectives of the Research

1.8 Method

1.9 Outline of the Thesis

MET A-MODELLING AND M ETA-CASE TOOLS

2.1 Introduction

2.2 Meta-Modelling

2.2.1 The OMG Meta Object Facility
2.2.2 Unified Modelling Language
2.2.3 COMMA
2.2.4 Open Modelling Language
2.2.5 OOram
2.2.6 CASE Data Interchange Format
2.2.7 ISO/CDIF Meta-Model

11

17

18
20
22

23

24

25

27

27

27
29
31
32
33
33
34
35

2.2.8 MetaData Interchange Facility

2.3 Meta-CASE Tools

2.3.1 Framework for Discussion of Meta-CASE Tools
2.3.2 Meta View
2.3.3 Meta-Edit and MetaEdit+
2.3.4 Alfabet
2.3.5 ToolBuilder
2.3.6 Graphical Designer Pro

2.4 Limitations of Current Meta-CASE Technology

2.5 Summary

META OBJECT ORIENTATED TOOL

3.1 Introduction

3.2 Method

3.3 Rationale and Goals of the MOOT Project

3.4 MOOT Methodology Descriptions

3.5 The CKB and GOOKB

3.6 Addressing the Limitations of M eta-CASE tools

3.7 Architecture of MOOT

3.7.1 CASE Tool Client
3.7.2 Methodology Development Tool
3.7.3 MOOT Core

3.8 The MOOT Prototype

3.9 Summary

NOTATION DEFINITION LANGUAGE

4.1 Introduction

4.2 Method

4.3 Models and Notations

4.4 Analysis ofNotations

4.4.1 Symbols
4.4.2 Connections
4.4.3 Docking Areas
4.4.4 Groups
4.4.5 Presentation

ill

36

36

39
41
43
46
48
50

51

54

56

56

56

58

62

65

68

71

74
75
76

77

79

81

81

81

82

85

86
88
91
93
94

4.4.6 Actions 95

4.5 Notation Definition Language 96

4.5.1 Requirements of NDL 96
4.5.2 Design ofNDL 97
4.5.3 Describing Symbols in NDL 99
4.5.4 Support for Grouping 103
4.5.5 Docking Areas 105
4.5.6 Describing Connections in NDL 110

4.6 NDL Interpreter 113

4.7 Design of the NDL Interpreter 114

4.7.1 Representing Expressions 114
4.7.2 Segment Templates 116
4.7.3 Group Templates 117
4.7.4 Connection and Symbol Templates 117

4.8 Implementation of the NDL Interpreter 119

4.9 Summary 120

SEMANTIC SPECIFICATION LANGUAGE 121

5.1 Introduction 121

5.2 Method 121

5.3 Rationale and Goals of SSL 122

5.4 Requirements of SSL 124

5.5 Semantic Specification Language 126

5.5.1 Overview 126
5.5.2 MOOT Meta-Model 126
5.5.3 Module System 129
5.5.4 Memory Management 129
5.5.5 Messages 130

5.6 Semantic S pecification Language Definition 130

5.6.1 Collections 131
5.6.2 Simple Expressions 131
5.6.3 Interface Module 134
5.6.4 Class Interface Definition 134
5.6.5 Implementation Module 135
5.6.6 Class Definition 135
5.6.7 Methods 136
5.6.8 Statements 139

5.7 SSL Compiler 140

5.8 Executing SSL 143

1V

5.9 SSL Virtual Machine 145

5.9.1 Requirements of the SSL VirtuaLMachine 146
5.9.2 Architecture of the SSL Virtual Machine 146
5.9.3 SSL Virtual Machine Instruction Set 147
5.9.4 Internal Representation of Classes, Objects and Methods 148
5.9.5 Processing Messages on the Virtual Machine 151

5.10 Summary 153

THE CORE KNOWLEDGE BASE AND GENERIC OBJECT

ORIENTATED KNOWLEDGE BASE 1 54

6 .1 Introduction 154

6.2 Context of the Core Knowledge Base and the Generic Object

6.3

6.4

6.5

6.6

Orientated Knowledge Base 154

Development of the Core Knowledge Base 156

6.3.1 M eta-Model of Methodology 156
6.3.2 Meta-Model of Modelling Language 158
6.3.3 Handling Exceptional Situations 165

Development of the Generic Object Orientated Knowledge
Base 166

6.4.1 Object-Orientated Methodology Comparisons 167
6.4.2 Method used to Design the Generic Object Orientated

Knowledge Base 170
6.4.3 Generic Object Orientated Knowledge Base 171

Implementing the Knowledge Bases 175

Summary 176

REALISING METHODOLOGIES AND SOFTWARE

ENGINEERING PROJECTS IN MOOT 1 77

7.1 Introduction

7.2 Interaction Between CASE Tool Clients and the MOOT
Core

7.2.1
7.2.2

CASE Tool Client Requests
MOOT Core Directives and Responses

177

177

178
180

7.3 Methodology Description Table 181

7 .3.1 Composition of the Methodology Description Table 181
7.3.2 Applying the Methodology Description Table 184

7.4 Notation Semantic Mapping Tables 185

7.4.1 NDLvs.SSL 185
7 .4.2 Composition of NSM Tables 187

V

7.4.3 Applying NSM Tables

7.5 Summary

191

199

VALIDATING THE MOOT A PPROACH 201

8.1 Introduction 201

8.2 Defining the Coad and Y ourdon Methodology 202

8.3 Supporting Patterns 210

8.4 Supporting UML 213

8.5 Preliminary Development of the Semantics Editor 216

8.5.1 Notation for the SSL Module Structure Modelling
Language 219

8.5.2 Notation for the SSL Method Modelling Language 221

8.6 Toward Supporting Joosten Work:flow Modelling 224

8.7 Summary 225

CONCLUSION AND FUTURE WORK 227

9.1 Introduction 227

9.2 Summary of the Thesis 228

9.3 Discussion 230

9.4

9.5

9.3.1 The Novel Meta-CASE Tool Methodology Representation
Strategy 230

9.3.2 The MOOT Approach 231

9.3.3 The Notation Definition Language 236
9.3.4 The Semantic Specification Language 236
9.3.5 Core Knowledge Base and Generic Object Orientated

Knowledge Base 237

Future Work 238

9.4.1 The Notation Definition Language 238
9.4.2 The Semantic Specification Language 240
9.4.3 Notation Semantic Mapping Tables 240
9.4.4 Support for Re-use 241
9.4.5 Cognitive Support 242
9.4.6 Meta-Modelling 242
9.4.7 Validation of a Complete Implementation of MOOT 243

Conclusion 244

V1

APPENDICES

EVALUATION FRAMEWORK

1.1 Existing Evaluation Frameworks

I.2 A New Evaluation Framework

NDL GRAMMAR

II.1 Introduction

11.2 Reserved Words

II.3 Operators

11.4 Grammar

SSL GRAMMAR

111.1 Introduction

111.2 Reserved Words

Ill.3 Operators

111.4 Grammar

SSL EXAMPLES

IV.1 The Sieve of Eratosthenes Version 1

IV.1.1 Interface Module
IV.1.2 Implementation Module

IV.2 The Sieve of Eratosthenes Version 2

IV.2.1 Interface Module
IV.2.2 Implementation Module

SSL-VM INSTRUCTION SET

V.1 Introduction

V.2 Instruction Set

Vll

246

246

246

249

249

249

249

249

253

253

253

253

253

258

258

259
259

265

265
266

269

269

269

SSL COMPILER 277

VI.1 Introduction 277

Vl.2 The SSL Compiler 277

VI.3 Representing Types in the SSL Compiler 279

VI.4 Representing Statements and Expressions in the SSL
Compiler 280

VI.5 Representing Modules in the SSL Compiler 282

THE SSL VIRTUAL MACHINE 285

VII.1 Introduction 285

VII.2 The SSL Virtual Machine 285

VII.3 Representing SSL Types 287

VII.4 SSL Proxies 287

VII.5 Processing Messages 289

VII.6 Binding 291

VII. 7 Garbage Collection 293

REFERENCES 297

V111

LIST OF FIGURES

Number Page

Figure 1-1 Modelling 4

Figure 1-2 - Meta-modelling 6

Figure 1-3 Classification hierarchy of CASE tool categories 14

Figure 1-4 - Thesis outline 26

Figure 2-1 - Four layer meta-modelling process 28

Figure 2-2 - CDIF Meta-metamodel (EIA CDIF, 1994 b) 35

Figure 2-3 - CASE tool generators 37

Figure 2-4 - Architecture of a m odifiable CASE environment 38

Figure 2-5 - Meta-CASE tools and the four layer meta-modelling architecture 39

Figure 3-1 Mapping between goals and design decisions made regarding MOOT 60

Figure 3-2 - The relation between software projects, methodology descriptions
and the description languages in MOOT 62

Figure 3-3 Methodology descriptions and software engineering projects 64

Figure 3-4 - Knowledge bases in MOOT 65

Figure 3-5 The relation between the CKB, the GOOKB, methodologies and
software engineering projects in MOOT 66

Figure 3-6 - Meta-modelling architecture 67

Figure 3-7 - Addressing the limitations of meta-CASE tools 69

Figure 3-8 - The two roles of the MOOT system 71

Figure 3-9 Moot system 72

Figure 3-10 - Proposed, top level, system architecture 73

Figure 3-11 Architecture of the MOOT prototype 79

Figure 4 -1 - A state transition diagram drawn in the notation of Booch and

�� M

Figure 4 -2 A simple diagram drawn with UML, Coad and Yourdon and Booch
notations 86

Figure 4 -3 Three examples of a UML class symbol 87

Figure 4 -4 - Topographical description of a UML class 87

Figure 4 -5 - Coad and Yourdon and Booch symbols showing common sub-parts 88

Figure 4 -6 Two example connections 88

Figure 4 -7 - Inheritance connection in UML 90

1X

Figure 4-8 - An example UML sequence diagram 91

Figure 4-9- A Jacobson Use Case diagram 91

Figure 4-10 - Docking areas on Coad and Y ourdon Class&Object symbols 92

Figure 4-11 - Coad and Y ourdon Subject Area: expanded Qeft) and collapsed
(right) 93

Figure 4-12- A UML class expressed with varying levels of detail 94

Figure 4-13 - Two example active areas 96

Figure 4-14 - (i) A symbol (ii) exploded Symbol (iii) templates 97

Figure 4-15 - Applying a template 98

Figure 4-16- Topographical description of a UML class symbol 99

Figure 4-17 A UML class symbol with active areas 101

Figure 4-18 - Template describing a UML class symbol 102

Figure 4-19 - Coad and Y ourdon class and Class&Object symbols 103

Figure 4-20- Identified common sub-parts in Coad and Y ourdon's notation 103

Figure 4-21 -Group templates 104

Figure 4-22- Coad and Yourdon class symbol 104

Figure 4-23- Docking at a point 106

Figure 4-24 - Anatomy of a point docking area 106

Figure 4-25- Docking on a line 107

Figure 4-26- Anatomy of a line docking area 107

Figure 4-27 - Representing valid directions for a line docking area 108

Figure 4-28- Docking on an arc 108

Figure 4-29 - Anatomy of an arc docking area 109

Figure 4-30 - Representing valid directions for an arc docking area 109

Figure 4-31- Two example connections 110

Figure 4-32 Connection symbol template 110

Figure 4-33 - Coad and Yourdon connection symbol line docking area (i) with a
single connection (ii) with multiple connections 111

Figure 4-34 Connection terminator templates for Coad and Y ourdon Gen-Spec
and message connections 112

Figure 4-35- NDL connection templates for Coad and Yourdon Gen-Spec and
message connections. 112

Figure 4-36- Components of the NDL interpreter 113

Figure 4-37 The Expression class hierarchy 115

Figure 4-38 Template segment hierarchy 116

X

Figure 4 -39 -The different types of template

Figure 4 -4 0 - NDL interpreter using an NDL description of the Rumbaugh
instance and object diagram

Figure 4 -4 1 - NDL interpreter using an NDL description of the Coad and
Y ourdon class diagram

Figure 5-1 - Mapping between goals and design decisions made regarding features
of SSL

Figure 5-2 - MOOT meta-metamodel

Figure 5-3 - The built-in SSL variables

Figure 5-4 - SSL collection and iterator types

Figure 5-5 -Partial SSL implementation of a list class

Figure 5-6 SSL implementation of the list class

Figure 5-7 - Implementing SSL create operations

Figure 5-8 Example loop and if statements

Figure 5-9- SSL compiler

Figure 0 Processing actions

Figure 1 - Architecture of the SSL virtual machine

Figure 5-12- SSL class

Figure 3 SSL method

Figure 5-14 - SSL object

Figure 5-15 -Processing messages on the SSL- VM

Figure 6-1 The three tier structure of the information processed by MOOT

Figure 6-2 Methodology meta-model

Figure 6-3 - Transitions

Figure 6-4 Meta-model of modelling language

Figure 6-5 - Representing a whole-part relation

Figure 6-6 - Representing a class diagram with instances of classes from the CKB

Figure 6-7 - Detailed meta-model of modelling language

Figure 6-8 - Extended meta-model of modelling language

Figure 6-9- Core Knowledge Base

Figure 6-10 - Situations

Figure 6-11 - Critics

Figure 6-12 Taxonomy of object-orientated methodology comparisons

Figure 6-13 - Number of comparisons for Nm methodologies

Figure 6-14 - Representing classes and objects

X1

118

119

120

124

127

128

131

135

137

138

14 0

14 1

14 3

14 6

14 9

150

151

152

155

157

158

159

160

161

162

163

164

165

166

168

169

171

Figure 6-15 -Representing object -orientated relations 172

Figure 6-16 - The Generic Object Orientated Knowledge Base 173

Figure 6-17 Representing an object model with classes from the GOOKB 174

Figure 6-18 - Module structure of the CKB and GOO KB 17 5

Figure 7-1 - The communication between CASE tool clients and the MOOT core 179

Figure 7-2 Methodology Description Table 182

Figure 7-3 Creating a new sofuvare engineering project 184

Figure 7-4 - The create concept map 187

Figure 7-5 - The create relation map 188

Figure 7-6 - The add map 189

Figure 7-7 - The action map 190

Figure 7-8 - The SSL object creation map 190

Figure 7-9 The SSL object update map 191

Figure 7-10 The Notation Semantic Mapping Table 192

Figure 7-11 - Creating a new model 193

Figure 7-12- Creating a new concept 195

Figure 7-13 - Successful update of a field 196

Figure 7-14 - Failed attempt to update a field 197

Figure 7-15 - Propagating server side update 198

Figure 8-1 - Supporting the Coad and Y ourdon 202

Figure 8-2 - Methodology description table for Coad and Yourdon 203

Figure 8-3 - The select methodology dialogue box 203

Figure 8-4 - Symbol template for the Coad and Y ourdon Class&Object symbol 204

Figure 8-5 -Representing the Coad and Y ourdon message connection 206

Figure 8-6 - NSM table for Coad and Y ourdon 207

Figure 8-7 - Implementation of the addAttribute operation 208

Figure 8-8 - Adding an attribute 209

Figure 8-9 - An Object-Orientated Analysis model of Object-Orientated Analysis
(Coad and Yourdon, 1991a) 210

Figure 8-10 Extending the GOOKB to support Patterns 212

Figure 8 -11 - UML v1.1 Foundation: CORE: Backbone+ Foundation: CORE:
Extension Mechanisms+ Foundation: CORE: Auxiliary Elements 214

Figure 8-12 UML v1.1 Behavioural Elements: Collaborations 215

Figure 8-13 - UML v1.1 Common Behaviour: Common Behaviour 216

Figure 8-14 - SSL modelling languages 217

X11

Figure 8-1 5-Representing SSL as an extension of the GOOKB 218

Figure 8-16 NSM table for the SSL module modelling language 219

Figure 8-17 -Supporting SSL with MOOT 220

Figure 8-18 -Explain method of the ComplexCritic class in the CKB 223

Figure 8-19 -An example SSL method model 224

Figure 8-20-Joosten trigger model Ooosten, 199 5) 225

Figure I-1 -Dimensions of the evaluation framework 248

Figure N-1 - Sieve ofEratosthenes version 1 258

Figure I V-2- Sieve of Eratosthenes version 2 265

Figure VI -1 -The main components of the SSL compiler 278

Figure VI-2-Representing types in the SSL compiler 28 0

Figure VI-3 Statements and expressions in the SSL compiler 281

Figure VI-4 Representing modules, classes, operations and methods in the SSL
compiler 282

Figure VII -1 -Components of the SSL-VM 286

Figure VII-2-Representing SSL objects and SSL classes 28 8

Figure VII-3 The classes involved in processing a message on the SSL-VJ'vf 290

Figure VII-4 -Executing a method on the SSL-VM 291

Figure VII-S - Binding a message to a method on the SSL-VM 292

Figure VII-6 Implementation of the reference counting garbage collection

scheme 29 4

Figure VII-7-Implementation of the SSL Instance Proxy class 295

xili

LIST OF TABLES

Table 1-1 - First generation object -orientated methodologies

Table 1- 2- Second generation object-orientated methodologies

Table 1- 3 - History of CASE tools (Ferguson, 1998)

Table 2-1 - Four layer meta -modelling architecture

Table 2- 2- Meta-CASE tools

Table 5-1 - SSL-VM types

Table 5- 2- SSL-BC instruction set

Table 7-1 Correspondance between syntax and semantic elements

Table 9-1 -Practical work completed during the research

Table VII -1 - Implementation of SSL types in the SSL-VM

XlV

8

9

13

28

40

147

148

18 6

23 0

28 7

ACKNOWLEDGMENTS

Colours

You reap what you sow. Put your face to the ground.

Here come the marching men. Your colours wrapped around.

The Sisters if Merry

The research detailed in this thesis was supported by two PGSF funded research projects

(MAU- 503, MAU- 8 07). Financial assistance was also received with a New Zealand

postgraduate scholarship.

The following people deserve special mention.

My supervisors) who inspired me and taught me a great deal

Assoc. Prof. Daniela Mehandjiska-Stavreva, Prof. Mark Apperley

The Masters and Honours students n'ho were also involt1ed in this research

Paul C lark, Steven Adams, Hong Yu, Duane Griffin, Sarisha Dasari, Mi Duk Choi,

J onathan Ham

Two people that selfless!J proofread the thesis

Rachel Page, Wendy Browne

My fami!J, without whom this would not have been possible

Michael Page, Susan Page, Audrey Isaac, Rachel Page, Jonathon Page, Ruth Page

lvf;yfriends (you know who you are)) who all helped without knowing it

Extra thanks to: Nick Earle, Paul Clark, Duane Griffin, Lisabeth Weston, Shamus

Smith, Luke Usherwood, Marion Moore, Andrew Turvey, James Fulton, Steven

A dams

XV

GLOSSARY

The content of the glossary has been derived from a range of dictionaries
(Collins, 199 5; Nuttals, 1902; Readers Digest, 198 8 ; Oxford, 199 3 ; Mirriam­
Webster, 1998), the Dictionary of Object Technology (Firesmith and Eykholt,
199 5) and (D'Souza and Wills, 1998 ; Jacobson et al. , 1995; Pressman 1997 ;
Schach, 1993 , 1997 ; Somerville, 1996).

Abstraction. Any model that includes the most important, essential, or distinguishing
aspects of something while suppressing or ignoring less important, immaterial, or
diversionary details. The result of removing distinctions so as to emphasise
commonalties.

Arity. The cardinality of something. For example the arity of a relation specifies the
number of concepts that are involved in the relation.

Attribute. Any named property used as a data abstraction to describe its enclosing object,
class or extent.

Behaviour. Anything that an organism does involving action and response to stimulation.
The way in which someone behaves; also: an instance of such behaviour.

Bind. To place under certain constraints. To cohere or cause to cohere. To place under
obligation; oblige.

Binding. Any selection of the appropriate method for an operation on receipt of a
corresponding message.

Browser. Any view that allows you to access hierarchically organised and indexable
information.

CASE Tool. A) Any computer based tool for software planning, development and
evolution. This includes all examples of computer-based support for the managerial,
administrative, or technical aspects of any part of a software development project. B)
Products that assist the software engineer in developing and maintaining software.

CASE. An acronym that stands for Computer Assisted Software Engineering.

CKB. Core Knowledge Base. A library of methodology semantic components that
implements a meta-model of methodology.

Class. Any uniquely identified abstraction (i.e. a model) of a set of logically related
instances that share the same or similar characteristics. The combination of a type
interface and associated type implementation.

Classification. The act of forming into a class or classes; a distribution into groups such as
classes, orders, families, etc., according to some common relations or affinities.

XV1

Cohesion. The degree, to which something models a single abstraction, localising only
features and responsibilities related to that abstraction.

Component. A) Any standard, reusable, previously implemented unit that is used to

enhance the programming language constructs and to develop applications. B) An
independently deliverable unit of software that encapsulates its design and
implementation and offers interfaces to the out-side, by which it may be composed with
other components to form a larger whole.

Coupling. The degree to which one thing depends on another. Low coupling is desirable
because it produces better encapsulation, maintainability, and extendibility with fewer
objects needlessly affected during iteration.

Encapsulation. To enclose in or as if in a capsule; the act of enclosing in a capsule. The
physical localisation of features.

Engineering. The application of scientific principles to such practical ends as the design,
construction, and operation of efficient, economical structures, equipment and systems.
The application of science to the design, building, and use of machines, constructions etc.

GOOKB. Generic Object Orientated Knowledge Base. A library of methodology semantic
components that implements a meta-model of concepts germane to all object-orientated
methodologies.

Identity. Individuality.

Information Hiding. The deliberate and enforced hiding of information (e.g. design
decisions, implementation details) from clients. The limiting of scope so that some
information is invisible outside of the boundary of the scope.

Inheritance. The incremental construction of a new definition in terms of existing
definitions without disturbing the original definitions and their clients.

Instance. Anything created from or corresponding to a definition.

Interface. The visible outside, user view of something.

Language. Any method of communicating ideas, as by a stream of signs, symbols, gestures
or the like. The special vocabulary and usage of a scientific professional or other group.
The speech or expression of ideas.

MDT. An acronym that stands for Methodology Description Table. The Methodology
Description Table provides an index of the methodologies supported by MOOT.

Message Send. The sending of a message to an object.

Message. Any communication sent or received by an object.

Meta. A Greek prefix signifying beyond, after, with, among and frequently expressing
change. Going beyond or transcending. Used with the name of a discipline to designate a

:xvii

new but related discipline designed to deal critically with the original one. Of a higher or
second-order kind.

Meta-CASE Tool. A) A meta-CASE tool is any tool that provides automated or semi­

automated support for developing CASE tools. B) ... are CASE tools which are used to

generate other CASE tools. C) A CASE tool that operates on CASE tools.

Meta-language. The natural language, formal language, or logical system used to discuss
or analyse another system. A form of language used to discuss a language.

Method. A) Mode of procedure, logical arrangement, orderly arrangement, system of
classification. A means or manner of procedure, especially a regular and systematic way of
accomplishing anything. The procedures and techniques characteristic of a particular
discipline or field of knowledge. special form of procedure esp. in any branch of

mental activity. B) A way of carrying out a complete phase such as such as design or

integration. C) The hidden implementation of an associated operation.

Methodology CASE Tool. A CASE tool that supports one or more software development
methodologies and attempts to span most of the software development life-cycle.

Methodology. The science of scientific method of classification. From the Greek method
and logis (science). The system of principles, practices, and procedures applied to any
specific branch of knowledge. The science of method; a body of methods used in a
particular branch or activity.

ModeL A) Archetype; a description or analogy used to help visualise something that
cannot be directly observed; a system of postulates, data, and inferences presented as a
mathematical description of an entity or state of affairs. A preliminary pattern or
representation of an item not yet constructed. A tentative framework of ideas describing

something intangible and used as a testing device. B) A model clarifies- for a person or
group of people - some aspect or perspective on a thing or event.

MOOT. Meta Object Orientated TooL A new meta-CASE tool developed as a result of
this research.

NDL. Notation Definition Language. A new language used to define the syntax of a
methodology MOOT.

Notation. A system of characters, symbols, or abbreviated expressions used in an art or
science or in mathematics or logic to express technical facts or quantities.

NSM. An acronym that stands for Notation-Semantic Mapping. NSM tables are used to
implement late binding ofNDL and SSL methodology descriptions.

Object. Any abstraction that models a single thing.

Operation. Any service that may be requested.

Polymorphism. The ability of a single name to refer to different things having different
forms.

XV111

Process. A) A system of operations in the production o f something. A series of actions,
changes or functions that bring about an end or result. A course of action or proceeding,
esp. a series of stages in manufacture or some other operation. B) ... the way we produce
software. It starts with concept exploration and ends when the product is finally retired.
C) . . . the set of activities and associated results which produce a software product.

Relation. Connection by consanguinity or affinity; kinship; relationship; as, the relation of
parents and children; an abstraction belonging to, or characteristic of, two entities or parts
together.

Semantic. Of, or relating to, meaning in language.

Software Development Life-cycle (SDLC). A process by which software engineers build
computer applications.

Software Engineering. A) The application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance of software; that is the
application of engineering to software. B) ... is concerned with the theories, methods and
tools that are needed to develop software for computers. C) A discipline whose aim is the
production of quality software that satisfies the user's needs, and is delivered on time and
within budget.

Software Project. A software project consists of a set of models (built using a particular
methodology) which collectively define the software being constructed.

SSL. Semantic Specification Language. A new object-orientated language used to define
the semantics of a methodology in MOOT.

SSL-BC. SSL Byte Code. A platform independent, binary, representation of SSL, which is
generated by the SSL compiler.

SSLC. SSL compiler.

SSL-VM. SSL Virtual Machine.
processing of SSL.

new virtual machine which supports efficient

State. Any status, situation, condition, mode, or life-cycle phase of an object or class
during which certain rules of overall behaviour (e.g. response to messages) apply.

Syntax. The way in which linguistic elements (as words) are put together to form
constituents (as phrases or clauses).

Tool. A thing used in an occupation or pursuit. Any instrument of use or service.

Type. A lower taxonomic category selected as a standard of reference for a higher
category. The declaration of the interface of any set of instances (e.g. objects) that
conform to this common protocol.

XLX

PUBLICATIONS

The results of this research have been presented in the following refereed publications.

Phillips, C.H.E., Adams, S., Page, D. and Mehandjiska, D. (1998) The Design of the
Client User Interface for a Meta Object-Oriented CASE tool, Proceedings of
TOOLS Pacific'98, Monash Printing Services, Victoria, pp145-157

Page, D., Mehandjiska, D. and Phillips, C.H.E. (1998) Methodology Independent
00 CASE: Supporting Methodology Engineering, Proceedings of Software
Engineering: Education and Practise (SE:E&P'98), IEEE Computer Society
Press, Dunedin, New Zealand, pp373-380

P hillips, C.H.E., Adams, S., Page, D. and Mehandjiska, D. (1998) Design of the
User Interface for a Methodology Independent 00 CASE Tool, Proceedings
of OZCHI'98, IEEE Computer Society Press, Los Alamitos, California,
pp106-114

Phillips, C.H.E., Mehandjiska, D. and Page, D. (1998) The Usability Component of
a New Framework for the Evaluation of Object-Oriented CASE tools,
Proceedings of Software Engineering: Education and Practise (SE:E&P'98),
IEEE Computer Society Press, Dunedin, New Zealand, pp131-141

Page, D., Griffin, D., Usherwood, L. and Mehandjiska, D. (1997) Implementation
of a Semantic Specification Language Interpreter for a Methodology
Independent 00 CASE Tool, Proceedings of lASTED International
Cenference on Software Engineering (SE'97), ACT A Press, San Francisco,
USA, pp239-242

Mehandjiska, D., Page, D., Griffin, D. and Usherwood, L. (1997) Methodology
Knowledge Representation and Interpretation for a Methodology
Independent 00 CASE Tool, Proceedings of lASTED International
Cenference on Software Engineering (SE'97), ACTA Press, San Francisco,
USA, pp243-247

Mehandjiska, D., Page, D. and Choi, M. D. (1996) Meta-Modelling and
Methodology Support in Object-Oriented CASE Tools, Proceedings of 3rd

International Conference on Object-Oriented Information Systems
(OOIS'96), Eds. Patel, D., Sun, Y. and Patel, S., Springer-Verlag, London,
pp370-386

Mehandjiska, D., Page, D. and Dasari, S. (1996) Generic Knowledge Base for a
Methodology Independent Object-Oriented CASE Tool, Proceedings of the
lASTED International Conference on Artificial Intelligence, Expert Systems
and Neural Networks, Ed. Hamza, M., lASTED/ Acta Press, Honolulu,
Hawaii, pp23-26

XX

Mehandjiska, D., Apperley, M. D., Phillips, C.H.E., Dasari, S. and Page, D. (1996)
Advancing information technologies through CASE, Proceedings of the 19th

Australasian Computer Science Conference (ACSC'96), Ed. Ramamohanarao,
K, Melbourne, Australia, pp213-222.

Dasari, S., Mehandjiska, D. and Page, D. (1995) Construction of a Generic
Knowledge Base for a Methodology Independent CASE Tool, Addendum to
the Proceedings of The Second NZ International Two-Stream Conference on
Artificial Neural Networks and Expert Systems (ANNES'95), Dunedin,
pp466-473

Mehandjiska, D., Apperley, M.D., Phillips, C., Page, D. and Clark, P. (1995) A
Methodology independent object oriented CASE tool, New Zealand Journal
of Computing, Vol. 6, pp95-105

Mehandjiska, D., Page, D. and Ham, J. (1995) Template generator for methodology
independent object oriented CASE tool, Proceedings of TJ International
Conference on Object-Oriented Information Systems (OOIS'95), Eds.
Murphy, J. and Stone, B., Springer-Verlag, Dublin, Ireland, pp431-440

Page, D., Clark, P. and Mehandjiska, D. (1994) An Abstract Definition of
Graphical Notations for Object Orientated Information Systems, Proceedings
of 1" International Conference on Object-Oriented Information Systems
(OOIS'94), Eds. Patel, D., Sun, Y. and Patel, S., Springer-Verlag, London,
pp266-276

Mehandjiska, D., Page, D. and Clark, P. (1994) An Intelligent Object Oriented
CASE Tool, Proceedings of 1 '' International Conference on Object-Oriented
Information Systems (OOIS'94), Eds. Patel, D., Sun, Y. and Patel, S.,
Springer-Verlag, London, pp168-172

XX1

Chapter 1

Chapter 2

Section I

Literature Review

Introduction

Meta-Modelling and Meta-CASE Tools

XXll

1

26

Chapter 1

Introduction

He that will not apply new remedies must expect new evils: for time is the

greatest innovator, and if time of course alter things to the worse, and

wisdom and counsel shall not alter them to the better, what shall be the end?

1.1 Introduction

Francis Bacon

Edward Y ourdon once said, "CASE technology will help revolutionise the software

industry". Unfortunately he was overly optimistic.

There can be no doubting the potential benefits of automation during the software

development process, yet the adoption of CASE technology can only be described as

lethargic. If the philosophy behind CASE technology is not at fault then what is the cause

of its languid rate of adoption? The fault can only be ascribed to its execution.

"Vendors have been selling products for years that are supposed to promote

reusability, promote better design, and speed time to market. The problem is

that few commercial products actually live up to even significant portions of

their claims."

From the FreeCASE web site (freeCASE 1998)

Evaluation of CASE tools has revealed a number of shortcomings in many of the existing

tools in use today (Brough, 1992; Brown, 1997; Crozier et al. , 198 9; Gibson, 198 8;

Isazadeh and Lamb, 1997; L.ang, 1991; Marttiin et al., 1993; Mehandjiska et al. , 1994,

1995b, 1996a, 1997; Misra, 1990; Mosely, 1992; Nilson, 1990; Ovum, 1996; Papahristos

and Gray, 1991; Phillips et al., 1998a; Rossi et al. , 1992; Sorenson, 198 8; Sumner, 1992;

Vessey et al., 1992).

1

This thesis details research which aims to develop novel methods and techniques to

address the limitations of current CASE and meta-CASE technology with respect to

methodology representation and customisation. The research is part of a three year

project, funded by the Foundation of Research, Science and Technology (Adams, 1998;

Clark, 1994; Choi, 1996; Dasari et al., 1995; Gray, 1995; Griffin, 1997; Ham et al, 1994;

Mehandjiska et al. , 1994, 1995a, b, 1996a, c, 1997; Page et al. , 1994, 1997, 1998; Phillips et

al, 1998a-c; Yu, 1999). A new meta-CASE tool, which implements a new methodology

representation strategy, has been developed during this research. Its prototype is

presented in this thesis.

The remainder of this chapter defines the scope of the research detailed in this thesis.

Initially some essential fundamental terms are introduced. A brief history of object­

orientated software engineering methodologies is presented followed by a review of the

current status of CASE technology. The term Methodology CASE tool is defined and the

scope of the research is presented. The limitations of Methodology CASE tools are

discussed from several perspectives and the objectives of the research are subsequently

defined. Finally an overview of the research method and an outline of the remainder of

the thesis is presented.

1.2 Fundamental Terms

Don't sir, accustom yourself to use big words for little matters ... The practice

of using words of disproportionate magnitude is, no doubt, too frequent.

Samuel J ohnson

The following terms are germane to this thesis and are pervasive throughout:

•

•

•

•

•

Software Engineering Development Methodology

Computer Aided Software Engineering (CASE)

CASE tool

Meta-modelling

Meta-CASE tool

No attempt is made to adopt, or artificially create, definitions of these fundamental terms

for the sole purpose of this study. Rather a pragmatic overview of these fundamental

terms is presented by adopting a holistic approach. A range of definitions are introduced

from English dictionaries (Collins, 1995; Nuttals, 1902; Oxford, 1990; Readers Digest,

2

1988; Mirriam-Webster, 1998) and used to facilitate the rationalisation of these terms.

The reader is directed to the glossary, which includes accepted definitions from the

literature (D'Souza and Wills, 1998; Firesmith and Eykholt, 1995; Jacobson et aL, 1995;

Pressman, 1997; Schach, 1993, 1997; Somerville, 1996).

1.2.1 Software Engineering Development Methodology

Engineering. [rdf The application of scientific principles to such practical ends

as the design, construction, and operation of efficient, economical structures,

equipment and systems. [oxfj The application of science to the design, building,

and use of machines, constructions etc.

Software engineering is the application of scientific principles to the design and

construction of sofuvare systems. A sofuvare engineer applies these scientific principles

by modelling within the context of a given problem domain. Boehm (1976) proposed a

definition for software engineering: "the practical application of scientific knowledge in

the design and construction of computer programs and the associated documentation

required to develop, operate and maintain them."

Model. [web] Archetype; a description or analogy used to help visualise

something that cannot be directly observed; a system of postulates, data, and

inferences presented as a mathematical description of an entity or state of affairs.

[rd) A preliminary pattern or representation of an item not yet constructed. A

tentative framework of ideas describing something intangible and used as a testing

device.

A model is an abstraction of a problem domain that is built by concentrating on features

a software engineer deems salient. Modelling is the process of deriving a model. Marttiin e!

al. (1993) state HA model is a simplified representation of a system." A model is built by

applying well-tested scientific principles and is expressed in a language that encapsulates

those principles.

Language. [rd] Any method of communicating ideas, as by a stream of signs,

symbols, gestures or the like. The special vocabulary and usage of a scientific

professional or other group. [nt] The speech or expression of ideas.

(:onsisc ()x ford l
f\!Jrnam-\\ cbsrcr, 1998): [nt['\uttals Standard

3

1 902).

A language that is used to express models is called a modelling language. The syntax of a

modelling language determines the 'phrases' that may be constructed with the language.

The semantics of a modelling language determines how valid 'phrases' are interpreted and

understood. The procedure followed to derive a syntactically correct model, which

communicates the desired information, is the method.

Method. [nt] Mode of procedure, logical arrangement, orderly arrangement,

system of classification. [rd] A means or manner of procedure; especially, a

regular and systematic way of accomplishing anything. The procedures and

techniques characteristic of a particular discipline or field of knowledge. [oxf] A

special form of procedure especially in any branch of mental activity.

Marttiin et al. (1993) state "A method is a set of steps and rules that define how a model is

derived." Often the term language subsumes the term method, in software engineering2.

Even in this situation the method exists and is implicitly 'do not break the rules of the

language'. Figure 1 -1 illustrates the relations between method, modelling language, model

and system. A modelling language is used (by following an associated method) to define a

model, which is an abstraction of a system.

Modelling Language Method

!Used to def;ne

Model

Is an abstraction of

System

Figure 1 -1 - Modelling

The meaning that can be conveyed by a model is subject to the facilities provided by the

modelling language that is used to derive it. Smolander et aL (1991) state "A method

embodies a set of concepts that determines what is perceived, a set of linguistic

conventions and rules which govern how the perception is represented and

2 The term method is also often used interchangeably with methorlololJ. Sigfried (1996) notes "... there is no well

established practice for the use of these two concepts."

4

communicated." A software engineer investigates the many dimensions of a problem

domain by applying a range of different methods (and hence languages) to build a

collection of models. The set of methods and modelling languages used to describe the

dimensions of a software system is called a methodology'.

Methodology. [nt] The science of scientific method of classification. From the

Greek method and logis (science). [rd] The system of principles, practices, and

procedures applied to any specific branch of knowledge. [web] The science of

method; a body of methods used in a particular branch or activity.

Marttiin et al. (1993) note "a methodology is an organised collection of methods."

software engineering methodology is a collection of methods that can be applied to build

models of a software system such that the system is completely defined and can be built.

Smolander et al. (1991) state "a methodology can be defined as an organised collection of

methods and a set of rules which state whom, in what order, and in what way the

methods are used. " The procedure that is followed, to describe the dimensions of a

software system, is called the process. Younessi and Henderson-Sellers (1998) note "a

methodology is not just a set of notations and modelling rules .. . a methodology must

have a process dimension, thus implying a methodology includes or encompasses a

process. " 4

Process. [rd] A system of operations in the production of something. A series of

actions, changes or functions that bring about an end or result. [oxf] A course of

action or proceeding, esp. a series of stages in manufacture or some other

operation.

A software engineering methodology promotes a set of software engineering principles

that are deemed to be efficacious to the construction of software systems. Different

methodologies may promote different sets of software engineering principles. It is natural

in the development of any science that scientific principles change, evolve and are

superseded. Naturally this is also true of software engineering methodologies.

' The concept of i:; also discmscd in more detail in 6.

'\\1lcthcr a a process. or is associated wtth one is an issue that open to debate. Youncssi

and 1 lcndcr,;on-Sdlcrc; IJ9'J8) offer c>omc argument> in thi,; area.

5

1.2.2 Meta-Modelling

Meta is a prefix that is derived from the Greek language.

Meta. [nt] A Greek prefL'< signifying beyond, after, with, among and frequently

expressing change. [rd] Going beyond or transcending. [web] Used with the

name of a discipline to designate a new but related discipline designed to deal

critically with the original one. [oxf] Of a higher or second-order kind.

A meta-model is something 'beyond or transcending' a model. That which is beyond a

model is the modelling language used to define it. Odell (1995) states "Basically a meta­

model is a model that is used to talk about various kinds of models we wish to build."

Tolvanen and Lyytinen (1993) note that "meta-modelling can be defined as a modelling

process, which takes place one level of abstraction and logic higher than the standard

modelling process." Figure 1-2 illustrates how applying the meta prefix indicates a shift in

context and changes the focus of attention to something at a higher level of abstraction.

I Meta-Modelling Process j

Modelling Process

Modelling Language+ Method

Used to define

Model

Is an abstraction of

System

I Model!� ProcesiJ
Modelling Language+ Method

Used to define

Model

Is an abstraction of

System

+Meta

Figure 1-2- Meta-modelling

Meta-modelling is concerned with modelling a modelling process. Tolvanen and Lyytinen

(1993) note "the meta-model captures information about the concepts, representation

forms, and use of a method." The model derived by the modelling process on the right­

hand side of Figure 1-2 describes the application of the modelling language used in the

6

modelling process on the left-hand side. A modelling language is, therefore, a meta­

model. Meta-models are built using a meta-modelling language.

Meta-language. [web] The natural language, formal language, or logical system

used to discuss or analyse another system. [oxf] A form of language used to

discuss a language.

The meta-modelling process shown in Figure 1 -2 can conceptually be performed

infinitely. Tolvanen and Lyytinen (1 993) note "Meta-modelling also uses its own tools

which, in turn, can be described on one level higher in meta-metamodels (and so ad

infinitum)." It is important to realise that the process of building a meta-model is

modelling and that a meta-modelling language is a modelling language. The application of

a number of meta prefixes indicates the relation of languages and derived models, to a

point of reference.

1.2.3 Computer Aided Software Engineering (CASE)

The acronym CASE also represents terms such as Computer Assisted Software

Engineering and Computer Automated Software Engineering.

Aid. [oxf] A person or thing that helps; promote or encourage [web] Help;

succour; assistance; relief.

Assist. [oxf] Help; an act of helping. [web] To lend aid; to help

Automation. [oxf] The use of automatic equipment to save mental and manual

labour. The automatic control of the manufacture of a product through its

successive stages. [web] The technique of making an apparatus, a process, or a

system operate automatically.

In the context of Computer Aided Software Engineering it is clear that the computer is

used to help, promote and encourage the practice of software engineering. CASE is a

very general, all embracing, term.

1.2.4 CASE Tool

Tool. [oxf] A thing used in an occupation or pursuit. [web] Any instrument of

use or semce.

7

A CASE tool is af!) computer based system that may be used during the software

development process. A more detailed discussion and classification of CASE tools is

given in section 1 .4.

1.2.5 Meta-CASE and Meta-CASE Tool

There are many possible interpretations of the term Meta-CASE. Webster's (1\fuiam­

Webster, 1998) dictionary states that meta can be "used with the name of a discipline to

designate a new but related discipline designed to deal critically with the original one."

Meta-CASE, therefore, can be interpreted as the discipline of critically dealing with

computer aided software engineering. The meaning preferred in this study, however, is a

higher or second-order kind o f computer aided software engineering. A meta-CASE tool

is therefore a higher or second-order kind of CASE tool. In the context of this thesis a

general definition of meta-CASE tool is 'a computer based system used to assist the

development of CASE tools.' The term meta-CASE tool encompasses all tools that are

designed for the sole purpose of developing CASE tools. A more detailed discussion of

meta-CASE tools is given in chapter 2.

1.3 Object-Orientated Software Development Methodologies

Three generations of Object-orientated methodologies have been identified. A

multiplicity of methodologies was developed in the late 80s and early 90s. Some of the

most prominent first generation object-orientated methodologies are given in Table 1-1.

Methodology

Object Oriented Analysis

Object Oriented Analysis and Design

Responsibility Driven Design (RDD)

Object Oriented Analysis, Design

Object Oriented Design (OOD)

Object Modelling Technique (OM1)

Object Oriented Analysis and Design

Object Oriented Software Engineering
(OOSE)

Year

1 98 8

1 9 9 1

1 990

1 99 1

1 99 1

1 99 1

1 993

1 993

8

Metbodologist
Shlaer and Melior, 1988

Shlaer and Melior, 1 991

Wirfs-Brock et al, 1 990

Coad and Yourdon, 1 990, 1 99 1a, b

Booch, 1 991

Rumbaugh et al., 1 991

Martin and Odell, 1 993

Jacobson et al., 1 993

These first generation methodologies generally covered the 'design' phase of software

development and were atypically developed independently from each other. They

extended ideas from object-orientated programming and also earlier non object­

orientated methodologies (such as information engineering and structured analysis and

design). Many methodologies that were introduced near the end of the first generation

also began to consider analysis.

The first generation methodologies were applied and evaluated. The limitations that were

identified prompted the emergence of second generation methodologies. Many first

generation methodologies were extended to span more of the software development life­

cycle (e.g. Booch OOD (Booch, 1 991) -7 Booch OOA&D (Booch, 1 994)) . New

methodologies were developed which simply 'borrowed the best from the rest' (Muller,

1 997). For example Ian Graham's SOMA (Graham, 1 994) extended Coad and Yourdon

by incorporating business rules. The Fusion method (Coleman et al., 1 993) extended

O:MT by incorporating responsibility dtiven design (RDD) and in-house techniques

specific to Hewlett-Packard. The Booch method (Booch, 1 994) also incorporated ideas

from OMT and RDD. Over fifty different first and second generation object-orientated

methodologies existed by 1 99 55 (Muller, 1 997). Some of the most well known second

generation methodologies are given in Table 1 -2.

Methodology){ear �ethodolo�st
Object Oriented Analysis and Design 1 994 Booch, 1 994
(OOA&D)

Semantic Object Oriented Modelling Approach 1 994
(SOMA)

Graham, 1 994

Methodology for Object Oriented Software 1 994
Engineering Systems (MOSES)

Henderson-Sellers and
Edwards, 1 994

Advanced Object Modelling

Fusion

Object Modelling Technique (OMT) (v2)

Business Object Notation (BOJ:\.1)

Table 1 -2 - Second

i This period of time has b.cen referred to as the

1 99 5 Martin and Odell, 1 99 5

1 993 Coleman et al., 1 993

1 994 Rumbaugh, 1 995a, b

1 994 Walden and Nerson, 1 995

objccHmentatcd mcrhodolot,ncs

wars· (f kndcrson-Scllcrs. 1 996).

9

Many comparisons of object-orientated methodologies have been published (Amold et

aL, 1 99 1 ; Brinkkemper et aL, 1 998; Cribbs et aL , 1 992; de Champeaux and Faure, 1 992;

Fichman and Kemerer, 1 992; Fung et aL , 1 997; Hong et aL , 1 993; Hutt, 1994; Loy, 1 990;

Monarchi and Puhr, 1 992; Object Agency, 1 998; Sharble and Cohen, 1 993; Taylor, 1 99 8;

van den Goor et aL, 1 992; Yourdon and Argila, 1 996) . These studies focused on the

differences between methodologies rather than on identifying common aspects

(H.enderson-Sellers, 1 996) .

The results o f these studies indicated that whilst many of the methodologies propounded

different sets of terms and notations, there was a common awareness of the goals and

process of object-orientated modelling. Work began on identifying and quantifying the

common aspects of object-orientated methodologies in 1 995 (Booch and Rumbaugh,

1 995; Rational, 1 997a, b; Henderson-Sellers and Bulthuis 1 996a, b, 1 997; Henderson­

Sellers and Fire smith, 1 997 a). It was at this time that the Object Management Group

(OMG) "re-established an OOAD working group/task force to . . . standardise . . . 00

methodologies" (H.enderson-Sellers, 1 996) .

The appearance of two third generation software development approaches was one of

the results of these developments:

• Unified Modelling Language(' (UMI� (Booch and Rumbaugh, 1 995; Booch et al,

1 999; Douglas, 1 998; Fowler and Scott, 1 997; Jacobson et aL, 1 996, 1 999; Muller,

1 997; Rational, 1 997a, b, 1 998; Rumbaugh et aL, 1 999; OMG, 1 997c-j; Quatrani, 1 997;

UML-RTF, 1 998; Warmer and Kleppe, 1 999) .

• OPEN- (COTAR, 1 998; Firesmith et al, 1 997; Firesmith and Henderson-Sellers,

1 998a, b; Graham and l1enderson-Sellers, 1 997 ; Graham et aL, 1997; Henderson­

Sellers, 1 996, 1 997, 1 998; Henderson-Sellers and Bulthuis, 1996a, b, 1 997;

Henderson-Sellers and Graham, 1 996; Henderson-Sellers and Firesmith, 1 99 7 a, b;

Henderson-Sellers et aL, 1 996, 1 997a-d; OPEN, 1 996, 1 998).

process " ' man\' con,;iJcr tlut it i; nr Jt a . but a collection of
intern: bred '"""'u""" l ' \ l l. i:; cbcuc;scd m 2.

111 2.

1 0

The appearance of patterns, frameworks and component engineering in the last five years

(Ayoma, 1 998; Bergner et al., 1 998; Booch, 1 996; Brown, 1 997; Brown and Jaeger, 1 998 ;

D'Souza and Wills, 1 998; Firesmith, 1 993; Fowler, 1 997; Gamma et al. , 1 995; Goldberg

and Rubin, 1 995; Meyer, 1 995, 1 997; Pree, 1 994; Schmidt and Assmann, 1 998; Seacord et

al., 1 998; Short, 1 997; Sigfried, 1 996; Taylor, 1998; Webster, 1 995; Weiderman et al., 1 997;

Wills and D'Souza, 1997) is significant and signals a new phase in the development of

software engineering. New methodologies have been developed to address the emerging

technology of Components Based Development (CBD) (Ayoma, 1 998; Bergner et al.,

1 998; Brown and Jaeger, 1 998; Schmidt and Assmann, 1 998; Short, 1 997) . An example is

Catalysis (D'Souza and Wills, 1 998; ICON, 1 998) :

"Catalysis.

A next-generation UML-based method for the systematic development of

object and component based systems, using precise modelling techniques

and frameworks, to reflect and support an adaptive enterprise."

From the ICON computing website (ICON, 1998)

1.4 CASE Technology

A COmputer Aided SJftware Engineering (CASE) tool is any computer based tool for

software planning, development and evolution. This definition includes all examples of

computer-based support for the managerial, administrative, or technical aspects of any

part of a software development project.

The principle objective of CASE technology is to reinforce and support an engineering

approach to software development and evolution by providing computer based

assistance, which translates to low-defect solutions and enhanced productivity (Brough,

1 992; H aine, 1 992; Nilsson, 1990; Quantrani, 1 997; Marttiin, 1 994; Senn, 1990; Sumner,

1 992; Verhoef et al., 1 991) . Sumner (1 992) summarised the benefits of CASE as the

introduction of enbrineering-like discipline into the system development process and the

creation o f a common repository of design documentation. Nilsson (1 990) notes that

"the main benefit of CASE is that people who perform requirements gathering and

specification need not use 'pen and paper' techniques for drawing diagrams and that the

diagrams can be integrated with a data dictionary". Senn (1990) states that "CASE tools

1 1

are important because they speed development, automate tedious tasks, and enforce

standards and procedures."

CASE tools have been categorised in many different ways. For example they have been

classified in terms of functionality, their relation to the software development life-cycle

and the level of inter-tool integration that they support (Beynon-Davies, 1989; Nilsson,

1990; Pressman, 1997; Wallnau, 1992; W allnau and Feiler, 1991; Whitten et al., 1994;

Zarella, 1990).

This thesis is concerned v.rith CASE tools that implement software development

methodologies and support activities across the entire software development life-cycle.

Whitten et al. (1994) adopts the term 'cross life-cycle CASE' to classify tools that support

activities across the entire software development life-cycle. The name adopted in the

thesis for a CASE tool of this type is a Methodology CASE tool.

Methodology CASE Tool. A CASE tool that supports one or more software

development methodologies and attempts to span most of the software

development life-cycle.

Use of the term CASE tool m the remainder of the thesis specifically relates to

Methodology CASE tools and not to C ASE tools in general (such as compilers and

debuggers) . This thesis is concerned v.rith tools that support object-orientated software

engineering, so its primary focus is on object-orientated Methodology CASE tools.

Use of the term meta-CASE tool in the remainder of the thesis specifically relates to meta

Methodology CASE tools. A meta Methodology CASE tool is a meta-CASE tool that is

used to develop Methodology CASE tools.

A Brief History of CASE

Table 1-3 describes the history of CASE tools. It i s taken from the CASE Tool home

page at the University of Sunderland (Ferguson, 1998).

Early CASE tools addressed mostly form and representation 1ssues of software

development methodologies and focused on capturing a set of diagrams for the software

engineer (Brough, 1992; Verhoef et al., 1991). As these tools evolved they supported

completeness, correctness and consistency checking (Sorenson, 1988). These tools mainly

12

supported structured software engineering techniques (1-Iaine, 1992; Hoffman and

Strooper, 1 995), focusing on specific phases of the software development life-cycle

(I--Iaine, 1 992; Nilsson, 1 990) .

Early 80s

.Mid 80s

Late 80s

Early 90s

Computer aided documentation

Computer aided diagramming

Analysis and design tools

Automatic design analysis and checking

Automated system information repository

Automatic code generation from design specification

Lnking design automation

Intelligent methodology driver

Habitable user interface reusability as a development methodology

Table 1 - 3 - l of C\SE tools 1 ()08)

Large-scale software development demanded enhanced support across the entire

software development process from methodologies (Y ounessi and Henderson-Sellers,

1 998) and CASE tool developers (Brown, 1 997; Haine, 1 992; Nilsson, 1 990). Assistance

was required for the requirements definition, design and implementation phases of the

software development life-cycle, testing, documentation and version control (Sorenson,

1 988; Sorenson et al., 1 988) . The term front -end (or upper -CASE) tool was introduced to

classify tools that supported phases of the software development life-cycle up to, and

including, design (Nilsson, 1 990; Beynon-Davies, 1 989). The term back-end (or lower­

CASE) tool was introduced to classify tools that supported phases beyond design

(Nilsson, 1 990; Beynon-Davies, 1 989).

At this time object-orientated methodologies were attracting more attention from the

software development industry (Behforooz and Hudson, 1 996). They were being revised

to encompass analysis, domain and business modelling in addition to design (Y ounessi

and Henderson-Sellers, 1 998). CASE tools had to address these developments by

spanning more of the software development life-cycle (Brown, 1 997; Mehandjiska et al.,

1 994, 1 995, 1 996b; Page et al., 1 998).

1 3

1.5 Methodology CASE Tools

The evolution of Methodology CASE tools was investigated during the inception of the

research. Existing CASE tools were evaluated focusing on methodology support, life­

cycle support, functionality and usability. A new evaluation framework, which

encapsulated these evaluation criteria, was derivedK as an extension of the Software

Engineering Institute's framework for evaluating CASE tools (.Mosely, 1 992). The central

organising principle of the new framework is the classification hierarchy of CASE tool

categories shown in Figure 1 -3.

A 00 CASE Tools

l

C. Multi-Methodology
CASE Tools

Abstract CASE loo! type

Super-type

I
+

Sub· type

D. Tools that support more
than one Methodology

E. Meta CASE Tools

1 -3 Classification

Evaluation criteria are associated with nodes in the classification hierarchy at an

appropriate level of abstraction and are further classified in terms of usability,

methodology support, life-cycle support and functionality. Each evaluation criterion is

therefore classified in two ways: a) based on the CASE tool category it is relevant to and

b) based on the type of CASE tool property it evaluates. The structure of the

classification hierarchy permits evaluation criteria to be specialised and refined in a

systematic way. A classification based evaluation framework provides the necessary

flexibility needed to cope with changing CASE and software engineering technology and

of the cYaluation framework ;, 111 L

1 4

can be easily extended in the future. Some of th e results obtained by applying the new

evaluation framework are presented in (Choi, 1996; Gray, 1995; Phillips et al., 1998a).

Object-orientated methodology CASE tools (node A of the hierarchy in Figure 1-3) can

be categorised as either 'Methodology dependent CASE tools' (node B of the hierarchy in

Figure 1-3) or 'Multi-methodology CASE tools' (node C of the hierarchy in Figure 1-3).

L5. 1 Methodology Dependent CASE Tools

These tools support a single object-orientated s oftware engineering methodology. They

are often older tools that typically support a single phase of the software life-cycle�.

Examples of tools in this category include ObjecTool (supports Coad and Yourdon),

ShowCASE (supports Booch'91), Objectory (supports Jacobson), OEW (supports

Martin and Odell) (Innovative Software, 1998) and early versions of Rational Rose

(supports Booch'91 and Booch'94) (Rational, 1998) .

The most fundamental limitation of tools in this category is that a company is constrained

to adopt a single software engineering methodology. This prevents software development

companies from choosing the most suitable methodology for the problem at hand. In

addition, companies may choose to mix and match concepts from more than one

methodology. It is not possible for a CASE tool vendor to predict these kinds of

decisions and demands. The limited flexibility of methodology dependent CASE tools is

therefore a barrier to the adoption of CASE tools by indus try.

L5.2 Multi-Methodology CASE Tools

Tools of this category (node C of the hierarchy in Figure 1-3) attempt to address the

deficiencies of methodology dependent CASE tools by supporting several different

methodologies. Some tools simply attempt to implement more than one methodology

whilst others provide some type of customisation facilities to support multiple

methodologies. The techniques used differentiate multi-methodology CASE tools into

two sub categories 'Tools that support more than one methodology' (node D of the

hierarchy in Figure 1-3) and 'Meta-CASE tools' (node E of the hierarchy in Figure 1-3).

tool,; may abo ;;upport more than a of the
,;uch ;;upport.

15

1.5.3 Tools that Support More than One Methodology

Some Object-Oriented CASE tools such as COOL:Teamwork (Sterling, 1 998) ,

COOL:Jex (Sterling, 1 998), CASET, MacA&D and WinA&D (ExcelSoftware, 1 998) ,

ObjecTime and System Architect (Popkin, 1 998) claim t o support more than one

methodology. For example Teamwork supports structured analysis and design as well as

several object-orientated analysis and object-orientated design methodologies .

In general, tools in this category do not support the methodologies completely and

support is restricted to subsets of each methodology. Usually only visualisation of the

users' project using a range of different graphical notations is provided. The user cannot

customise these tools; only the tool proprietor may extend or modify them.

1.5. 4 Meta-CASE Tools

A meta-CASE tool provides automated or semi-automated support for developing CASE

tools (Alderson, 1 99 1 ; ASD, 1995a, b, 1998; Coxhead and Fisher, 1 994a, b; Coxhead et

al., 1 994; Demetrovics et al., 1 982; Findeisen, 1 993, 1 994a-d; Gadwal et al., 1 994a, b;

JrCASE, 1 998; Lincoln, 1 994, 1 998; Lo, 1995; Lyytinen et al., 1 994; Maokai and Scott,

1 998; MetaCASE consulting, 1996a, b, 1 998; Marttiin 1 994; Marttiin et al., 1 993; mip

GmbH, 1 998a-d; Scott, 1998; Smolander et al. , 1 99 1 ; Sorenson et al. , 1 988; Tolvanen and

Lyytinen, 1 993; Zhuang, 1 994; Zhuang et al., 1 995). Meta-CASE tools are based on an

underlying meta-model, which is used to describe the languages, concepts and relations

propounded by a methodology. The majority of meta-CASE tools use a data model as

their meta-model (e.g. variants of the Entity Relationship Diagram).

Meta-CASE tools can be further classified as 'CASE tools generators' (node F o f the

hierarchy in Figure 1 -3) and 'Modifiable CASE Environments' (node G of the hierarchy

in Figure 1 -3) . More detailed analysis of meta-CASE tools is presented in section 2.3.

1.5.5 CASE Tool Generators

A CASE tool generator is a meta-CASE tool that supports the construction of standalone

CASE tools. Meta-CASE tools of this type often provide a set of libraries and a

programmer API to support the construction of standalone tools. Some CASE tool

generators allow individual tools to share a common repository. The tools developed by a

1 6

CASE tool generator often exhibit a similar look and feel in their user interface and have

a similar structure in their repositories w. The main advantage of a CASE tool generator is

the greatly reduced development time for an individual tool. CASE tools generated by

these systems often suffer from poor user interfaces as CASE tool generators typically

focus on specifying modelling languages at the expense of due consideration to Human

Computer Interaction (HCI) principles .

Paradigm+ (Platinum, 1 998), Software through Pictures (STP, 1 998), Toolbuilder

(Lincoln, 1 998) and Meta View (Gadwal et al., 1 994a, b; Findeisen, 1 993, 1 994a-d; Lo,

1 995; Sorenson et al., 1 988; Zhuang, 1 994; Zhuang et al., 1 99 5) are CASE tool

Generators.

1.5. 6 Modifiable CASE Environments

Tools in this category attempt to combine the benefits o f a meta-CASE tool and a multi­

methodology CASE tool. These tools allow their methodologies to be modified and may

be extended to support new methodologies. Meta-CASE tools of this type usually

provide a set of methodology description languages that are used to define

methodologies.

A modifiable CASE environment has two types of user. Methodology engineers use a

modifiable CASE environment to manipulate descriptions of software engineering

methodologies. Sofuvare engineers use a modifiable CASE environment to manipulate

descriptions of sofuvare engineeringprqiects.

The main problem with modifiable CASE environments is poor support for the concept

of methodology. Often the user o f such an environment is presented with an extremely

large collection of methodologies (Lyytinen et al., 1 994; MetaCASE Consulting, 1 996a, b,

1 998; Smolander et al., 1 99 1 ; Tolvanen and Lyytinen, 1 993) . In addition the relation

between different methodologies and methods is often not dear.

Modifiable CASE environments do present significant possibilities for the support of re­

use amongst sofuvare development projects as these tools have detailed information

regarding the methodologies they implement. However these tools do not consider re-use

I" This is often consnJucncc of

1 7

explicitly. Any claim for the support of re-use is only ever matched by simple

import/ export facilities or by accidental re-use 1 1 (ASD, 1 998; Lyytinen et aL , 1 994;

MarkV, 1 998; MetaCASE Consulting, 1 996a, b, 1 998; Smolander et al , 1 99 1 ; Tolvanen

and Lyytinen, 1 993). Generally these tools only support accidental re-use of methodology

descriptions.

Modifiable CASE environments typically focus on specif)ring modelling languages at the

expense of due consideration to Human Computer Interaction (HCI) principles and

suffer from poor user interfaces.

Graphical Designer (ASD, 1 998), Objectc\1aker (MarkV, 1 9 98), MetaEdit+ (Lyytinen et

aL, 1 994; Merridaru\farketing, 1 998; MetaCASE Consulting, 1 996a, b, 1 99 8 ; Smolander et

aL, 1 99 1 ; Tolvanen and Lyytinen, 1993) are examples of Modifiable CASE environments.

1.6 Limitations of Methodology CASE Tools

CASE tools have promised high gains in terms of enhanced productivity, lower defect

solutions and faster time to market. Yet many organisations have not adopted CASE

technology (Beynon-Davies, 1 989; Day, 1 998; Huff et aL, 1 992; Malmborg, 1 992; Oakes et

aL, 1 992; Sorensen, 1 993; Vessey et aL, 1 992; Wallnau, 1 992; Wallnau and Feiler, 1 99 1 ;

Zarella, 1 990; Zarella et aL, 1 991) . Many of the reasons for the poor adoption o f CASE

tools are epitomised by the FreeCASE project (FreeCASE, 1 99 8) . FreeCASE is a

methodology dependent CASE tool (Figure 1 -3 - Classification hierarchy of CASE tool

categories) that is being developed by volunteers from the free software community.

"FreeCASE will be a first of a kind product. It will be a team orientated tool

for object-oriented analysis and design. It will . . . support UML 1 . 1 . . . It will

forward-generate and reverse engineer source code in multiple languages. It

will support a networked repository, allowing for development over the

Internet. It will also provide versioning and code management capabilities.

Additionally, it will support a client running on multiple platforms."

From the FreeCASE website (FreeCASE, 1998)

1 8

Whilst the project is in its infancy and, as yet, does not appear to provide anything novel,

it is interesting because o f its motives:

"Vendors have been selling products for years that are supposed to promote

reusability, promote better design, and speed time to market. The problem is

that few commercial products actually live up to even significant portions of

their claims. Worse, the price of entry is anywhere from $800 to $5000 PER

USER! I find this to be unacceptable."

From the FreeCASE website (FreeCASE, 1998)

The very existence of such a project is indicative of the potential of CASE technology

and also of the failure to deliver on that potential.

A large body of work related to the adoption of CASE technology exists (Beynon-Davies,

1 989; Day, 1 998; Huff et al., 1 992; Malmborg, 1 992; Mathiassen and S0rensen, 1 995;

Oakes et al. , 1 992; Schottland, 1 996; S0rensen, 1 993; Vessey et al., 1 992; Wallnau, 1 992;

Wallnau and Feiler, 1 99 1 ; Zarella, 1 990; Zarella et a!., 1 991) . Oakes et a!. (1 992) report that

the major problems associated with the adoption of CASE tools areL' :

• The wide variation in quality and value within a single type of tool.

• relatively short time that many type s of CASE tool have been 111 use m

organisations.

• The wide difference in the adoption practices of various organisations.

• The general lack of detailed metric data for previous and current projects.

• The wide range of project domains.

• The confounding impact of changes to methods and processes that are often

associated with the adoption of CASE tools.

• The potential bias of organisations reporting CASE gains or losses.

1 ' This hst i s from technical report by the Soft'xan:

of (, . \Sf : took Their ddinition of C.\Sl ·: is the

1 9

lnstirutc IS!J with the

Attsy (1 995) notes in a position paper for the OOPSLA workshop 'Meta-modelling in

00':

"Very few tools implementing an OOA&D method do have an explicit

meta-model, and even fewer publish it. Without such a model, the tool's user

cannot know precisely how accurately does the tool view or implement

certain concepts . . . Furthermore, even when the tool has an explicit meta­

model, but the tool is not model-driven, it is inflexible to change whenever

the OOM evolves (and since OOMs do evolve relatively often, tools are

becoming obsolete too s oon) ."

The limitations of CASE tools can be considered from two perspectives. The first is from

the point of view of companie s adopting CASE technology (organisational perspective).

The second is from the point of view of CASE tools themselves (CASE Tool

perspective) 1 1 •

1.6.1 Limitations from the Organisational Perspective

These limitations are related to the effect the adoption of CASE technology can have

within an organisation.

• High cost of adoption

The adoption of CASE technology can be a major investment for a company. The

price of CASE tools can vary greatly depending on the functionality and features

provided by the CASE tools. In addition the training costs associated with adopting a

CASE tool can be prohibitive.

High learning curve

The learning curve associated with CASE tools can be high. CASE tools are not

simple products to master, e specially given their emphasis on collaborative work and

that their affect is across the software development life-cycle.

2.

20

• Long payback period

The payback period for adopting CASE tools can be long (i.e., years of time). This is

because the advantages of adopting CASE technology may not become clear until the

first products are completed with the assistance of CASE tools. Payback is in terms

of faster time to market, better quality products and lower maintenance costs.

• Lack of customisation

•

•

Many companies utilise in-house methodologies or processes. Their means of work

may also be a modification or extension of a popular, accepted methodology. Such

practices are not supported well by current CASE technology, as most CASE tools

are rigid and do not allow customisation.

Lack of standards

plethora of CASE tools exist, which vary significantly in terms of quality, usability

and functionality. This is related to the large number of object-orientated

methodologies, the lack of industry standards and immaturity of the CASE industry.

Culture shock

CASE tools propound a collaborative approach to software engmeenng and

emphasise the importance of the pre-implementation phases of the software

development process. This can be a culture shock for many organisations.

In addition, some people feel that CASE tools will 'de-skill' and 'constrain' them

rather than enhance their productivity.

• Lack of flexibility

Companies have significant investments in legacy systems and existing software

projects documented using different methodologies. Existing CASE tools are

inflexible and do not allow comparues to preserve their investments in existing

technology, systems and methodologies.

21

In addition, many CASE tools do not integrate well into the existing operation of an

o rganisation. 'This means that changes are required to accommodate a new tool.

People in general are resistant to change.

1.6.2 Limitations trom the CASE Tool Perspective

These limitations are related to the characteristics and functionality of current CASE

tools .

• Methodology specific

The majority o f CASE tools are methodology specific which makes it difficult to

j ustify the significant investment required, in terms of time, training and resources, to

adopt CASE technology. Use of such tools also places constraints on an organisation

to use the methodologies they support in order to justify their initial investment.

• Limited support for the software development life-cycle

The support o f the entire software development life-cycle is limited. \Xi'hilst many

tools provide some support for reverse engineering and re-engineering, few support

requirements gathering for example. This is also because of the limited support of the

entire spectrum of software engineering activities by existing methodologies.

Poor support for all aspects of a methodology

The support o f a methodology that is provided by a CASE tool is often limited to a

collection of diagram editors, which correspond to the various modelling languages

that the methodology provides. The concepts of process and method are often

ignored.

• Poor usability

The usability o f CASE tools, from a HCI perspective, is often poor. CASE tools are

generally rigid and force users to conform to a set means of working. In addition the

possibilities that are available with current Human-Computer-Interaction (HCI)

techniques are generally not considered.

22

Most CASE tools are simple implementations of existing 'pen and paper' techniques

with the addition of correctness and consistency checking. They do not support

techniques such as logical distortion and novel interaction styles.

• Poor support for re-use

CASE tools do not provide support for re-use between user projects. This will

become a more important limitation in the future as the trend toward adoption of

object-orientated technology continues. \X!hilst it is true that object-orientated

technology does not guarantee re-use it is accepted that one of the principle

objectives of object-orientated technology is to enable re-use. This should therefore

also be a key objective of a CASE tool that supports object-orientated

methodologies.

• Poor support for migration of software engineering projects

CASE tools do not allow software artefacts to be re-used, if they are built with

different methodologies. Consequently a company cannot e ffectively make use of

previous modelling results.

Some CASE tools, however, do attempt to implement data interchange formats such

as the Case Data Interchange Format (CDIF) (EIA CDIF, 1 994a-h, 1 996; Flatscher,

1 996). CDIF is discussed in chapter 2.

• Lack of intelligence

The level of assistance provided by CASE tools to software engineers is limited to the

capture and consistency checking o f a set of diagrams. No consideration is given to

things such as intelligent feedback on work as it is completed, auto-correction and

quality analysis.

1. 7 Objectives of the Research

This research is part of the PGSF funded research project titled "Advancing information

technologies through CASE", which aims to develop novel methods and techniques for

addressing the limitations of current CASE and meta-CASE technology.

23

The objectives of the rese arch detailed in this thesis are:

• Develop a novel meta-CASE tool methodology representation strategy that:

• Uses an object-orientated meta-model.

• Allows methodology descriptions to be re-used.

• Minimises the coupling between methodology syntax and semantic descriptions

such that methodology syntax and semantic descriptions can be re-used

independently.

• Permits software engineering projects to be re-used, even if they are built with

different methodologies.

Design and implement a prototype meta-CASE tool that realises the new

methodology representation strategy via the development of:

• Languages that support the description of syntax and semantics of a

methodology.

• The efficient execution strategy of syntax and semantic descriptions.

The new CASE tool that has been developed during the research to satisfy these

objectives is called MOOT (Meta O>ject Orientated Tool).

1.8 Method

The following steps summarise the approach adopted to satisfy the objectives described

in section 1 . 7:

A. Compare, contrast and evaluate existing CASE tools and meta-CASE tools to

identify limitations of current CASE technology. detailed comparison of meta-

CASE tools is presented in chapter 2.

B. Define the rationale and goals of the MOOT project based on the identified

limitations of current CASE technology. Investigate a possible meta-systems

approach based o n an object-orientated meta-model.

24

C. Devise a representation scheme for methodology descriptions in MOOT.

D. Develop a meta-model of the concept of methodology v.rith the representation

scheme defined in C.

E. Derive a means of processing the methodology descriptions defined in step C .

F. Design the architecture of a meta-CASE tool based on the work in steps B - E.

G. Realise a prototype of the system defined in step F that is suitable for assessing the

efficacy of the representation scheme for methodology descriptions (defined in step

C) .

H. Validate the meta-systems approach by modelling object-orientated methodologies

and implementing support for design patterns.

1.9 Outline of the Thesis

The overall outline of the thesis is illustrated in Figure 1 -4.

The thesis is structured into nine chapters, which are grouped into three sections:

• Literature review (chapter one and two)

• Research description (chapter three to chapter seven)

• Results, discussion and review (chapter eight and nine)

Chapter two presents a review of meta-modelling and meta-CASE tools. Chapters three

to seven cover the research undertaken. The overall architecture and design philosophy

of a new meta-CASE tool is discussed in chapter three. Chapters four, five, six and seven

discuss the languages and mechanisms used to represent and process methodology

descriptions. Chapter six also outlines the facilities for re-use of methodology

descriptions and user projects that these techniques provide. Chapter eight presents

results o f using the prototype meta-CASE tool. Chapter nine is a review chapter in which

the contribution of this research is examined and further work is identified.

25

Chapter 4.

Chapter 1 .
Introduction

Chapter 2.
-�•� Meta-Modell ing and

Meta-CASE Tools

Chapter 3.
Design and Philosophy of

MOOT, a new meta-CASE tool

Chapter 5.

Resea,.ch Desc,.iption

Chapter 6.
Representing

Methodology Syntax

Representing

Methodology Semantics
Re-use of Semantic

Descriptions

Chapter 7.
Realising Methodologies and

Software Engineering Projects

Chapter 8.
Results of application of

MOOT

Results, Discussion and Review

Chapter 9.
Discussion, review of the

research and future work

Figure 1-4 - Thesis outline

26

Chapte r 2

M eta-Modelling and Meta-CASE Tools

There are two ways of constructing a software design. One way is to make it

so simple there are no obvious deficiencies. And the other is to make it so

complicated that there are no obvious deficiencies.

2.1 Introduction

CA R Hoare

This chapter presents a review o f meta-modelling and meta-CASE tools. Initially the

meta-modelling process is discussed in relation to a four layer meta-modelling

architecture (EIA CDIF, 1 994a; Ernst, 1 996; OMG, 1 997a, i). A review of some

important applications of meta-modelling in software engineering is presented. The

relation of meta-modelling to meta-CASE tools is discussed and a representative sample

of meta-CASE tools is critically reviewed. A summary of the limitations of existing meta­

CASE tools is derived based on the review.

2.2 Meta-Modelling

Problems cannot be solved at the same level of awareness that created them.

Albert Einstein

Meta-modelling is an activity that is germane to many problem domains

(M:etamodel.com, 1 998) . Examples include modelling busines s rules (Blanchard, 1 995),

the development of databases (Demphlous and Lebastard, 1 995 ; Sahraoui et al, 1 995) and

the translation of architecture description languages (Barbacci and Weinstock, 1 998) .

The generally accepted framework for meta-modeling i s based o n a four layer architecture

(OMG, 1 997i). The layers, from the most abstract (left) to the least abstract (right), are:

meta-metamodel -7 meta-model -7 model -7 user objects

27

Table 2-1 presents a description of each layer. It is taken from the UML semantics guide

(v1 . 1) (OMG, 1 997i) . Similar tables may be found in (EIA CDIF, 1 994a; Emst, 1 996;

OMG, 1997a).

Layer

Meta­
metamodel

M eta-model

Model

User objects
(user data)

Description

The infrastructure for a meta­
modelling architecture. Defines the
language for specifying meta­
models.

An instance of a meta-metamodel.
Defines the language for specifying
a model.

An instance of a meta-model.
Defines a language to describe an
information domain.

An instance of a model. Defines a
specific information domain.

Example

MetaC/ass, MetaAttribute,
MetaOperation

Class, Attribute, Operation,
Compon ent

5 lockS hare, askPrice,
se//LimitOrder,
5 tockOrderQuoteS eroer
<Acme_Software_Share_98789>,
654.6, se/1_/imit_order,
<Stock_Quote_Svr_32 123 >

Table 2-1 - Four layer meta-modelling architecture

Figure 2- 1 shows that two meta-modelling steps (described in section 1 .2.2) are required

to implement the four layer architecture of Table 2-1 .

M eta-metamodel

Meta-model

Model

U�r Objects

Model l ing

Model l ing

abstraction

Model

abstraction

System + Meta

Figure 2- 1 - Four layer meta-modelling process

28

Model l ing

Language . Method

+ Meta

Figure 2-1 also demonstrates that three languages are required to implement the four

layer architecture. Practically, it is possible that the same language may be used more than

once. Tolvanen and Lyytinen (1993) note "meta-modelling also uses its own methods and

tools which, in turn, can be described on one level higher in meta-metamodels (and so ad

infinitum)."

The nature of the particular problem a meta-modelling approach is applied to dictates the

choice of languages and methods used and the resulting meta-metamodel, meta-models

and models. Examples 1 4 of the application of meta-modelling in the software engineering

field include:

The OMG Meta Object Facility (OMG, 1 997a, b)

The Unified Modelling Language (Booch and Rumbaugh, 1 995; Rational, 1 997 a, b;

OMG, 1 997c-j; UML-RTF, 1 998)

• The Common Object Meta-Modelling Architecture (Henderson-Sellers and Bulthuis,

1 996a, b, 1 997; Henderson-Sellers and Firesrnith, 1 997a)

OPEN Modelling Language (Firesrnith et a!., 1 997, 1 998b; Henderson-Sellers and

Graham, 1 996; Henderson-Sellers et a!., 1 997a, b)

The OOram meta model developed by Taskon A/S, Reich Technologies and

Humans and Technology (Reenskaug et a!., 1 996; Taskon A/S, 1 997)

• The Case Date Interchange Format family of standards

Flatscher, 1 99 6)

• The ISO/CDIF meta-model (ISO, 1 998b)

CDIF, 1 994a-h, 1 996;

• The MetaData Interchange Format Standard (MDC, 1 997, 1 998)

2.2.1 The OMG M eta Object Facility

The Object Management Group's (OMG) Meta OJject Facility (MOF) defines an

object-orientated meta-metamodel (the MOF model), which is used to define meta-

of the of arc di:-:-:cusscd in section :2.3.

29

models in various domains (OMG, 1 997a, b). Example domains include object-orientated

analysis and design, the application development life-cycle, data warehouse management

and business object management.

"The main purpose of the OMG MOF is to provide a set of CORBA

interfaces that can be used to define and manipulate a set of interoperable

meta-models. The MOF is a key building block in the construction of

CORBA based distributed development environments."

From the Meta Object Faczliry (M Of') Specification (OMG, 1997 a)

The MOF Model is defined in terms of itself15• The MOF Model is also the meta­

metamodel of the Ul'vi.L submis sion for the Object Analysis and Design Facility

(OA&DF) to the OMG (OMG, 1 997i) . The OMG MOF specification dearly states the

importance of the MOF development:

"Tbis attempt at OMG to integrate the Meta Object Facility and the Object

Analysis and Design Facility (OA&DF) is expected to be a critical step in

developing meta-data standards that will begin addressing the application

development life-cycle. This standard is even more important now

considering the profound impact that Distributed Objects and the Internet

are having on development methodologies that favour object-oriented and

component-based development environments. The use of repositories and

meta-data m anagement in these environments is a well recognised industry

trend."

From the Meta O�ject Facility (M Of') Specification (OMG, 1 997 a)

The OMG MOF is also being aligned with the meta-metamodels submitted for the

OMG OA&D facility and the EIA CDIF standard.

defined l)\ the '1101 · model. The l ' 'I!L st:mantlCS

mcta-circular ((J:\1(; ,

30

2.2.2 Unified Modelling Language

UML is a visual object-orientated modelling language targeted toward describing object­

orientated systems. Its initial development started with the unification of three existing

object-orientated software engineering methodologies: OMT (Rumbaugh, 1 99 1 , 1 99 5a,

b) , Booch (Booch, 1 99 1 , 1 994) and OOSE 0acobson et a!. , 1 993).

"The Unified Modelling Language (UML) is a general purpose modelling

language that is designed to specify, visualise, construct and document the

artefacts o f a software system. The UML is simple and powerful. The

language is based on a small number of core concepts that most object

oriented developers can easily learn and apply. The core concepts can be

combined across a wide range of domains."

From the UML Semantics, v1. 1 (OMG, 1991i)

The UML consists of two parts:

• U1\1L Semantics . meta-model that defines the abstract syntax and semantics o f

U ML object modelling concepts.

Ulv1L Notation. A graphical notation for the visual representation of the UML

semantics.

The UML meta-model is expressed in a subset of UML. The implicit meta-metamodel 1 c'

is the same as the OMG MOF (Meta Object Facility) model (OMG, 1 997a, b) .

The UML started as the Unified Method in 1 995. The draft specification of the Unified

Method (version 0.8) contains an informal meta-model that encompasses the concepts

and associations used in object-orientated analysis and design (Booch and Rumbaugh,

1 995). It also contains a collection of papers on specific aspects of that meta-model. The

Unified Method was then renamed the Unified Modelling Language to reflect that the

process was to be defined at a later stage.

u, , l 'he l ' \ U . ,;crnantics notes · ' I f there not an

associated with cn:rv mcta-mmlcl" ((l\1(; _
mcLH11ctamodcL there r s an mcta-mctam< ,del

31

In January of 1 997 UML version 1 .0 was submitted to the OMG for the Object Analysis

and Design Facility (OA&DF) (Rational, 1 997a, b). The Object Management Group

adopted the UML version 1 . 1 as a standard for the OMG OA&DF in September of 1 997

(OMG, 1 997c-j).

UML is currently under revision (UML-RTF, 1 998) with a projected completion date, for

version 1 .3, of January of 1 999. Revision 1 .4 is expected to be complete by April of 1 999.

2.2.3 COMMA

COM1\1A stands for G:Jmmon a:,ject Methodology Metamodel Architecture.

Henderson-Sellers and Bulthuis initiated the project in 1 995 (Henderson-Sellers and

Bulthuis, 1 996a, b, 1 997; Henderson-Sellers and Firesmith, 1 997a) .

"The major goal of the COMMA project is to highlight the commonalties of

object-orientated methods by describing their underlying meta-models . . . in

order to focus on the areas of agreement."

From the COMMA prrject: First steps (Henderson-Jellers et al., 1996h)

The COMMA project consisted of three phases:

Identification of the methodologies to be modelled. Derivation of an appropriate

meta-level notation and modelling syntax1- for this purpose.

Derivation of meta-models for a number of methodologies.

Construction of a core meta-model.

Fourteen different object-orientated methodologies were modelled during the COMMA.

project. The meta-language used during the project was purpose designed 1 k.

"When we began the COMMA project in January 1 995, we unfortunately

found existing object-orientated meta-modelling techniques to be inadequate

for COMMA, the notations and semantics usually being extensions of

structured notations and not possessing object-orientated features,

to a mcta·mctamodcL in terms of a four architecture.

which has suppon tor roles and a notation

32

particularly inheritance; for example, OPRR and GOPRR, the notation used

by Bulthuis and the use of ER by Eckert and Golder."

From An Overview of the C01Y1MA Project (Henderson-Sellers and Bulthuis, 1996a)

The COMMA project greatly influenced the development of the OPEN methodology

and the OPEN modelling language.

2.2.4 Open Modelling Language

The OPEN Modelling Language (OML) is one aspect of the larger OPEN project

(Firesmith et aL, 1997; Firesmith and Henderson-Sellers 1 998a, b; Henderson-Sellers and

Graham, 1 996; Henderson-Sellers et aL , 1 996, 1 997a, b). OPEN has been derived from

object-orientated software engineering approaches of SOMA (Graham, 1 994) , MOSES

(Henderson-Sellers and Edwards, 1994) , and Firesmith with contributions from a group

of 32 researchers and methodologists, collectively known as the OPEN consortium.

"OPEN consists o f a full life-cycle process-centred 00 methodology with

emphasis on inter alia, reuse, quality, organisational issues including people

and project management . . . It has a meta-model and notation which are

collectively called the OPEN Modelling Language - OML has exactly the

same scope as the UML . . . "

From: Evaluating Third generation 00 Software Development Approaches

(Henderson-Sellers and Firesmith, 1997b)

The OPEN meta-model is characterised by and emphasises responsibilities,

unidirectional associations and the inclusion of roles (based on the work on OOram

(Reenskaug et aL , 1 996; Taskon AIS, 1 997)) . The OPEN meta-model is based on the core

COMMA meta-model.

2.2.5 OOram

The Taskon AIS I Reich Technologies I Humans and Technology OOram meta-model

was created primarily for its submission to the Object Management Group in response to

the request for proposals for the Object Analysis and Design Facility (Taskon AIS, 1 997).

33

"The main contributions of this proposal are its overall architecture and its

system abstraction. The architecture is object-orientated and unifies a

number of powerful abstractions. The system abstraction combines the

power of use cases, responsibility driven design, and role modelling; it can be

thought of as an extension of the UML and OMJ� object models."

From the OOrat?J Metamodel, v 1 .0 (Iaskon A/ S, 1997)

The main goal of the OOram meta-model was to contribute concepts that the authors

considered were missing from mainstream object-orientated methodologies. Its primary

focus is role modelling, class modelling, and system relations. The OOram meta-model is

an object-orientated meta-model, which is described in terms of itself.

2.2.6 CASE Data Interchange Fonnat

CDIF (CDIF, 1 998) is a standards body sponsored by the EIA (EIA, 1 998) (Electronic

Industries Association) and the ISO (ISO, 1 99 8a) (International Standards Organisation),

whose mission is to enable data interchange between modelling tools.

"CDIF has been developed to define the structure and content of a transfer

that may used to exchange data between two CASE tools. The

fundamental objectives of the CDIF Family of Standards are: to provide a

precise, unambiguous definition of information to be transferred; to define a

transfer that may be read and understood directly (i.e., without interpretation

by a computer); to provide the importer with sufficient information to enable

the importer to reproduce the transferred data consistent with the original

" sense.

From the CDIF CASE Data Interchange Format - Overview, Extract of Interim

Standard (EIA CDIF, 1994a)

The EIA initiated the development of CDIF in October o f 1 987. The goal o f this work

has been to permit the results of modelling work, performed with various techniques, to

be transferred between CASE Tools. CDIF defines a series of meta-models (which are

called subject areas) for modelling techniques, using an E ntity Relationship model (the

meta-metamodel) (EIA CDIF, 1 994a-h, 1 996; Flatscher, 1 996) .

34

In 1 991 the EIA CDIF interim standard extended the CDIF meta-metamodel to allow

entity types to be interpreted as 'classes' and 'sub-classed' in refined meta-models (EIA

CDIF, 1 994a) . The 1 994 standard supported sub-classing of relationship types as well.

Figure 2-2 shows the current CDIF meta-metamodel taken from the 'Extract of Interim

Standard CDIF Framework for Modelling and Extensibility' (EIA CDIF, 1 994b). Non

directed lines indicate a sub-classing relationship among entity types, where the more

abstract concept is placed physically above the less abstract concept. A directed line

indicates a directed association between two entity types.

j M etaObject j
!

I lsUsed l n j..____
s

_
u b

_
i
_
ec

_
tA
_

re
_

a
_

__,:�+--1-:N ___________ O_:N-1: CollectableMetaObject I

lsLocaiMetaAttributeOf
Attrib utableMetaObject :1+-1-:-1 -----------0-:N-1: rl '-----�-------� jo :N

'-------'

I
M etaAttribute j

H asSubtype 1,.---'-------------------------,, O:N H asSource 1 : 1 j M etaRelat ionship M etaEntity j O:N H asDest1nat1on 1 : 1 �

2 2 - CD!F \Icta-mctamodel

CDIF has defined subject areas for modelling techniques such as data modelling, data

flow modelling, state event modelling and object-orientated analysis and design. Work is

under way to integrate CDIF with the UML (Ernst, 1 996).

2.2. 7 ISO/CDIF Meta-Model

ISO/IEC JTC 1 / SC7/WG1 1 (ISO, 1 998b) is the international body responsible for

standardising information such as meta-models for software engineering activities. It is

informally known as ISO/CDIF. Much of the work performed by ISO/CDIF

corresponds to EIA/CDIF projects. ISO/CDIF also co-ordinates with other

organisations such as the Object Management Group.

35

2.2.8 MetaData Interchange Facility

The MetaData Interchange Facility (MDIF) is developed by the Metadata Coalition

�IDC) (I\IDC, 1 997, 1 998). The goal of the J\1DC is to create a vendor-independent,

industry-defined and maintained standard access mechanism and standard application

programming interface (API) for meta-data.

"To enable full-scale enterprise data management, different IT tools must be

able to freely and easily access, update, and share meta-data. The only viable

mechanism to enable disparate tools from different vendors to exchange

meta-data is a common meta-data interchange specification with guidelines

to which the different vendors' tools can comply. . . . The MetaData

Interchange Specification initiative brings industry vendors and users

together to address a variety of problems and issues regarding the exchange,

sharing, and management of meta-data."

rrom the Metadata Interchange Specification version 1 . 1 (MDC, 1 997)

The MetaData Interchange Specification uses an ER meta-metamodel to describe the

entities and relationships that are used to represent meta-data in the MD IF.

2.3 Meta-CASE Tools

Two types of meta-CASE tool were identified in section 1 .5 .4. These were CASE Tool

Generator and Modifiable CASE Emrironment.

CASE Tool Generator

A CASE tool generator is a meta-tool, which supports the construction of standalone

CASE tools. Figure 2-3 shows two common CASE tool generator configuration. A tool

description is composed of a methodology specification and a tool configuration

definition.

36

Tooi B

CASE Tool Generator

Tool A Toot a Tocl C Too! A Too! B Too! C

(a) (b)

2-3 - C\SE tool generators

A CASE tool generator is parameterised by a set of CASE tool descriptions. Each tool

description in Figure 2-3 (a) is translated into a separate standalone CASE tooL The

generated tools are completely separate and each has an individual repository for software

engineering projects. Figure 2-3 (b) shows a slightly different approach, where each of the

generated tools share a common repository.

In both cases , the methodology specification and the software projects do not coexist

the same repository. Moreover each generated CASE tool supports a single methodology.

Modifiable CASE Environment

A modifiable CASE environment allows methodology descriptions to be modified and

may be extended to support new methodologies. Figure 2-4 shows the common

configuration of a modifiable CASE environment.

The key difference between a modifiable CASE environment and a CASE tool generator

is the integration o f methodology descriptions and software projects into one repository.

37

.Modifiable CASE EnVironment

Modifiable-CASE Repository

Project F

Project C Project D.

Project E

2--+ - .\rchitecture of a modifiable C \SE cm-!ronment

Both types of meta-CASE tool prov'ide a meta-model, which is used to define

methodologies. 1bis meta-model is either: explicit and supported by a set of definition

languages (ASD, 1 995a, b, 1 998; Coxhead and Fisher et al. , 1 994a, b; Froehlich, 1 994;

Coxhead et al., 1 994; Findeisen, 1 993, 1 994a-d; Froehlich, 1 994; Gadwal et al., 1 994a, b;

Lincoln, 1 994, 1 998; Lo, 1 995; Lyytinen et al., 1 994; Smolander et al., 1 99 1 ; Tolvanen and

Lyytinen, 1 993; MetaCASE consulting, 1 996a, b, 1 998 ; Sorenson et al. , 1 988; Verhoef et

al. , 1 99 1 ; Zhuang, 1 994; Zhuang et al., 1 995) or implicit and supported by one or more

libraries and an application programming interface O rCASE, 1 998; Maokai and Scott,

1 998; mip GmbH, 1 998a-d; Scott, 1 998) . Figure 2-5 illustrates the relation between the

four layer meta-modelling architecture discussed in section 2.2 and a meta-CASE tool

meta-model.

A software engineer builds descriptions of software that is to be constructed. Each

description corresponds to a software engineering project in Figure 2-5. Each project

consists of a set of models, which collectively define the software. The software

corresponds to the 'user objects' level of the meta-modelling architecture and the

software project corresponds to the 'model' level.

38

Meta-metamodel Meta·CASE Tool Meta-model

Used to Define

Meta-model Software Engineering Methodology

Used to Define

Model Software Engineering Project

Used to Define

User Objects Software

2-5 :.Ieta-C\SE tools and the four
architecture

Each model in a software engineering project is defined using a modelling language

provided by a software engineering methodology. The modelling languages are meta­

models o f the models in the software engineering project and thus correspond to the

meta-model level of the meta-modelling architecture.

Each methodology in a meta-CASE tool is defined in terms of the meta-CASE tool

meta-model. This meta-model provides the language the methodology engineers use to

define methodologies. The meta-CASE tool meta-model therefore corresponds to the

meta-metamodel level of the meta-modelling architecture.

2.3.1 Framework for Discussion of M eta-CASE Tools

The discussion of meta-CASE tools is based on a framework, which has been designed to

evaluate the properties o f meta-CASE tools related to methodology representation.

The properties considered include:

1 . Under!Jing meta-model (representation rf semantics)

What is the modelling language supported? How is the modelling language

implemented? Are there any limitations of the meta-model?

39

2. Representation of .ryntax

How tightly coupled are the semantic and syntax descriptions? What are the

limitations of the mechanism for describing syntax.

3. .Support for the concept of methodo!og)l

Does the tool support the concept of methodology at all? Does the tool support

the concepts of method and process? Does it o nly support the definition of

modelling languages?

4. .Support for re-use

Does the tool embrace re-use of methodology descriptions? Is re-use o f

software projects supported?

5. Problems and limitations

Table 2-2 contains a non-exhaustive, representative sample of meta-CASE tools. Tools

with a ../ next to them will be discussed with respect to the framework. These tools have

been selected because they are widely used and referenced in the literature. 1 'j They utilise a

range of meta-models (for example EARA/GE, GOPRR and Class based) and are

representative of the types of meta-CASE tool.

Research Tool

Meta View (Meta View, 1 998) ,/

Meta-Edit and MetaEdit+
(MetaCASE consulting, 1 998) ./

Commercial Tool

Alfabet (Alfabet, 1 998) ,/

T oolBuilder
(Alderson, 1 99 1 ; Lincoln, 1 998) ,/

CASEMaker OrCASE, 1 998; Maokai and
Scott, 1 998; Scott, 1 998)

Graphical Designer (ASD, 1 998) ,/

KOGGE Objecu\iaker (MarkV, 1 994, 1 998)
(Sahraoui et al., 1995; Ebert et al., 1996)

Ramatik

MetaPlex

Socrates (V erhoef et al., 1 991)

I " \ la m mcta-(: _\S I -: toob commercial

Paradigm Plus (Platinum, 1 998)

Software though Pictures (STP, 1 998)

Table 2- 2 " Icta-C \SE tools

and detailed technical information " difficult to obtain.

40

2.3.2 M eta View

MetaView is a CASE tool generator (Figure 1 -3 Classification hierarchy of CASE tool

categories). It was developed at the University o f Saskatchewan and University of Alberta,

Canada (Gadwal et al. , 1 994a, b; Findeisen, 1 993, 1 994a-d; Froehlich, 1 994; Lo, 1 995;

Sorenson et al. , 1 988; Zhuang, 1 994; Zhuang et al., 1 995).

2.3.2. 1 Under!Jing meta-model

Meta View introduces an extension of the entity relationship (ER) data model called

EARA/GE (Entity Aggregate Role Attribute with Graphical Extension) . The novel parts

of this meta-model are the support for aggregates, specialisation and the graphical

extensions (Gadwal et al. , 1 994a, b; Findeisen, 1 993, 1994a-d; Lo, 1 995; Sorenson et al.,

1988; Zhuang, 1 994; Zhuang et al. , 1 995) .

An aggregate is a heterogeneous collection o f entities and relationships . The entities and

relationships belonging to an aggregate are called its components. EARA supports an

aggregation relationship, which is a special association between an entity and an

aggregate. This relationship is also called an entity explosion and is used to represent

hierarchical decomposition.

Each entity, relationship and aggregate has a type. These types can be built into

specialisation hierarchies where subtypes inherit the relationships and attributes of their

super-types. The properties of entities, relationships and aggregates are represented

attributes.

Methodologies m Meta View are defined in a specially designed language called

Environment Definition Language (EDL) (Gadwal et al., 1 994a). EDL provides features

that correspond to the concepts supported by EARA/ GE.

Constraints are defined after an EARA data model, which describes a methodology, is

constructed. The constraints either guard the consistency of the specification (consistency

constraints) or ensure that the software specification is complete (completeness

constraints) . Constraints are written in a separate language called Environment

Constraints Language (ECL) (Findeisen, 1 994d) .

41

2.3.2.2 Representation of .ryntax

Methodology graphical notations are modelled with an extension to the EARA model

called the Graphical Extension (GE) (Findeisen, 1 993) .

The graphical extension is designed to support two-dimensional, non-animated

diagramming techniques. It introduces the following graphical types: icon, edge and

diagram as subtypes of entity, relationship and aggregation respectively.

The graphical extension provides the following primitives:

Picture Pattern and Picture. A geometric figure that may appear repeatedly in a diagram.

Picture patterns are composed of points, lines, arcs and text. A Picture is a picture

pattern with additional constraints such as a position.

Label Labels are used to represent attributes of entities, aggregates and relationships.

Diagram. Diagrams are used to represent aggregates and correspond to individual

drawing surfaces.

• Icon. An icon is used to represent an entity. An icon is represented as a rectangular

area. Icons have a fixed size and may be annotated by pictures and labels.

Cluster. cluster represents a sequence of entities and is used to express presentation

constraints (e.g. vertical or horizontal alignment) . Clusters may be collapsed into a

single icon.

• Edge. Edges are used to represent relationships. Edges may be annotated with

pictures and labels.

• Handle. Handles are used to define the positions on an icon, where edges may be

attached.

2.3.2.3 Support for the concept of methodology

Each methodology specification in Meta View defines a collection of diagram types. There

is no support for the concept of methodology, especially in terms of process.

2.3.2.4 Support for re-use

Meta View does not promote re-use of methodology components, although it does

support specialisation of entity types. Constraints are defined globally for each

42

methodology and cannot be re-used. There 1s no support for re-use o f software

engineering projects.

2.3.2.5 Problems and limitations

• An entity cannot be owned by more than one aggregate.

• An entity cannot be involved in more than one aggregation relationship. It can only

be exploded to one type of aggregate.

• Correctness and completeness constraints are totally separate from the entities,

aggregates and relationships. Constraints are also defined globally over all the entities,

aggregates and relationships . This implies computation overhead.

The formal nature of the meta-model implies that partially completed models cannot

be built.

• The syntactic representation is totally integrated with the semantic representation. A

change in the semantics implies a change in the graphical representation and vice

versa. The cohesiveness of syntax and semantic descriptions is therefore reduced.

• There is no consideration of cognitive support (auto correction, feedback etc) .

An entity cannot be represented by more than one icon.

• A relationship cannot be represented by more than one edge.

An icon cannot represent more than one

Icons and pictures are of a fixed size.

Diagrams are only views of aggregates.

or aggregate.

Meta View only supports 'pen and paper' notations. The syntax description is very

simple and does not support facilities such as logical distortion.

There is no support for process.

• There is no support for re-use of methodology descriptions or software projects.

2.3.3 Meta-Edit and MetaEdit+

MetaEdit and MetaEdit+ are modifiable CASE environments (Figure 1 -3 Classification

hierarchy of CASE tool categories) . These tools were developed as part of the

43

MetaPHOR project by the University of Jyvaskyla, Technical Research Centre of Finland

(VTI) and University of Oulu (Lyytinen et al., 1 994; Merridarll\1arketing, 1 998;

MetaCASE consulting, 1 996a, b, 1 998; Smolander et al. , 1 991 ; Tolvanen and Lyytinen,

1 993) .

2.3.3. 1 Under!Jing me/a-model

The meta-model used in MetaEdit+ is called GOPRR (Graph, lkjects, R:operties,

Relationships, Roles). It is an extension of the OPRR model used in MetaEdit

(Smolander et al., 1 991) . The OPRR meta-model is founded on "fixed mapping rules

between modelling constructs and their graphical behaviours" (Smolander et al., 1 991) .

The basic OPRR modelling constructs are:

• Objects. These are not objects in the object-orientated sense as they are passive.

They are reminiscent of entity types.

• Properties, which are attributes of objects, relationships and roles.

Relationships, which are associations between objects.

Roles, which define the ways in which objects participate in specific relationships.

The GOPRR model adds the concept of Graph to the OPRR model. A graph denotes an

aggregate that contains a set of objects, relationships, roles other graphs. A graph also

has its own properties and typically appears as a window. The graph concept has also

been extended into a modelling unit called Project. A Project is used to manage the

relationships between the collection of modelling languages in a particular methodology.

Objects can be arranged into specialisation hierarchies where 'sub-objects' inherit the

relationships and properties of their 'super-objects'.

2.3.3.2 Representation of !Jnlax

There is a one to one correspondence between GOPRR types (projects, graphs, objects,

roles and relationships) and graphical representations (which MetaEdit+ calls symbols) .

Symbols are defined in terms of primitive shapes (ellipse, rectangle, rounded rectangle,

line, polygon, text and bitrnap) . A symbol may have labels that correspond to the values

of the properties of a GOPRR type.

44

2.3.3.3 Support for the concept of methodology

A methodology is mapped to the project concept in the GOPRR meta-model. There is

no support for process.

2.3.3.4 Support for re-use

The GOPRR meta-model supports inheritance of GOPRR types. MetaEdit+ also

supports a symbol library. The definition of an existing modelling language may be

duplicated and modified. In practice this is only accidental re-use.

2.3.3.5 Problems and limitations

The formal nature of the meta-model implies that partially completed models cannot

be built.

There is no support for the reuse o f modelling results.

Only accidental re-use of semantic descriptions is s upported.

An explosion of 'methodologies' and modelling languages. Each time a methodology

engineer binds a semantic definition to a different syntax a new methodology is

created.

There is no support for process.

There is no consideration of cognitive support (auto correction, feedback etc) .

Support for project (a type o f graph) is an afterthought added to address lack of

support of all aspects of a methodology.

Syntax definition is a function o f the semantic description because of the assumed

one-to-one mapping between syntax and semantic elements.

The syntactic representation is totally integrated with the semantic representation. A

change in the semantics implies a change in the graphical representation and vice

versa. The cohesiveness of syntax and semantic descriptions is therefore reduced.

Symbols are of a fixed size and only defined in terms of primitive shapes. There are

no facilities to describe symbols and connections that change size.

Diagrams are only views of Graphs.

• MetaEdit and MetaEdit+ only support 'pen and paper' notations. The syntax

description is very simple and does not support facilities such as logical distortion .
45

2.3.4 Altabet

Alfabet i s a commercial modifiable CASE environment (Figure 1 -3 - Classification

hierarchy o f CASE tool categories) produced by mip GmbH & Co. Its primary focus is

'business modelling' and 'data modelling', although it does provide extensions for the

support o f UML (mip GmbH, 1 998a-d).

"Alfabet is a database-supported meta-modelling system with a powerful

graphical user interface that can describe any kind of information model and

analyse it with various methods. Alfabet offers two different user levels: The

Developer level to develop models in a meta-modelling environment, and

the User level to put these models into action."

From the ALF ABET user manual (mip GmbH, 1998c)

2.3.4. 1 Under!Jing meta-model

The documentation for Alfabet does not make a specific reference to an underlying meta­

model. The meta-model is implicitly related to the class-based database management

system used by Alfabet.

"Alfabet works on a class-based technology. This is an object-orientated

approach suitable for modelling that has been developed by rnip. This

technology allows users to describe the deep structure of a model that is built

from objects and their relationships (the meta-model), instead of filling

predefined meta-models with data."

From the Alfabet user manual (mip GmbH, 1998c)

The implicit Alfabet meta-model provides the following abstractions:

Class. The Alfabet technology overview (mip GmbH, 1 998b) equates class to abstract

data-type. Classes contain properties and may be built into inheritance hierarchies.

• Scalar type. Examples include string and integer.

46

• Multiple rype. Acco rding to the Alfabet technolo gy overview (mip GmbH , 1998b) a

multiple typ e is a list o f classes. The instances o f all o f the classes a re p roperty values

o f the multip le type.

• Container. Containers are defined fo r all scalar a nd a bstract typ es (cla sses) .

• Event. I nit , Put, Get and Clear events can be defined fo r properties.

2.3.4.2 Representation of syntax

Alfabet p ro vides the following graphical p rimitives:

• Node item. Node items consist o f various simple geometric shapes.

User item. A user item is any combination o f Node items.

Generator item. These are p redefined no tation t empla tes for common busin ess

applications (such as Gantt charts) .

Special item. These include l ines, polygons and textboxes.

Link item. I tems that are used to connect generato r a nd node items.

Graph ical items may be associated with instances in the repository. The Alfabet manual

(mip GmbH , 1998c) states, "in this case the graphical item represents a semantic

i nsta nce". It is no t clear how graphical items that are not associated with an instance

the reposito ry are interpreted. Semantic items are rep resented by a small set o f simple

graphical primitives tha t may be scaled and combined. Alfabet does appea r to p rovide

notation framewo rks (the generato r items) fo r commonly used data modelling notations.

2.3.4. 3 Support for the concept of methodology

Alfa bet does not support the concept o f methodo lo gy at a ll. The Alfabet Frequently

Asked Questions states "The ph ilosoph y behind Alfabet puts great emphasis o n th e

integration of impo rtant method o r no tation solutions" (mip GmbH , 1998a) .

At best a methodolo gy corresponds to a pro ject in Alfabet. Each p ro ject is configured

with a of set diagram types.

47

2.3.4.4 Support for re-use

Alfabet does not claim any support for re-use of projects or modelling languages, other

than by accidental re-use.

2.3.4.5 Problems and limitations

• Thls tool is database driven, not methodology driven.

• There is no support for methodology or process. Alfabet only supports the definition

of modelling languages and notations.

• Alfabet claims to be object-orientated. Thls is incorrect, as it is class based.

• Primary used to support data modelling languages, although support for U:ML is also

claimed.

• Implicit meta-model.

No support for re-use of syntax and semantic definitions.

• Alfabet only supports 'pen and paper' notations. The syntax description is very

simple and does not support facilities such as logical distortion.

There is no consideration of cognitive support (auto correction, feedback etc).

2.3.5 ToolBuilder

ToolBuilder is a commercial CASE Tool generator (Figure 1 -3 - Classification hierarchy

of CASE tool categories) created by Lincoln software (Alderson, 1991 ; Coxhead and

Fisher et al. , 1 994a, b; Coxhead et al., 1 994; Lincoln, 1 994, 1 998).

ToolBuilder consists of:

A method specification capture component called METHS.

A run-time methods component called DEASEL.

DEASEL is a generic CASE tool offering fully integrated graphical and textual editing of

data stored in the 'Lincoln repository'.

2.3.5. 1 Under!Jing meta-model

Toolbuilder uses an extended entity relationship (EER) model as its meta-model. Entity

types are built into specialisation hierarchies where subtypes inherit the relationships and

48

attributes of their super-types. This data model supports derived relationships and

derived attributes . Triggers can be associated v.rith attributes and relationships.

2.3. 5.2 Representation of syntax

Toolbuilder supports two-dimensional, non-animated diagramming techniques. It

considers each diagram consists of nodes (symbols) and links (connections) .

The support for syntax has two components:

The frame model. This corresponds to the visual presentation of the underlying data

model and consists of a collection of diagrams.

• The notation for each diagram frame.

A set of basic shapes is provided from which more complex shapes may be defined.

These shapes may be combined with other basic shapes, to create symbols and

connections. Symbols and connections may have text fields associated with them.

Toolbuilder supports the definition of the formatting (e.g. alignment) of text fields.

2.3.5.3 Support for the concept of methodology

Toolbuilder generates standalone CASE tools. Each CASE tool supports a single

methodology. There is no support for software process or method.

2.3.5.4 Support for re-use

Toolbuilder only supports the generation of bespoke CASE tools, which all have separate

repositories. There is no support for re-use of modelling results or o f semantic

descriptions.

2.3.5.5 Problems and !imitations

• There is no support for process

• There i s no support for re-use of modelling results.

• Only accidental re-use of semantic descriptions is supported.

Toolbuilder only supports 'pen and paper' notations. The syntax description is very

simple and does not support facilities such as logical distortion.

49

• A fixed mapping between syntax and semantics is implied.

• The semantic and syntax descriptions are tightly coupled. For example an entity's

attributes may have an associated show trigger, which defines how the attributes are

to be presented.

• Symbols are of a fixed size and only defined in terms of primitive shapes. There are

no facilities to describe symbols and connections that change size.

• A total of five languages are used to define a CASE tool (IL, DDL, GDL, FDL and

EASEL) (Alderson, 1991).

• There is no consideration of cognitive support (auto correction, feedback etc) .

2.3.6 Graphical Designer Pro

Graphical Designer is a modifiable CASE environment (Figure 1-3 - Classification

hierarchy of CASE tool categories) (ASD, 1995a, b, 1998).

Graphical Designer provides a single, function/ procedure based, scripting language that

is used to define the syntax and semantics of a methodology. The Graphical Designer

language is used to define all aspects of a CASE tool, including report and code

genera non.

2.3.6. 1 Under!Jing me/a-model

A CASE tool is described in Graphical Designer as a set of functions that operate on

symbols, attributes, roles and relationships. The meta-model used is the Object Property

Role Relationship (OPRR) model, where Graphical Designer uses the terms Symbol,

Attribute, Role and Relationship respectively.

2.3.6.2 Rep resentation of .ryntax

Graphical Designer has a single description language that is used to describe the syntax

and semantics of methodologies as well as the behaviour of Graphical Designer itself.

There is a one to one mapping between syntax and semantic concepts.

2.3.6.3 Support for the concept of methodology

Graphical Designer is parameterised by a set of flies per methodology. These flles define

the set of modelling languages available. Graphical Designer does not consider process

or method at all.
50

2.3.6.4 Support for re-use

The only form of re-use supported by Graphical Designer is accidental re-use. There is

no relation between the methodology descriptions in Graphical Designer. New

methodologies must be effectively designed from scratch.

2.3.6.5 Problems and limitations

• Graphical Designer provides a function based language that has a high learning curve

associated with it. The underlying meta-model is completely obscured because th e

scope of the language covers the syntax and semantics of methodologies a s well as

the behaviour of the tool itself.

• The semantic and syntax descriptions are totally integrated. A change in the

semantics implies a change in the graphical representation and v"i.ce versa. The

cohesiveness of syntax and semantic descriptions is therefore reduced.

There is no support for process.

There is no support for re-use of modelling results.

Only accidental re-use of semantic descriptions is supported.

• There is no consideration of cognitive support (auto correction, feedback etc).

• Graphical Designer only supports 'pen and paper' notations. The syntax description

is very simple and does not support facilities such as logical distortion.

2.4 Limitations of Current Meta-CASE Technology

The discussion of meta-CASE tools in section 2.3 has highlighted a range of limitations.

These include:

• Poor support for the concept of methodology

All meta-CASE tools interpret methodology as a collection of modelling languages.

They make no attempt to support the concept of process or method.

51

• Constraints are separate from the structural definition of methodology

concepts

Most meta-CASE tools partition the semantic definition of a methodology into two

pans: a) a data model and b) a global set of constraints that are applied to the

elements of the data model. O ften this can imply a significant overhead in terms of

applying constraints, as they are evaluated for all instances.

• Formal approach can be restrictive

The formal approach adopted by meta-CASE tools does not allow a user project to

be in an incomplete/inconsistent state. This is a barrier to a creative, exploratory

approach to development that software engineers naturally apply.

• Syntax description is primitive

Virtually all meta-CASE tools derive syntax elements from a pre-defined set of

graphical primitives. Notation elements are built by scaling and combining these

primitive elements. Typically these notation elements do not resize dynamically as

they are used. Most common symbols, with more than one compartment, are

impossible to describe with such a strategy.

Fixed mapping between syntax and semantics

All meta-CASE tools assume that there is a fixed one-to-one mapping between

syntax and semantic elements. It implies that the structure of the syntax elements is

always the same as the structure of semantic elements. Whilst it is reasonable to

expect a high structural homology between syntax and semantic descriptions, it is

unnecessarily restrictive to assume the structure of each description is identical.

Coupling of syntax and semantic descriptions constrains each other

The coupling between the syntax description and semantic description in current

meta-CASE tools is high. The high coupling can compromise the cohesiveness of

the semantic and syntax descriptions. Moreover the structure of the syntax and

semantic descriptions can affect each other. High coupling of syntax and semantic

descriptions is also a barrier to their subsequent re-use.

52

• No support for re-use of methodology description

The majority o f meta-CASE tools do not give any consideration for the re-use of

methodology descriptions. If re-use is supported it is only in the form of accidental

re-use. Even those tools that support a form of specialisation do not place any

emphasis on re-using methodology descriptions.

• No relation between defined methodologies

This i s a direct consequence of no support for the re-use o f methodology

descriptions and can result a large collection of unrelated methodologies . These

m ethodologies may in fact have a lot in common. In some tools this may also mean

that one or more methodologies are in fact semantically the same, but simply have

different syntax. This is a barrier to re-use because the CASE tool environment

becomes a large collection of unrelated software engineering projects.

• No support for re-use of software engineering projects

Meta-CASE tools do not consider the re-use of software projects developed with the

methodologies that they support.

For a CASE tool generator this is simply because each tool that is generated is

considered in isolation. These tools provide some form of import/ export

facilities, which is not sufficient to support anything other than accidental re-use.

Modifiable CASE environments, however, have the potential to promote re-use.

Unfortunately re-use is not even considered. The effective support for re-use, in a

Modifiable CASE environment, is reliant on an explicit relation between the

methodologies supported. This is currently not supported by Modifiable CASE

environments.

• Focus only on completeness and consistency checking

Meta-CASE tools only focus is determining if the rules of the various modelling

languages have been violated. For example they do not consider supporting

assistance during the development process, quality analysis or auto-correction. This is

also related to the poor support of the concept of methodology.

53

2.5 Summary

1bis chapter has examined meta-modelling and meta-CASE technology. The four layer

meta-modelling architecture has been presented and its relation to meta-CASE tools

described. Applications of meta-modelling in software engineering field have been

examined (OMG MOF, UML, COMMA, OML, O Oram, CDIF and MDIF). A review of

several representative meta-CASE tools (MetaView, MetaEdit+, Alfabet, Toolbuilder and

Graphical Designer Pro) has been presented and limitations of m eta-CASE tools, from a

methodology representation perspective identified.

The limitations of CASE and meta-CASE technology are the basis from which the

research presented in the remainder of this thesis has been derived.

54

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Section II

Research Description

Meta Object Orientated Tool 56

Notation Definition Language 81

Semantic Specification Language 1 2 1

The Core Knowledge Base and Generic Object Orientated

Knowledge Base 1 54

Realising Methodologies and Sofuvare Engineering Projects in

MOOT 1 77

55

Ch a p t e r 3

M eta Object Orientated Tool

In our profession, precision and p erfection are not a dispensable luxury, but

a simple necessity.

Niklaus Wirth, 1997

3.1 Introduction

This chapter presents the philosophy and architecture of a new meta-case tool that has

been developed as a result of this research, MOOT (Meta a:,ject Orientated Tool) . The

major goal of the MOOT research project is to build a useable, customisable CASE tool

which provides a framework within which methodologies can be described. The sub­

systems of MOOT that are related to the representation and processing of methodology

descriptions are identified and issues related to the overall design and architecture of the

new meta-CASE tool are discussed.

3.2 Method

The following is a high level description of the steps taken to develop MOOT.

1 . Compare, contrast and evaluate existing CASE and meta-CASE tools to identify the

limitations of CASE technology. The current state o f CASE technology is outlined in

chapter 1 . A detailed comparison o f meta-CASE tools is presented in chapter 2.

2. Define the rationale and goals of the MOOT project based on the identified

limitations of current CASE technology.

3. Devise a representation strategy for methodology descriptions rn MOOT. This

research includes:

56

• The development of languages for the description of the syntax and semantics of

software engineering methodologies.

• Devising a technique that supports late binding of syntax and semantic

descriptions.

4. Analyse the notations commonly used by software engineering methodologies.

Derive a new language (NDL) for the representation of methodology syntax.

5. Investigate a meta-systems approach based on an object-orientated meta-model.

Derive a new language (SSL) for the representation of methodology semantics.

6. Investigate the binding between NDL and SSL. Derive a technique that supports late

binding o f NDL and SSL descriptions.

7. Derive a meta-model of the concept of methodology with the representation strategy

defined in step 3 . Implement the meta-model, with the language defined in step 5, as

a library of re-usable semantic description components.

8. Derive a meta-model of concepts germane to all object-orientated methodologies

with the representation strategy defined in step 3. Implement the meta-model, with

the language defined in step 5, as a library of re-usable semantic description

components.

9. Devise a means of efficiently processing methodology descriptions (implemented in

the languages from steps 4 and 5).

1 0. Design the architecture of the new meta-CASE tool, MOOT.

1 1 . Realise a prototype of the system proposed in step 1 0, which is suitable for assessing

the efficacy of the representation scheme for methodology descriptions.

12. Validate the methodology representation strategy by modelling object-orientated

methodologies and implementing support for design patterns.

57

3.3 Rationale and Goals of the MOOT Project

The goals o f the MOOT project are defined based on the limitations o f current CASE

technology as identified in sections 1 .6 and 2.4. These goals are:

1 . Support more than one methodology

Rationale: Software engineering companies need to utilise a number of different

methodologies to support their work.

2. Flexibility and customisation

Rationale: Software engineering comparues often utilise in-house methodologies

and/ or their own extensions to commercial methodologies .

3. Support the entire software development life-cycle

Rationale: The activities of a software engineering company encompass the entire

software development life-cycle (SDLC), from requirements gathering through to the

implementation and subsequent evolution of software systems. CASE tools should

support all software development activrities.

4. Support re-use of software engineering projects

Rationale: \)V'hilst it is true that object-orientated technology does not guarantee re­

use it is accepted that one of the principle objectives of object-orientated technology

is to enable re-use. Supporting re-use should be a key objective of a CASE tool that

supports object-orientated methodologies.

5. Support re-use of projects defined with different object-orientated

methodologies

Rationale: The representation of potentially re-usable components, by different

methodologies, should not be a barrier to their subsequent re-use. This goal is related

to the support for re-use and the support of more than one methodology. Software

engineering companies use many different methodologies and hence have a

repository of potentially re-usable components, each of which may be represented

differently.

58

6. Separation of the syntax and semantic descriptions of methodologies

Rationale: The syntax and semantics of software engineering methodologies have

different requirements in terms of the most appropriate modelling language for their

description. Providing distinct modelling languages ensures that the descriptions of

syntax and semantics are not constrained by each other. The coupling between syntax

and semantic descriptions is minimised whilst their cohesion is maximised. In

addition, supporting late binding of syntax and semantic descriptions increases their

re-usability. The purpose of this approach is to maximise flexibility, adaptability and

reusability.

7. Support for re-use of methodology descriptions

Rationale: The descriptions of software engineering methodologies may have many

components in common. Object-orientated methodologies, for example, have much

in common that could be described by a set of methodology description components.

New methodologies can be described by re-using and extending a set of existing

methodology description components. These components may be sourced from

existing methodology descriptions and from a pre-built library of core methodology

description components. Maximising the re-use of semantic components between

methodology descriptions is tightly coupled with the support for re-use in general.

The means by which the goals of the research project are addressed is summarised in

Figure 3-1 . This diagram illustrates how the various goals of the MOOT system have

been addressed by some of the design decisions made regarding features of the MOOT

system.

The left-hand side of Figure 3-1 lists the goals that have been identified. The right-hand

side lists design decisions made regarding features of the MOOT system. The arrows

illustrate the mapping between the goals and the design decisions. An arrow that starts or

terminates on a box indicates that the mapping relates to all of the goals or design

decisions contained within the box.

MOOT is a Modifiable CASE environment (see Figure 1 -3 - Classification hierarchy of

CASE tool categories). MOOT supports software engineers who apply a software

59

engineering methodology to describe a software artefact and also supports methodology

engineers who create and modify definitions of software engineering methodologies. The

overall aim of a system of this type is to support arbitrary methodologies. This addresses

goals 1, 2 and 3.

Goal

Support more than one
methodology

Flexibil ity and
cuatomisation

Support the entire
SDLC

Separate description of
methodology syntax and

semantics

Support re-use of
software engineering

components

Support sharing of results :====�
between projects defined

with different 00
methodologies

Addressed by

MOOT is a modifiable
CASE environment

Two distinct representation
schemes. One for syntax

and one for semantics

Methodology descriptions
collectively viewed as
libraries of reusable

methodology components

Developed meta-models of:
'Methodology' (CKB) and
'Object Model' (GOOKB)

MOOT meta-model , which
is an object-orientated

modell ing language

Figure 3- 1 - l\fapping between goals and design decisions made
regarding IOOT

The underlying meta-model of MOOT is an object-orientated language20. The choice of

an object-orientated language as the meta-model of MOOT supports the natural, efficient

20 The MOOT mcta-modcl is described in full in section 5.5.2 - MOOT Meta-Modcl.

60

and express1ve realisation of object-orientated methodologies. The adoption of a

representation strategy that clirectly enables re-use addresses goals 3, 4 and 7.

Re-use is further supported in MOOT with the development of two libraries of reusable

methodology description components. The first has been named the Core Knowledge

Base21 (CKB). It implements a meta-model of the concept of 'Methodology'. The second

has been named the Generic Object Orientated Knowledge Base (GOOKB). The

GOOKB implements a meta-model of concepts that are germane to object-orientated

methodologies and is a derivation of the CKB. The development of these two libraries of

re-usable methodology description components addresses goals 4 and 7.

Methodologies are defined in MOOT as derivations of the CKB, the GOOKB and from

other methodology definitions. The MOOT approach is to view the entire collection o f

methodology descriptions as a set o f potentially re-usable methodology components.

This approach further addresses goals 4 and 7.

All object-orientated methodologies support concepts such as class, object, message

polymorphism and inheritance. Moreover these concepts are supported throughout the

entire software development life-cycle (albeit with clifferent levels of expressiveness).

Concepts that are germane to all object-orientated methodologies are deflned with the

GOOKB. This specifically addresses goal 3.

MOOT utilises two separate modelling languages for the description of a methodology's

syntax and semantics. The semantic representation strategy is an expres sion of the

underlying MOOT meta-model. The syntax representation strategy is derived from an

analysis of notations used by software engineering methodologies and the consideration

of Human-Computer Interaction (HCI) principles. The binding of syntax and semantic

descriptions, to compose a complete methodology description, is performed as late as

possible. Utilising separate modelling languages and late binding of syntax and semantic

descriptions addresses goal 5. This approach also means that common syntax and

semantic descriptions need only be defined once, which addresses goal 7.

make use of

thc: \!()(lT sYstem will exhibit more and

Section 9.� l ·u turc \\'ork cm-crs aspects of this work.

61

The focus of the thesis is o n the representation and execution of methodology

descriptions by MOOT. This includes the representation of methodologies and software

engineering projects, and the design of the CKB and GOOKB. A prototype of the

MOOT system has been implemented in order to facilitate the investigation and

validation of the approach taken to defining software development methodologies.

3.4 MOOT Methodology Descriptions

A methodology description in MOOT is composed of three parts: a description of the

syntax, a description of the semantics and a description of the mapping between the

syntax and semantics.

Two new methodology specification languages, NDL (Notation Definition Language)

and, SSL (5emantic Specification Language) have been developed during this research.

NDL and SSL allow the definition of the syntax and semantics of a methodology,

respectively, in the MOOT system. Late binding of syntax and semantics descriptions is

captured with a Notation-5emantic Mapping (NSM) table.

Figure 3-2 shows the relation between syntax and semantic descriptions, the description

of a particular methodology and a corresponding software project in the MOOT system.

Semantics

Syntax

Description
Languages

SSL

NDL

Methodology
Description

SSL Classes

NSM Table

NDL Scripts

Software
Project

SSL Objects

NDL Views

3�2 � The relation between software projects, methodologY
descriptions and the description in ,\lOOT

NDL is a scripting language used to define the notation of methodology's modelling

languages (Figure 3-2) . NDL scripts describe how symbols and connections that appear

in diagrams are rendered onto a computer display. An NDL description of a notation also

provides facilities for binding actions to symbols and connections as well as logical
62

distortion (Adams, 1 998; Clark, 1 994; Ham, 1994; Mehandjiska, 1 995b; Page et al., 1 994) .

A rendered image generated from an NDL script is called an NDL View (Figure 3-2). A

detailed discussion of NDL is given in chapter 4.

SSL is an object-orientated language used to define the semantics of a methodology. This

includes the modelling languages and methods supported, the process and the various

documents that are produced by application of the methodology. A semantic description

of a methodology consists of a collection of SSL classes (Figure 3-2) . A software

engineering project (developed with a particular methodology) consists of a collection of

SSL objects (Figure 3-2) . A detailed discussion of SSL and its design is given in chapter 5 .

A Notation Semantic Mapping table defines the mapping between notation elements and

semantic concepts (Figure 3-2) and is used to implement late binding of syntax and

semantic descriptions. One role of the table is to translate 'logical actions' at the user

interface, to the corresponding equivalent semantic actions and also to transform

semantic actions back into the equivalent logical actions. Notation-semantic mapping is

described in detail in chapter 7.

A methodology in MOOT is defined by a collection of NDL scripts and SSL classes.

software project in MOOT consists of a collection of NDL views and SSL objects

(Figure 3-2) . These views and objects are instances of the NDL scripts and SSL classes in

the definition of the methodology used for the project. There is a one-to-many relation

between each NDL script and NDL and a one-to-many relation between each SSL

and SSL object.

The example in Figure 3-3 illustrates how a class diagram, which defines some of the

classes for an abstract syntax tree, might be represented, using the MOOT approach. The

modelling language used to generate the class diagram in Figure 3-3 consists of a notation

and a semantic definition. The class diagram syntax (the notation) in Figure 3-3 is defined

by NDL scripts. The concepts supported by the modelling language (class, inheritance

relation, class diagram and so on) are defined by SSL classes. The software project

consists of instances of the SSL classes (SSL objects) and NDL scripts (NDL Views).

63

Semantics

Syntax

M�thodology
Description

SSL Classes

Software Project

SSL Objects
Class Diagram-------�---, Diagrams

�---.-··#"""-�---�-"l l-.-41* Abstract Syntax Tree Diagram Class
Inheritance Relation

- Association Relation

NDL Scripts

Class Symbol
Inheritance Connection
Associatio n Connection

3-3

Classes
--·"-iil!II0 AST Node S tatement Node Loop Node

If Node Expression Node

Inheritance Relations
] ,_, ___ ,. Statement Node IS-A AST Node

Expression Node IS-A AST Node

Loop Node IS-A Statement Node

If Node IS-A Statement Node

Association Relations
��--"-·• Association : Statement Node, Loop Node

Association : Statement Node, If Node

Association : Expression Node, Loop Node

Association : Expression Node, If Node

NDL Views

Expression Node

projects

The example in Figure 3-3 shows SSL objects representing the classes such as A5T Node

in the Abstract Syntax Tree class diagram. It also shows SSL objects representing the

inheritance relations (e.g. Statement Node is a AST Node), associations (e.g. an association

between Statement 1\lode and Loop Node) and an SSL object that represents the diagram

itself. An NDL script defines each of the different views that may be created (class

symbols, inheritance connections and so on). Each NDL script may have many instances

(for example, each rendered class symbol in the Abstract Syntax Tree diagram in Figure

3-3 is an instance of the 'class symbol' NDL script) .

64

The proposed strategy for methodology descriptions in MOOT supports the goal of de­

coupled syntax and semantics descriptions. Syntax and semantic descriptions are

developed separately and bound together with an NSM table. A semantic description can

be bound to many different syntax descriptions and a syntax description may be bound to

many semantic descriptions. An NSM table defines each particular mapping between a

semantic and syntax description.

There are many advantages of this approach:

• Semantic descriptions are not constrained by particular notations. N o fixed mapping

between elements in the semantic and syntax description is therefore necessary.

Elements of a notation may correspond to one or more semantic elements and vice-

versa.

• Methodology engineers can develop libraries of notations. In addition the notation

used for a particular semantic description can be changed at any time.

• Methodology engineers can develop libraries of methodology semantic descriptions.

New methodologies can therefore be defined as extensions of those already

supported.

• Syntax and Semantic descriptions may be developed in isolation.

3.5 The CKB and GOOKB

Figure 3-4 shows how the CKB and GOOKB are related to methodologies in MOOT.

00 Methodology
A Knowledge

Base

Common to
Methodologies

. . A and B

65

Non 00 Methodology C
Knowledge Base

bases in ,\IOOT

00 Methodology A and 00 Methodology B in Figure 3-4 are derived from the GOOKB (and

by implication the CKB). They also have features in common. Non-00 methodologies

only extend the CKB and m ay have features in common. Object-orientated

methodologies may have common features with non object-orientated methodologies22•

Figure 3-5 illustrates the relation between the CKB, the GOOKB, methodologies and

software projects in MOOT.

Core
Knowledge

Base

Generic Object Orientated
Knowfedge Base

nheritance & Aggregation

Methodology Defined by a Methodology Engineer

Software Project Built by a Software Engineer

3�5 � The relation between the CKB, the COOKB,
and software in \lOOT

New methodologies in MOOT are derived from the CKB and the GOOKB usrng

inheritance and aggregation. A methodology may also be defined in terms of previously

defined methodologies using inheritance and aggregation. MOOT methodology

semantic definition consists o f a collection o f SSL classes derived from the CKB,

GOOKB and potentially from other methodology definitions. A software project is

constructed when a software engineer applies a methodology that has been defined in

MOOT. The software project is an instance of the methodology used by the software

engineer and consists of a collection of SSL objects, each of which is an instance of an

SSL class in the methodology definition.

use of Data How

transition diagrams in n1rious objccr�oricntatcd

66

from Structured

Figure 3-6 illustrates how MOOT relates to other meta-CASE tools in terms of the four

layer meta-modelling architecture defined in Table 2-1 - Four layer meta-modelling

architecture.

Met a- metamodel Moot Meta -model

Meta -model of Methodology

)
U sed to Defi ne

Meta-model of SD Meta-model of IE

Met a- model Software Engineering Methodology

Model Software Engineering Project

User Objects Software

Figure 3-6 - Meta-modelling architecture

Existing meta-CAS tools define methodologies sole!J in terms of their meta-model. The

MOOT approach, however, is quite different. MOOT introduces two additional layers

between the topmost layers in the four layer meta-modelling architecture. Figure 3-6

shows how the MOOT meta-model is used to define a meta-model of methodology. The

meta-model of methodology is implemented with the Core Knowledge Base (CKB). The

67

third layer in Figure 3-6 consists o f meta-models that correspond to various approaches

to the engineering of software. In the middle of the third layer is a meta-model of the

object-orientated approach. This meta-model is implemented with the Generic Object

Orientated Knowledge Base (GOOKB). On the left of layer three is a meta-model of

structured development and on the right is a meta-model of information engineering=''.

The MOOT meta-model, therefore, is used to define various meta-models, which are in

turn implemented as re-usable SSL class libraries . Methodologies in MOOT are defined

as extensions of these libraries .

3.6 Addressing the Limitations of M eta-CASE tools

Existing Meta-CASE tools (as discussed in section 2.4 Limitations of Current Meta­

CASE Technology) suffer from limitations in the following areas:

I. Poor representation of the concept of 'methodology' and 'software process'

II. No relation between defined methodologies

Ill. No support for re-use of methodology descriptions

IV. N o support for re-use of software engineering projects

V. High coupling of syntax and semantic descriptions. Subsequent lowering of the

cohesion of syntax and semantic descriptions

VI. Syntax description is primitive

VII. U sability is poor

Figure 3-7 illustrates how the limitations of existing meta-CASE tools have been

addres sed by the MOOT approach. On the left-hand side is the list of limitations that

have been previously identified. The right-hand side lists design decisions made regarding

the features o f the MOOT system. The arrows illustrate the mapping between the

limitations and the properties of the MOOT system that address them. An arrow that

starts or terminates on a box indicates that the mapping relates to all of the limitations or

design decisions contained within the box.

Thc,;c t;xo mcta-modcb ban: not been

discu,;sed in ,;cction 9.-l hrturc \\

and shown to illustrate the m-crall

68

_ This is fu rthcr

Limitation

I Poor representation for L _r....,__
'Methodology' a nd 'Process' 1;:::::=::::::,..........

No relationship between
defined methodologies

No support for re-use of
methodology descriptions

No support for re-use of
software engineering projects

Syntax a nd semantic
descriptions constrain each

other because of high
coupling

Syntax description Is
primitive

Usability Is low

Addressed by

CKB explicitly defines:
' Methodology', ' M odelling

language' and ' P rocess'

All methodologies have the
C K B In common.

00 methodologies have the
GOOKB in common.

M OOT meta-model is a n object
-orientated model ling language

SSL Is an 00 language, which
im plements all the facilities of

the M OOT meta-model

View methodology descri ptions
as re-usable com ponents

Development of the C KB and
GOOKB

Semantic descriptions are
defined in SSL

Syntax descriptions are defi ned
in N D L

Syntax and semantic
descripti ons are plugged
togther with an NSM table

N D L design based on an
analysis of SE notations

N D L supports the 'screen
notation'.

User Interface design based on
a detailed examination of the
usability of meta-CASE tools

and detailed task analysis.

Figure 3-7 - Addressing the limitations of meta-CASE tools

The MOOT system addresses limitation I by explicitly supporting the concepts of

methodology and software process within the derived Core Knowledge Base (CKB) . The

69

CKB implements a meta-model of 'Methodology' and explicidy defines 'Methodology',

'Modelling Language' and 'Process'.

All methodologies in MOOT are derived from the CKB. MOOT also provides explicit

support for object-orientated methodologies with the development of the Generic Object

Orientated Knowledge Base (GOOKB). The GOOKB is derived from the CKB and

implements a meta-model of concepts germane to all object-orientated methodologies.

All object-orientated methodologies have the GOOKB in common. This addresses

limitation II.

Methodology semantic descriptions (including the CKB and GOOKB) are defined in

terms of the MOOT meta-model and implemented in SSL. The MOOT meta-model is

an object-orientated modelling language and thus provides facilities such as classes,

inheritance, message passing and polymorphism. SSL is an object-orientated language

that implements all the facilities of the MOOT meta-model. This addresses limitation m.

The GOOKB and the CKB constitute a set of re-usable SSL classes from which all

methodologies in MOOT are derived. Moreover the MOOT approach is to consider that

all methodology descriptions consist of potentially re-usable components. This addresses

limitation Ill.

The strategy for supporting re-usable methodology components means that there are

relations between the different methodologies m MOOT. Object-orientated

methodologies in particular always have the components in the GOOKB in common.

Software projects can be re-used because they always share a common definition. This

addresses limitation IV.

Limitation V has been addressed by the development of separate syntax and semantic

representation schemes for methodologies (NDL - syntax and SSL - semantics). The

association of syntax and semantic descriptions is achieved with the development of

NSM tables. Reducing the coupling between syntax and semantic descriptions addresses

limitations Ill. The separation of syntax and semantic descriptions in MOOT also means

that the independent re-use of syntax descriptions is possible, which further addresses

limitation Ill.

70

Limitation VI is addressed in two ways. Firstly, NDL is designed to support the

description o f interactive diagrams and provides facilities for the use of colour, logical

distortion, hotspots and so on. NDL thus supports 'screen' notations rather than 'pencil

and paper' notations. Secondly, the facilities NDL provides is based on the analysis and

modelling of notations used in softw-are engineering.

In brief\ limitation VII is addressed by a detailed examination of the usability of meta­

CASE tools, which has been conducted in association with other researchers. A CASE

tool evaluation framework25 has been developed, applied and documented in (Choi, 1 996;

Phillips et al., 1 998a). The design of the MOOT software engineer's user interface, based

on this evaluation and on subsequent task analysis, is presented in (Adams, 1 998; Philips

et aL, 1 998b, c) .

3.7 Architecture of MOOT

MOOT has two distinct types of user. Software eng:tneers utilise MOOT to build

descriptions of software artefacts. Methodology engineers utilise MOOT to build

descriptions of software engineering methodologies. MOOT supports each type of user

by performing two distinct roles (MOOT as a CASE tool and MOOT as a methodology

development tool) . The two roles of the MOOT system are illustrated Figure 3-8.

MOOT as a
Methodology
Development
Tool

MOOT Meta-model 1 M ethodology E ngineer
Defines

Software Development
Methodologies

Software Engineer l
Creates

Software Development
Project

3�8 'Il1e two roles of the \IOOT sntem

MOOT as a
CASE Tool

. \ detailed discussion of is outside the scope of the thesis. The reader JS directed to (\dams. 1 998: <: hm .

1 9%: ! 995; et c�!.. 1 998a. b. for more information.

.\ level overview of the evaluation framework is 1ll I

71

The MOOT system is divided into two logical sub-systems (Figure 3-9) that correspond

to the two roles of MOOT. These are the methodology development sub-system and the

CASE tool sub-system.

The methodology development sub-system IS an integrated tool-set allowing a

methodology engineer to specify, modify and test methodology descriptions.

Descriptions created using the methodology development sub-system are represented

using SSL classes (for the semantic description) and DL scripts (for the syntax

description).

The CASE tool sub-system is the methodology CASE component of the MOOT

environment. It is an integrated tool-set that allows a software engineer to develop

software by applying methodologies described using the methodology development sub-

system.

CASE Tool Sub-System

Software
Engineering

Tools

M OOT Core

Persistent
Store

Methodology
Engineering

Tools

Methodology Development S ub-System

Figure 3-9 - Moot system

Both the CASE tool subsystem and the methodology development subsystem make use

of the MOOT Core, which insulates the underlying, shared, repository (Persistent Store) .

Software engineering projects and software development methodologies are both stored

in the Persistent Store.

The high-level system overview given in Figure 3-9 is further decomposed in Figure 3-1 0,

which shows the derived architecture of the MOOT system. The Arrows in Figure 3-10

indicate that a communication pathway exists between two components.

72

N D L
i nterpreter

Project editor "4111 1!11J1
Model editor

Diagram editor

Server
proxy

Tool Methodology
i nte rpreter S S L object

server
� manager

SSL
class

server

Semantics
editor

Persistent store

User projects Re-use pool

Methodologies
under Methodologies

in use development

Projects in transit

M ethodology
ed itor

SSL compi ler

N DL
script

server

Notation
ed itor

....._ ____________,. Methodology Development Sub-System

Figure 3- 1 0 - Proposed, top level, system architecture

73

MOOT has a three-tier architecture where presentation, application logic and data are

distributed across three levels, interconnected over a network (!-Kinetics, 1 998) . The

presentation level corresponds to the CASE tool client and the methodology

development tool. The application logic level corresponds to the MOOT core, which is

responsible for isolating the persistent store (the data level) .

Each of the components in Figure 3-10 is briefly discussed in the following sections.

3. 7.1 CASE Tool Client

The CASE tool client provides the user interface of the CASE tool sub-system. It is a

'light weight' or thin client and is on!J responsible for the presentation of a software

engineering project. It is essentially a user interface shell that is parameterised by NDL

descriptions of modelling language notations. The CASE tool client provides a set of

drawing tools that allow a software engineer to construct diagrams. The set of drawing

tools available is based on a set of generic tools appropriate for the construction of

arbitrary diagrams, and the notation elements that are defined in NDL specifications. A

software engineer creates diagrams by selecting drawing tools that represent notation

elements and placing instances of these onto a drawing canvas. The corresponding

methodology semantic descriptions are managed by a corresponding instance of a

methodology interpreter in the MOOT core. The CASE tool client is responsible for

mapping physical user input to 'logical actions'. Actions that affect the meaning of the

model being built (e.g. creating a connection) are propagated to the server. The client

handles actions that do not affect the meaning of the model being built (such as resizing a

symbol) .

Multiple clients may interact with the CASE Tool server via the Tool Manager of the

MOOT Core. The Tool Manager functions as a server, processing one thread of control

for each CASE Tool client. The Tool Manager maintains an instance of the Methodology

Interpreter for each software engineering project that is open in each client. The Tool

Manager and the Methodology Interpreters are, in turn, clients of the Persistent Store.

The client is implemented in Java so MOOT may be used from any computer on a

network that has a Java interpreter (SUN, 1 998) . The design and implementation of the

CASE tool client has been completed in association with another researcher and is

74

outside the scope of this thesis. A detailed discussion of the CASE tool client, its design

and implementation, HCI issues etc, is presented in (Adams, 1 998; Phillips et al., 1 998b,

c) . Aspects of this work, relating to NDL and the execution of NDL scripts, is covered in

detail in chapter 4.

3. 7.2 Methodology Development Tool

The methodology development tool is used to maintain the collection of methodology

descriptions. It provides a notation editor that is used to define notations and a semantics

editor that is used to define the semantics of methodologies . The methodology editor is

used to associate notation descriptions to semantic descriptions in order to provide

complete methodology definitions.

The notation editor uses a visual programming approach where the user draws example

'pictures' of the notation26• The notation editor then generates an NDL description of the

symbols and connections that comprise the notation, based on the examples drawn by

the user. The notation editor itself is not in the scope o f the thesis. Initial work on the

notation editor tool is documented in (Ham, 1 994; Mehandjiska et al., 1995b).

The semantics editor is used to define the semantic specification of a methodology. This

includes the various modelling languages, documents and the process supported by the

methodology. The semantics editor generates SSL descriptions. The semantics editor

itself is also outside the scope of the thesis.

SSL is compiled to a platform independent binary representation for reasons of

efficiency. The SSL compiler translates SSL into SSL-BC (the platform independent

binary representation) and is discussed in chapter 5.

The methodology editor is used to associate particular notations (defmed in NDL) and

methodology semantic definitions (defined in SSL) via NSM tables. The development of

the methodology editor is also outside the scope of the thesis.

The :\ otation Edit< ;r lS similar to the more recent

generates a collection of components that

The notation editor. in contnrst. generates an :\DL
nte1owetu b1 the C\S I ·: tool client.

75

et al. 1 998; et
well as an

which is

3. 7.3 MOOT Core

Tool Manager

The tool manager facilitates communication between the MOOT Core and the CASE

tool clients . The tool manager is responsible for co-ordinating access to shared resources,

and for monitoring the system's operation. There is a single instance of the tool manager

operating, for a particular instance of the MOOT system. The tool manager is responsible

for maintaining details specific to each client (such as the software engineering project

that is open, the methodology in use and so on) and the corresponding methodology

interpreter. Messages from the clients (such as: delete a class, add an operation or create a

new state) are accepted by the tool manager and bound to a message to an SSL object

and executed with a particular methodology interpreter.

Methodology Interpreter

Each CASE tool client is supported by an instance of the methodology interpreter. It is

responsible for processing methodology semantic descriptions written in SSL. It applies

the description of the active methodology, defined in SSL, to the user's project in

response to logical actions at the user interface.

SSL is compiled to a platform independent binary representation (SSL-BC) for reasons of

efficiency. The methodology interpreter executes the intermediate representation on a

purpose built virtual machine (SSL-VM). SSL-BC, the SSL-VM and the SSL compiler are

discussed in chapter 5.

Notation, SSL Class and SSL Object Servers

There is only one instance of each server executing at any time. Each server is responsible

for isolating the persistent store from the rest of the system and for maintaining a cache.

They all must ensure mutually exclusive access when appropriate. For example, the SSL

Object server must ensure that an SSL object cannot be updated by more than one client

at the same time.

Persistent Store

The persistent store is the repository for the MOOT system, both at the methodology

description level, and at the user-project level. Methodologies are stored in two different

partitions in the persistent store. Methodologies that have been developed and tested are

76

stored in the Methodologies-In-Use section. Methodologies-In-Use have been completely

defined and tested, and are ready to be used to create user projects. These methodologies

can not be modified, as this would affect the projects that use them. The Methodologies­

In-Use section is read-only.

The Methodologies-Under-Development section contains methodologies that are in the

process of being specified, tested and refined. It is not possible to use these

methodologies to develop projects until they are deployed and become part of the

Methodologies-In-Use section.

Software engineering projects are stored in two partitions in the persistent store. Software

engineering projects (and portions of software engineering projects) that have been

completed can be placed in the "re-use pool". These components are available to all

other software engineering projects in the MOOT system to be re-used. The re-use pool

is read only as re-usable components can only be extended, not modified. The User

Projects area contains all software engineering projects that are in the process of being

developed.

A Company may wish to distribute software projects, or parts of them, to clients without

disclosure of their methodology. Methodology descriptions exported with a project are

stored in the separate In-Transit area, and are not viewable on the target system.

3.8 The MOOT Prototype

The focus of the thesis is on the representation and execution of methodology

descriptions by MOOT. Work has been carried out in the following areas:

Development of the syntactic representation of software development methodologies

which is addressed by the development of a new language, NDL. NDL and a

prototype NDL interpreter are described in chapter 4.

Derivation of the semantic representation of software development methodologies

which is addressed with the development of the MOOT meta-model and a new

language, SSL. The MOOT meta-model and SSL are described in chapter 5.

77

• Design and implementation of the methodology interpreter, which includes the

development of the intermediate binary representation of SSL (SSL-BC), the design

of a new virtual machine that SSL-BC executes on (the SSL-VM) and a compiler that

translates SSL to SSL-BC. The development of SSL-BC, the SSL-VM and the SSL

compiler are discus sed in chapter 5.

• Design and implementation of two libraries of re-usable methodology semantic

components, the Core knowledge Base and the Generic Object Orientated

Knowledge BASE. The development of these libraries is described in chapter 6.

• Development of a technique that supports late binding of syntax and semantic

descriptions (NSM tables). The function of NSM tables is discussed in chapter 7.

The support for re-use o f software development methodologies and software engineering

projects is discussed throughout chapters 4, 5, 6 and 7.

A prototype of MOOT has been implemented in order to facilitate the investigation of

the approach to defming software development methodologies. The architecture of the

MOOT prototype is shown in Figure 3-1 1 . All further discussion of MOOT in the thesis

is in relation to this prototype.

The current implementation of the MOOT core is a single server. All of the components

of the MOOT core execute in a single process, rather than being distributed over a

network. The Server accepts connections from multiple clients. The SSL compiler

currently accesses the persistent store directly. The persistent store is implemented as a

collection of files.

The components of the MOOT core and the SSL compiler are discussed in chapters 4, 5 ,

6 and 7 . The Java CASE tool client is based on the NDL interpreter discussed in chapter

4 and is implemented in association with another researcher (Adams, 1 998; Phillips et al,

1 998b-c) .

78

N D L
interpreter

M ethodology
interpreter

SSL
class

server

Proj ect editor �...,_ __ ...
Model editor

Diag ram editor

Server
proxy

SSL object
server

Tool
manag er

Persistent store

User projects M ethodologies

SSL corn pi ler

Figure 3- 1 1 - .\rchitecture of the �lOOT prototype

3.9 Summary

This chapter has presented the approach taken in the research to address the limitations

of methodology CASE tools and meta-CASE tools. This included:

• A proposed architecture of MOOT system. This architecture describes a distributed,

three layer, database centric system. The architecture has been designed to effectively

support the two categories of user for the MOOT system - software engineers and

methodology engineers. The persistent store at the lowest layer stores methodologies

and software engineering projects. The second layer consists of a collection of

79

distributed components that isolate the persistent store. The top layer consists of thin

CASE tools clients and methodology specification tools.

• An outline of MOOT methodology descriptions. The syntax and semantics of

methodologies are described completely separately in the MOOT system. Two new

languages have been developed during this research for this purpose. The Notation

Definition Language (NDL) is used to define syntax and the Semantic specification

Language (SSL) is used to define semantics. A complete methodology description, in

the MOOT system, is made by associating an NDL and SSL description with a

Notation Semantic Mapping (NSM) table.

An outline of the COre Jillowledge Base and the Generic l:hject Orientated

Jillowledge Base. These are two libraries of re-usable methodology semantic

components that are implemented in SSL. All methodologies have the CKB m

common. Object-orientated methodologies also have the GOOKB in common.

The description of the architecture o f a prototype of MOOT that has been built

during the research detailed in this thesis.

80

Ch a pt e r 4

Notation D efinition Language

By relieving the brain of all unnecessary work, a good notation sets it free to

concentrate on more advanced problems

4.1 Introduction

Booch 1991

This chapter investigates the framework within which the syntax of a methodology is

defined in the MOOT system. A new language has been developed to support the

description of the visual syntax of the modelling languages supported by a methodology.

The derived language (Notation Definition Language - NDL), is presented along with

the implementation of a prototype system used to assess the language.

4.2 Method

The following is an outline of the steps followed during the development of NDL.

1 . The graphical notations of software engineering methodologies are explored and their

components identified. The modelling languages considered in the analysis are from

the software engineering literature. Some of the modelling languages considered

include :

• UML class diagrams (Booch and Rumbaugh, 1 995; Jacobson et aL , 1 996; OMG,
1 997 g; Rational, 1 997b)

• Coad and Yourdon class diagrams (Coad and Yourdon, 1 990, 1 99 1a, b; Coad and
Nicola, 1993)

• Data flow diagrams (Rumbaugh et aL , 1991 ; Whitten et aL, 1 994)

State transition diagrams (Feylock, 1 977; Booch, 1 991 , 1 994)

2. The requirements for a language that allows the description of arbitrary notations are

derived based on the analysis of notations in step 1 . The language must support all

81

the components o f visual notations of the various modelling languages used in

software engineering.

3. A new language is derived which satisfies these requirements. Ths new language is

called NDL (Notation Definition Language) . NDL is required to support more than

the static reproduction of a notation on a computer display. It must also support

many facilities often not considered by methodology developers such as logical

distortion and the use of colour.

4. A means of efficiently processing NDL descriptions is developed and implemented.

4.3 Models and Notations

A notation is the visual syntax used to document a model. A particular modelling

language may be used for many different purposes. It is therefore possible for the same

modelling language to have more than one notation. It is also possible for a single

notation to be used for many different modelling l anguages. Hence a many-to-many

relation exists between the concepts modelling language and notation.

The majority of notations supported by the modelling languages common in software

engineering methodologies are graphs containing nodes (symbols) connected by paths

(connections).

A notation consists of:

Symbols that represent semantic concepts

Connections that represent semantic relations between concepts

• Text associated with the symbols and connections

Constraints that specify the way symbols and connecnons are created and

manipulated

Examples of symbols include Coad and Yourdon's Class&Object, Booch's Bubble and

Rumbaugh's Process Bubbles. Examples of connections include Gen-Spec relations in

Coad and Yourdon, Using relations in Booch and Associations in Rumbaugh. Some

82

symbols are compositions of other symbols; examples are subject areas (Coad and

Yourdon), class categories (Booch) and packages (UML).

An Example: The State Transition Diagram

State transition diagrams are utilised in diverse areas of computer science. Feylock (1 977)

uses state transition diagrams as a representational basis for Computer Assisted

Instruction systems. Booch (1 991 , 1 994) utilises state transition diagrams to model the

dynamic behaviour of objects. The state transition diagram used by Feylock and Booch

both have the following properties:

•

•

•

A single start state

Multiple end states

Transitions between states. A transition is labelled with an event that causes it to

occur. transition may be optionally labelled with an action that is carried out when

the transition occurs

The semantics of the state transition diagram used by Feylock and Booch is the same, as

they both use the Mealy model (Booch, 1 991) where actions are bound to the events of

the transitions. Two differences exist in the utilisation of state transition diagrams by

Booch and Feylock:

1 . State transition diagrams are used for different purposes. Feylock uses state

transition diagrams as a representational basis for Computer Assisted Instruction

systems. Booch utilises state transition diagrams to model the dynamic behaviour of

objects.

2. The notation of the state transition diagrams is different.

Figure 4-1 is an example of two state transition diagrams, which represent the operation

of drawing a rubber-band line2-. The topmost diagram uses Booch's notation and the

bottom uses Feylock's notation. The underlying meaning of the two diagrams is identical

although the notation used in each is different.

2- To draw mbber band line the user tir:;t select,; the ,;tart

m' >u,;c. rubber band line is drawn from the start

actual line is drawn when the mou;;e button 1>' rdca;;cd.

83

' 'n the '' button on the

when the mouse is moved. The

Booch's
Notation

Move

update l i n e to current point

Fey lock's
Notation

d raw l ine to cu rrent point

B utton Up

record p o i nt B,
d raw the l ine

Move

u pd ate l ine to cu rrent point

d raw l i ne to c u rrent point

-+� 1 �

The meaning that is being conveyed in both diagrams of Figure 1s:

State 1 is a s tart state, state 2 and state 3 are normal states and state 4 is a
stop state

If there is a Button Down event in state 1 then

go to state 2 and record point A

If there is a Move event in state 2then

go to state 3 and draw line to current point

If there is a Move event in state 3 then

go to state 3 and update line to current point

there is a Button Up event in state 3 then

go to state 4 and record point B, draw the line

The representation of start and stop states is different in both notations. Booch uses a

special symbol for both the start and stop states. A start state, in Feylock's notation, has

an incoming transition that does not originate from another state. Booch represents a

start state with a double circle. The symbol Feylock uses for a stop state is used for a start

state in Booch. A transition is composed of straight line segments in Feylock's notation

and curves in Booch's notation.

84

This simple example illustrates the many-to-many relation that exists between the

concepts modelling language and notation. It also serves to demonstrate that a notation

defines the syntax o f a p articular representation of a model and is not the same as the

model itself.

It is clear that NDL must allow a notation to be defmed in a way such that the notation is

not tightly coupled to the modelling that is represented. For example the mechanism

should allow the notations of Feylock and Booch state transition diagrams to be defined

and associated with a single semantic description of the State Transition Diagram. In

terms of this research this means that the semantics of state transition diagrams would be

defined once in SSL (see chapter 5) and NDL would be used to define the notations of

Feylock and Booch.

4.4 Analysis ofNotations

The analysis of notations focuses only on the visual syntax, and not on the meaning the

modelling languages are capable of conveying (the semantics) . It is important to avoid a

simple static view o f notations during the analysis and note that computer presentations

of models need not be restricted to simple 'pictures'. They may include, for example,

facilities for logical distortion and animation (Apperley and Chester, 1 99 S; Smith and

Anderson, 1 996)2B. Only two-dimensional notations are considered in the analysis as

three-dimensional layout and navigation is currently not practical on desktop machines.

This limitation has also been adopted by UML, for the same reason:

"Note that the UML notation is basically 2-dimensional. Some shapes are 2-

dimensional projections of 3-d shapes (such as cubes) but they are still

rendered as icons on a 2-dimensional surface. In the near future 3-

dimensional layout and navigation may be possible on desktop machines but

it is currently not practical."

From the UML Notation Guide, version 1 .0 (Rationa� 1 997)

. \ dcmilcd consrdcmtion of human computer inrnacrion in the context of C. \SI/. tools is not the focus of the thesis.

The reader is directed to 1 998; \mulct_ 1 998: and Chester. 993; 1 99�; Chm. 1 996: (

1 995; \le\\ 1rirtt:r. 1 998; \!c\'Chirtcr and :\ utt. 1 99-+: .\!inas and \'ichsracdt. J 995: et al. . 1 998: \hJ!ti\'icw.

1 998: et a!.. 1 99-: eta!.. 1 998a·c: l'urcha:;c. 1998; Rt:ad and \larhn. 1 996. 1 998: \\ arv:ick al.. 1 99(,) tor
more information on ! !C l issues related w C:.\SF and mcta·< . \SF took

85

The analysis of notations 1s presented by consideration of: Symbols, Connections,

Docking Areas, Groups, Presentation and Actions. Each is discussed in turn.

4.4.1 Symbols

Figure 4-2 is an example of a class diagram, taken from Gamma et al. (1 995), related to

the Visitor pattern. The same diagram is drawn with the U:ML, Coad and Y ourdon and

Booch notations.

Vts1tor

V!sltConcreteE!ementA (ConcreteE!ementA) /

V1sJtConcreteEiementB (GoncreteEJementB) ::...·­

VIsrtConcreteEJementC{ConcreteE!ementC)

ConcreteVISJtorA

VisltConcreteEiementA \ConcreteEiementA)

V1SitConcreteEJament8 (ConcreteE!ementB)

ViS!tConcreteEiementC(ConcreteEiementC)

UML

Booch
ConcreteVJsJtorB

V!SitConcreteEiementA (ConcreteElementA)

V1srtConcreteEiementB (Conc•eteEiementB)

Coad and Yourdon

-+<2 - drawn with l'\[L, Coad and Yourdon
and Booch notations

Symbols are composed of lines and arcs and enclose text fields. Symbols have a well

defined boundary or border that is typically visually represented. The boundaries of all

the symbols in Figure 4-2 are explicitly shown as a series of lines and arcs that encompass

them. In many instances the boundary is coincident with the position to which

connections may adhere themselves. The example in Figure 4-2 illustrates one exception

to this general rule; inheritance connections penetrate the boundary of the Coad and

Y ourdon Class&Object symbol.

Text fields describe properties of the concept the symbol represents (such as class name

and operations for the classes in Figure 4-2) . Typically the height and width of symbols

vary depending on the content of the text fields. Symbols may expand to contain other

86

things, such as lists of strings or other symbols. Many symbols are divided into

compartments. A symbol often contains a field that represents a property related to the

identity of the concept depicted. The class name fields in Figure 4-2 are an example of

such a field.

Figure 4-3 shows three different UML class symbols. The overall size of the UML class

symbol (height and width) is related to the size of the text it encloses.

a Class

anAttribute

anOperation ()

4 3 Three

a Class

a nAttribute
aSecondAttribute

a nOperation()
aSecondOperation()

o f a C .\IL class

I

The size and position of each subpart of the UML class symbols in Figure 4-3 depends

on the enclosed text, and on other parts of the symbol. For example the overall width of

the symbol is related to the maximum length of the class name, attribute and operation

compartments. The position o f the class name text field is always centred in the symbol

and is also related to the widths o f the three text fields. The height of the symbol is

related to the sum of the heights of the individual text fields. Figure 4-4 shows a

topographical description of an UML class symbol based on these observations.

(0,0)

2 + height(A) i

4 + height(A)
+ height(B)

8 + h ieght(A)
+ height(B)
+ h eight(C)

r
.. 'L

0------+ @]

2 + max(length(A) , length(B) , length(C)

4-4 Topographical description of a C.\IL class

87

2

The start and endpoints of the line segments in Figure 4-4 are all functions of the sizes of

text-fields A, B and C (which enclose the class name, the attributes and the operations

respectively) . For example the overall height and width of the symbol could be defined by

the following expressions.

Symbo!Width 2 + max(length(A), length(B \ length(C))
SymbolHeight 8 + height(A)+ height(B)+ height(C)

Many symbols have sub-parts in common. In Coad and Y ourdon the Class&Object

symbol is the same as the Class symbol with an additional bounding round rectangle (the

first two symbols in Figure 4-5) . The Booch Class, Parameterised Class and Instantiated

Class all have the Booch bubble in common (the last three symbols in Figure 4-5) .

-1--S - Coad and Yourdon and Booch
C01Ul11011

4.4.2 Connections

Figure 4-6 shows two example connections. The first is a Coad and Y ourdon inheritance

connection. connection has a special symbol (the half circle) and consists of a series

of recta-linear line segments. The second shows a transition connection from a Booch

state transition diagram. It has an arrow-head at one terminus of the connection and it

also has some associated text (the event-action pair for the transition) .

Conn ection Terminators

Special Symbol

Line Segment

Connection Terminators

Button U p
record point 8 ,
d raw the l ine

Property of the Connection

-1--(J Two example connections

88

Connections are a visual depiction of a relation between one or more concepts29 and are a

composition of three parts: connection tertninators, an optional special connection

symbol and a series of interconnecting line segments and arcs. Connections do not exist

in isolation and must attach to at least one symbol. Text may be associated with a

connection to define concepts such as cardinality or role names. In addition connections

may have other symbols as annotations (for example the triangle in the whole-part and

semi-circle in the inheritance relations in the Coad and Yourdon notation) . This

definition of connection does not constrain the manner in which a connection is

constructed or drawn. UML has adopted a more restricted definition of connection than

that described here. The UML notation guide states:

"Paths31 1 are sequences of line segments whose endpoints are attached.

Conceptually a path is a single topological entity, although its segments may

be manipulated graphically. A segment may not exist apart from its path.

Paths are attached to graphic symbols at both ends (no dangling

lines). Paths may have terminators, that is, icons that appear in some sequence

on the end of the path and that qualify the meaning of the path symbol."

From the UML Notation Guide, version 1 . 0 (Rat£ona4 1997)

The UML notation guide does not consider that a connection may have one or more

floating endpoints. A start state, in Feylock's notation for example, has an incoming

transition that does not originate from another state (see the example in Figure 4-1) . It is

better to state that a connection must be associated with at least one symbol.

Furthermore the phrase 'Paths are always attached to graphic symbols at both ends' also

implies connections can only occur between two symbols. Rumbaugh's ternary relation,

for example, belies this assumption.

Some connections visually appear to be grouped in a diagram. Figure 4-7 shows an

inheritance connection in UML The single tree-like connection actually represents two

2'! connection may cxprc,;,; relation that concept ha> with itself

1" Path " the l ' \IJ term for connection.

89

separate inheritance relations31 • The Gen-Spec connection m the Coad and Yourdon

notation is another example of 'grouping' connections.

J

V:s:tCO�()rcteEicmcntA(C()�crc!sElc3n:or,tAJ
V: s:tCor:crcteEier.: ent8[CtJr)CrJ:JisEle!'r:er.t8 1
V;s•lCo�cret,;2Iem enlC(Co0crcle21crnontC)

l
ConcretoV•sltor:.. ConcreteVIS;tcr8

VisitConcrs!eEiementNConc,eteEiernen;l\)
VJslrConcreteE!arne!ltB!ConcreteEiernem8}
VJRl!Cnr:cmtHE!emf;rltC(Concrf;tt-!E:lemfmtCJ

This d iagram contains two conceptually
separate inheritance relations
ConcreteVisitorA is 8 Visitor
ConcreteVisitorB is 8 Visitor

Figure 4-7 - Inheritance connection in U;\IL

It is clear that the mapping between semantic relations and connections is not necessarily

one-to-one. This example also emphasises that the appearance of a connection is a

presentation issue only. The UML notation guide supports this view:

"In some relationships (such as aggregation and generalisation) several paths

of the same kind may connect to a single symbol. In some circumstances

(described for the particular relationship) the line segments connected to the

symbol can be combined into a single line segment, so that the path from

that symbol branches into several paths in a kind of tree. This is purely a

graphical presentation option; conceptually the individual paths are distinct."

From the UML Notation Guide, version 1.0 (Rational software, 1997)

In many instances the orientation of a connection is constrained. Some notations support

recta-linear line segments whilst others prefer smooth curves. Consider the UML

sequence diagram in Figure 4-8. Connections in the UML sequence diagram are

constrained to being horizontal only (except for the special case of a message to self). The

message name and sequence number, as a group, is centred on the connection .

. ll U MJ , Jo�,; allow multiple, separate. inheritance connection:; a,; wel l .

90

\ AnotherConcreteObserver j

6: GetState()

4�8 � \n example L'.\ll� sequence

The sequence diagram is an interesting example where the coupling between syntax and

semantics is very high, as the relative vertical position of the message invocations has

meaning. This is discussed further in section 9.4.

4.4.3 Docking Areas

Many notations constrain the valid positions a connection may attach (or dock) itself to a

symbol. The inheritance connection in Coad and Y ourdon may only attach to the top and

bottom of Class&Object symbols for example. In addition whole-part connections only

attach to the sides of Class&Object symbols. The valid connection point (or docking

area) between a connection and a symbol is therefore also part of the notation.

Connections to the Actor and Use Case symbols in J acobson's OOSE methodology

(Jacobson et al., 1 993) adhere to boundary of the symbol. Figure 4-9 shows a simple

Use-Case diagram with the boundaries of the symbols shown in grey. The Actor is also a

prime example of a symbol whose boundary is not explicitly rendered.

Customer� Returning Item
'

Figure 4�9 � � \ C :;e Case diagram33

is taken from (; amma 1(; �unma PI a!,

a taken from d a/., 1 9931

9 1

The U:l\1L notation guide s tates:

"Paths are connected to two-dimensional symbols by terminating the path

o n the boundary of the symbol. Dragging or deleting a 2-d symbol affects its

c ontents and any paths connected to it."

From the UML Notation Guide, version 1.0 (&:itional, 1997a)

It is clear that UML considers that the docking area coexists with the boundary o f a

symbol. Whilst this is typical of graphical notations it is not universal. The boundary of a

symbol and the docking areas do not have to overlap.

Consider the composite pattern (Gamma et al., 1 995) drawn using the notation of Coad

and Yourdon (Figure 4-1 0) .

Docking Areas

In the Coad and Y ourdon notation whole-part connections (and instance connections)

adhere to the outside round rectangle (which represents objects) 04• The inheritance

relation may only adhere to the innermost round rectangle (as inheritance is a relation

among classes). Neither of these connections may adhere to the curved portion of the

Class&Object symboL Connections are always rectilinear and orthogonal in Coad and

Yourdon.

! r may also adhere to the mncr round but t(>r an abstract class.

92

4.4.4 Groups

Symbols may also appear to be compositions of other symbols. These symbols are

interesting as their shape and size depends on one or m ore other symbols (each of which

is dependent on its own properties) as well as properties o f their own. The subject area

symbol in Coad and Y ourdon is an excellent example. Figure 4-1 1 shows two possible

states for a Coad and Y ourdon subject area, in a diagram that describes the composite

pattern (Gamma et al., 1 995).

leaf

Operation()
Add(Component)
Remove(Componenl)
GetChild()

Composite

Operation() Operation()
Add(Component)
Remove(Component)
GetChi ld()

Composite Pattern

Component
leaf
Composite

and

On the left-hand side of Figure 4-1 1 is a small class hierarchy surrounded by a grey

border that delineates the subject area. The subject area may be collapsed into the single

symbol shown on the right-hand side in Figure 4-1 1 . The term used here for a notation

element of this type is a composite symbol.

Composite symbols should not be confused with symbols that may be 'exploded' into

another canvas or drawing surface. That is an example o f a simple symbol that is linked

to separate diagram or model. For example a U:l\11., package may be exploded into a

separate class diagram. A process in a data flow diagram may be exploded into either a

process specification or another data flow diagram. The various states of a composite

symbol, such as the Coad and Y ourdon subject area, must all appear on the same drawing

surface.

93

4.4.5 Presentation

One of the common problems associated with any computer representation of complex

data, is the relatively small window through which an information space can be viewed.

CASE tools, which generally provide multiple orthogonal representations of a model

being developed, share this problem. The small window effect gives rise to difficulties in

locating a given item of information (navigation), in interpreting an item once it has been

located, and in relating a given item to others, if that item cannot be seen in its full

context.

A range of distortion-oriented presentation techniques have evolved to overcome some

of these difficulties, (Apperley and Chester, 1 995, Leung and Apperley, 1 993, 1 994;

Leung et aL, 1 995; Smith and Anderson, 1 996). The common feature of these techniques

is to allow a user to examine a local area in detail (e.g. a number of classes with their

attributes and operations), whilst presenting a global view in order to provide an overall

context and facilitate navigation.

Many CASE tools support distortion orientated presentation by allowing portions of a

diagram or symbol to be elided (this is an example of logical distortion) . For example

Rational Rose allows various compartments of a symbol to be hidden (Figure 4-1 2) .

i) Attributes and operations
suppressed

ii) O perations suppressed

a Class
anAttribute : anotherCiass
aSecondAttribute : anotherCiass
aThirdAttribute : anotherCiass

�-------------------

i i i) Attributes suppressed

aCiass
an Operation()
anotherOperation()

iv) Nothing suppressed

lanAttribute : anotherCiass J I. aSecondAttribute : anotherCiass ,
aThirdAttribute : anotherCiass !

!

aCiass i

an Operation ()
anotherOperation()

v) Nothi ng suppressed , operation signatures shown

a Class
anAttribute : anotherCiass
aSecondAttribute : anotherCiass
aThirdAttribute : anotherCiass

an0peration(arg1 : anotherCiass, arg2 : aCiass) : anotherCiass
anotherOperation()

Figure -l- 12 - _-\ Ul-IL class expres ed with varying levels of derail

94

Figure 4-1 2 shows the same UML class symbol in various levels of detail ranging from (i)

attributes and operations being suppressed to (v) all compartments visible, with operation

signatures displayed.

Facilities for logical distortion are not commonly part of the definition of the notation of

a methodology. One notable exception to the rule is UML that includes a description of

'Presentation options' in the UML notation guide.

"Presentation options: Describes various options in presenting the model

information, such as the ability to suppress or filter information, alternate

ways of showing things, and suggestions for alternate ways of showing

information within a tool. Dynamic tools need the freedom to present

information in various ways and we do not want to restrict this excessively.

In some sense we are defining the 'paper notation' that printed documents

show rather than the 'screen notation' . . . Note that a tool is not supposed to

pick one of the presentation options and implement it; tools should give the

users the option of selecting among various presentation options, including

some that are not described in this document."

From the UML otation Guide, version 1 . 0 (&ztiona� 199 7 a)

The explicit consideration of 'presentation options' by UML is a significant development

in the evolution of CASE technology. It signals the recognition by methodologists of the

importance of CASE support for software engineering methodologies, presentation and

human computer interaction issues.

4.4.6 Actions

Actions correspond to the tasks a user performs at the user interface whilst developing a

model. Some actions may affect the semantics of a model (such as deleting and editing)

and some only the syntax (such as formatting, querying and resizing).

Methodologists do not consider the concept of actions. Their primary concern 1s to

define the static pen-and-paper notation for their methodologies. The 'screen' notation,

however, need not be static and can therefore include a description of 'hotspots' (or

active areas) on the symbols and connections. Further it may be possible for a notation to

95

include a definition of actions related to these hotspots. Two possibilities are illustrated in

Figure 4-1 3. In the first example the user has selected the text area, which causes an

update box to appear. In the second example, selection of a hotspot causes the symbol to

modify its appearance to show more information.

Stack

(i)
4- 1 3 - Two actn·e areas

Stack Items

(ii)

Push
Pop
Top
Is Empty

The use and visual appearance of hotspots 1s only limited by the imagination of the

notation designer. Two primitive actions that must be supported are update actions

(example (i) in Figure 4-1 3) and transition actions (example (ii) in Figure 4-13) .

4.5 Notation Definition Language

One of the design philosophies of the MOOT methodology representation strategy is to

separate the description of the syntax and semantics of a methodology as much as

practical. NDL is only used to define the syntax of the modelling languages supported by

a methodology. Similarly SSL is only used to define the semantics of the modelling

languages supported by a methodology. The MOOT approach is to have a single 'editor'

(the CASE tool client) , which is dynamically parameterised by NDL notation descriptions

of the syntax .

4.5.1 Requirements of NDL

NDL must provide the necessary facilities to describe how symbols and connections may

be rendered and manipulated to describe the types of notations discussed thus far. NDL

must support the 'screen' notation by supporting:

1 . Graphical primitives such a s lines, arcs, text, regions, fill and pattern styles, fonts and

font size, colour. These are the building blocks of symbols and connection s

Thi:; can be contra:;tcd to :;vw:m:; such Dia(; m !\ ! inas and \"ichsracdt 1 99'i;. \ !uti\ icw !\farhn f! al.. 1 993;

\ larlin. 1 996: \ !ulri\-icw. 1 998; Read and \larhn. 1 996. 1 99111 and al.. 1 998: \\ arwick ill. .
that focus on 11(>tatit)11.

96

2. Relations between subparts of a notation element. For example the size and position

of a line may depend on the length of one or more text fields

3. Grouping. This allows shapes common to several symbols and/ or connections to be

defined once

4. Connection docking areas and annotations

5. Logical distortion

6. Hotspots/ Active areas

7. Transition and update actions

4.5.2 Design of NDL

A template strategy has been designed to support the elements of a notation. The NDL

templates are blueprints for creating notation elements. NDL provides template types

that correspond to each type of notation element. For example, symbols are defined with

symbol templates, connections with connection templates and lines with line templates.

Figure 4-1 4 presents a U:ML class symbol and illustrates how NDL templates represent

the corresponding notation elements.

Class name
An attribute
A second attribute
An operation
A second operation
A third operation .

(i)

-+ 1 -t . (i)

Class name

An attribute
A second attribute

An operation
A second operation
A tb;{d operation .

(ii)

Symbol template

3 "' 0.

Line template --

Text template
- Line template --

Text template

§ s
'-' - Line template -- .@
� �

Text template

template --

(iii)

templates

Figure 4-1 4 (ii) shows the notation elements that comprise the U:ML class symbol in

Figure 4-1 4 (i) . Figure 4-1 4 (iii) shows the one-to-one mapping between templates and

the notation elements that they describe. ln addition Figure 4-1 4 demonstrates that the

composition of templates in a symbol template parallels the composition o f notation

elements in a symbol.

97

A complete NDL description of a notation consists of a collection of templates to define

the symbols and connections of that notation. The example in Figure 4-1 5 illustrates how

a symbol template is applied to generate a symbol in an arbitrary notation.

Class
name :
attri butes:
operat ions:

Stack
Items
Push
Pop
Top
i s Empty

Sym bol tem plate

Graphical templates

�l±ldJJ�
O D D _ I _ I _ _

Docking area templates Bui ld

��
D O D O

Active area templates

��
D O D O

Figure 4- 1 S - �\pp lying a template

Stack

Items

Push
Pop
Top
isEmpty

The symbol template in Figure 4-1 5 describes a class symbol. In this example the symbol

template creates a symbol when it is provided the properties of an instance of a concept

(a class in this example) and a context. The size and position of the lines, text fields,

hotspots and docking areas depend on the properties of the concept. In addition the

generated symbol is also dependent on the context within which it is to be rendered (a

Macintosh, or a system running X-windows for example) . In general a template produces

a notation element when provided a concept and a context.

The context in Figure 4-1 5 is an abstraction of the environment within which symbols

and connections are rendered and acts as an interface between a notation specification

and a drawing surface. It abstracts the dependency between the underlying graphical

system (e.g. the Macintosh toolbox, or X-windows) and the notation specification. One

of the responsibilities of the context, for example, is calculating the size, in picture

elements, of a string of characters.

ach notation defines a set of identifiers (ND L ID) that correspond to the properties of

concepts that are needed in the notation. In the example in Figure 4-1 5 the identifiers are

name, attributes and operations. These identifiers only exist within the context of the
98

notation and in no way constrain the way in which these properties are represented in

SSL (Semantic Specification Language) . Mapping NDL identifiers to the values of SSL

properties is a responsibility o f the NSM table and is discussed in detail in chapter 6.

The advantage of this design is twofold:

1 . The description of notation elements is separated from the properties of the semantic

concepts they represent.

2. The description of notation elements is separated from the environment within

which the symbols and connections are rendered.

Currently a minimal set of graphical primitives (lines, arcs and text boxes) is supported by

NDL. This minimal subset has been chosen, as it is sufficient for constructing notation

elements and determining the e fficacy of the proposed approach to defining the syntax of

a methodology.

4.5.3 Describing Symbols in NDL

A UML class symbol will be defined in NDL to assist illustrate how NDL is used to

define symbols in general. See appendix II for a complete definition of NDL syntax.

Figure 4- 1 6 shows a topographical description of a UML class symbol. The symbol has

three fields (A, B and C) where text may appear. The height and width of these text fields

depend on the text they contain.

W idth •I
� � -1 Single l i ne of text

N I I - A -

, _L_
v C')
I I

:E
M u ltiple l ines of text

c: ·a; I - .. 8 -
, ,

M ultiple l ines of text

- ... c """ ,..
,,

Figure -1--16 - Topographical description of a UiiiL class symbol

99

Each text box in Figure 4-1 6 has two properties, a height and a width. NDL provides two

functions (height and wzdth) that are used to dynamically determine the size of a text :field.

The value of H1, H2, HJ, H4 and Height can be calculated by using the height and width

functions. All NDL expressions are in reverse polish.

H 1 + 1 h e ight (A)
H 2 + 1 H 1

H3 + + 1 H2 height (B)
H 4 + 1 H 3

H e i ght + + 1 H4 he i gh t (C)

The overall width of the symbol in Figure 4-1 6 is dependent on the widths of all three

text fields. NDL supports a function, max, which returns the maximum value of its

arguments. The width of the symbol in Figure 4-1 6 can be calculated in the following

way:

Wi d th = + 2 max (width (A) , w i d t h (B) , w i d t h (C))

The position o f the class name text field in Figure 4-1 6 can be derived from the overall

width of symbol and the width of the class name field in the following way:

W 1 d i v - Wi dth width (A) 2

So far this example has shown that the basic arithmetic operations (add, subtract, multiply

and divide) are all supported by NDL. It has shown that two functions (height and width)

are used to represent the dynamic properties of text fields. It has also demonstrated that

the max function is used to capture relations amongst sub-parts of a symbol.

The UJ\1L symbol in Figure 4-1 6 is comprised of three lines and three text boxes . Two of

the lines separate the various compartments and the third i s a poly-line that represents the

boundary of the symboL NDL supports statements that correspond to each o f

primitive notation element. These are represented in NDL in the following way:

L I NE (0 , 0) (Wi d th , 0) (Wi dth ,

L INE (0 , H 1) (Width , H 1)
L INE (O , H3) (Wi dth , H3)

TEXT A (Wl , 1)

L I S TTEXT B (1 , H2)

L I S TTEXT C (1 , H4)

) (0 ') (0 ' 0)

1 00

This example shows the line, text and listtext statements respectivelir'. Lines must define at

least two points (the first line in this example defines five) . The text statement defines a

text field that may only contain a single line of text. The listtext statement defines a text

field that may contain multiple lines of text. Both the text and listtext statements

introduce an NDL ID for that field that may be used elsewhere to reference that field.

A symbol may also define one or more hotspots or active areas. Figure 4-1 7 is an

extended topographical description of the UML class symbol of Figure 4-1 6, with four

active areas.

"' I

U") I
Active Area B

Active Area C

Active Area D

l' .\IL class with actin: areas

Two default actions, that may be associated with an active area, are supported by NDL. A

Transition action specifies that the symbol should be rendered with another template

(where the symbol shows less information, for example) . Update action specifies that a

change has been requested of one more text areas. These four areas are defined in NDL

in the following way:

ACT IVE AREA (0 , 0) (W i d th , l) TRAN S I T I ON TO

ACTIVE AREA (0 , 1) (W i d t h , H5) UPDATE A

ACTIVE AREA (0 , H2) (Wi dt h , H6) UPDATE B

ACT IVE AREA (O , H4) (W i d t h , H7) UPDATE C

The steps that are carried out in response to an action are the responsibility of the user

interface, not the notation. The notation o nly defines where actions are generated. Active

1 01

areas are currently defined as rectangles for the purpose of the initial research. In general

an active area will be defined as a region.

A symbol may also define one or more docking areas. A docking area defines a place on a

symbol that connections may attach themselves to. The UML class symbol of Figure 4-1 6

and Figure 4-1 7 may accept connections at any point around its perimeter. A single

docking area is therefore sufficient to define the UML class symbol. A docking area is

defined in NDL in the following way}7:

LINE DA { 0 , 0) (Wi dth , O) (Wi dth , He ight) (O , He i gh t) { 0 , 0)

This docking area defines a poly-line that is coincident with the boundary of the UML

class symbol. NDL actually supports three types of docking area. Each will be discussed

in more detail in section 4.5.5 - Docking Areas.

A complete template that describes a UML class symbol is given in Figure 4-1 8.

-

Symbo1_Temp l a t e UML_CLASS_SYMBOL

{
H 1 + 1 h e i ght (A)
H2 + 1 H1
H3 + + 1 H2 height (B)
H 4 + 1 H 3
Height + + 1 H 4 height (C)
Width = + 2 max (width (A) , width (B) , width (C))

I - � -.
W1 = div - Wi dth width (A) 2

�---'---------'-----1 L �TEXT A (W1 , 1)
.--H-..L ISTTEXT B (1 , H2) -L_r- J L I STTEXT C (1 , H4)

4tlt;:::!��-�--... LINE (0 , 0) (W i dth , 0)
(Wi d th , Height) (O , Heigh t) (0 , 0) •t�:Elt:LINE (0 , H1) (W idth , H 1)

��----------------�� LINE (0 , H3) (Width , H3)

-· ··--··-····-·------·-··-·······-····-····-···········-·······�--

_.ACTIVE AREA (0 , 0) (Width , 1)
TRANSIT ION TO <Targ e tTemp l a t e >

�CTIVE AREA (0 , 1) (Width , H S)
UPDATE A

�ACTIVE AREA (0 , H 2) (Wi d th , H6)
UPDATE B

ACTIVE AREA (0 , H4) (Wi d th , H7)
U PDATE C

DOCK ING AREA
(0 , 0) (Wi dth , O) (W idth , He i gh t)
(O , He i gh t) (0 , 0)

Figure 4-1 8 - Template describing a U;\IL class symbol

r TILi:; docking area template ha:; bt:cn simplified for the :<ake of discussion . . \ complete description of docking area

template:< in mad<.: in 4.5.5 - Docking .\rcas.

102

A, B and C are NDL IDs that are unique within the context of the notations as is the

name given to the template. The arrows show the mapping between notation elements

and the templates that define them.

4.5.4 Support for Grouping

NDL provides group templates to support the definition of common sub-components of

symbols and connections. Group templates are used to define icons that may appear on

connections or as annotations on a symbol. Consider the pseudo Coad and Y ourdon

notation of Figure 4-1 9 where there are two versions of the class and Class&Object

symbols.

Class Symbols Class&Object Symbols

Figure -l- 1 9 - Coad and Yourdon class and Class&Objecr s1·mbols

The two versions of each symbol show different levels of detail. One only shows the

class name whilst the other shows all three compartments. They grey area at the top of

each symbol is an active area which causes a transition from one form of the symbol to

the other. It would be possible to create this notation in NDL with four completely

separate symbol templates. This would, however exhibit some redundancy in the

descriptions. Figure 4-20 shows the pseudo Coad and Y ourdon notation of Figure 4-1 9

with the identification of common sub-parts. An N D L definition of these symbols can be

simply achieved by using NDL group templates.

Class Symbol

Class& Object
Symbol

Figure -l-20 - Identified common sub-parts in Coad and Yourdon's
norauon

1 03

Group templates are defined in exactly the same way as symbol templates except they

may not define docking areas. Figure 4-21 shows NDL definitions of two group

templates complete with active areas.

G roup_Temp l a t e CLASS_NAME

{
----+-+---�TEXT A (1 , 1)

'"""-�--·�-�-·�--�-�-�--���

,.. '""1 ..., _i
• ��
l !

I
I

.., ; -

I !

�
-

ACTIVE AREA (0 , 0) (+ 2 w i dth (A) , 1)

TRANS I TI ON TO ALL_COMPARTMENTS

L----I�ACTIVE AREA (0 , 1) (+ 2 width (A) , + 1 h e i ght (A))

U PDATE A

'--

Group_Temp l a t e ALL_COMPARTMENTS

{

4

�
j----..

..

j----..
.

..

H 1 + h e igh t (A) 1

H2 H1 1

H3 + H2 height (B)

H4 + H 3 1

H e i ght

W i d th

W1 div

+ + H4 height (C) 1

+ max (width (A) , width (B) , wi d th (C)) 2

W idth width (A) 2

TEXT A (W1 , 1)

L I S TTEXT B (l , H2)

LI STTEXT C (1 , H4)

L INE (0 ,) (Width , H1)

L I NE (0 , H3) (Width , H3)

ACTIVE AREA (0 , 0) (Wi dth ,

TRANS I TI ON TO CLAS S_NAME

ACTIVE AREA (0 ,) (Wi d th , HS) UPDATE A

ACTIVE AREA (O , H2) (W i dth , H 6) UPDATE B

ACTIVE AREA (O , H4) (W i dth , H 7) UPDATE C

4-2 1

The group templates in Figure 4-21 can b e used to create the symbols in Figure 4-1 9.

Figure 4-22 shows an NDL definition of the Coad and Y ourdon class symbol that uses

the group templates in Figure 4-2 1 .

One
Of

I I AllCompartmen t s)

L INE (0 , 0) (groupwidth (grp) , 0)

(gr oupwidth (grp) , + grouphe i ght (grp) 1)

(0 , + grouphe ight (grp) 1) (0 , 0)

DOCKING AREA (0 , 0) (groupwidth (grp) , 0)

(gr oupwidth (grp) , + grouphe i ght (grp) 1)

(0 , + groupheight (grp) 1) (0 , 0)

4-22 - C:oad and Yourdon class

104

Symbol templates can additionally contain a group reference statement. Each group

reference statement contains a list of all possible group templates that may constitute its

state. The first group template in the list is the default.

The class symbol template in Figure 4-22 consists of a single group (grp) and a line for the

border. The first template listed in the group reference statement of Figure 4-22 is the

ClassName group template. This means that a new Coad and Y ourdon class symbol would

only show the class name field when it is initially created. I f a n otation designer wished all

three compartments to be visible by default they would place the Al!Compartments group

template first in the list.

The docking area in Figure 4-22 is co-incident with the b order as in the preVlous

examples. Both the border and the docking area are defined using the groupheight and

groupwzdth functions. These functions are used to dynamically determine the size o f a

group reference. They imply a rectangular boundary around all groups, which may be

unnecessarily restrictive. The empirical evidence gained from u sing NDL has not proven

this to be so.

4.5.5 Docking Areas

Docking areas represent the positions on a symbol that a connection can attach itself to.

NDL supports three docking areas of different shape. These are point, line and arc

docking areas.

All docking areas allow the follmving to be constrained:

The number of permissible connections.

• The types of connection that may be attached.

• The direction connections can approach from, in order to attach.

The last constraint is implemented by defining what is 'inside' and what is 'outside' o f a

docking area. The purpose of this constraint is to avoid a connection crossing the interior

of a symbol, to attach at a docking area.

1 05

Point Docking Area

A point docking area represents a single point on a symbol that can accept a connection.

Figure 4-23 shows two examples of connections attached at a point on a symbol.

//\ ..
// /

// /
v ... <

.,
·, '- /'

.,\ ',.
c

'··

/
/.)'

/

/
> <<����

/

/" �\, /

-t-23 - Docking at a po111t

The example in the left-hand side of Figure 4-23 shows a desirable connection. The

example in the right-hand side of Figure 4-23 shows an undesirable connection that

crosses the symbol. Figure 4-24 shows a symbol that has a point docking area on the top­

left corner.

val id i nvocation
connection

i nval id i nv ocation
conn ection

Point docking area

A fragment of NDL code that could be used to describe

is given below.

docking area in Figure 4-24

P O I NT DA (0 , 0) 1 CONNECT I ON ARC (9 0 , 9 0) (i nvoca t i o n)

The first property of a point docking area i s its position. In this example coincides

with the top-left corner of the symbol. The next property specifies the maximum number

of connections that may be attached to this docking area. In this example only a single

connection may b e attached at a time. A value of u is used to specify that any number of

connections may attach at this point. The next property defines the connection arc,

through which all valid connections must pass. A connection arc is specified as a start

angle - extent pair. The co-ordinate system for connection arcs is shown in Figure 4-24.

1 06

The final property is a list of connection types that may attach at this point. Each element

in the list is the name of a connection template (connection templates are discussed in

section 4.5.6). If this list is empty then any connection may attach at this point. In this

example only connections of type invocation may attach at this docking point.

Line Docking Area

A line docking area represents a line on a symbol that can accept connections. Figure

4-25 shows a symbol with two connections that have attached along its left-hand side.

/
v

...

-+<25 Docking on a line

The connection corrung from the left in Figure 4-25 is a desirable connection. The

connection coming from the right in Figure 4-25 is undesirable as it crosses the symbol.

Figure 4-26 shows a symbol with a line docking area on it left-hand side.

val id invocation
con nection

-+-26

Line d ocking area

of a line area

i n val id invocation
conn ection

A fragment of NDL code that describes the docking area in Figure 4-26 is given below.

L I NE DA (0 , 0) (O , y) u 5 i nvocat ion)

The first property of a line docking area is its position, which is represented by a series of

points. In this example the line docking area coincides with the left-hand side of the

symbol. The direction of the line docking area is used to encode the valid direction from

which a connection may come to attach to the docking area. Figure 4-27 shows how this

is achieved.

1 07

Left-hand side

I nside

B

A Outside

Figure 4-2- Representing nlid directions for a line docking area

Outside

The right-hand side o f line segment AB, as viewed looking along the line from A to B, is

taken as the outside o f the line (Figure 4-27) . The left-hand side of the line (and the line

itself) is taken as the inside of the side. Only connections that approach from the outside

of a line docking area may be attached. The right-hand side of Figure 4-27 shows how

this property of line d ocking areas can be used to approximate the inside and outside of a

symbol''.

The next property o f a line docking area specifies the maximum number of connections

that may be attached. The value u, in this example, means that the number of connections

is unconstrained. The next property specifies a minimum inter-connection distance. The

final property is a list o f connection types that may attach to the line docking area. In this

example only connections of type invocation may attach at this line docking area.

Arc Docking Area

An arc docking area describes a curve along which connections may attach themselves.

Figure 4-28 shows some examples of how an arc might be used as a docking area.

(i) Using the concave side (ii) Using the convex side

Figure 4-28 Docking on an arc

of all the line arcb could intcr:<cct with

1 08

The c onnections that cross over the symbols in Figure 4-28 are undesirable. Figure 4-29

shows how an arc docking area can be used. This particular example shows a single arc

docking area that is coincident with the boundary of a circular symbol.

Arc docking area

A fragment of NDL code that could be used to describe the docking area in Figure 4-29

is given below.

ARC DA (0 , 0) (w , h) (0 , 3 6 0) CONVEX u 5 (invocation)

The first p roperty o f an Arc docking area defines its position and shape. In this example

the arc is bounded by a box from (0,0) to (w,h) . The shape of the arc is defined by a start

angle - extent pair. In this example (0,360) describes a circle. The next property is used to

define the direction connections may approach the arc and attach themselves. Figure 4-30

shows how the two possible values for this property (Convex and Concave) define the

inside and outside of an arc docking area.

Convex side
(outside)

Concave side
(i nside)

'Convex ' Arc docking area

-+�)() �

Convex side
(i ns ide)

(i i) 'Concave' Arc docking area

Ya!id dirccriom for an arc area

A value of 'convex' means that the convex side of the arc is to be interpreted as its

outside (example (i) in Figure 4-30). A value if 'concave' means that the concave side o f

the arc is t o b e interpreted a s its outside (example (ii) in Figure 4-30).

The next two properties of an arc docking area specify the maximum number of

connections that may be attached and a minimum inter-connection distance. The final

property is a list of connection types that may attach to the arc docking area.

109

4.5.6 Describing Connections in NDL

Connections in NDL are composed of a single, optional, connection symbol template

and a collection of connection terminator templates . Each type of template will be

discussed in turn, followed by the definition of an NDL connection template.

Figure 4-31 shows an example o f Coad and Yourdon's notation with a Gen-Spec

connection and a message connection. Both types of connection will be defined in NDL

to assist illustrate how NDL is used to define connections in general.

Li n e
segments

Connection term i n ators Line
segments

Connection symbol

4-.) 1 Two connections

A Coad and Y ourdon Gen-Spec connection consists of two connection terminators, a

special connection symbol and some line segments (Figure 4-31) . A message connection

consists of two connection terminators (one of which is an arrow head) and a collection

of line segments .

Connection Symbols

NDL connection symbol template for the Coad and Yourdon Gen-Spec connection

symbol is given in Figure 4-32.

C ONNECTI ON_SYMBOL Inher i ta n ce_Segment

{
.,------1 T O P (2 0 , 0)

�
r! ARC (0 , 0) (4 0 , 4 0) (0 , 1 8 0)

I
- L INE (0 ' 2 0) (4 0 ' 2 0 l

� L INE DA (0 , 2 0) (4 0 , 2 0) u 1 0 () EXTEND

}

4--32 Connection template

1 10

A connection symbol has one incoming line segment. In the case of a Coad and Y ourdon

Gen-Spec connection this is from a super-class. It may have several outgoing line

segments. In the case of a Coad and Y ourdon Gen-Spec connection these lines go

towards sub-classes. The first statement of the connection symbol template specifies

where the connection symbol attaches itself to the incoming line segment. The arc and

line template statements define the shape of the connection symbol. The last statement of

the connection symbol template i s a line docking area from which all the outgoing line

segments start. A line docking area for a connection symbol has an additional property

that defines whether the line docking area is permitted to change its length, to support

more line segments. Figure 4-33 illustrates this property with two examples.

•

(i) (ii)
-kn - Coad and Yourdon connection

area (i) \\-ith connection with

)

line UU\.I>.H\)C,
connections

connection symbol line docking area is shown by an arrow on the inheritance

connection symbol in Figure 4-33. In the example on the left-hand side of in Figure 4-33

the line docking area is big enough to maintain a single connection. In the example on the

right-hand of in Figure 4-33 side the line docking area has been extended past the

boundaries of the connection symbol. Connection symbol line docking areas will

automatically extend in this way if the last property of the line docking area has the value

Extend.

Connection Terminators

Figure 4-34 shows NDL connection terminator templates for the different types of

connection terminator in the Coad and Y ourdon Gen-Spec and message connections .

1 1 1

CONNECTI ON_TERMINATOR p l ain
{

CONNECTI ON_TERMINATOR Mes s age_De s ti nat i on
{

.----+----. LINE (1 0 I 6) (1 6 I 6)
LINE (0 I 6) (1 0 I 0) (1 0 I 12) (0 I 6)
HEAD (0 1 6)

1..--f--l ... TAI L (1 6 I 6)

4-34 - Connection terminator for Coad and
Yourdon and message connections

A connection terminator consists o f a collection of primitive template segments (in this

example lines and arcs) . The last two statements define the head and tail positions on the

connection terminator. The head position is where the terminator will attach to a docking

area. The tail position is where the terminator attaches to a line segment.

Connection Template

Each connection in a notation 1s defined by a separate connection template. A

connection template specifies the arity '') of the connection, an optional connection

s:ymbol template and a list of terminator templates. NDL connection templates that

implement Coad and Y ourdon Gen-Spec and message connections are given in Figure

4-35.

COJ\"NECT ION TEMPLATE

I nh e r i tance_C o nn e c t i on

ARITY 2
CONNECT I ON_SYMBOL

I nher i tance_Segment

TERMINATOR (, p l a i n)

C ONNECTION_ TEMPLATE

Me s s a ge_Conne c t i on

{
A R I TY 2
TERMINATOR

(, Me s s ag e_De s t i na t i on)

4-3.5 - "DL connection for Coad and Yourdon
and message connections.

The order of the terminator templates in the terminator list corresponds to the order with

which the portions o f the connection are created. The message connection template in

"' The of a connection the number of that mm· be involved in the connccti(Jn.

1 12

Figure 4-35, for example, specifies the sequence plain followed by Message_Destination.

This means that a plain terminator is used at the beginning of a message connection and a

Message_Destination terminator is used at the end of a message connection.

4.6 NDL Interpreter

An NDL interpreter has been built to verify that the approach taken with NDL is

efficacious. Each notation is written in NDL and stored in a file. The grammar of DL is

presented in appendix II . The interpreter is a simple drawing tool that allows a user to

place symbols and connections that are defined in a notation file. A high level

architecture is given in Figure 4-36.

User Interface .._

Tool Bar

M enu Bar

Drawing
Surface

Context SSL object
proxies

Templates �

NDL
views NDL parser

Figure 4-36 - Components of the �DL interpreter

Notation
file

The NDL interpreter parses a notation file and builds an abstract syntax tree (which is an

instance of the Composite pattern (Gamma et aL, 1 995)) for each Template. These abstract

syntax trees are also instances of the Interpreter pattern as they can execute themselves.

Each Template requires an SSL object proxy and a Context to generate its corresponding

notation element.

An SSL of?ject proxy is a stub that takes the place of the MOOT server in this prototype.

Each proxy encapsulates a map of NDL identifiers and properties. For example the map

in an SSL of?ject pro:>ry representing a class would contain three elements, which would

1 1 3

correspond to the NDL identifiers 'c/assname', 'attribute! and 'operations. SSL object proxies

perform no semantic validation.

The NDL views in Figure 4-36 are the symbols and connections that have been generated

from templates. An NDL view is a collection of primitive notation elements (such as lines,

active areas and text fields). NDL views know how to draw themselves on a drawing

surface with the assistance of a Context object.

The Context is an instance of the Visitor pattern (Gamma et aL, 1 995) . It hides the

properties of the drawing surface (for example how long a string actually is, in drawing

units, on the drawing surface) from the interpreting mechanism. Templates use this

behaviour when generating notation elements. The Context also provides facilities for

drawing primitive notation elements on a drawing surface.

The N DL interpreter as a whole can be potted to a different windowing interface

environment by updating the specific interface elements (windows toolbars etc) and the

Context. The Context is implemented as an abstract super-class, which defines the interface

needed by Templates and NDL views. Implementations of the interpreter specialise Context

as appropnate.

The user interface is implemented in tcl, the notation file in NDL and the rest of the

components in C++. The CASE tool client (Figure 3-1 1 - Architecture of the MOOT

prototype) is based on the design of the NDL interpreter.

4. 7 Design of the NDL Interpreter

4. 7.1 Representing Expressions

All templates are defined in terms of a series of expressions (see Figure 4-4, Figure 4-1 6,

Figure 4-1 7) . The types of expression supported in NDL include:

•

arithmetic expressions and numerical constants

maximum and minimum function

height and length functions

groupheight and grouplength functions

1 1 4

The different types of expression are represented in the inheritance hierarchy given in

Figure 4-37.

Expression

Evaluate(p • SSLObjectProxy, c · Context)

. > SSLObjectProxy

GetProperty(id : NDL_ID)

Context

length(s • string)
height(s • string)

... ')" drawline()

Function Value

Evaluate(p • SSLObj ectProxy, c • Context)

Maximum Minimum

draw Arc()
d rawString()

TextFunction

txt_I D • N D L.JD

Evaluate(p • SSLObjectProxy, c : Context) Evaluate(p : SSLObjectProxy, c · Context)

GroupFunction

grp_ID · NDL_ I D

Height Length

Evaluate(p SSLObjectProxy, c . Context) Evaluate(p : SSLObj ectProxy, c · Context)

ArithmeticExpression G roupHeight Grouplength

Evaluate(p . SSLObjectProxy, c : Context) Eval uate(p · SSLObjectProxy, c : Context)

Add Mult ip ly

Evaluate(p · SSLObjectProxy, c · Context) Eval uate(p . SSLObjectProxy, c Context)

Subtract Divide

Evaluate(p . SSLObjectProxy, c Context) Eval uate(p . SSLObjectProxy, c Context)

-J..r . The clas s

AJl expression objects respond t o the message evaluate with arguments o f an SSL object

proxy and a Context. Arithmetic expressions include all basic operations involving two

operands (which are both expressions) and an operator. The arithmetic expressions

supported in the initial prototype include addition, subtraction, multiplication and division.

Text functions calculate either the height or width o f a string or a list o f strings. A text

function knows the NDL name of the p roperty it is to be applied to. The width and

height of a text item depends on the context it is viewed in. This includes the particular

font, the font size for the block of text. Text functions delegate the responsibility for

performing their calculation to a Context object. The Context object can calculate the

physical size (in drawing units) of a string.

1 1 5

Four functions are used to capture constraints between sub-parts of a VIew. The

GroupHeight and GroupLength functions calculate the physical size (in drawing units o f a

group reference. The Maximum and Minimum functions calculate the maximum and

minimum value of their argument expressions respectively.

4. 7.2 Segment Templates

Segment templates correspond to the primitive notation elements such as lines and arcs.

They are implemented in the interpreter with the class hierarchy given in Figure 4-38.

Context
-·-·--·--·---·--·-

length(s : string)

�--
�----.. ____ ... __

height(s : string)
drawline()
drawArc()
drawString()

SegmentTemplate «instantiates» 1 Segment . -.. ·-·-.... ·---.. --·--.. ----;------------------------3>!---·-, Build(p : SSLObjectProxy, c : Context) 1 Draw(c : Context)

if ,----------.1 _____________ .. _ .. ___ .. ______ " __ . __ ,
I [-Si·;;;�;s;;-g-;entT;;:;;;I�t;·-.

. 1
-

�-
---·--

SegmentTemplatelist

1 • Build(p : SSLObjectProxy, c : Context) .. ------,\-----·---· . .

Lj

G raphicaiSegmentTemplate

£ \

LineSeg mentTem plate

0 . . *

1 /\ , ,
·-G ro_ip_�:tere':l_C_��9.mentTemplate
Build(p : SSLObjectProxy, c : Context)

ActiveAreaSegmentTemplate _.!_ __ j
----·-·--------------------------·····-·····-····--················-·····-·· Build(p : SSLObjectProxy, c : Context)

ArcSegmentTem plate
1 Bu ild(p : SSLObjectProxy, c : Context)

Build(p : SSLObjectProxy, c : Context)

UpdateSegmentTem plate
I Build(p : SSLObjectProxy, c : Context) !

r--------·-.. ---·-.. --.. --J.-,_
1 SingleTextSegmentTemplate ----.. --==---

-· I ListTextSegmentTemplate ! I Build(p : SSLObjectProxy, c : Context) !
DockingAreaSegmentTemplate

I Build(p : S SLObjectProxy, c : Context) .

PointDockingAreaSegmentTemplate ArcDockingAreaSegmentTemplate LineDockingAreaSegmentTemplate
Build(p : SSLObjectProxy, c : Context) Build(p : SSLObjectProxy, c : Context) Build(p : SSLObjec!Proxy, c : Context)

Figure 4-38 - Template segment hierarchy

1 16

The leaf classes in the inheritance hierarchy in Figure 4-38 correspond to the different

components of a view that are supported (lines, arcs, text, active areas and docking areas) .

The Segmenffemplate class defines an operation called build, which takes an SSL olject proxy

and a Context as arguments. A Segmenffemplate object responds to the Build message by

creating an instance of the Segment class. Segments are the primitive components of views

and correspond to notation elements such as lines, arcs and text fields. Instances o f

ArcS egmenffemplate and LineS egmenfTemplate construct arc and lines respectively.

SingleTextSegmenfTemplate defines a single line o f text. A ListTextSegmentTemplate builds a list

of text items. Segments know how to draw themselves with the assistance of a Context

object. An inheritance hierarchy of segment classes corresponding to the segment

template hierarchy is also defined, but not shown for brevity.

4. 7.3 Group Templates

Group templates are implemented by the classes Group ReferenceS egmenffemplate and

SegmenfTemplateList (Figure 4-38). An instance of GroupRcferenceSegmenfTemplate

encapsulates a reference to a segment template list (which contains a collection o f

segment templates). An instance of .SegmentTemplateList may also contain instances of

Group ReferenceS egmenffemplate. group template may, therefore, be defined as a collection

of simple segment templates and other group templates.

A template segment list also contains a collection of active area sebrrnent templates. The

two types of active area (transition and update) are supported the classes

Transition.SegmenfTemplate and Update.SegmenfTemplate (Figure 4-38) . Active area segment

templates which template they belong too.

additionally knows which template to transform into.

which properties are to be updated.

4. 7.4 Connection and Symbol Templates

Transition template segment

update segment template knows

The components of a notation are supported with the classes in Figure 4-39. A notation

is composed of templates. An instance of class Template responds to the message Build by

creating an instance of the class View. The Template class defines the view construction

protocol is implemented by its sub-classes.

1 1 7

Template

Bui ld(p : SSLObjectProxy, c : Context)

Connection Tem p l ate

Context
'-�·--�·------�---------------·

length(s : string)

height(s : string)
draw line()

d raw Arc()
drawString()

S S LObjectProxy

GetProperty(id : NDL_I D)

<<instan�iates>>
'

1 . . *

SegmentT emplateContainer

Bu i ld(p · S SLObjectProxy, c : Context)

0 . . 1 '. 1 . . .

1 . . *

ConnectionSymboiTemp late
'''' ''''"''" '"'"''

Bui ld(p . S SLObjectProxy, c : Context)

SymboiTemplate

Bui ld(p : SSLObjectProxy, c : Context)

ConnectionTerminatorTemplate

Bu i ld(p : SSLObjectProxy, c · Context)

·+--'19 · The different tYpe; o f

The immediate sub-class of Template i s SegmentTemplateContainer. This abstract super-class

maintains a collection of segment templates. The sub-classes of SegmentTemplateContainer

are ConnectionSymbo!femplate, Connection Terminator Template and J..ymboffemplate.

Instances o f ConnectionSymbo!femplate describe connection symbols (such as the triangle in

the UML inheritance connection and the semi-circle in the Coad and Y ourdon Gen-Spec

connection) . Instances of Connection Terminator Template describe the terminators that appear

at the ends of connections. Finally, instances of Symbo!femplate describe symbols such as

1 1 8

process bubbles in a data flow diagram, classes on a class diagram and states on a state

transition diagram.

Templates for building connections are represented by the class ConnectionTemplate. A

connection template is composed of a collection of connection terminator templates and

an optional connection symbol template.

4.8 Implementation of the NDL Interpreter

The NDL interpreter has been implemented on a Sun SparcSERVER 1 000e running

Solaris 2.5 using SparcWorks C + + 2.0, Tcl 7.3, Tk 3.6 and xf 2.3. Td is a general-purpose

interpreted programming language. Tk is an extension to Td that supports graphical

windowing applications. Xf is an interface development tool that allows the construction

of applications based on Tcl and Tk. Together these tools allow the rapid construction of

graphical interfaces.

Figure 4-40 shows t\Vo snapshots of the system processing NDL descriptions of the

Rumbaugh instance and object diagram. Figure 4-41 shows a snapshot of the system

processing an NDL description of the Coad and Y ourdon class diagram.

�-�-�---·---���--�--�����--���---�� "
'

-+�40 � '-.;DL mterprctcr an '-.;DL description of the
Rumbaugh instance and

1 1 9

Schola rshtp :N3. rre

Schola"'h'f'

arount
nurrber :;tpay.;
ar;:pl1caton dale

L-ge_re_�_l i-nb_'� __ w_n4 ___j',r----- �"-M_r_o'-"----�---------------�� �
r

········ v
!l.dd N;rre

DescrlfY!On S:;ttsftec
Unknown
Reset

•

Res:ncnon

eliglbilltf
cbe::ked
unkiown
r>eqwrerrer:ts

Ad:
Check
Sah:::f!f:d
!ncrerren1 Prionty
Bot

Cuesitcn

the quo::;ttOn
asked

.f. -J. l - � DL 1nterprcn:r an �DL descnprion of rhc
Coad and Yourdon class

4.9 Summary

•

·-

•

chapter has presented the development of NDL. It began with an overv1ew of

graphical notations that are used in software engineering methodologies. A clear

distinction was drawn between the syntax of a model and its meaning. A notation only

facilitates the communication of meaning. It is not the 'meaning' itself. The requirements

and design of NDL were discussed and a prototype NDL interpreter, from which the

development of the CASE tool client is based, was presented.

1 20

Chapter 5

Semantic Specification Language

Good languages not only rest on mathematical concepts which make logical

reasoning about programs possible, but also on a small number of concepts

and rules that can freely be combined. If the definition of a language requires

fat manuals of hundred pages and more, and if the definition refers to a

mechanical model of execution (i.e. to a computer) , this must be taken as a

sure symptom of inadequacy.

5.1 Introduction

Niklaus Wirth 1997

This chapter presents the design and philosophy of a new language that is used to

implement methodology semantic descriptions in the MOOT system. The new language

has been named SSL (5emantic Specification Language) . The major goal o f development

of SSL is to derive a language that directly supports the MOOT meta-model, provides

facilities for re-use of methodology descriptions and is suitable for a programmer to use.

An aspect of this research is the development of an efficient and portable mechanism for

executing S SL.

5.2 Method

The following is a high level description of the steps taken during the design and

development of SSL.

1 . Derive the requirements for a language that allows the description o f methodology

semantics.

2. Investigate existing languages. Clarify the goals and design a new language, S SL.

3. Derive an execution strategy for SSL. Consider space-time efficiency and platform

independence of the execution strategy.

1 21

4. Design an intermediate, platform independent binary representation for SSL (SSL-

BC).

5. Design and implement a new virtual machine after consideration of other virtual

machines SSL-VM (SSL VlrtUal Machine) .

6. Develop and implement a compiler that translates SSL into SSL-BC.

7. Test SSL, and the SSL-VM with some simple examples.

5.3 Rationale and Goals of SSL

The goals of SSL are derived from some o f the limitations o f meta-CASE tools as

described in chapter 2. They address limitations related to the use, number and separation

of the specification languages used by existing meta-CASE tools. These goals are:

1 . Integrate the description of structure and behaviour

Previous meta-CASE tools p rovide two or more separate languages for the

specification of methodologies. One is used to define structure and the second to

define constraints on the structure (a form of behaviour) . There are several problems

with this approach: a) there are multiple languages for the same task b) the coupling

of methodology semantic specifications increases and c) the cohesion o f

methodology semantic specifications decreases .

2. Support more than completeness and consistency checking

Current meta-CASE tools only focus on checking the rules of the various modelling

languages . There is no consideration of things such as auto-correction, quality analysis

or guidelines . The behavioural aspects of SSL can include more than checking

constraints, and be used to implement auto-correction etc.

3. Emphasise 'programming the semantics' rather than formally defining them

Most meta-CASE tools provide either an extremely formal set of languages or a large

application programmer interface (API) .

Formal languages can be difficult to understand and use. The use of formal languages

also means that supporting inconsistent models is often not possible. This is a barrier

to an exploratory approach to design that software engineers naturally use.

1 22

Meta-CASE APis obscure the underlying meta-model and place no emphasis o n

specification. A large portion o f the API i s also generally related to the user interface

and the underlying repository. This means the API itself provides facilities that are at

different levels of abstraction with respect to the meta-CASE tooL

If SSL provides some of the facilities of a general purpose programming language

then it will be more flexible and comprehensible. SSL should be sufficiently flexible

that programmers feel comfortable using it, yet it should never imply it is a general

purpose programming language.

4. Support re-use

Existing meta-CASE tools do not place any emphasis on re-use of methodology

descriptions. They only support accidental re-use, where existing methodology

description s may be duplicated and then changed. There are several problems with

this approach: a) it is wasteful in terms of resources and development effort; b) there

is no dear relation between methodology descriptions that are similar; c) support for

re-use of software engineering projects is difficult; d) a very large and unstructured

pool of methodology descriptions exist.

5. Space/time efficiency

SSL must support methodology descriptions whose execution is efficient in terms of

space and time. This includes the language and its run-time representation.

6. Platform independence

Both methodology specifications and user projects must be completely portable

across platforms. Methodology descriptions and software engineering projects can

then be distributed to other users of MOOT without translation.

7. Hide persistence of SSL objects

Software engineering projects are represented by collections of SSL objects in the

persistent store. This fact should be completely hidden from users of SSL. Object

persistence is transparently addressed by the SSL-VM.

1 23

Figure 5-1 illustrates how the various goals of SSL have been addressed by some of the

design decisions made regarding the features SSL.

Goal

Support re-use

Emphasise programming
the semantics rather than

formally defining them

Support more than
completeness and

consistency checking

Methodology descriptions
efficient in space and time �==�

Platform Independent

H ide persistence of SSL
objects

Addressed by

SSL supports inheritance
and polymorphism

SSL is an object­
orientated language

SSL resembles a general
purpose programming

language

Behaviour expressed with
messages + operations +

methods + constraints

Structure expressed with
has-a and is-a h ierarchies

SSL provides built-in types
(including collections)

SSL is statical ly type
checked

SSL compiled to SSL-BC

Execute SSLBC on SSL-VM

SSL-VM manages
persistance of SSL objects

Figure 5- 1 - Mapping between goals and design decisions made
regarding features of SSL

5 .4 Requirements of SSL

There are two types of requirements for SSL. The first type (MOOT specific

requirements) is related to supporting the MOOT philosophy for the description of

1 24

methodology semantics. The second type (SSL specific requirements) 1s related to

addressing the limitations of other meta-CASE specification languages.

MOOT Specific Requirements

Provide all the facilities of the MOOT meta-model. The MOOT meta-model is an

object-orientated meta-model. SSL must, therefore, be an object-orientated language.

• Support the description of behaviour. This requirement is satisfied by the decision to

develop SSL as an object-orientated language. Behaviour is supported with message

passing, methods and constraints.

• Suitable for 'programmers' to use. SSL provides some of the facilities of a general­

purpose object-orientated programming language. For example it provides classes

and supports sequence, selection and repetition. It does not provide facilities such as

input/ output.

Used as a specification language. The choice of facilities that SSL supports must

ensure that it is not considered to be a general-purpose programming language.

• Support the expression of constraints . Each SSL class may defme a constraint. A

constraint is a boolean expression that is a function of the state of an object.

Support re-use. SSL is an object-orientated language. Re-use is supported with

inheritance and polymorphism.

SSL Specific Requirements

• Prmr:ide the following basic primitive types : Real, Integer, Boolean and String. SSL

supports primitive types to facilitate time-efficient execution of SSL.

• Provide facilities for collating sequences of items. The support should be as simple as

possible and at least permit adding and removing items as well as the traversal of a

sequence.

Address the global namespace pollution common in other meta-CASE tools.

• Provide a clean separation of interface and implementation. The public interface of

SSL classes only consists of a collection o f operations. The attributes and methods

are not accessible to other classes.

1 25

• Support multiple entry points. Conceptually the execution of an SSL description may

start at any operation.

SSL does not require:

Input/ output facilities. Supporting input and output is the responsibility of NDL.

• Concurrency4". Supporting concurrency in SSL could have several negative effects: a)

the language becomes more complex; b) the language resembles a general purpose

programming language; c) the MOOT meta-model becomes obscured.

5.5 Semantic Specification Language

5.5.1 Overview

SSL is an object-orientated language, with extensions to explicitly support the description

of methodologies. It is an executable specification language whose primary purpose is to

provide all the facilities of the MOOT meta-model. SSL is strongly typed, s tatically typed

checked, implements late binding, provides a module system and supports a simple

automatic memory management system.

The execution profile expected of SSL is:

A large number of messages

• Each message will take a small amount of

• Frequent creation and destruction of objects

5.5.2 MOOT Meta-Model

to process

A model of the MOOT meta-model (a meta-metamodel) has been derived and is shown

in Figure 5-2.

SSL Classes

SSL classes have an interface4\ a collection of attributes and a collection of methods.

Multiple inheritance is supported; an SSL class can inherit from one or more super-

The current mctcHllodcl supports a one-to-one between a class and its interface.

1 26

classes. The interface of an SSL class consists o f the list of operations and defines the

name of the class. Operations are overloaded based on the order, number and type of

parameters in the parameter list. Each method corresponds to one of the operations in

the interface of the class. A method consists of a collection of statements. The types of

statement support sequence, selectio n, iteration and assignment.

Name

0 • Message

Bu1lt-1n Type Instance

Message Send Message Target
Current ProJeci

Current Mode!

5-2 .\fOOT meta -metamodel

Constraints

In addition to attributes and operations, each class may define a constraint for its

instances (an invariant which is a function o f an object's state) . The constraint 1s

1 27

evaluated after an object receives and processes a message. If the constraint is violated the

state o f the object is restored to the state it was in prior to the message being invoked.

SSL Objects

An object contains a set of values, which correspond to the attributes defined by its class.

It also contains a collection of objects that correspond to the super-classes of its class.

Values can be instances of built-in types (integers, strings and so on), iterator instances,

collection instances and objects. The state of an SSL object only changes as a result of

accepting and processing messages.

Extensions to support the description of Methodologies

The MOOT meta-model defines a set of built-in variables called current_prqject,

cmrent_model and current_diagram. The values of these variables define the context the user

is in as they carry out actions at the user interface. They are analogous to the self in

Smalltalk and this in C + + . Figure 5-3 shows how the values of these variables define the

context (the project, model and diagram) the user is in whenever they perform an action.

The user has selected an active area on a symbol in Figure 5-3. As discussed in chapter 4,

an action is generated and propagated to the MOOT core (see Figure 3-1 1 Architecture

of the MOOT prototype) . Current_model is a reference to the model that is the context

from which the action occurred. Current_diagram is a reference to the corresponding

diagram of the curmt_model. Finally current_prqject is a reference to the software engineering

project.

Expressions

5-3 The built-in SSL variables

The M OOT meta-model provides boolean, integer, real and string fundamental types.

The collection and iterator types together provide support for sequences of items.

Expressions include values, self, the built-in SSL variables, unary and binary expressions

128

and message-send expressions. Messages may be sent to an object, a collection instance

and an iterator instance. Each message has a name and a set of arguments. The message

name corresponds to the name of an operation.

5.5.3 Module System

All SSL classes belong to a module. All module names must be unique in the scope of the

CASE environment. Modules are implemented in two parts in SSL. Interface modules

provide a public list of class interface definitions. Each class interface only defines the

class name, a set of operations and any super-classes. Implementation modules provide

the corresponding implementation for each class. This includes the attributes and

methods implemented by each class. The SSL module 1s similar to a Booch Class

Category, a C++ namespace, an Ada95 package and a category in the Smalltalk

programming environment. There are two major differences:

SSL modules are separated into interface and implementation modules

• SSL interface modules only define a collection of class interfaces

5.5.4 Memory Management

SSL provides a simple, automatic, memory management system. It is a simple adaptation

of the reference counting algorithm Qones and Lins, 1 996). Each SSL object maintains a

count of the number of other objects that reference it. SSL objects are given an initial

count of 1 , as are created. The count is incremented for each new reference to

object and decremented each time a reference is broken. SSL objects delete themselves,

once their reference count reaches zero. This scheme has been adopted because:

It distributes the memory management overhead by interleaving the garbage

collection with the execution of SSL.

The response time, with respect to execution of SSL, is regular.

The execution profile expected of SSL (high number of requests for computation and

small execution time of each computation) suggests that the memory overhead of

storing reference counts and the computation overhead from updating reference

counts would not be an issue.

1 29

SSL objects are created by sending a create message to a class42• There must be at least

one create operation implemented for each class. Create operations are implicitly meta­

level operations who se sole purpose is to provide an appropriate initial state for SSL

objects. Create operations may be overloaded.

Each class may define a single destroy operation. Once the number of references to an

SSL object reaches zero a destroy message is automatically sent to it and the SSL object is

released. Destroy messages are automatically sent to the objects that correspond to the

super-classes of its class .

5.5.5 Messages

A mess age in SSL, as in other object-orientated languages, represents a request to

perform an operation. A message has two parts: a message selector and an argument list.

The message selector c orresponds to the name of an operation to be performed. The

argument list is a collection of SSL objects, collections, iterators and simple values

required to perform the operation.

All messages in SSL are dynamically bound. Late binding is implemented via a method

lookup table per class to avoid the run-time overhead of searching the inheritance

hierarchy for an appropriate method to bind to a message.

5.6 Semantic Specification Language Defmition

The following discussion uses a simple implementation of the Sieve of Eratosthenes4' in

SSL to aid the illustration of the facilities SSL provides. The syntax of SSL is presented by

using examples in the remainder o f the chapter. The SSL grammar is presented in

appendix HI. Two complete SSL implementations of the Sieve of Eratosthenes are given

in appendix IV.

SSL provides the following simple built-in types: Integer, Real, Boolean and String. It also

provides two parameterised types: collection and iterator. The definition of a class

introduces a new type. New types are also added by providing concrete parameters for

the collection and iterator types.

1 30

SSL variables, whose type corresponds to a class44, are similar to variables in Smalltalk

and Java and contain a reference to an SSL object. These variables are initialised to a

special value (no_oqjec� before their first use. Variables of a collection type also contain a

reference. Variables of an iterator type and variables of a simple type contain values.

Variables of a class type may contain a reference to an SSL object defined by the class

type of the variable itself. It may also contain a reference to an object defined by any of

the sub-classes of the variable's class. The only messages which may be sent via a variable

of class type are those that are defined in the interface of the class of the variable, or one

of its super-classes. This restriction is imposed because SSL is statically type checked.

5.6.1 Collections

SSL provides built in polymorphic collection and iterator types. These two types operate

together to provide sequences of elements of an arbitrary type. SSL collections support

insertion deletion and traversal of collections. No particular ordering o f items in a

collection can be assumed. The interfaces of the Collection and Iterator types are given in

Figure 5-4.

SSJ . collection and iterator tYpes

A collection item type may be any of the built-in SSL types (including iterators and

collections) as well as SSL objects. The interface of the SSL collection and iterator types,

as shown in Figure 5-4, is the minimum needed to support collections.

5.6.2 Simple Expressions

The types of expressions in SSL include: simple values, special SSL values, arithmetic

expressions, relational expressions, boolean expressions, string expressions, scope

resolution expressions, create object expressions and message send expressions.

1 ! Such Yariabks arc referred to as ·variables of class t\'pc.'

1 3 1

numbers.

Simple Values

SSL values may be any of the following:

• A constant. This includes constant integer values (e.g. 1 0) , real values (e.g. 10.2),
b oolean values (true or false) and strings (e.g. "a string'')

• The result of a message

• A reference to an attribute, a local variable o f a method or a message argument

• Self, which is a reference to the current object

• One of the built-in, pre-defined variables. These are current_project, current_model
and current_diagram

The following special values are also defined in SSL.

True

Fa l s e

Boolean true

Boolean false
No_ob j e c t Empty reference to an object

Arithmetic Expressions

SSL supports the following arithmetic operators:

+

*

Addition

Subtraction

Multiplication

I

D i v

Mod

Division

Integer division

Integer modulus

All operators are overloaded for the basic built-in arithmetic types except the div and mod

operators, which are only defined for integers.

Relational and Boolean Expressions

SSL supports the following relational operators:

<

>

> =

Less than

Greater than

Greater than or equal to

<

< >

Less than or equal to

Equal to

Not equal to

The values of all built-in types may be compared with the relational operators. Both of

the values compared must of equivalent type. The type of a relational expression is

boolean. The following boolean operators are als o supported:

And

Or

Not

Logical conjunction

Logical disjunction

Logical negation

1 32

These operators may only be used with boolean values and expressions.

String Expressions

Strings concatenation 1s performed with the overloaded addition (+) operator. The

relational operators may also be used with strings, as expected.

Scope Resolution Expressions

Module scope resolution operator

Class scope resolution operator

The module scope resolution operator is used to qualify a class name with its owrung

module to overcome class name clashes. The class scope resolution operator is used to

qualify a message name with a class to overcome message name clashes. For example two

modules may define a class with the same name. They can be referred to by fully

qualifying the class name with the module name (for example aM.odu/eName::aC/assName) .

The class scope resolution operator can be used in an analogous way (for example

aC/assName:anOperationName) .

Message Send Expressions

Message send operator

A message-send expression is composed of three parts: an object (the message receiver),

the message-send operator and a message. The message consists of a message name and a

list of arguments. The message-send operator is used to bind the message to a particular

operation of the receiving object. The type of a message-send expression is that of the

result type of the requested operation. A message-send expression can be used anywhere

a value of its type may be used45 (e.g. on the right hand side of an assignment, or as an

argument to another message) . Message-send expressions are evaluated eagerly46; all of

the actual arguments are evaluated before the message is sent.

Create Object Expressions

Objects are created in SSL by sending a create message to a class. The result is the

creation of an instance of the class the message is sent to. Each class may implement

41 Currently message� that rcrurn more than one object a� a result may onh- appear on the right hand �idc of an

a»ignment statement Thi� rc�triction is in place ro �reed up the implementation.

41• . \I! argument� arc evaluated fir�t. before the message-send expression is evaluated.

1 33

several create operations. They are overloaded by the order and type of the arguments.

The following example illustrates how objects are created.

1 1 a L i s t i s o f type l i s t

aLi s t = l i s t . c rea t e () ;
aL i s t . c o n s (l i s t i tem . c re a t e (1 0)) ;
1 / ano t h e rL i s t i s o f type l i s t
anotherL i s t = l i s t . c r e a t e (a L i s t) ;
1 1 ani t em i s o f type l i s t i t em

ani tem l i s t i t em . c r e a t e (2 0) ;

anotherL i s t . c ons (a n i t em) ;

5.6.3 Interface Module

interface module provides a public collection o f class interfaces. All interface modules

must have unique names. The names of classes defined within each interface module

need only be unique within the scope of the module.

Each module starts with the module keyword and is followed by a name. A 'uses clause'

declares the modules and classes that are used in a module. Class names are always

qualified by the name of the module they are defined in. Using a class name without

qualification is a shortcut for identifying a class defined within the current module.

modul e modu l eName ;

uses o t h e rModu l e : : o t h e r C l a s s , a n o therModu l e ;

This uses clause specifies that the class otherC/ass, and any of its sub-classes, may be used

within moduleName, It also declares that any of the classes defined by the module

another}v1odule may be used. A 'uses clause' can be used to introduce a local name (an alias)

for a class. The scope of the alias is the module the alias is defined in.

module MyMethodo l o gy_Model_El emen t s ;

uses OOM_A_Model E l emen t s : : c l a s s
uses OOM_B_Mode l_E l ement s : : c l a s s

OO_A_c l a s s ;
OO_B_c l a s s ;

In this example two modules that both define a class called class are used. Two local

aliases (OO_A_class and OO_B_class) are introduced as a syntactic convenience.

5.6. 4 Class Interface Definition

A class interface defines the set o f operations that may be performed by an instance of a

class. It consists o f a class name, an optional list of super-classes and a list of operations.

1 34

c l a s s Name : s uperC l a s s , anotherSuperc l as s

integer o p e r a t i onOne ()

integer operat i onOne (integer X)

operat i onTwo ()
oper a t i o nTwo (integer X , integer Y

In this example the class className has two super-classes (supnClass, anotherSuperclass) . It

also defines four operations. The operations are overloaded based on the operation name

and on the order and type of the arguments.

5.6. 5 Implementation Module

Each interface module has an associated implementation module, which defines the

implementation of each class listed in its corresponding interface module.

The implementation module starts with the keyword module and is followed by its name.

The name of the implementation module is the same as its corresponding interface

module. Implementation modules may also have zero or more uses lists. The rest of the

module consists of a list of class definitions.

5.6.6 Class Definition

Each SSL class definition in the implementation module corresponds to an SSL class

interface in the interface module. An SSL class definition consists of a class name

followed by the definition of the attributes, methods and an optional constraint. The

following is an example that shows a definition of a list class (from the Sieve of

Eratosthenes example in appendix IV), where the method bodies are empty.

l i s t

attribu t e s

l s tn o d e l ;

operat i on s

new () { }

cons (integer va l u e) { }

l i s t i te ra to r f ront () { }
t a i l {) { }

boolean i sEmpty () { }

:-l-J Partial SSL implementation of a list class

1 35

The attributes section consists of zero or more attributes. The type of an attribute may

either be a built-in SSL type, a class, a collection or an iterator. The aggregation relation in

Figure IV-1 Sieve of Eratosthenes version 1 , is captured by the listnode attribute I in

Figure 5-S. The operations section lists the implementation of the operations (the

methods) in the class interface. Each SSL class may optionally define a single constraint,

which is a list of boolean expressions that are functions of the state of an SSL object.

Evaluating the constraint for an object includes evaluating the constraints defined in the

class of the object and in each super-class.

5.6. 7 Methods

The methods for an SSL class are defined inside the body of the class. Each method

definition has five parts: a result type, a name, a formal argument list, a local variable list

and a body.

The formal argument list follows the method name and is a comma-separated list of type

-argument name pairs. All arguments are passed by value. Variables of simple built-in SSL

types and iterators contain values whilst variables class and collection types contain

references. The formal argument list is optionally followed by the definition of any local

variables that are used in the body of the method. Finally, the method body consists of a

seguence of SSL statements.

SSL methods may return zero or more objects as a result. In the following example the

class aC!ass defines four methods, each of which returns a different number of objects as

a

a C l a s s

attributes

operat ions

methadOne () { }
integer me t h o dTwo () { }
(integer , integer) met h odThre e () { }
(integer , integer , intege r) me thodFou r () { }

A complete SSL class implementation o f the list class 1n Figure IV-1 - Sieve of

Eratosthenes version 1, is given in Figure S-6.

1 36

l i s t

{
attributes

l i s tnode l ;

operations

new () { l = no_obj ect ;

cons (integer va l ue)

l i s t i t ern i ;

i l i s t i t em . create (va l ue) ;

l l i s t n o de . create (i , l) ;

i s t i t era t o r f ront () {
return l i s t i terator . create (l) ;

ta i l ()

i f (not (l = no_obj ect))

{
l . next () ;

boolean i s Empty () { return no_obj ect ; }

'i - 6 - SSJ , implementation of the list class

Create Methods

The purpose of create methods is to provide an appropriate initial state for newly created

objects. An object is created, in SSL, by sending a create message to a class. The create

message names one of the create operations in the interface of the class. This causes the

corresponding create method, deflned by the class, to be executed.

The default r behaviour of sending a create message, with no arguments, is to return a

new instance, which has all attributes of class and collection type initialised to no_of?ject.

This default beha·viour can be replaced by implementing a create operation that takes no

arguments.

Each class may implement multiple overloaded create operations. Create operations are

overloaded by order and type of arguments. The example in Figure S-7 shows the

r . \ default create if one does not exist.

137

implementation of a class (aCiass) that defines two create operations. The first initialises

the attribute anlnt to zero. The second initialises anlnt with the value of its single integer

argument.

a C l a s s

attributes

integer an i n t ;

operations

c r e a t e ()
{

anint 0 ;

c r e a t e (integer I)
= > superC l a s s . c r e a t e (I) ,

ano t h e r S uperC l a s s . c r e a t e (I + 1 0) ;

anint I ;

The super-classes of a class are initialised by sending a create message to each super-class.

The second create method in Figure 5-7 shows how these create messages are specified

(the super-class create lis�. The SSL compiler is responsible for ensuring that the super-class

create list is correct.

Destroy Methods

A destroy message is automatically sent to an object when the number of references to it

reaches zero. Destroy messages received by an object with one or more references are

ignored.

A class may only implement the destroy operation once. The purpose of the destroy

method is to permit an object to perform any necessary tasks before it is released4B. The

default4'1 behaviour of the destroy operation is to assign the special value, no_of:fect, to all

variables o f class and collection type. The destroy o peration must be explicitly

implemented if any other behaviour is required.

1" Thts would include task> such <Js demise.

,,, The SSl . a default of the if one does nor

1 38

5.6.8 Statements

The following statements are available in SSL:

Message send
I f

Message Send Statement

Return
Loop

Assignment
Debug_Print

The message send statement is a special case of a message-send expression where the

message being sent does not return any instances as a result.

Return Statement

The return statement signals the end of execution of a method. The value returned must

match the return type of the method. A method may contain more than one return

statement. Methods that do not have a return type do not require a return statement.

Assignment Statement

The assignment statement is used to update the value of an 1-value. L-values include

attributes , method parameters and variables local to a method. The right hand side of an

assignment statement is an expression. The result of evaluating the expression, the r­

value, is used to update the 1-value. The types of the 1-value and r-value must be

compatible. An 1-value may also be a tuple, for assignment of the result of a message that

returns more than one result. In the following example an object is sent three different

messages that each return three values as a result.

(X , Y , Z) aPoint . ge tC a r t e s i an O r d i nates () ;
(r , the t a , Z) a P o i n t . getCy l i nd r i c alOrdinate s () ;

(r , the t a , a P o i n t . g e t Sphe r i c a lOrdi n a t e s () ;

Tuples are an additional type in SSL that is currently only supported with the assignment

statement and return types of methods.

If Statement

The if statement consists of the if reserved word, a condition, a statement block and an

optional else part that consists of the else keyword and a statement block. The condition

must be a boolean expression. I f the condition evaluates to tme, then the if statement

block is executed. If the condition evaluates to false, and there is an else part of the

statement, then the else statement block is executed.

1 39

Loop Statement

The loop statement consists of the loop reserved word followed by a loop body. The loop

body consists of a statement block that contains a single endloop clause. The endloop

clause consists of the reserved words endloop when, followed by a boolean expression. The

endloop clause may appear anywhere in the body of the loop statement. The loop body is

repeatedly executed until the endloop condition is true. Execution continues from the

statement following the loop. Figure 5-8 shows the implementation of the findprimes

method of the sieve class in Figure N -1 - Sieve o f Eratosthenes version 1 .

I I f i nd t h e

f i ndPr ime s ()

integer s t ep ,

l i s t i t e ra t or l ;
l i s t i t em i ;

numbers c o n t a i n e d in the l i s t i n t s

loop

{

top div 2 ;

t ;

s k i p (ints . f ro n t () , s t e p 2) ;
i f (not . end ())

l . i t em () ;
i f (l . ()

{
mark (, s t ep) ;

s tep s t ep
endloop when (s t ep

Debug_ Print Statement

t) ;

and if o;tatemenrs

The debug_print statement exists for debugging purposes during the development of

SSL. It was added since SSL itself does not need to support any input/ output. The

debug_print statement evaluates its single argument and displays the result onto the

standard error stream. Both the expression type and the result are displayed.

5. 7 SSL Compiler

The SSL compiler translates SSL interface and implementation modules into SSL Byte

wde (SSL-BC). The main components of the SSL compiler are presented in Figure 5-9.

1 40

Code (i; Semantics (@ Syntax
generator analyser analyser

SSL
Annotated Abstract syntax

abstract syntax Type tree Lexer
assembler tree checker
generator

ftJ SSL Type Pars er
byte-code manager
generator

13 ---,i)_ 13

L 3

Store proxy
6

Interface Module

Compiled Class

Persistent store

Compiled SSL SSL sou rce

Figure 5-9 - SSL compiler

SSL source code and compiled SSL are both maintained in the persistent store. The

persistent store provides version control facilities and ensures mutually exclusive access

to SSL classes. The Store Proxy isolates the compiler from the persistent store.

The synta..x analyser is responsible for performing lexical analysis and syntax checking.

This component was built using PCCTS (Purdue Compiler Construction Toolkit) (Parr,

1 997; PCCTS, 1 99 8) . The parser i s an LL(k) parser, which dynamically adjusts the look­

ahead depth (k) as it parses.

The semantics analyser is responsible for performing type checking. It also builds and

checks the method lookup table for each class.

1 41

The code generator is responsible for translating SSL into SSL-BC for each class and

compiled interface modules. The code generator can also be used to print the annotated

abstract syntax tree and to produce SSL assembler"".

Figure 5-9 also shows the steps in the compilation process. These are:

1 . The compiler i s invoked. It accepts a list o f module names to be compiled as input.

Each module is compiled in two phases. In the first phase steps 2 - 6 are performed

for the interface module. In the second phase steps 2 - 6 are performed on the

corresponding implementation module.

2. The compiler determines if the interface and implementation module source code has

been updated since the last time it was compiled. It does this by asking the store

proxy to compare the modification dates of the source code and compiled module. If

the source need to be compiled the compiler asks the store proxy to retrieve the

interface and implementation module source code from the store.

3. The lexer and parser then process the module source code and build an abstract

syntax tree. Any lexical and syntax errors are reported.

4. The type checker traverses the abstract syntax tree and annotates each node in the

tree with type information. It also generates method lookup tables from class

interface definitions in the interface module. This includes checking for operations

that cannot be disambiguated from each other and detecting the inheritance of the

same operation from two or more super-classes. Type errors, ambiguous operations

etc are reported.

5. The code generator traverses the annotated abstract syntax tree generated by the

semantics analyser and generates SSL-BC code for each class and interface module.

6. The compiler then asks the store proxy to place the compiled SSL into the persistent

store.

7. Finally the results are reported. This will be a simple list of all the interface modules

and implementation modules that were successfully compiled.

A description o f the implementation of the SSL compiler is given in appendix V1.

human readable \Tf,;ton of SSL-B< : that i,; for purpo,;c,;. ! t i,; not

di,;cus,;cd further in the thc,;i,;.

1 42

5.8 Executing SSL

Figure S-1 0 shows a more detailed Vlew of the components of the methodology

interpreter and the tool manger.

Methodology interprete r

SSL virtual
machine

Class
client

Object
client

SSL class
server

r----....,

Server proxy

Action

Message request

SSL object
server

2

Persistent store

Result 5

Tool manager

Message
request broker

NSM table

U ser projects M ethodologies

Figure 5- 1 0 - Processing actions

There is one tool manager for the overall system, which acts as a server for multiple

virtual machines. The tool manager insulates the rest of the system from the persistent

store and the CASE tool clients from their corresponding virtual machines.

The tool manager maintains an instance of the virtual machine for every active user. Each

instance of the SSL-VM has only one thread of control. This means that incoming

messages are queued until the SSL-VM completes processing the current message.

The Message Request Broker accepts message requests from clients and messages sent as

a result of the interpretation of a method. It is responsible for ensuring mutually exclusive

1 43

access to objects (through object level locking) . It is also responsible for detecting

deadlock situations and resolving them in a manner transparent to the message senders.

The SSL class server maintains a cache of SSL classes. If a requested class is not present

in the cache it is retrieved from the persistent store. This class replaces the least recently

requested class in the cache, if the cache is full.

The SSL object server is responsible for caching SSL objects in a manner similar to the

SSL class server. It provides a transparent reference counting mechanism and garbage

collection for SSL objects in the persistent store. It also maintains consistency between

copies of the same object.

The SSL class client maintains a cache of SSL classes in a manner similar to the SSL class

server. The difference is that the class client is executing as part of the same process as

the virtual machine. The purpose of this cache is to minimise inter-process

communication.

The SSL object client manages temporary (non-persistent) SSL objects. Any updates to or

requests for persistent objects are passed directly to the SSL object server. Temporary

objects that are assigned to attributes of persistent objects become persistent themselves,

and are passed to the SSL object server to be placed in the persistent store. The

Methodology Interpreter does not distinguish between temporary, local and persistent

objects. Responsibility for all accesses and updates is delegated to the SSL object client,

which determines if the operation needs to be passed to the SSL object server or dealt

with locally.

The following lists the steps taken in processing an action (see Figure 5-1 0) :

1 . The server proxy in the CASE tool client propagates an action at the user interface to

the tool manger. The server proxy implements the communication protocol between

the CASE tool client and the MOOT core. The message request broker initially

translates the user action into a corresponding semantic action.

2. The message request broker delegates the responsibility for finding this semantic

action to an NSM table. The NSM table returns a message as a result. Note that each

methodology has its own NSM table and that the role of the table is to provide a

144

mapping between notations and semantics descriptions. NSM tables are the topic of

chapter 7.

3. The message is propagated to the SSL Virtual Machine. The SSL-VM binds the

message to a particular method and executes it.

4. Any messages that are sent during the execution of the method are initially

propagated to the message request broker. The message request broker is responsible

for ensuring mutually exclusive access to objects and for detecting deadlock

situations.

5. The result of the initial action 1s returned to the CASE Tool client once the

corresponding message found in step 1 has been processed.

The message bandwidth between the message request broker and the methodology

interpreter is high as the execution of SSL methods typically cause many messages to be

sent. Whilst not an issue for the prototype 5 1 , it is an important consideration for the final

MOOT system.

The proposed architecture (Figure 3-1 0 - Proposed, top level, system architecture) could

be implemented in many different ways. For example each component could execute as

separate processes and could conceivably execute on different machines. It is more likely

that the persistent store, the SSL class server and the SSL object server will execute as

separate processes, possibly on separate machines. The tool manger and methodology

interpreters will most likely execute as a single process, possibly on a separate machine,

with one thread of control used for each methodology interpreter.

5.9 SSL Virtual Machine

Much work has been done previously on virtual machines for object orientated­

programming languages. Two examples are Smalltalk (Deutsch and Schiffman, 1 984;

Goldberg and Robson, 1 983) and Java (Lindholm and Yellin, 1 997). The requirements

for the SSL-VM were found to differ significandy from the virtual machines adopted in

other programming language systems. The differences are:

Each operation in the interface of a class can be used as an entry point.

SI The prototype ha,; been primarily built to te>t the cfficac1· of the l\!OO'J' methodolo!-,'1' rcpre,;cnration ,;chcmc. The

prororype implemcnrs the .\ lOOT core and pcrsisrcnt srorc a,; a single process. wirhout the use of threads.

1 45

There is only a single thread of control required in the SSL-VM. However multiple

instances of the SSL-VM can be active at the same time processing messages from a

common pool of SSL objects.

Support for persistent objects and object-level locking is required.

SSL is designed to be a specification language, and thus does not require many of the

facilities of general-purpose languages.

Existing virtual machines are too low-level, in terms of abstraction.

Appendix VII describes the implementation of the SSL-VM.

5. 9. 1 Requirements of the SSL Virtual Machine

The SSL-VM is required to provide support for a multi-user environment. The SSL-VM

must ensure that separate updates are not being performed on the same object at the

same time (i.e. that mutual exclusion is guaranteed, at the object level) . This allows the

possibility of a model being open for writing, but individual components in it being read­

only Qocked) . A collorary of this is that the SSL-VM must be able to detect and resolve

deadlock situations.

5. 9.2 Architecture of the SSL Virtual Machine

The SSL Virtual Machine has a stack based architecture (Figure 5-11) .

SSL virtual machine

stack

reg isters
projectl_j
mod el

d iagram

instruction
counter

Figure 5- 1 1 - Architecture of the SSL virtual maclllne

The stack stores message arguments and results, which allows nested message calls. It is

also used to perform expression evaluation. All pushes onto the stack are balanced by

1 46

pops off the stack. The SSL-VM has an instruction counter which always points to the

next SSL-BC instruction. The instruction counter is modified via instruction execution. It

has three special registers (methodology registers) that each contain the SSL ID of the

current project, model and diagram. These registers correspond to the SSL variables

cumnt_pnject, current_!Jlode! and cumnt_diagraJJJ respectively.

The SSL-VM provides explicit support for all the types available in SSL. All values are

stored with the most significant byte first. The sizes for the SSL-VM types correspond to

the sizes of equivalent types on the development architectures used (various 32-bit

platforms). No final, long term, decisions about the sizes of these types have been made

The SSL-VM types are shown in Table 5-L

Type

Boo lean

Integer

Real

Collection

Iterator

Object ref•e:re11ce

Size Comment

One byte Value is stored in the least significant bit

Four bytes

bytes

Four bytes

Eight bytes

Four bytes

Null terminated sequence of bytes

The unique SSL ID of a collection

An SSL ID of a collection and an offset into the
collection

The unique SSL ID of an object

5. 9.3 SSL Virtual Machine Instruction Set

The SSL-VM instruction set includes instructions for stack operations, arithmetic

operations, string operations, comparison operations, conditional branching, issuing

message calls and manipulating collections. Instructions may operate on the stack, local

variables, message arguments, object attributes, the instruction counter or methodology

registers.

There are 29 instructions (Table S-2) . A complete list of all SSL-BC instructions, with

explanations is given in appendix V.

Instructions on the SSL-VM have an address mode and a type mode. The address mode

specifies the location of any operands.

147

There are three address modes:

• Implicit (no operand for this instruction)

• Immediate (operand follows the instruction)

• Indirect (a reference to the operand follows the instruction)

The type mode is used to specify the data type that the instruction will operate on. The

type modes supported on the SSL-VM include: boolean, integer, real, string, collection,

iterator and object reference.

DBG

PSH

ADD

MUL

MOD

OR

LSS

BRT

MGS

END

PRJ

DGM

Debug print

Push

Add

Multiply

onto stack

Integer modulus

Convert type

Logical or

Equal

Less than

Branch if true

Message send

Scoped message send

End of collection

Current project

Current diagram

RTN

POP

DIV

NEG

AND

NOT

GRT

BRF

FNT

ITM

MDL

Return from message

Pop item from stack

Subtract

Divide

Negation

Logical and

Logical negation

Not equal

Greater than

Branch if false

Create message

Front of collection

Item from collection

Current model

Table 5�2 SSL�BC instruction set

5.9.4 lntemal Representation of Classes, Objects and Methods

All SSL classes and SSL objects have a unique ID. The creation of the unique IDs is the

role of the persistent store. The design of the internal representation of SSL classes and

objects relies heavily on the proxy pattern (Gamma et aL , 1 995). The SSL class proxy

1 48

encapsulates a reference to the Methodology interpreter class client and an SSL class ID.

The SSL object proxy encapsulates a reference to the Methodology interpreter object

client and an SSL object ID. All references to SSL objects and SSL classes are managed

through proxies. The reference counting mechanism is implemented via the proxies.

Representation ofSSL classes

Figure 5-1 2 shows the components of an SSL class. An SSL class consists of a unique ID,

a description of its attributes, a vector of super-classes, a method lookup table and a

method table.

SSL Ciass i D

Attribute
description

S uperclasses

Superclass proxy A
Superclass proxy B
Superclass proxy C

SSL class

Method lookup table

A(} Self

8() �
S

-
el

-
f __ ___,

C(} Self � r-
C
-

I a
_

s
_

s
_

p
-

ro
_

xy_B
-t

'---'-'--
§L Class proxy A
F(} Class proxy A --'-------'
GO Class proxy C

Figure 5- 1 2 - SSL class

Method tabl e

A() !Rn-'-FcO

The SSL class ID corresponds to the unique fully qualified name of the class. An ID is

used instead of the complete class name to minimise the memory required to store SSL

classes and SSL class proxies (which also contain an SSL class ID) . The attribute

description defines the number of attributes of each type the class has. Each class also

contains a vector of all direct and indirect super-classes of the class. The super-class

vector is a flattened version of the inheritance lattice with respect to the class and is

generated by the SSL compiler. This approach implies some redundancy but simplifies

class instantiation and the implementation of late binding. The method lookup table is a

map of operations and SSL class proxies. The table contains all operations (including

those inherited from super classes) accessible from the class. Each operation is mapped

to an SSL class proxy that identifies where that operation is implemented. Finally the

method table is a map of operations and methods. This table contains all the operations

implemented (i.e. the methods) in this class.

1 49

There are several advantages to this design:

• Accessing a leaf class in an inheritance hierarchy will not cause the retrieval of the

entire inheritance hierarchy from the persistent store. The use of SSL class proxies

ensures that a class will only be retrieved when it is actually needed.

The method lookup table simplifies the implementation of late binding. The onus of

building the lookup table, however, is on the compiler.

Representation ofSSL Methods

Figure 5- 1 3 shows the components of an SSL method. Each method has a name,

arguments, local variables and a method body.

Method Name

Arg uments
description

SSL Method

Locals variables
description

Figure 5- 1 3 - SSL method

M ethod Body

SSLBC code

Constant str ings

The method name is the same as the name of the operation that the method implements.

The argument description defines the number of arguments of each type the method has.

The local variable description defines the number of local variables of each type that the

method uses. The method body consists of two parts: a block of SSL-BC code and a list

of constant strings. The constant string list contains constant literal strings and class

names that are used in the method. The block of SSL-BC code references a constant

string in the string list via an absolute offset to the first character in the string.

Representation ofSSL objects

Figure 5-14 shows the components of an SSL object. It consists of a unique ID, a proxy

for its class, its state and object proxies corresponding to the super classes of its class.

The unique ID defines the identity of the object. Creating new IDs is the responsibility of

the persistent store. The class of the SSL object is represented by an SSL class proxy. The

state of the object corresponds to the values of the attributes defined by the class of the

1 50

object. The super-state of the object is a vector of SSL object proxies that correspond to

instances of the direct and indirect super classes of the class of the object.

State
Booleans
I nteg ers
Rea Is
Stri ngs
Col lections
lterators
Object R efs

SSL object
SSL Object I D

Class
C lass proxy X

S uper-State
Super-object proxy A
Super-obj ect proxy B
Super-obj ect proxy C

Figure 5-14 - SSL object

5. 9.5 Processing Messages on the Virtual Machine

Figure 5-15 is a more detailed view of the methodology interpreter shown in Figure 3-1 0,

Figure 3-1 1 and Figure 5-1 0. It depicts the steps taken and the components involved in

processing a message with the methodology interpreter and SSL virtual machine. The

components involved include the SSL interpreter, the SSL Virtual Machine, SL classes

and SSL objects. The reader is directed to appendix VII for a detailed description of the

implementation of the SSL virtual machine.

The SSL interpreter is responsible for managing the execution of a method on the virtual

machine. It does this by executing the SSL-BC instructions contained in a method body.

The steps taken to process a message are illustrated in Figure 5-1 5.

1 . The SSL interpreter receives a message and a proxy to the S L object to which the

message has been sent. The interpreter obtains a reference to the SSL object via its

proxy. It then pushes the SSL ID of the object onto the stack of the Virtual machine

(this is the implicit 'self argument) .

2. The SSL interpreter requests the object to accept the message. The result of the

object accepting the message will be: a) a method suitable for processing the message

and b) the state of the object. The state of the object is part of the context the

message will be processed in.

1 5 1

Methodology i nterpreter

SSL virt u a l machine

stack

S S L object

registers
project

model

d iagram

instruction �
counter _j

SSL Object I D

Class
Class proxy X

State

Booleans
Integers
Reals
Stri ngs
Collections
lterators
Object Refs

Result I
Method

Context 5

2

Supe r-State

Super-object proxy A
Super-object proxy B
Super-object proxy C

Attribute description

Receiving
object proxy

Result

SSL Interpreter

Method 4

State

SSL c l a s s

SSL Class I D

Superclasses

Superclass proxy A
Superclass proxy B
Superclass proxy C

Figure 5- 1 5 - Processing messages on the SSL-Thf

1 52

3. In order to find an appropriate method the object asks its class to bind the message

to an appropriate method. The object fust obtains a reference to its class via the SSL

class proxy it contains. It then delegates the method binding responsibility to its class .

Th e class uses its method lookup table to search for a proxy to the class that define s

an appropriate method. I f the proxy refers to a super class then the method will b e

fetched from the super-class method table. Otherwise the method i s fetched from the

local method table. Note that the code generation and type-checking steps of the

compilation process are responsible for ensuring that there will always be a method

to bind to a message.

4. The SSL interpreter receives the method and the state of the object as a result o f

steps 2 and 3 . I t builds the context within which the method will be executed. This

context is composed of three parts: a) the actual message arguments b) space for any

local variables the method requires and c) the state of the object. The method and

context are then used to execute the method.

5. The SSL-VM performs a fetch-decode-execute cycle where each of the instructions in

the method body is executed on the virtual machine in turn. These instructions will

cause changes in the Virtual machine instruction counter, stack, and in the context.

6. The method execution finishes once a RTN SSL-BC instruction is executed. The SSL

interpreter then evaluates the object constraint to see if the object is still valid. I f the

constraint is satisfied then the object is updated with the new state that is contained in

the context. Finally the result of the message is returned to the tool manager.

5.10 Summary

This chapter has described the development of SSL. The goals of SSL and the MOOT

meta-model (the facilities of which SSL provides) were discussed.

SSL is an object-orientated language that supports a subset of the facilities of a general

purpose programming language. It is a statically type checked language that provides

clean separation between 'class interface' and 'class implementation'. SSL supports

dynamic binding, multiple inheritance, built-in primitive types, polymorphic collection

and iterator types and provides a module system.

1 53

Chap t e r 6

The Core Knowledge B ase and Generic Object Orientated

Knowledge B ase

6.1 Introduction

Myth #9: Softv.rare re-use will just happen.

Tracz 1988

This chapter presents tv.ro libraries of re-usable methodology semantic description

components that have been developed as part of this research. The libraries are called the

wre lillowledge Base (CKB) and the Generic lkject Orientated Knowledge Base

(GOOKB). The primary objective of these tv.ro libraries is to provide a pool of re-usable

components that methodology semantic descriptions will be defined as extensions of.

There are tv.ro major goals to be realised by this approach. Firstly, the effort required to

define new methodologies is reduced. Secondly, all methodology definitions share a

common sub-set, which provides distinct advantages in terms of reasoning about

methodologies and re-using softv.rare engineering results.

6.2 Context of the Core Knowledge Base and the Generic Object Orientated

Knowledge Base

The information processed by MOOT can be classified into three groups:

• Meta-descriptions of 'methodology' and software engineering approaches (meta­

models of methodology, object-orientated development, information engineering etc.).

• Descriptions of methodologies built using the methodology development sub-system

(specific methodologies).

• Descriptions of software built using the CASE tool sub-system (user projects).

These categories of information are arranged in three tiers, as shown in Figure 6-1 .

1 54

y-;; MethOdology oe,.topmeot s-b-syotem

Abstraction of
Methodology

Process J Modelling
Language

Document

Methodology Developer Defines

My Company's
Methodology

In-house Process Object Model

Analysis Report Timing Diagram

Software Engineer Creates

My system

My Analysis
Report

Assistance
provided during

development
Process

� CASE tool s-1>-system

Vehicle C lass
Diagram

Engine T iming
Diagram

Abstraction of
M odelling Language

[Diagram Relation

Concept

Inheritance and Aggregation

My Company's
Object Model

Aggregation Inheritance

""" ':' (,.,� ·�-���

My Representation
of Vechicles

; _ _ ., ·. ·-· '

Car Is a
Vehicle

Vehicle has a
Engine

Figure 6-1 - The three tier structure of the information processed by
MOOT

1 55

The methodology engineer's view is from the top where methodologies in tier two are

defined in terms of tier one. This view is provided by MOOT's methodology engineering

sub-system. The software engineer's view is from the bottom where a user project in tier

three is defined in terms of tier two. This view is provided by the CASE tool sub-system.

In the top tier of the structure depicted in Figure 6-1 is the meta-model of methodology

described by the Core Knowledge Base (CKB). The classes at this level define an

abstraction of methodologies. The Generic Object Orientated Knowledge Base

(GOOKB), which is an extension of the CKB for object-orientated methodologies, is

also defined in tier one52•

Methodology engineers create their own methodologies in tier two by sub-classing SSL

classes within tier one. They may also inherit from other classes previously defined in tier

two. All methodologies in tier two have classes from the CKB defined in tier one in

common as they are all directly or indirectly defined in terms of it.

Software engineers build descriptions of software artefacts at tier three by instantiating

the SSL classes defined in tier two. Thus the semantic content of a user project consists

of a collection of SSL objects.

6.3 Development of the Core Knowledge Base

The Core Knowledge Base has been designed by adopting a meta-modelling approach.

6.3.1 M eta-Model of Methodology

Each methodology has a collection of modelling languages, documents and provides a

process.

A software engineer uses the modelling languages supported by a methodology to express

and investigate the relevant abstractions in the problem domain. Various modelling

languages are available to the software engineer to use. Each modelling language has an

associated method, which at least is 'do not break the rules of the modelling language.' It

may also include quality guidelines and direction for how a modelling language is best

5! ()rhcr software engineering approachc,; can abo be mcta-modcllcd and supported in tier one. Thi,; work i,; dj,;cus,;cd

in section 9.-1 - Future \X'ork.

1 56

applied to build models of software. The method subsumes the guidelines, suggestions

and strategies that may be contained in the description of the modelling language. The

evolution of software development methodologies has resulted in many methodologies

providing the same modelling language with variation in interpretation, application or

appearance (Henderson-Sellers, 1 99 6) .

Documents are produced during the process of applying a methodology to a particular

problem. These documents may vary in terms of scope, content and their intended

audience. The structure of these documents is not necessarily defined by a particular

methodology. Company may choose to adopt an in-house standard for the

documentation or may choose to use a more widely used document standard.

A software engineering process is a suggested framework that the software developer

applies whilst building a software artefact. The process may define the order with which

models of the software are derived and may also provide quality guidelines. Ideally the

process provides a systematic approach to constructing models. It may include guidelines

regarding the suitability of modelling languages for particular tasks and suggestions and

strategies for problem solving using the methodology. The process of a methodology is

more than a suggested software development life-cycle. It also subsumes the guidelines,

suggestions and strategies that may be contained in the description of the methodology.

Figure 6-2 shows a meta-model of methodology. Methodology has a Process, zero or

more Documents and one or more Modelling Languages. Each Process, Document and Modelling

Language may be used in more than one Methodology.

1 . :

1 . .*
Model l ing Language

meta· model

The relation between Methodology and Process and between Modelling Language and Method

has been modelled with an association in Figure 6-2. Henderson-Sellers (1996) notes "We

1 57

have seen that, on the one hand, a process has three constituent parts, one of which is

methodology and, on the other hand, that a methodology must contain a process. These

two relationships between methodology and process are, on the face of it, contradictory.

Which is right? Well they both are!" It is expected that software engineering processes

may be attached to more than one methodology and methods to more than one

modelling language. Moreover it i s possible that a modelling language may be used in

association with a different method, when used to model different classes of problem.

For example the method used to apply a state transition diagram in the context of Booch

object-orientated design, is likely to be different to the method used to apply the same

modelling language as a representational basis for Computer Assisted Instruction systems

(Feylock, 1 977). The research to date has yet to consider meta-modelling of software

process and method in detail. Such research closely is related to the cognitive support of

software engineering discussed in section 9.4 Future Work.

Models do not in isolation. Different models can be used to investigate different

dimensions of a problem. There may be relations between parts of a model and relations

between different models in a software engineering project. For example a package on an

UML class diagram may be exploded into a separate UML class diagram. Transitions

correspond to the possible paths of navigation in a methodology. The classes Intra-Model

Transition and Inter-Model Transition in Figure 6-3 represent these navigation paths.

1 . . *

Modelling lang uage

0 . .*

I ntra Model Transition

6-3 - Transitions

6.3.2 M eta-Model of ModeUing Language

A modelling language provides one or more diagrams (for example a DFD model

consists of a context diagram, D FD diagrams as well as process specifications). Diagrams

1 58

may contain zero or more model elements. Specialised model elements include concept

(such as a class), relation (such as an association between two classes) and composite

(such as a Coad and Yourdon Subject Area) . Model elements must exist in at least one

diagram but may be used in several others. Figure 6-4 shows a meta-model of modelling

language.

Modei_Eiement

Concepts, relations and
composites must belong
to at least one diag ram

A composite should have at
least one item in it, either a
concept or another composite

o.:

Figure 6--t - �Ieta-model of modelling language

A modelling language consists of one or more diagrams. Each diagram is part of one

modelling language. An instance of Diagram contains a collection of instances of the

modelling elements that are supported by the modelling language. A composite is a group

of concepts and relations and other composites. Each modelling element must be used in

at least one diagram.

Relations have been represented with two classes, Relation and Relation Terminator in Figure

6-4. The Relation Terminator class models the end points of a relation. It may be sub­

classed to implement specialist roles (e.g. whole, part, message sender, message receiver

etc) . Each instance of Relation Terminator knows the relation it is part o f and the concept it

attaches itself to. A Relation object contains instances of Relation Terminator for each

endpoint of the relation. Figure 6-5 illustrates the structures involved in representing

relations with an example that uses the classes in Figure 6-4.

1 59

a)

b)

))
'1 Class A : , ', A Whole part relafon ' [class B :
'1' c t : � -----1 : R-elat1'on 1 L. 1,

-JI
Concept ��q£1 , I , .

'... -� ,// L------=-·--
' I \ .

' I ' I � I \ , /

\ Whole :Tf'elatio-� / \\ I�
· Term i nator I ·······/

� --------� Term inator
i

Figure 6-S Representing a whole-part relation

Figure 6-5 shows a whole-part relation expressed using Coad and Yourdon. This is a

directed binary relation where one class (A in Figure 6-5) takes the role o f 'whole' and the

other class (B in Figure 6-5) takes the role of 'part'. The two classes are represented by

instances of Concept. Each end of the relation is represented by an instance of Relation

Terminator. The whole-part relation itself is represented by an instance o f Relation. Figure

6-5 describes the whole-part relation only in terms o f the classes in Figure 6-4. In practice

descendants of classes defined in the GOOKB, or in extensions of the GOOKB, would

be used to represent s uch a relation. The object structure, however, would be same.

Figure 6-6 shows how a simple diagram that represents composite pattern (Gamma et

al. , 1 995) could be represented with instances of the classes in Figure 6-4.

The Coad and Yourdon class diagram in Figure 6-6 (a) involves three concepts (the

classes A, B and q and three relations (an inheritance relation between class A and class

B, an inheritance relation between class A and C, and a whole-part relation between class

and q. All of the concepts and relations belong to a diagram, which in turn is part of a

'Coad and Y ourdon class diagram' model.

Figure 6-6 (b) (i) shows the objects involved m representing the inheritance relation

between class and class B in Figure 6-6 (a) . Each end of the relation is represented with

an instance o f Relation Terminator"'. inheritance relation itself is represented with an

instance of Relation. Figure 6-6 (b)(ii) shows a similar collection of objects that represents

the inheritance relation between class A and class C. The object structure highlighted in

Figure 6-6 (b) (iii) represents the whole-part relation b etween class A and class C.

to the (XB and (;(l(li-\.B will be with the name (,f the

1 60

a)

b)

'--::7-- ---�--!
"· / ����������:.�ll����� A and B ·1• : CKB::Relation

I L

6-Cl

·· �·· m � m m m

I A as a rt o! C :

I
CKB::Relalion Terminator

�--, --11 ! ""'
i >

•· ········· ····················· & ... d::"
' Whole part relatio�tween A and C

: j ' ··· ;:D 7 ········ · · �···)

c .
--- - --- Jil CKB :Concepfi

/.___ _ __ _

: CKB::Ratation li--

'• '

. �l'th���e o! A :

a class with instances of classes
from the Ch.B

The collection of Relation Terminator objects that is maintained by each instance of the

Concept class in Figure 6-6 corresponds to the roles that each concept plays in the diagram

of Figure 6-6 (a) . For example, object A in Figure 6-6 (b) has links to three Relation

Terminator objects. They represent the roles class A plays in the diagram o f Figure 6-6 (a)

(A as a super-class of B, A as a super-class of C, A as a part of q.

The Coad and Yourdon 'class diagram' model of Figure 6-6 (a) is represented by the two

objects in Figure 6-6 (b)(iv) . The instance of Modelling Language represents the whole

model. This object has a link to a single instance o f Diagram. The Diagram object

maintains links to the three Concept objects, and the three Directed Binary Relation objects.

1 61

Figure 6-7 shows the meta-model of modelling language (Figure 6-4) in more detail. The

Critic class in Figure 6-7 is discussed in section 6.3.3.

Q , , ' 1 , ,'

CKB::D:agram
- - -i

: AddConcept(c CKB :Conc<lf't) CKB: Cntic
, AddRelat10n(r CKB: : Relat:on) CKB: :Cnt:c

�-, i AddComposite(c CKB::Composite) - C KB : :Critic' �-
0 :'/j isValid() CKB :Critic

v, __ >-

-
: contains(mc CKB::Concept) Boolean Q __ •

contains(mr CKR:Relat10n) Boolean
i contains(mc CKB: :Composite) Boolean

Q, .

The meta-model in Figure 6-7 has been specialised in Figure 6-8 with additional classes

that represent the various types of relations that may exist. They have been classified in

terms of the number of concepts involved in the relation and the direction of the relation.

1 62

1sValid()
AddToS!art()

; AddToEnd()
I Remove()
I GetStart()
GetEnd()

1
,.....__

---��

Attach(r : CKB: : Relation� Terminator) : CKB: :Critic
Detach(r · CKB : Relation�Term,nator) : CKB: :Critic :

f Remove()
...... • L*

----�-
-endA

---� --------�- ·--�� ���.--............ ��--, --����n e 1 i CKB: :Relat1on Term1nator
·----;, Cr��te (m . CKB::Concept, r

-many1 ' Destroy()
DetachConcept()

1 .. • 1 . DetachRelatJon()
••-�� -Elr1_9B-,......'1 getConcept() CKB::Concept

-----.·--·-�------�.��-----�·- CKB:: Relat1on

: String
: CollectiOn<integer>

The relations supported in Figure 6�8 include Binary Relation, Directed Binary Relation, One to

Many Relation, Many to Matry Relation, Directed Many to Matry Relation and Nary Relation.

Relation Terminator has been sub�dassed to provide a terminator that additionally provides

a role name and cardinality. Figure 6�9 shows the classes in the Core Knowledge Base.

1 63

AddToStart()

AddToEnd()

GetStart()

6�9 � Core

1 64

! Remove() C�--�

6.3.3 Handling Exceptional Situations

The user performs many logical actions whilst applying the methodology process to build

a description of their software artefact. These actions are related to tasks such as creating

and updating models, searching the current and existing projects, checking their work for

correctness, completeness, quality and so on. The situation in Figure 6-10 corresponds to

the response to a request made by the user.

User
Interface

Inference
Mechanism

(J-1 () - Situations

Methodology
Knowledge

Base

What occurs in response to the generation of a situation is under the control o f the

inference mechanism and is a function of the situation itself. It may be that a simple

warning is passed to the user as a result or that some form of auto-correction is applied.

For example consider the situation where a class is created with a name that is in use by

another class. It is up to the methodology engineer to allow or disallow this situation.

They may decide that this is a fatal error and disallow it. Or they may simply change the

requested name automatically and report the situation to the user.

Some of the situations and responses that might occur include:

• reporting an erroneous state to the user

• suggesting corrective action to the user

• performing auto-correction

• providing comments about the suitability of the users project, model or model

element

• providing a link to an aspect of the methodology process or the method of a

modelling language

The inference mechanism m Figure 6- 1 0 is outside the scope of the definition o f

methodologies that existing meta-CASE tools provide. The ARGO project (Robbins et

al , 1 996, 1 997, 1 998) has considered some of these issues with the development of a

1 65

methodology dependent CASE tool called ARGO /UML. The ARGO project refers to

the facilities described here as 'cognitive support' for software engineers. Implementing

these facilities in the CKB was relegated to future work once the existence of the

ARGO /UML project was identified.

Simple explanation facilities have been implemented with the Critic class in the CKB. The

majority of the operations in the CKB return a result that is an instance of the Critic class.

Critics are used to signal the result of an operation in the CKB. The Critic class hierarchy

given in Figure 6-1 1 is an instance of the composite pattern (Gamma et al, 1 995) .

state Boolean

Explam() · Stnng
changeExplanatJon(newDescription Stnng)

6- 1 1 - Critics

The abstract class Critic in Figure 6-1 1 encapsulates a boolean flag that signals the success

or failure of an operation. The SimpleCritic class extends the Critic class with a string that

contains an explanation. The explanation could be the reason an operation was

unsuccessful or perhaps some feedback relating to the success of an operation. The

CompositeCritic class maintains a collection of other critic objects. Composite critics are

used in situations where the success of an operation is dependent on the result of several

sub-operations. The explanation given

component critic's explanations.

a composite critic is the concatenation of its

6.4 Development of the Generic Object Orientated Knowledge Base

This Generic ikject Orientated Knowledge Base (GOOKB) is an extension of the CKB

that contains classes that represent concepts germane to object-orientated methodologies.

All object-orientated methodologies encompass the concepts of encapsulation,

information hiding and hierarchical decomposition, and are founded on the concepts of

1 66

classes, objects, inheritance, message passing and polymorphism. The nature of the object

model is consistent acros s what is traditionally described as the four phases of the

software development life-cycle: analysis, design, implementation and maintenance. There

is a basic core of commonality between all object-orientated analysis and design

methodologies due to this consistency even though each methodology has its own

variations in its expression of the 'object model.'

"The OMG Object Model defines a core set of requirements that must be

supported in any system that complies with the Object Model standard. The

set o f required capabilities is called

(QED, 1992)

'Core Object Model' "

This statement indicates that object-orientated methodologies have properties that are

generic and can be modelled with the generic object-orientated knowledge base.

The method used to derive the classes in the GOOKB was designed by considering

existing comparisons of object-orientated methodologies. The objective was to identify

potential methods for the comparative analysis and subsequent meta-modelling of object­

orientated methodologies.

This research pre-dates the COMMA project, the development of UML and submissions

to O MG OA&DF, all of which have a similar objective - understanding the common

aspects of object-orientated methodologies .

6.4.1 Object-Orientated Methodology Comparisons

Many object-orientated methodology comparisons have been conducted in the past.

Notable research includes (Amold et al., 1 991 ; Brinkkemper et al., 1 998; de Champeaux

and Faure, 1 992; Cribbs et al., 1 992; Fichman and Kemerer, 1 992; Fung et al., 1 997;

Henderson-Sellers and Bulthuis, 1 996a, b, 1 997; Henderson-Sellers and Firesmith, 1 997 a;

Hong et al. , 1 993; Hutt, 1 994; Loy, 1 990; Monarchi and Puhr, 1 992; Object Agency, 1 998;

Rumbaugh et al., 1 991 ; Sharble and Cohen, 1993; Taylor, 1 998; van den Goor et al., 1 992;

Wirfs-B rock and J ohnson, 1 990; Y ourdon and Argila, 1 996) .

167

Existing methodology comparisons were analysed, evaluated and contrasted. A taxonomy

of object-orientated methodology comparisons was subsequently derived as a result

(Dasari et aL, 1 995; Mehandjiska et aL, 1 996a-c) and is presented in Figure 6-1 2.

00 comparisons

Evaluate OOM performance Compare features
provided by OOM's

l
Build the same system with

different methodologies
Informal comparison Formal comparison

Key:
Objective
Approach

Identify a common superset Meta-model OOM's

Identify common 'features' Identify a checklist of
m odeling tools

Figure 6- 1 2 - Taxonomy of object-orientated methodology
compansons

The purpose of methodology comparisons that have been conducted in the past was to

either evaluate the performance of different methodologies or to compare and contrast

their features. Attempts were also made to establish a common understanding of object

technology.

Typically the performance of an object-orientated methodology has been evaluated by

modelling a single problem with multiple methodologies and comparing the resulting

analysis, design and implementation models.

The features provided by object-orientated methodologies have been compared formally

by meta-modelling or informally by identifying common modelling tools and features.

Comparisons of object-orientated methodologies have been classified according to the

approach taken to the comparison and the objectives of the comparison.

1 68

The consideration of object-orientated methodology comparisons has highlighted the

following issues:

Each methodology has its own set of definitions, processes, notations and tools.

Concepts may be named differently for each methodology and the richness of

support of a concept may vary between methodologies.

Comparisons that involve a simple matching of 'terms' are inaccurate as many

methodologies use the same 'term' but with distinct interpretation. Ideally a

methodology comparison should involve matching the definition of 'terms' as many

methodologies support the same concepts with different names.

Comparing methodologies 'two by two' is time consuming, as the number of discrete

methodology comparisons for a set of Nm methodologies is large (Figure 6-13) .

For example, 1 225 discrete comparisons would be required to evaluate the fifty

(Muller, 1 997) object-orientated methodologies that existed by 1995.

n=Nm

Ne })n - 1) or
noo]

G- 1 3 \:umber o f

Nm
Nc = -(Nm - 1)

2

for

• Researchers evaluating methodologies are o ften biased in review results as

attempt to evaluate methodologies within the context of their own development

background.

• Many comparisons initially involve identifying a genenc list of properties that a

methodology should support. Methodologies are then compared to this generic list

of properties. Different researchers may choose a different set of representative

properties and may use different definitions for those properties. Different

comparison results are produced due to the difference in the choice of representative

concepts and definitions.

1 69

6.4.2 Method used to Design the Generic Object Orientated Knowledge Base

Based on the review of the methodology comparisons it was decided that the method

used to identify the components in the generic Object Orientated Knowledge Base

would:

• Use a formal meta-modelling approach. This is an obvious decision given the desired

result is a meta-model.

• Use a small sub-set of methodologies. Whilst meta-modelling every object-orientated

methodology would produce an appropriate meta-model it was decided that a small

subset would be sufficient. Existing comparisons support the view that there is a

high degree of similarity in the interpretation o f object-orientated principles amongst

object-orientated methodologies.

• Be carried out relative to a set of methodology independent object-orientated terms.

This was done to avoid a two-by-two approach to meta-modelling. The terms chosen

a first-guess at components expected in the meta-model.

The method adopted is:

1 . Identify candidate generic concepts defined by the Object Management Group

(QED, 1 992; OMG, 1991 , 1 992).

2. Identify equivalent OMG concepts in a o.u1uo.•cL of object-orientated methodologies.

Each methodology defines and uses distinct terms for the fundamental object­

orientated concepts. The concepts identified by the OMG provide a consistent

vocabulary that is not methodology specific.

3. Model the identified concepts in a single homogenous object-orientated meta-model.

4. Identify the portion of the meta-model that is not methodology specific.

5. Re-define the generic portion of the meta-model as an extension o f the Core

Knowledge Base.

6. Implement the GOOKB in SSL.

1 70

In-house experience and knowledge of object-orientated methodologies, especially those

that were new (such as UML and OPEN) and were not considered in the literature

dealing with methodology comparisons, was used throughout the process.

The results of the meta-modelling work in steps 1 - 4 is presented in (Mehandjiska et al.,

1 996a-c). The remainder of this section will cover the last two steps and present the initial

design of the GOOKB as an extension of the CKB.

6.4.3 Generic Object Orientated Knowledge Base

Figure 6-1 4 shows the classes in the GOOKB that are used to represent the object­

orientated concepts of class and object.

CKB: :Concept
c-:--�- . .., ·c:cC--:KB:::-:--:: R:-e

�la
�
tio

··-
n _Terminator)

' Detach(r : CKB: :Relation_Terminator) · CKB: :Critic

0 . . •

GOOKB: :Operation

GOOKB: : Be haviourProperty
create(name :
isval id() : Critic

···················· ·· ·· ···

GOOKB: :Ciass
create(name String)
1svalid() · CKB::Critic

1 changeCiassName(newName . String) CKB: :Critic
className() . String
add(a GOOKB :Attribute) · int
add(o GOOKB :Operation) int
Instantiate() GOOKB :Object
newAtlribute() . GOOKB: :Attribute
newOperation() GOOKB: :Operation

CKB:: Property : GOOKB: :Atlribute

G- 1 -t classes and

0 . .'

The GOOKB introduces four sub-classes of Concept. These are Of:ject, Class, Inteiface and

Message (Figure 6-1 4) . It also introduces two direct sub-classes of Properry. These are

BehaviourProperry and StructureProperry. Operation and Attribute are defined as sub-classes of

BehaviourProperry and StructureProperry respectively. An Inteiface consists of a collection of

1 7 1

Operations. A Class has a single Inteiface and has zero or more Attributes. A Class may have

zero or more instances . Each Oiject is an instance of a single Class.

Figure 6-1 5 shows the classes 1n the GOOKB that are used to represent inheritance,

aggregation and association.

CKB::Relation .. Jerm1nator
: CKB::Co ncept, r : CKB::Relation)

Destroy()
Detach Concept()
DetachRelation()

i getConcept() : CKB::Concept
' getRelatlon() : CKB:: Relation

GOOKB::SubType

cardinality : CollectiOn< 1nteger >
rolename · String

GOOKB: :Whole <(;
ISval1d() : CKB: :Cnt1c

6- 1 5 -

GOOKB::SuperType
CKB::Directed_Binary _Relat1on

1sValid() : CKB::Critic
GetStart() : CKB::Relation_Terminator
GetEnd() · CKB::Relation_ Terminator

GOOKB::Assoc1at1on

relations

Association is defined as a sub-class of Binary Relation. Each end of an association is an

instance of Ordinary Relation Terminator (or an instance of a sub-class) . The Ordinary Relation

Terminator defines a role name and cardinality. Inheritance is defined as a type of Directed

Binary Relation. Subclass and Superclass represent the terminuses of an inheritance relation.

Aggregation has been defined as a Directed Binary Relation and as a specialised association.

Whole and Part represent the terminuses of an aggregation relation.

Figure 6-1 6 shows all of the classes that are defined by the GOOKB.

1 72

: CKB::Relation_ Terminator) : CKB::Critic
Detach(r : CKB: : Relation_ Terminator) : CKB::Critic

GOOKB: :Operation

GOOKB :StructureProperty
create(name : String)
ISvalid() : Critic

Destroy()
DetachConcept()
Detach Relation()
getConcept() : CKB::Concept
getRelation() . CKB::Relation

GOOKB::SubType

GOOKB: :Subclass
isvalid() : CKB::Crit1c ."'(

GOOKB::Ciass
create(name : String)
isvalid() : CKB::Cri!IC
changeCiassName(newName : String) : CKB: :Critic
className() : String
add(a : GOOKB::Attribute) : int
add(o : GOOKB::Operation) · int
Instantiate() : GOOKB: :ObJect
newAttribute() . GOOKB: :Attribute
newOperation() · GOOKB::Operation

GOOKB::SuperType ISValid() · CKB: :Critic

isvalid() : Critic

GetStart() . CKB::Relat1on_ Termmator
GetEnd() . CKB: :Relation_ Termmator

GOOKB::Object_Model

6- 1 6 - The Generic Object Orientated

1 73

Figure 6-1 7 (a) shows a Coad and Yourdon class diagram that represents the composite

pattern (Gamma et al., 1 995) . Figure 6-6 previously showed how instances of classes in

the CKB could be used to represent this modeL Figure 6-1 7 (b) shows how instances of

the classes in the GOOKB could also be used. The object structure described in Figure

6-6 (b) and Figure 6-1 7 (b) is identical. The only difference is the class of the objects

involved.

a)

b)

I
�KB-uperclass

/ 11,
/ \

i. GO�.I,�h�.;-

GOOKB::Ciass
',�,��,,,,

_

__ _

: GOOKB::Object
Model

" ' - �

6 r -

11
' /�? 11 '

/

an model v.1th classes from the
GOOKB

1 74

The objects in Figure 6-17 (b) (i) represent the inheritance relation between class A and

class B in Figure 6- 1 7 (a) . The objects in Figure 6-1 7 (b) (ii) represent the inheritance

relation between class A and class C in Figure 6-1 7 (a) . The objects in Figure 6-17 (b)(iii)
represent the whole-part relation between class A and class C in Figure 6-1 7 (a).

6.5 Implementing the Knowledge Bases

A convention has been adopted for the SSL module structure used to implement the

knowledge bases. Each methodology knowledge base is partitioned into the following

modules, where KB Name is the name of the knowledge base.

KB_Name

KB_Name_Model_Element

KB _Name_Document

KB_Name_Critic

KB_Name_Model

KB_Name_Transistion

KB_Name_Process

Figure 6-1 8 shows the SSL module structure of the CKB and GOOKB.

G- 1 8 :\fodule structure o f the CIQ) and GOOKB

The GOOKB extends the CKB_Model, CKB_Mode!Element, CKB_Transition and

CKB_Critic modules. The GOOKB_Patterns module provide s support for patterns and is

described in section 8.3 - Supporting Patterns.

1 75

6.6 Summary

This chapter has presented the development of the Core Knowledge Base (CKB) and the

Generic Object Orientated Knowledge Base (GOOKB). The CKB was derived using a

meta-modelling modelling approach and implements a meta-model of methodology. It

also provides simple facilities for cognitive support. The GOOKB was derived by meta­

modelling and implements a meta-model of concepts that are manifest with all object­

orientated methodologies

One of the significant benefits of the Object-Oriented paradigm is the support for re-use.

Re-use of methodology components is supported through the inheritance and

aggregation mechanisms of the SSL class descriptions. The support of re-use in MOOT

is fundamentally different to that of other Meta-CASE environments, which only support

accidental re-use. The re-use strategy of MOOT is a reflection of the underlying meta­

model (Mehandjiska et al., 1 995a, 1 996a-c) .

1 76

Chapter 7

Realising Methodologies and Software Engineering Projects in

MooT

We all agree that your theory is crazy, but is it crazy enough?

7.1 Introduction

Niels Bohr

Tills chapter presents the design and philosophy of the mechanisms for realising

methodology descriptions and software engineering projects in the MOOT system. There

are two aspects to this research: a) the development of a communication protocol

between the MOOT core and CASE tool clients and b) the de-coupling mechanisms that

have been developed to support late binding of syntax and semantic methodology

descriptions. The syntax-semantic de-coupling is achieved in two parts: a) A table of

methodology descriptions, which has been named the Methodology Lbcription Table

(MDT) and b) a mapping table, which is named the Notation semantic Mapping (NSM)

table. This chapter presents a high-level description of the communication between

tool clients and the MOOT core. The MDT and NSM tables are also described.

7.2 Interaction Between CASE Tool Clients and the MOOT Core

The interaction that occurs between a CASE tool client and the MOOT core can be

classified, based on the direction of the interaction.

CASE Tool Client � MOOT Core

The communication in this direction corresponds to a software engmeer trying to

perform a task. Tills includes:

Logging-in and logging-out

Manipulating sofrnlare engineering projects, models and diagrams

1 77

• Creating, deleting and updating notation elements in diagrams

Each action is implemented as a request that is sent from a CASE tool client to the

MOOT core.

MOOT Core � CASE Tool Client

The MOOT core is responsible for processing requests from CASE tool clients. It is also

responsible for determining if any other CASE tool client should be notified of the result

of a successful request. Communication in this direction includes:

Responses to requests generated i?J CASE tool clients

Responses correspond to the MOOT core informing CASE tool clients of the

success or failure of satisfying a request. Each and every request is matched by a

response.

Directives from the MOOT core to CASE tool clients

Directives support the broadcast of information to CASE tool clients. This ensures

that clients are aware of important events that have caused a change in the state of

the software engineering projects they are using. Directives are matched by an

acknowledgement by clients. Directives are assumed to be successful if received54•

Figure 7-1 shows some of the requests, responses and directives that are transferred

between CASE tool clients and the MOOT core. The requests and directives in Figure

7- 1 have been subdivided into project-level requests and directives and model-level

requests and directives.

7.2.1 CASE Tool Client Requests

The general requests, in Figure 7-1 , generated by the client include:

• Getting a list of all the available methodologies, so a software engineer may select

one and create a new software engineering project.

• Getting a list of all the available software engineering projects, so a software engineer

may open an existing project.

'4 The 1\ lOOT core manage,; the ,;cmantic ,;rate of a software: cnginccring project. whil,;t a C.\SE tool clicnt manages the

,;vmactic stare. The 1\ IOOT core. therefore, onlv generate,; Jircctivc,; that corrc,;ponJ to a corrcct ,;cmantic state.

1 78

General
Requests

Log-in
Log-out

List available
methodologies
List available

projects

Project Level
Requests

Create, delete,
open, save and

rename projects,
models and

diagrams

CASE Tool Client

Mode! Level
Requests

Create and delete
Symbols and
Connections

Update Fields

Responses
Permission to

perform requests

Error Messages

MOOT Core

Model Level Project Level
Directives Directives

Create and delete Create, delete and
Symbols and rename projects,
Connections models and

Update Fields diagrams

� - 1 The communication benveen C_\SE tool clients and the
_\fOOT core

Project-level requests correspond to actions (at the CASE tool client) on whole projects,

models and diagrams. This includes creating, deleting, opening, closing and renaming

software engineering projects, models and diagrams.

General and project level requests are satisfied by the MOOT core the assistance of

the Methodology description table (MDT). The :MDT table is discussed in detail in

section 7 .3.

Model-level requests correspond to actions, at the CASE tool client, on the elements of

diagrams. This includes:

• Placing new symbols and connections

Deleting symbols and connections

• Updating text fields

The MOOT core uses an NSM table to translate these requests into semantic actions on

the collection of SSL objects that define the state of the user's software engineering

project. NSM Tables are discussed in detail in section 7.4.

1 79

7.2.2 MOO T Core Directives and Responses

Project-level directives correspond to the MOOT core broadcasting the results of

successful project-level requests to other CASE tool clients. This includes broadcasting

the creation, deletion and renaming of software engineering projects, models and

diagrams to CASE tool clients.

Model-level directives correspond to broadcasting two types of result to CASE tool

clients. The first type is the result of successful model-level requests. The seconds relates

to actions performed by the MOOT core, which have knock-on effects that must be

propagated to CASE tool clients. The model-level directives (shown in Figure 7-1),

generated by the MOOT core include:

• Directing a CASE tool client to create a new symbol or connection on a diagram that

corresponds to semantic elements (SSL objects) created by the MOOT core.

• Directing a CASE tool client to delete a symbol or connection from a diagram that

corresponds to semantic elements (SSL objects) removed by the MOOT core.

Directing a CASE tool client to update a text field in a diagram based on the change

in state o f semantic elements (SSL objects) by the MOOT core.

Project-level directives are generated the MOOT core with assistance of the

methodology description table. Model-level directives are generated the MOOT core

with the assistance of NSM tables.

The responses, in Figure 7-1 , are generated by the MOOT core as a result of processing a

request. There are two types of response:

• Permission to carry out general, project-level and model-level requests. Responses of

this type include any relevant information that the CASE tool client requires.

• Errors that correspond to disallowing a general, project-level and model-level

request. An error response is always accompanied by an explanation.

A communication protocol has been defined that supports the requests a CASE tool

client may make of the MOOT core and the directives and responses the MOOT core

1 80

sends to CASE tool clients. It is simple hand-shaking protocol that has been

implemented on top of TCP /IP. A description of the protocol can be found in (Adams,

1 998).

7.3 Methodology Description Table

The Methodology Description Table (MDT) provides a list of methodologies supported

by MOOT and corresponds to an index of the methodologies in the persistent store.

Each element in the table specifies:

• The SSL classes that define the methodology

• The modelling languages supported by the methodology

The diagrams supported by each modelling language

The notation, defined in NDL, to use for each modelling language

• An NSM table

7.3.1 Composition of the Methodology Description Table

Figure 7-2 shows the composition of the methodology description table. It is a map of

Methodology descriptions is indexed by methodology name. Each element of the

table corresponds to a methodology in the MOOT system. The structure of the MDT

corresponds to the upper level of the Core Knowledge Base (CKB). A methodology has

one or more modelling languages, one or more documents and a process . Each modelling

language provides one or more diagrams.

Each methodology in Figure 7-2 has a name that is unique within the MOOT system.

The methodology name is a descriptive string that identifies the methodology. Each

methodology description in the MDT references:

•

•

•

A methodology type name that corresponds to its semantic definition

An SSL class that defines its semantics

An NSM table that defines the mapping between syntax and semantics

A list of model descriptions
1 8 1

Methodology Description Table

Methodology Description

Methodology Name --•• Methodology Type Name

I I : �SL Class Name

...... ______ _,_. N S M Table Name

Model l ing Language Description

Language Name SSL Class Name

-----• NDL Notation Name

Diagram Description

Diagram Name SSL Class Name

Document Name SSL Class Name

Process Description '-----------,

Process Name ---. SSL Class Name

Figure 7-2 - fethodology Description Table

The methodology type name is a descriptive string that identifies the semantic definition

of a methodology55. Each SSL class that corresponds to a methodology definition (that is

55 The methodology type name is cu.rrently automatically derived from an SSL class name.

1 82

the Methodology SSL class defined in the CKB, or one of its sub-classes) has a

corresponding methodology type name. The name that a software engineer will see, for a

methodology, is the conjunction of the methodology name and the methodology type

name. Consider the situation where the MOOT system has two variants of UML with the

same semantic definition, but with different syntax. The UML semantic definition has a

descriptive type name (say 'UJ\1L'). Each methodology will also have a descriptive name

(say 'Company X' and 'Standard') . The names that the software engineer will see, at the

CASE tool client, would be 'Company X (UML)' and 'Standard (UML)'. The purpose of

the methodology type name is to make it explicit to the software engineer that the two

methodologies are both semantically identical. This approach also avoids the problem

with other meta-CASE tools where a 'same semantics' with 'different notation' implies a

'new methodology'. I n MOOT this situation is simply viewed as 'same methodology' but

'different notation' .

Each modelling language description has a name that is unique within the context of its

methodology description. This name is a descriptive string that identifies the modelling

language and is the name that a software engineer will see, at the CASE tool client. Each

modelling language description references:

An SSL class that defines its semantics

• An NDL notation description that defines its syntax

A list of diagram descriptions

The modelling language description list defines set of modelling languages that are

available with this methodology. It is possible that the list may contain a subset of all the

modelling languages defined in the semantic description. The name of each diagram

description is unique within the context of the modelling language description. This name

is a descriptive string that identifies the diagram and is the name that a software engineer

will see at the CASE tool client. The diagram description maps the diagram name to the

SSL class that defines its semantics .

Each methodology may have one or more documents. The name of each document

description is unique within the context of the methodology description. This name is a

1 83

descriptive string that identifies the document. Document descriptions map document

names to the SSL classes that define them.

The last element in a J\1DT entry is a process description. It consists of a descriptive

name that identifies the process and an SSL class that defines it. Any references made to

the process, at the CASE tool client user interface, will be made with respect to the

process name.

This thesis has not concerned itself with detailed modelling of documents and soft\Vare

development processes (see section 9.4 - Future Work) . The coupling bet\Veen a

methodology and its documents and process is much lower than that bet\Veen a

methodology and its models. It is expected, therefore, that methodologies with the same

semantic definition may be able to have different documents and processes.

7.3.2 Applying the Methodology Description Table

Figure 7-3 describes the scenario of opening a new softv.rare engineering project. For the

purposes of this discussion the net\Vork communication between the Client object and

ClientManager object is represented by the interchange o f messages.

Cl1ent CASE Tool Cl1entManager ����gy�- classForMethodology

� DescnptJon Table

getMethodolgyNames()
getMethodolgyNames()

--� · x
successResponse(llst)

createProject(mName)
·---� _ getMethodologyCiass()

successResponse(newiD)

SSL Class

a new software cng:mccring: project

1 84

ChentManager is a singleton object (Gamma et al., 1995) that is part of the tool manager

(see Figure 3-1 1 - Architecture of the MOOT prototype) . It is responsible for managing

communication between the MOOT core and CASE tool clients.

Initially a software engineer creates a new software engineering project. The first sub-task

performed is to choose a particular methodology. The Client initially requests a list of

methodology names from the MOOT core. The ClientManager object delegates the

responsibility of generating this list to the MDT. The ClientManager sends a successResponse

to the Client, with the list of names as an argument. The software engineer then selects the

methodology they wish to use from this list.

The Chent then requests that the MOOT core creates a new project. It provides the

methodology name, selected by the software engineer, as an argument of a request sent to

the ClientManager. The ClientManager initially must determine the SSL Class that

corresponds to this methodology by interrogating the :MDT. Once it has the appropriate

SSL class, it then creates an instance o f it. The resulting SSL object (NewPrqject in Figure

is the root of the new soft\vare engineering project. The last step o f the process is to

return the unique SSL ID of NewPrqject to the client as an argument of a successResponse

message. Any future references the Client makes to the new software engineering project

will include this SSL ID as an argument.

7.4 Notation Semantic Mapping Tables

The Notation Semantic Mapping (NSJ'vf) defines the mapping between notation

elements and semantic concepts (see Figure 3-2 The relation between software projects,

methodology descriptions and the description languages in MOOT).

7.4.1 NDL vs. SSL

The syntax of a methodology is defined using the Notation Definition Language (NDL) .

NDL is a scripting language that is based on composition of a fixed set of template types.

Template types are parameterised by a set of text fields, each of which has a unique NDL

ID. The syntax definition of a methodology consists of a set of NDL scripts. The visual

representation of a software engineering project consists of a collection of NDL views,

grouped into a collection of diagrams.

1 85

The semantics of a methodology is defined using the Semantic Specification Language

(SSL) . SSL is an object-orientated language based on classes, inheritance, aggregation,

association, polymorphism and message passing. The semantic definition o f a

methodology consists of a set of SSL classes. The state of a software engineering project

consists of a collection of SSL objects. The MOOT core processes SSL by executing SSL

methods on the SSL virtual machine. It does this in response to the tasks the software

engineer performs using the CASE tool client.

The NSM table is responsible for defining a particular mapping between a syntax and

semantic definition. Table shows the correspondence between elements that support

syntax and elements that support semantics in MOOT.

Project
Structure
Elements

Structural
Elements

Dynamic
Elements

Syntax

Project editor of the CASE tool
client

Model editor CASE
client

Diagram editor of the CASE tool
client

NDL template

NDL view

Creating and destroying NDL
Vlews

Values in fields

Actions on ND L views

Semantics

Instance of the Methodology SSL
class (and sub-classes)

Instance of the Modelling Language
class (and sub-classes)

Instance of the Diagram SSL class
(and sub-classes)

SSL class

SSL object

Attributes of SSL cla�>ses

Creating and destroying SSL
objects

SSL object state

Messages to SSL objects

Table - 1 ben,·ccn svntax and semantic elements

The mapping of the structural and dynamic elements shown in Table 7-1 is supported by

NSM tables. The mapping of project structure elements is supported with the

Methodology Description Table.

1 86

7. 4.2 Composition of NSM Tables

An NSM table consists of si..-x associative arrays (maps) . Each map supports one aspect of

the mapping between an NDL description and an SSL description.

The names of the six maps contained in an SM table are:

1 . 'Create concept' map

2. 'Create relation' map

3. 'Add' map

4. 'Action' map

5. 'SSL object creation' map

6. 'SS L object update' map

Create Concept Map

The create concept map (Figure 7-4) defines the mapptng between 'D L symbol

templates and SSL classes.

Create Concept Map

NDL Symbol Template Name SSL Class N ame SSL Create Message

NDL Symbol Template Name

NDL Symbol Template N ame

SSL Class N ame SSL Create Message

SSL Class Name SSL Create Message

Figure -4 - The create concept map

The left-hand side is a list of DL symbol template names. The right-hand side is a list of

SSL class names and SSL create message pairs. A request from the client to create a

particular symbol (that is represented by an D L symbol template) is satisfied by

instantiating the corresponding SSL class . The corresponding create message is sent to

this class to initialise the new SSL object.

Each NDL symbol template may only appear once m the map. The current

implementation of the NSM table assumes a one-to-one mapping between an DL

symbol template and an SSL class. Only SSL classes that correspond to an NDL symbol

template will appear in this table.

1 87

Create Relation Map

The create relation map (Figure 7-5) defines the mapping between NDL connection

templates and SSL classes.

The left-hand side of Figure 7-5 is a list of NDL connection template names. The right­

hand side i s a list of SSL class names and SSL create message pairs. A request from the

client to create a particular connection (that is represented by an NDL connection

template) is satisfied by instantiating the corresponding SSL class.

Create Relation Map

N DL Connection Tem plate Name -

Connection Start

N DL connection Arity
termi nator name

N DL connection Arity
termi nator name

NDL connection Arity
termi nator name

Connection End

NDL con nection Arlty
termi nator name

N DL con nection Arlty
termi nator name

N DL connection Arlty
termi nator name

Figure 7-5 - The create relation map

... SSL Class
N ame

SSL Create
Message

Each create relation entry in the create relation map (Figure 7-5) is composed of one or

two parts. The connection start defines items that may appear at the beginning of a

connection. The connection end defines items that may appear at the end of a

connection. This structure implies the convention that all relations have a 'start' and an

'end'. ary connections (which do not have a start or end) are represented with the

connection start. The distinction between start and end parts is important for directed

relations, but not for bi-directional relations.

Each item in the connection start and connection end parts is composed of an N D L

template of a connection terminator and an arity. The arity defines how many connection

terminators may be involved in a connection.

The current implementation of the NSM table assumes a one-to-one mapping between

an DL connection template and an SSL class. Only SSL classes that correspond to an

NDL connection template will appear in this table.

1 88

Add Map

The add map (Figure 7 -6) is used to add models to projects, diagrams to models and

concepts and relations to diagrams.

Add M a p

Model Name -.;r---t� SSL Message

Model Name SSL Message

Diagra m Name SSL Message

Diagra m Name SSL Message

NDL Template Name SSL Messag e

N DL Te mplate Name SSL Messag e

Figure 7-6 - The add map

Models and diagrams are created with the assistance of the MDT, which provides a

similar service as the create concept and create relation maps. The add map is used to

find the SSL message that is used to add models to projects and diagrams to models. The

first two maps, in Figure 7-6, provide a mapping between model and diagram names and

the appropriate SSL message.

Creating a new concept or relation is achieved in two steps. The first is to create a

corresponding SSL object. This is supported with the create concept and create relation

maps. The second step is to add the new SSL object to a diagram. The add map is used to

find the SSL message that is used to add an item, that corresponds to a particular NDL

template, to a diagram. The message is sent to the SSL object that represents the diagram,

with the item as an argument.

Action Map

The action map (Figure 7 -7) helps translate 'logical actions' at the software engineer user

interface, to the corresponding equivalent semantic actions.

NDL text fields can be considered as the visual representation of the properties of

concepts and relations (such as the role name on an association connection, or the class

1 89

name in a class symbol). The properties correspond to attributes of SSL classes. The

values of the properties correspond to the state of SSL objects.

Action Map

NDL Action N DL Field ID

N DL Action N D L Field ID

N D L Action N DL Field ID

-.....___. SSL Message

---.• SSL Message

SSL Message

Figure 7-7 - The action map

An NDL action on a particular field is mapped to an SSL message. DL actions do not

reference the state of SSL objects directly, as this would break encapsulation. This

mechanism supports the binding of arbitrary D L actions to SSL messages.

SSL Object Creation Map

The SSL object creation map (Figure 7 -8) performs the reverse operation of the create

concept and create relation maps.

SSL Object Creation M a p

SSL C lass Name

SSL C lass Name

SSL C lass Name

N DL Tem plate Name

N DL Tem pl ate Name

N DL Template Name

Figure 7-8 - The SSL object creation map

The SSL object creation map identifies those SSL classes whose instances should be

reflected by visual representations in clients. It is used when the server creates SSL

objects, without a request from a client. For example an SSL object representing a

context diagram in a Data Flow Diagram (DFD) model may automatically create an SSL

object for the system process. SSL classes in this category are a subset of all the SSL

classes in a methodology description.

SSL Object Update Map

The SSL object update map (Figure 7 -9) performs the reverse operation of the action

map for updates of the state of an SSL object. It maps SSL messages to one or more

N D L fields (each of which has a unique identification number - an N D L I D). When an

1 90

SSL object on the server sends a message that appears on the left-hand side of the map,

the NDL fields on the right-hand side need to be updated with new values. Such changes

are broadcast by the MOOT core to affected clients.

SSL Object Update Map

SSL Class Name SSL Message NDL Field l Os

SSL Class Name SSL Message ••.....---•• NOL Field lOs

SSL Class Name SSL Message NOL Field l Os

Figure 7-9 - The SSL object update map

7. 4.3 Applying NSM Tables

The complete NSM table is shown in Figure 7-1 0. The arrows indicate sub-parts of the

table that are related to each other, in terms of satisfying requests and satisfying the

issuing of directives. The lower section shows the NSM table elements that provide

reverse operauons.

The top four maps are related to communication from CA E tool clients to the MOOT

core (the requests) , whilst the bottom two maps are related to communication in the

reverse direction (the directives).

The create concept and create relation maps are both used to translate 1DL templates

into S L classes and support the creation of new symbols and connections on diagrams.

The SSL object creation map provides the reverse operation of translating SSL classes

into DL templates.

The add map is used to specify how new concepts and relations are added to a diagram.

The action map is used to translate logical actions at the CASE tool client into semantic

actions (messages to SSL objects). The SSL object update map provides the reverse

function of the action map, for update actions.

1 91

Create Concept Map

NDL Symbol Template Name • SSL Class Name NUL >:>ymDOI I emp1a1e Name
NUL �ymoo1 1 emp1a1e t'lame

SSL Create Message
. - - - -, -'

Create Relation Map

NDL Connection Template Name

Connection Start

SSL Class
Name

NDL connection terminator name Arity
. - - - - - · · · · - - -· - · · - - · · · · · · · - - - · · · - · · · - - · · · -1

SSL Create
Message

Connection End

NDL connection terminator name Arity
. - - - - - · · · · - - - · - · · - - · · · · · · · - - - · · · - · · · - . .. - -1

Add Map

Model Name
IWIVUGI 1 •0 1 1 11;;;

Diagram Name
IJ I CI � I Cl I l l I • a t J ICiO

IJ I Q� I Q l l I I • a t I IV

NDL Template Name

SSL Message
� � � nn;;..,�a�a

....., ... nt -c;;: ..;:, .;;x;a �a

SSL Message
..... -...� ._ ��a�a

....,..., ._ �..ox;l�a

SSL Message
"" "'"' ._ •••cr�..,a � a

- - -, -
- -, -

, ,. .., ._ • c a • • t" a "v • • a • • •c;;;

._ I Gl l l iJ I CI .. G I .. CI. I I IG, ,,...,�a !:fa

Action Map

NDL Action NDL Field ID SSL Message
., � ""' "' "' "" ' ' · · - -- ' ,.. · -,..., �, ... a !:fa

�....,,_- """""' '-,-.i:la !:fa

SSL Object Update Map

SSL Class Name SSL Message
......, ...,. _, 'Oil� · · "" ' ' '"" """ """ - � �""" �"""'

..._,, ._ """" '""'�� I •Ut I IV ...,, ._ I W I V ... 'ti;#U �"w

SSL Object Creation Map

., ._ I ICiOI\ol I IJ S

,, � I t c; I U I Ll S

SSL Class Name ...__......,.._ NDL Template Name
��L. viCil:tl:t I .. CI I I Itt: ,3----- I .. LIL. I tt:l l lf.IICiltt: nctl l ri!

....,,;..__..._., I .. LI L. I tt:ll lf.IICiltt: I .. CII I �

Figure 7-10 - The Notation Semantic 1fapping Table

1 92

Several scenanos that illustrate how NSM tables are used follow. These are: creating a

new model; creating a new concept; the successful update of a text field; a failed attempt

to update a text field and the propagation of a server side update to CASE tool clients.

Creating a New Model

The scenario in Figure 7-1 1 (creating a new model) illustrates the use o f the NSM table

add map. It also further shows the use of the Methodology Description Table (MDT).

successResponsta(nO'W!D)

a new model

The software engineer has already created a new software engineering project, or opened

an existing one, and has decided to create a new model. The Client requests a list of

modelling language names from the MOOT core5('. The C!ientManager delegates this

The Cliflll requests this list when the user selects

a new model can be in the ;-;;Jmc context.

1 93

lt rs shown here so all the step;-; in,·okcd m

responsibility to the MDT. The argument to the getModellingLangNames message

corresponds to the methodology of the user's project"7• The ClientManager then sends a

successResponse message to the Client with a list of modelling language names as an

argument.

Once the software engineer has chosen the modelling language to use, the Client sends a

createModel message to the ClientManager, with the modelling language name as an

argument. The ClientManager uses the MDT to find the appropriate SSL class for this

modelling language (the classForModel object in Figure 7-1 1). It then creates an instance of

this class (NewModel in Figure 7-1 1) by sending classForModel an instantiate message.

The ClientManager now uses the NSM table object (Table in Figure 7-1 1) to find the SSL

message which is used to add the newly created model (NewModel in Figure 7- 1 1) to the

current project (the project object in Figure 7-1 1) . The add message is then sent to the

prqject object with NewModel as an argument. The ClientManager then sends a successResponse

message to the Client with the unique SSL ID of the newly created model as an argument.

The Client also needs the notation that corresponds to the new model. I f it does not

already have the notation it sends a getNotation request to the ClientManager, with the

modelling language name as an argument. The ClientManager determines the NDL script

that is required by interrogating the MDT. It then requests the notation from the

NotationSeroer object'H. The ClientManager finally sends a successResponse message to the

Client, with the notation as an argument.

Creating a New Concept

The scenario captured by Figure 7-1 2 illustrates the use of the NSM table create concept

map. Tills scenario occurs whenever the software engineer places a new concept into a

diagram (e.g. a new class on a class diagram, or a new state on a state transition diagram).

;- The Clienti\Ianager actually maintains a vecror of C/ien!Ptv:>y' objects (one for each connected chcnt). Each C :l icntProxy

object maintains derails such as the user and the active project. The ClientPm.:J' objects have been omitted from these

djagrams for brevitY.

iR The 1\ !00T protorypc implements this as a ilirect rC<jUCst ro rhc pcrsisrcnr store.

1 94

accept(addMe$sage)

getiD()

successRespon.se(newiD)
<

- 1 2 - a nc\v conccpr

The Client sends a createNewConcept message to the ClientManager. The arguments to this

message include SSL IDs of the model and diagram5'1 where the concept is to be

placed and the name of an NDL symbol template. The CJientManager perfonns two tasks

on receipt of the createNewConcept message. It first asks the NSM table (the Table object in

Figure 7-1 2) to translate the NDL symbol template name into a corresponding SSL class

name (conceptClass in Figure 7 - 1 2) . It then asks the NSM table for a create message. The

create message is used to initialise the new concept (newConcept in Figure 7 - 1 2) . Once the

object has been created the CJientManager asks the NSM table for an add message. The

add message is used to add the new concept to the diagram (diagram in Figure 7 - 1 2)

identified in the original createNewConcept message.

l r is a,;,;umcd that client can all mc:;,agc,; from the Client abo

include rhc SSL lD of the rn,jcct. The idcntific:; the context

'J.:irhin an action occur:-:.

1 95

The ClientManager then sends a successR.esponse message to the Client with the unique SSL

ID o f the new concept as an argument. In this example all steps are successful. In general

each step may fail and result in a jailResponse message being sent to the Client. An example

that includes a failresponse is given on page 1 97.

The Successful Update of a Text Field

The next two scenarios demonstrate the use of the NSM table action maps. In Figure

7- 1 3 the software engineer has changed the value of a text field on a diagram. Text fields

correspond to the properties of concepts and relations. This scenario corresponds, for

example, to changing an attribute name in a class diagram or renaming a store in a data

flow diagram.

Chent : CASE i
Tool Cl1ent

'

changeEiement{modei. d1agram, act1on, element,

successResponse()

args)

Table NSM i source . SSL
� Ql?.lgg

getActJon(actJon, element)

,,,,-� '��-> -

accept(updateMessage,args)

" -� '�"- -'- ,_,_,,,,_,,, , ___ �,�,-��-

otherCI;ent • CASE

processMessage()

accepr{ iSOKMessage)

->�

perform(project, model, dtagram, actton element. source. args)

1 3 Successful of a field

Initially the client sends a changeElement mess age to the ClientManager. The arguments to

this message include the SSL IDs of the model and diagram on which the updated field is

placed. It also includes IDs that identify the action to be performed, the text field that has

been altered and the SSL ID of the concept or relation that owns the text field. The

model, diagram, element and source IDs uniquely identify the field to be updated. The

action ID defines what is to be done to the field.

1 96

The ClientManager asks the NSM table to translate the action and element ID into an SSL

message (updateMessage in Figure 7-1 3) . The update message is then sent to the object that

corresponds to the source argument of the original message (source in Figure 7-1 3) .

Figure 7-13 shows that the update message has resulted in the creation o f a critic object

(resultCritic in Figure 7 - 1 3) . The resultCritic SSL object is then interrogated to determine the

result of the update message. If the resultCritic indicates a success the Clientlvfanager sends a

successResponse to the Client to indicate that it can commit the update. The ClientA1anager

can now broadcast the change to any other CASE tool clients that may be interested

(otherC!ient in Figure 7 -1 3).

A Failed Attempt to Update a Text Field

Figure 7-14 shows the same scenario as Figure 7-1 3 except that the result of processing

updateMessage indicates that the update is not valid. For example changing the name of an

attribute so it is the same as another might be considered illegal.

Cl1ent . CASE
�

ChentManager

getACtion(actlon. e!ement)

accept(update Messag$,args)

""' 1 -t Failed attempt to update a field

processMessage()

<<create>>
......., resu!tCtltiC : SSL
·;7" - �0 --

The resultCritic object in Figure 7-1 4 has indicated that an error occurred (the isOKA1essage

message has returned false) . The ClientManager interrogates the resu!tCritic object for an

1 97

explanation. A Jai!Response message is sent to the Client with the explanation as an

argument. The Client can then present the explanation to the software engineer('' '.

Propagation of a Server Side Update to Other Clients

The final example (Figure 7 - 1 5) illustrates the use of the SSL object update map.

receiVIng obrect

SSL ObJect

propagateUpdate(updat�D,rectJve)

� 1 5 -

pertorm(project. mOdel, d1agram, act1on, element, source, args)

SCITCf siJe

The SSL object sending object in Figure 7-1 5 has sent a message (message in Figure 7 -1 5) to

another SSL object (receiving of:jec� . Once receiving object has finished processing the message

it then interrogates the NSM table to see if the message might cause an update that is of

interest to CASE tool clients. The message is translated into a collection of NDL field

IDs by the NSM table. Receizing object then asks the ClientManager to propagate update

directives to any CASE tool clients that may be interested. The ClientManager sends a

perform message to all clients (othetClient in Figure 7-1 5) . The perform message

includes the SSL ID o f the source object and the element ID of the field. The Client is

responsible for updating all views that correspond to the source object.

l n the proton·pc

so the soft\van:

of the (: \Sl ·. tool client

han: done.

1 98

arc collated 111t0 separate feedback window

7.5 Summary

This chapter has discussed the realisation of methodologies in the MOOT system and

illustrated how syntax and semantic descriptions are associated with each other to form

complete methodology descriptions. The syntax-semantic association involved:

• The relation between a software engineering project, in terms of its models, diagrams

and documents, to the methodology used to create it.

• The relation between the syntax and semantic descriptions expressed with NDL and

SSL.

• The relation between logical actions performed usmg the CASE tool client and

semantic actions processed by the MOOT core.

The three aspects of the syntax-semantic mapping have been supported by:

The Methodology Description Table (MD1). Each element of the MDT

corresponds to a methodology. The structure of the MDT corresponds to the upper

level of the Core Knowledge Base (a methodology has a collection o f modelling

languages, a collection of documents and a process. Each modelling language has a

collection of diagrams) .

• Notation-Semantic Mapping tables. Each NSM table defines mapping between a

NDL notation description and SSL semantic description. This includes mapping

NDL templates to SSL classes, NDL Views to SSL objects and logical actions on

NDL views to messages to SSL objects.

The communication protocol between the CASE tool client and MOOT core. This

protocol is based on the requests and directives that are passed between the CASE

tool client and the MOOT core.

1 99

Chapter 8

Chapter 9

Section III

Results , Discussion and Review

Validating the MOOT Approach

Conclusion and Future Work

200

201

227

Chapt e r 8

Validating the MOOT Approach

Give me a fruitful error any time, full of seeds, bursting with its own

corrections. You can keep your sterile truths for yourself.

8.1 Introduction

Vi!fredo Pareto

The research described in this chapter is representative of work carried out to validate the

initial MOOT prototype and to investigate the efficacy of the MOOT approach. A range

of results that illustrate the application of the principles , techniques and ideas

propounded in this thesis are presented. This includes:

• The implementation of the Coad and Y ourdon methodology (Coad and Y o urdon,

1 990, 1 99 1 a, b). The description includes fragments of NDL code, SSL code, a

portion of an NSM table and an entry from the Methodology Description Table.

An extension of the Generic Object Orientated Knowledge Base, which implements

support for patterns (Gamma et al., 1 995).

• Defining the core UML meta-model as an extension of the CKB and GOOKB.

• Development of the semantics editor using MOOT. Two modelling languages are

proposed for this purpose - the SSL module structure modelling language and the

SSL method modelling language. The semantics of these modelling languages are

defined as an extension of the Core Knowledge Base (CKB) and the Generic Object

Orientated Knowledge Base (GOOKB).

• Development of the Joosten workflow methodology Qoosten, 1 995) .

201

8.2 Defining the Coad and Y ourdon Methodology

The Coad and Y ourdon methodology can be reaclily defined as an extension of the

Generic Object Orientated Knowledge Base (GOOKB). The GOOKB already defines

SSL classes for class, attribute, operation, inheritance, whole-part and association. The

only additional relation that must be added is message connection.

Figure 8-1 shows the SSL classes that have been added to implement Coad and Y ourdon.

AddCiass(c : Class) CKB·.:Critic

Addlnheritance(r : GOOKB::Inheritance) : CKB: :Cri!ic

AddWholePart(r : GOOKB::Whole_Part) : CKB::Critic

AddAssociation(r GOOKB::Association) : CKB::Critic

i Destroy()

' DetachConcept()
: DetachRela!ion()

getConcept() . CKB::Concept

getRelation() : CKB::Relation

Coad_and. Yourdon: :Message_Receiver

Coad_and. Yourd on : : Message_Sender

the Coad and Yourdon

The Message Connection class in Figure 8-1 is a type of Directed Binary Relation. Its end points

are modelled with two sub-classes of Relation Terminator - Message Receiver and A1essage

Sender. Object Diagram has been sub-classed and extended with behaviour for handling

message connections . This example illustrates two important points:

The definition of Coad and Y ourdon is straight forward. \Xlhilst it can be said that

Coad and Y ourdon is one of the simplest methodologies,

Coad and Y ourdon only required four new classes.

semantic definition of

The SSL module system prevents an explosion of SSL class names. For example the

two Object Diagram classes in Figure 8-1 are disambiguated by the knowledge base

they are defined in (GOOKB and Coad and Yourdon).

Figure 8-2 shows an entry in the Methodology Description Table (MDT) for Coad and

Y ourdon. The first line is the name that a software engineer will see when using the

CASE tool client. The second line is the SSL class that is instantiated when a new Coad

202

and Y ourdon project is created. Line three specifies how many modelling languages are

supported. In this example Coad and Y ourdon supports a single modelling language.

Lines four to nine define the single modelling language. Line four is the descriptive name

for the modelling language that the software engineer will see. The next line is the

corresponding SSL class that is instantiated when a new model is created that uses this

modelling language. Line six is the name of an DL notation to be used for the

modelling language. Line seven specifies that this modelling language consists of a single

type of diagram. Line eight contains a descriptive name that the software engineer sees,

for this diagram and line nine is the corresponding SSL class.

L i ne 1 . c oad and yourdon

Line 2 . c kb : methodo l o gy

Line 3 . 1
Line 4 . c oad and yourdon c l a s s di agram

Line 5 . g o okb_mode l : obj e c t_model

Line 6 . c oadyourdon_c l a s sdiagram

Line 7 . 1
Line 8 . c l a s s di agram

Line 9 . c oadyourdon_mode l : ob j e c t_di agram

Figure 8-2 - �[ethodology description table for Coad and Yourdon

Figure 8-3 shows a snapshot of the CASE tool client 'select methodology' dialogue box.

� CANCE� I
Figure 8-3 - The select methodology clialogue box

The example in Figure 8-3 shows that the software engineer has three methodologies to

choose from, when creating a new project6 1 • The last item in the list (coad and yourdon)

corresponds to the entry in the MDT in Figure 8-2. The text displayed in this dialogue

box is from line one of the Coad and Y ourdon entry in the MDT.

The N D L description to be used for the Coad and Yourdon class diagram modelling

language is given in line 6 of the Coad and Y ourdon entry in the MDT. This N D L

6 ! The other entries will be discussed i n subsequent sections of this chapter.

203

description contains definitions of the symbols and connections that are used for the

syntax of the Coad and Y ourdon class diagram modelling language. Figure 8-4 (a) shows

a Coad and Y ourdon Class&Object symbol rendered by the CASE tool client. The

corresponding NDL specification, from which the Class&Object symbol is generated, is

given in Figure 8-4 (b).

a)
C l a s s &O bj e ct

....

attri b ute 1
a ttri b ute 2

a n extre mely l o n g o p erati on n a m e
o p e ration 2

b)

Symbo l_Temp l a t e c l a s s

{
hght

wdth

dy =

dx =

+ 4 g rpHe i ght (grp) #

+ 4 grpW i dth (grp) #

- hght 5 #

- wdth 5 #

(i) component s

0 : c l as sheigh t

1 : c l as swidth

2 : dockingY

3 : dockingX

GROUP grp (_c l as snamegroup l l _c l as sgroup) AT (2 , 2)

LINE (5 , 0) (dx , 0)

LINE (wdth , 5) (wdth , hght)

LINE (dx , hgh t) (5 , hght))

L INE (0 , dy) (0 , 5)

ARC (0 , 0) (1 0 , 1 0) , 9 0 , 9 0

ARC (- wdth 1 0 , 0) (wdth , 1 0) , 0 , 9 0

ARC (0 , - hght 1 0) (1 0 , hght) , 1 8 0 , 9 0

ARC (- wdth 1 0 , - hght 1 0) (wdth , hght) , 2 7 0 , 9 0

BOUND ING RECT (wdth , hght)

(i i) docking areas

i n s tance , who l e - part , me s s age conne c t i on

L I NE DA 0 (0 , 5) (0 , dy) u 1 0

(i n s tance who le -part me ss age)

LINE DA 0 (5 , hght) (dx , hght) u 1 0

(i n s t ance who l e -part me s s age)

LINE DA 0 (wdth , dy) (wdth , 5) u 1 0

(i n s tance who l e -part mes s age)

L I NE DA 0 (dx , O) (5 , 0) u 1 0

(in s tance whol e-part me s s age)

inhe r i tance

L INE DA 0 (2 , 5) (2 , dy) u 10 (inheri tance)

L I NE DA 0 (5 , - hght 2) (dx , - hght 2) u 1 0 (i nher i tanc e)

L INE DA 0 (- wdth 2 , dy) (- wdth 2 , 5) u 1 0 (inher i tanc e)

L I NE DA 0 (dx , 2) (5 , 2) u 1 0 (inher i tanc e)

DEFAULT TEXT (grp , 9) # text f i eld contained in grp

Figure 8--+ - Symbol template for the Coad and Yourdon
Class&Objecr symbol

204

Figure 8-4 (b)(i) consists o f a collection o f segment templates('2• The first segment

template is a group reference. The default group template (_classnamegroup) defines the

three inner compartments and a surrounding round rectangle. Clicking on the arrow in

the upper right-hand corner of the symbol in Figure 8-4 (a) will cause this group to

change to an instance of _classgroup. The remaining eight segment templates define the

outer round rectangle of the symbol (which denotes the 'objects' in Coad and Y ourdon) .

Figure 8-4 (b)(ii) lists eight docking areas. The first four define where whole-part, instance

and message connections may be attached. These types of connection may be attached

anywhere on the outer round rectangle of the symbol (except on the curves) . The second

group of four docking areas define that inheritance connections can only attach at the

inner round rectangle (but, again, not on the curves) .

Figure 8-5 (a) shows an example Coad and Y ourdon message connection rendered by the

CASE tool client. The corresponding NDL specification, from which the message

connection is generated, is given in Figure 8-5 (b) and Figure 8-5 (c) .

Three types of template are used to define connections in NDL (connection template,

connection symbol template and connection terminator template) . Figure 8-5 (b) shows

NDL connection terminator templates for the Coad and Y ourdon message connection.

The first (_defaul� describes a single line. This connection terminator template is used for

connections that do not have a symbol at their end points (that is the inheritance,

instance and whole-part connections in Coad and Y ourdon). The second connection

terminator template defines a simple arrow head. The arrow head can be seen attached

to the Destination class in Figure 8-5

Figure 8-5 (c) shows the NDL definition for the Coad and Yourdon message connection.

The line templates and the bounding rectangle are used to draw an icon for a button that

will appear on the CASE tool client toolbai'. The next NDL statement specifies that the

message connection is a binary connection. The terminator list specifies the connection

terminator templates that are used for each end point of the connection1'4• In this example

t< ' !!ldicatt: a C< munull rn \:!) J . .

I com for arc the ,;nnb<>l onto the toolbar button.

1" The connccnon It appears bcfon: the terminator li,;t, if needed.

205

the _difault connection terminator template is used at the beginning of the connection

and the _messageDestination connection terminator template is used at the end.

a)

B I

b)

C onnec t i on_Te rmi na t o r d e f a u l t

L INE (0 , 3) (1 2 , 3)

BOUNDING RECT (1 2 , 6)

HEAD (0 , 3)

TA I L (1 2 , 3)

D e stin ati o n
" -v

Connec t i on_Te rmina t o r _me s s ageDe s t ina t i on

c)

L I NE (1 0 , 6) (1 2 , 6)

L I NE (0 , 6) (1 0 , 0) (1 0 , 1 2) (0 , 6)

BOUNDING RECT (1 2 , 1 2)

HEAD (0 , 6)

TA I L (1 2 , 6)

C onnec t i on_Temp l a t e me s s age

{
too l bar i c on

L INE (3 , 3) (1 2 , 3)

L INE (0 , 3) (3 , 0) (3 , 3) (0 , 3)

BOUNDING RECT (1 2 , 6)

ARITY 2

TERMINATOR _de fau l t _me s s ageDe s t ina t i on

Figure 8-5 - Representing the Coad and Yourdon message
connecaon

A portion of the Notation Semantic Mapping (NSM) table used to associate the syntax

and semantic descriptions for the implementation of Coad and Y ourdon is given in

Figure 8-6.

Figure 8-6 (a) is the action map. The number 0 indicates an update action. The second

number is a unique NDL ID that corresponds to a text field. The last part is the SSL

message that corresponds to the action. The first entry in the action map, for example,

specifies that the SSL message changeclassname-S# will be used to implement an update

206

action on the text field with ID 9 (the field with ID 9 contains the class name in this

example) .

a)

0 9 changec l a s s name - S #
0 1 2 adda t t r ibu t e - S #

0 1 5 addoperat i on - S #

b)

c l a s s

abs t ra c t c l a s s

gookb_mo de l e l ement : c l a s s
gookb_mo de l e l ement : c l a s s

i nhe r i t ance gookb_mode l e l emen t : inher i t anc e
d e f au l t 2

c rea te - #

c r ea t e - B#

2

: c l a s s # V g o ok b_mode l e l emen t : c l as s # #

who l e - part gookb_mo de l e l emen t : who l e_pa r t 2
_de fau l t 2
c reat e - Vgookb_mode l e l emen t : c l a s s #Vg o ok b_mode l e l emen t : c l a s s # #

ins t an c e gookb_model e l emen t : a s s o c i a t i on 2
de fau l t 2

: c l as s # Vg o o kb_model e l emen t : c l as s # #

mes s a g e c oadyourdon_mode l e l ement : me s s a g e c onne c t i on 2
defau l t 1

_me ssageDe s t i na t i o n 1
: c l a s s #V g o okb_mo de l e l emen t : c l as s # #

c)

c l a s s
abs t ra c t c l a s s

inhe r i t ance

addc l a s s : c l as s # #

addc l a s s - V g o o kb_mode l e l ement : c l a s s # #

who l e - part

ins t ance

adda s s oc iat

mes s age

a ddr e l a t i

: i n h e r t a nc e # #

: as s o c i at i on# #

: me s s agec onne c t i on # #

Figure 8-6 (b) contains the create concept and create relation maps. The Coad and

Y ourdon Class and Class&Object symbols (line one and two respectively of Figure 8-6

(b)) are both represented by an instance of Class in the GOOKB. The two different

create messages are used to ensure that Class symbols represent abstract classes, whilst

Class&Object symbols represent concrete classes.

Figure 8-6 (c) contains a portion of the add map. The six entries in the add map define

the SSL message that is used to add an item that corresponds to a particular NDL

207

template, to a diagram. This message 1s sent to the SSL object that represents the

diagram, with the item as an argument.

Figure 8-7 shows the implementation of the addAttribute operation (an SSL method) that

is referenced in the second line of the action map in Figure 8-6 (a) .

1 1 i mp l ment a t i on o f opera t i on adda t t ribu t e for

1 1 g ookb_mode l e l emen t : c l a s s

c r i t i c addA t t r ibu t e (string a)

A t t r i bute toAdd , c ur r en t ;

C omp l exC r i t i c addC r i t i c ;

s
] a t t r ;

1 1 a) create a new attribute

t oA d d = self . newA t t r ib u t e (a) ;

a d dC r i t i c Comp l exCr i t i c . create (toAdd . i sVa l i d ()) ;

1 1 b) check to see i f i t i s a duplicate

a t t r theA t t r i bu t es . front () ;

l oop

}

endloop when (a t t r . end ()) ;

c u rrent a t t r . itam () ;
i f (t oAdd . i s S ameAs (c u r r e n t))

{
addC r i t i c . add (

) ;

S i t i c . creat e (false ,

" there s a l ready an a t t r i bu t e ca l l ed " +a)

a t t r . next () ;

i f (addC r i t i c . i sOK ()) { theA t t r i bu t e s . add (toAdd) ;

return addC r i t i c ;

of the add.\ttriburc

The add.Attribute method given in Figure 8-7 is a method of the SSL class 'Class', defined

in the GOOKB. It is executed whenever a new attribute is added to the class.

In Figure 8-7 (a), a new SSL object (toAdd) is created to represent the new attribute. This

is achieved by sending the newAttribute message to the self object''5• The new SSL object is

then sent an is Valid message, which returns an instance of Critic as a result.

nuy be overridden in �ub-da::.:::.;c� tt , gcncran.: an insrancc of an SSL

208

The code fragment in Figure 8-7 (b) determines i f the newly created attribute i s unique

within the context of the class . It does this by iterating over the collection of attributes in

the class (theAttributes) and comparing each one to the newly created attribute. If the new

attribute (toAdd) is found to be a duplicate a Critic object is created, with an appropriate

explanation. Figure 8-8 illustrates these steps by showing an example of the CASE tool

client in action.

!;[Jl;'MOOT GUI Cl isnt - (unnamo>dlcoad and }''· · · I!II!J D
Project

[§] I

Test c l a s s

attribute 1
attribute 2
attri bute 21

(a) the user tries to duplicate an attribute

U ; i i I

;f}!j MOOT GUI Clisnt - [unnamsd lcoad and y . . . I!II!J D
Project

[§J idl
Test c la s s

attribute 1
attribute 2

(b) the action has been disallowed

I !

(c) the explanation generated by the MOOT core

Figure 8-8 - Adding an attribute

In Figure 8-8 (a) the software engineer has created a single class. The first message in the

feedback window (Figure 8-8 (c)) corresponds to the successful creation of the class. The

user has then started to add several attributes. The software engineer is entering a third

attribute in Figure 8-8 (a), but has mistakenly duplicated the previous attribute name.

\'V'hen the software engineer presses the enter key, or de-selects the class, a request to

create a new attribute is propagated from the CASE tool client to the MOOT core. The

MOOT core uses the NSM table in Figure 8-6 to determine that an addAttribute message

must be sent to the SSL object that corresponds to Test class in Figure 8-8 (a). The result

of processing the addAttribute message will be a Critic object that indicates an error has

209

occurred. The resulting explanation is returned to the CASE tool client with a fail

response. Figure 8-8 (b) shows that the CASE tool client has cleared the offending text

field and added the explanation to the feedback window in Figure 8-8 (c).

Figure 8-9 shows a screen snapshot of MOOT used to capture a model of Object­

Orientated Analysis (page 205 of Coad and Yourdon (1 991 a)).

..
Project
lliJ lriDI-I I�·Jol�ll�l

. ' . . .

Select objects . I Add object � OOA Mode � t----<J--- umber
Name Name

�

Instance Connection

Amount Or Range 1
Amount Or Range 2
Symbol

I Message ConnecHon

[Symbol

I

Symbol

---�

rstr;;�
Name

I I
Symbol 1-'----

A Class·&·Object (or ClassT
Name

Symbol I I Object Slate Diagram (Oen-Spec Structurel Wllole·Part Structure

1
Amount Or Range 1
Amount or Range 2

Attribute Ser<ice

Name Name
Description Parameters

Constraints Bullet Ust

Figure 8-9 - An Object-Orientated Analysi model of Object­
Orientated Analysis (Coad and Yow:don, 199 1a)

8.3 Supporting Patterns

- [] X

I

ilstsnce
inherionce
-part
message

Patterns are an important concept that has gained much interest in the object-orientated

literature (Gamma et aL, 1 995; Fowler, 1 997; Pree, 1 994). The idea behind patterns is very

simple yet extremely powerful. It provides a standard vocabulary for software engineers

to use when developing systems. System developers can now talk in terms of larger

components than class and object and understand phrases such as "Abstract Factory'',

"Adapter'' and "Chain of responsibility." The advent of patterns is so important that a

210

technical decision has been made to support patterns with MOOT. This is the first step

toward the support of Component Based Development.

"One thing expert designers know not to do is solve every problem from first

principles. Rather they re-use solutions that have worked for them in the

past. When they find a good solution, they use it again and again. Such

experience is part of what makes them experts. Consequently you'll find

recurring patterns of classes and communicating objects in many object­

oriented systems. These patterns solve specific design problems and make

object-oriented designs more flexible, elegant, and ultimately reusable."

From Design Patterns: Elements ofReusable Object-Oriented Software

(Gamma et aL, 199 5)

There are several requirements that the support for patterns in MOOT had to satisfy.

1 . It should be possible to instantiate a pattern on any class diagram. This must include

class diagrams created with modelling languages that have not yet been defined in

MOOT.

2. There should be a well-defined protocol or method for adding new patterns in the

future.

The support for patterns was implemented in the GOOKB by a set of abstract super­

classes, which satisfies requirement 1 . The classes involved define the protocol for the

instantiation of a pattern on a class diagram. The protocol between these classes satisfies

requirement 2.

A new class (Pattern) has been defined in the GOOKB. The interfaces of some of the

existing classes have been extended (Object Model, Object Diagram and Class). The

implementation of patterns is shown in Figure 8-10.

Concrete patterns are implemented as sub-classes of the abstract super-class Pattern

(Figure 8-1 0). Each pattern implements the instantiate operation66• The instantiation

process uses an instance of Object Model and an instance of Oi?Ject Diagram. A pattern

object instantiates itself onto the Object Diagram object with the assistance of the Object

66 They may also overload instantiate with an operation that rakes additional arguments.

2 1 1

Model object. The Pattern hierarchy is an example of the Template method pattern

(Gamma et aL, 1 995) , where the entire instantiation process is different for each sub-class

of Pattern.

O bj ect model builds classes and relations (such as i nheritance) in association with a pattern object

Class builds attributes and operations in association with a pattern object

This role of Object Model and Class is an i nstance of the factory pattern (p87)

The pattern hierarchy is independent of the type of object model (and hence the type of classes and relations)

G OOKB::Ciass

create(name : String)

isvalid() : CKB: :Critic

changeCiassName(newName : Stri ng) : CKB::Critic I
cl assName() : Stri n g 1 add(a : GOOKB: :Attribute)

add(o : GOOKB::Operation) I Instantiate() : GOOKB::Object

newAttribute() : G O O KB: :Attribute I newOperation() : G OOKB: :Operation

�---·..J ', ',
<<i nstanti�fas>> ' ' I

[����ohoh:ore

...

I ,---------,
!

I
<<inst�ntiates>>

/
//

I
I

/
I

I
I ' ' '

I /
/

/ /
<<instaril(ates»

,/"

,///

____ ,....,.,
......

GOOKB::Object_Model

Create()

newCiass() : GOOKB: :Ciass

newW holePart(whole : GOOKB: :Ciass, part : GOOKB: :Ciass) : GOOKB::Whole_Part

newlnheritance(superclass : GOOKB::Ciass, subclass : G OOKB: :Ciass) : GOOKB:: Inheritance

I
I

newAssociation(associate_a : G OOKB::Ciass, associate_b : GOOKB::Ci ass) : GOOKB::Association ,

' ' ' h ' ' ' / A pattern object instanti ates a

I? design pattern onto an object
GOOKB:: Object_Diagram i diagram . -·

i AddCiass(c : Class) : CKB: :Critic I
Addlnheritance(r : G O OKB: : In heritance) : CKB: :Critic I it is an instance of the template

AddW holePart(r : G OOKB::W hole_Part) : CKB:: Critic I pattern (gamma p325), where the

AddAssociation(r : G OOKB::Association) : CKB::Critic 1 entire instantiation process is

� different for each subclass of
''-,,, pattern

',, /_,/

', _,/ '" ,/ ' ,/'

I GOOKB::Pattern I I lnstanti ate(om : GOOKB::Object_Model , od : GOOKB::Object_Diagram) : CKB::Critic J

1--------------
+ other patterns �

I Pattern:: VisitorPattern

..___,

I lnstantiate(om : GOOKB: :Object_Model , od : GOOKB: :O bject_Diagram) : CKB: :Critic

I Pattern: :FacadePattern I
I lnstantiate(om : G OOKB: :Object_Model , od : GOOKB::Object_Diagram) : CKB:: Critic I

Figure 8- 1 0 - Extending the GOOKB to support Patterns

212

The Oiject Diagram class in Figure 8-10 provides operations for an Oi?Ject Diagram object to

add new classes and relations to itself. The interface of Oiject Model has been extended

with operations for creating new classes and relations. A pattern object delegates the

responsibility for creating classes and relations to an Oi?Ject Model object. This role of Oiject

Model is an example of the Abstract factory pattern (Gamma et al., 1 995, p87) . The

interface of Class has been similarly extended with operations for creating new attributes

and operations. This role of Class is also an example of the Abstract factory pattern

(Gamma et al., 1 995) . The use of the Abstract factory pattern in Oiject Model and Class

ensures that the Pattern hierarchy is independent of the type of object model (and hence

the type of classes and relations) .

N ew types of object model that are implemented in MOOT are always defined as

extensions of the Oi?Ject Model class in the GOOKB. Extensions of Oiject Model must

override the newclass, newinheritance, newWholePart and newAssociation operations to support

patterns. New types of class are always defined as extensions of Class in the GOOKB.

Extensions of Class must override the newAttribute and newOperation operations to support

patterns.

8.4 Supporting UML

Work in progress to support the UML v1 . 1 meta-model (OMG, 1 997c-j) as an extension

of the CKB and GOOKB is documented in Figure 8-1 1 , Figure 8-1 2 and Figure 8-1 3.

Figure 8-1 1 shows how the following packages from the UML specification (OMG,

1 99 7i) have been modelled as extensions of the CKB and GOOKB:

• UML v1.1 Foundation: CORE: Backbone

• UML v1 . 1 Foundation: CORE: Extension Mechanisms

• UML v1 . 1 Foundation: C ORE: Auxiliary Elements

Figure 8-12 and Figure 8-1 3 show how the following packages from the UML

specification (OMG, 1 997i) have been modelled as extensions of the CKB and GOOKB:

• UML v1 . 1 Behavioural Elements: Collaborations

• UML v1 . 1 Behavioural Elements: Common Behaviour

2 1 3

:Model_ Element

: Expression
. Multiplicity

r.h,mnP.l'lhl�> · ChangeableKind
rn<>t!':r,rm<> : ScopeKind

8- 1 1 UI\JL v1 . 1 Foundation: CORE: Backbone +
Foundation: CORE: Extension Mechanisms + Foundation: CORE:

Elements

214

CKB::Di rected_Binary_Relations hip

UML::SubType

UML :Modei_element

8-1 2 U�IL v1 . 1 Behav'ioural Elements: Collaborations

2 1 5

UML: :AssociationEnd

isNavigable : Boolean
isOrdered : Boolean

aggregatio n · AggregationKind
targetScope : ScopeKind
multiplic ity . Multiplicity

changeable . C hang e ableK i nd

8- 1 3 - L' .\fL v1 . 1 Common Beha>·iour: Common Behaviour

The definition o f the core UML meta-model as an extension of the CKB and GOOKB

validates the novelty, flexibility and extensibility of the MOOT approach as UML is an

example of a new methodology that did not exist when the research commenced.

8.5 Preliminary Development of the Semantics Editor

The Semantics editor (Figure 3-1 0 - Proposed, top level, system architecture) is used by

methodology engineers to define the semantics of methodologies in SSL. The

development o f the semantics editor by using MOOT is a bootstrapping approach where

NDL and SSL are used to develop a tool for building SSL specifications.

Two modelling languages are proposed to support the development of SSL

specifications. These are:

2 1 6

• SSL module structure modelling language. The purpose of this language is to define

the class and module structure of an SSL specification. It supports the construction

of a collection of diagrams, each of which corresponds to an SSL module.

• SSL method modelling language. The purpose of this language is to define the

implementation of an operation shown in an SSL module structure model.

Figure 8-1 4 shows how the two modelling languages are supported in MOOT.

CKB::Intra-Model Transition

The two modelling languages are represented by sub-classes of Modelling Language (Module

Model and Method Mode�. lmplementOperation is an inter-model transition between an SSL

Module Model and an SSL Method Model The implementation of an operation in a SSL

Module Model by a method is represented by an instance of lmplementOperation. Uselnteiface

is an intra-model transition between two SSL module structure diagrams. This transition

corresponds to using a class in a module that is defined in another module.

Figure 8-1 5 documents work in progress, to define the semantics of SSL as an extension

of the GOOKB. This extension is called the SSL Knowledge BASE (SSLKB). The

SSLKB is partially designed and has not been implemented in SSL.

21 7

GOOKB::Operation
association use the
classes from the

GOOKB

8-1 5 Representing SSL as an extension of the GOOI..::B

Figure 8-1 5 represents the module structure of SSL. Intetjace Module contains zero or

more Intetjaces. Implementation modules contain zero or more SSL Classes. Each Class in an

implementation module corresponds to an intetjace in an intetjace module. The SSLKB defines an

extension of GOOKB Class (SSL Class) as SSL classes also have a constraint. SSL Class is

also a sub-class of 7)pe. The other Sub-classes o f Type include Collection and Iterator.

Inheritance and association are already supported in the GOOKB. Figure 8-1 5 shows an

extension of GOOKB Whole_Part and GOOKB Part that permits any SSL type to take the

role of 'part' in a whole-part relation.

The development o f NDL specifications for the two proposed modelling languages have

been conducted independently from the development of the SSLKB.

2 1 8

8.5.1 Notation for the SSL Module Structure Modelling Language

There are two symbols in the notation of the SSL module structure modelling language.

c l a s s n a m e
o p e rati o n o n e
o p e rati o n two

Interface symbols represent SSL class interfaces. An interface symbol

has two compartments, one for the class name and one for the

operations. Each use of a class from another SSL module corresponds

to an interface in an SSL module model.

c l a s s n a m e
o p e rat i o n o n e

attri b ute o n e
attri b ute two

The Class symbol has three compartments. The top compartment

contains an interface. The last two compartments contains the

attributes and a constraint.

c l a s s c o n straint

The current implementation of the SSL module modelling language uses elements from

the CKB as its semantic definition. SSL classes and interfaces are represented by an

instance of CKB concept. Inheritance and Using relations are represented by instances of

CKB Directed Binary Relation. A portion of the NSM table used is given in Figure 8-1 6.

a)

0 1 1 s e t l abe l - S #

0 1 2 s e t labe l - S #

0 1 3 s e t l abel - S #

0 1 4 s e t l abe l - S #

b)

I n t e r face ckb_rnodel e l ernent : c oncept crea t e - #

C l a s s ckb_rnode l e l ernent : c oncept crea t e - #

I nh e r i t ance ckb_rnode l e l ernent : di rected_bina ry_re l a t i onship 2
_p lain 1

i nheri tance_end 1
c reate-Vckb_rnode l e l ernent : concept #Vckb_mode lel ernent : concep t # #

U s e s c kb_mode l e l ernent : di re c ted_binary_re l a t ionship 2
_p lain 1
_arrow_end 1
c r eate-Vckb_rnode l e l ernent : concept #Vckb_mode lel ernent : concep t # #

c)

I n t e r face

C l a s s

I nhe r i t ance

U s e s

addc oncept -Vckb_rnode lelernent : concep t # #

addc oncep t - Vckb_rnode lelernent : concep t # #

addre l a t i onshi p - Vckb_rnode l e l ernent : re l a t i onship # #

addr e l a t i onship - Vckb_rnode l e l ernent : re l a t i onshi p # #

Figure 8- 1 6 - SM table for the SSL module modelling language

Figure 8-1 6 (a) shows the NSM action map. The update of each field is mapped to a

setlabe/ message (which takes a single string argument) . Figure 8-16 (b) contains the create

concept and create relation maps. Classes and interfaces are represented by an instance of

Concept from the CKB. All relations are represented by an instance of Directed Binary

219

Relation from the CKB. Figure 8-16 (c) contains a portion of the add map. These entries

specify the message that is used to add an item that corresponds to a particular NDL

template to a diagram.

Figure 8-1 7 shows a snapshot of MOOT being used to draw an SSL module structure

diagram that corresponds to the Critic module of the CKB (see Figure 6-1 1 - Critics).

Figure 8-1 7 - Supporting SSL with MOOT

The example in Figure 8-1 7 shows the CASE tool client and the MOOT core running on

the same machine. A description of each window is given below.

Project Manager

MOOT
Core

MOOT CASE Tool
Client

Feedback Window Java Console J

MOOT CASE Tool Client

The interface of the CASE Tool client consists of a

drawing surface, a toolbar and a menu bar. The toolbar is

generated automatically from the NDL specification for

the current modelling language. This example also shows

inheritance and uses connections.

220

MOOT Core

The output displayed in the console corresponds to the translation of actions at the

CASE tool client.

Feedback Window

Explanations generated by the MOOT core and feedback related to the successful

creation of symbols and connections are displayed in this window.

Prqject Manager

The project manager is used to manipulate the models in a project.

] ava Console

The output displayed in the console corresponds to success response packets sent from

the MOOT core in response to a request by the CASE tool client.

8.5.2 Notation for the SSL Method ModeUing Language

The proposed SSL method modelling language is used to define the SSL code in the body

of an SSL method. The notation described here is a proposal, whose primary purpose is

to demonstrate that a notation of this type can be described successfully with NDL.

The proposed notation has fourteen symbols and three connections. The symbols

correspond to SSL statements, SSL operators and values . The connections represent

invocation, value and part relations. The symbols and connections are discussed below.

Statement block

This symbol represents a sequence of statements, which

are connected to the statement block with invocation

connections. The order of the invocation connections

represents the order of execution o f the statements.

If statement

The boolean condition is attached to the bottom of the if

symbol with a value connection. This example shows a

variable symbol whose name is condition and whose type is

boolean. Single statements can attached to the T and F parts

of the if symbol.

221

b o o l e a n pget- out c o ndition

EEJ rg]
EJ

Loop statement

The get-out condition is attached to the bottom of the

symbol with a value connection. In this example the get­

out condition is a boo lean variable called get-out condition.

Return statement

The return statement indicates the end of a method. The

values that are returned a result of the method are attached

at the bottom of the symbol with value connections.

Assignment statement

The assignment statement is used to update the value of a

variable. This example can be read as '1-value is given the

value of r-value'.

Arithmetic operators

Each arithmetic operator symbol may accept multiple

value connections at the top and have one or two value

connections at the bottom.

Message send operators

The two message-send operators are used to represent the

binding of messages to an SSL object, SSL collection or

SSL iterator.

Part connection

The part connection is used to associate an assignment

operator with its 1-value and r-value and to associate a

message send operator with its message receiver and

message. In this example the message message is being sent

to an object called receiver.

Value connection

Value connections represent the evaluation of an

expression. This example shows a message with two

arguments af}!,ument 1 and argument 2.

222

Invocation connection

The invocation connection represents the execution of a

statement. In this example a loop statement and then a

return statement are being invoked, from within a

statement block.

Figure 8-1 8 shows SSL code for the Explain method of the CompositeCritic SSL Class

defined in the Core Knowledge Base. A ComplexCritic object encapsulates a collection of

other critic objects. The Explain method concatenates the explanations generated by the

component critic objects.

/ I Exp l a i n method from CKB : : Compo s i teCr i t i c

string Explain ()

string exp lanat i on ;

Ite rator [Cr i t i c] s i t ;

Cri t i c c ;

/ 1 i f there i s no probl em r e turn ok

i f (i s OK ())

{
return " ok " ;

e l s e

1 1 otherwi se bu i l d a n exp l an t i on

exp l anat ion = " " ;

/ 1 s i tua t i ons i s a c o l l ec t i on o f c r i t i c obj e c t s

s i t = s i tuat i ons . f ront () ;

loop

{ / / f inish when we have checked everyone

endloop when (s i t . end ()) ;

c = s i t . item () ;

1 1 update the expl ana t i on

explana t i on = exp l ana t i on + c . Exp l a i n () ;

s i t . next () ;

/ 1 return the resu l t

return exp l ana t i on ;

Figure 8- 1 8 - Explain method of the ComplexCritic class in the CKB

Figure 8-1 9 shows the corresponding SSL method model and shows how the explain

method can be captured using the proposed notation.

223

lie rator(Critic) �situation

Figure 8- 19 - An example SSL method model

Repeti:K>n
AssigYnent
Message_Send
Scoped_IIAessoge_Send
Select

Rellln_Resuft

Add
s..tllract
Muliply
Divtde
Or
Message
Variabte

Whilst no claim is made to suggest that MOOT should be used to implement visual

programming languages, this result is interesting because the development of the notation

for the SSL method modelling language (with 1 4 symbols, three types of connection and

logical distortion) was achieved in a matter of hours.

8.6 Toward Supporting Joosten Workflow Modelling

This work started after an expression of interest, by another researcher, to use MOOT to

model and implement several workflow methodologies. The aims of this work are to:

• Model several workflow methodologies.

• Derive a meta-model of workflow methodologies. This work 1s similar to the

GOOKB in scope and intent.

Assess the MOOT approach when used to model a non object-orientated

methodology.

224

This research is in its preliminary stages. An NDL specification of the Joosten Ooosten,

1 995) workflow methodology has been derived. An example Joosten trigger model

Ooosten 1 995) which has been drawn using MOOT is given in Figure 8-20.

Customer

complain

customer
consent

customer

approve

8.7 Summary

��------------------------� --;eJect\....) �

repres.

negotiate solution

rep res.

negotiate satisfaction

rasp. mgr

ack

activity
atc.mc_activfty
synch'onlsolion...PO<nl

Figure 8-20 - Joosten trigger model Qoosten, 1 995)

This chapter has presented a series of examples showing how the results of the research,

as discussed in chapter 3 - 7, can be applied. This included:

• Describing Coad and Y ourdon

Implementing the support for patterns as part of the GOOKB

• Initial work on describing the UML meta-model as an extension of the GOOKB

Initial work on supporting the semantics editor (as described in the description of the

proposed architecture in chapter 3) using MOOT

Initial development of the Joosten Workflow methodology

225

The successful modelling and implementation of patterns and UML (recent advances in

object technology), which did not exist when the research commenced, shows the

innovative and original nature of the approach and the new methodology representation

strategy. This research is a significant move toward building adaptive systems; the

ultimate future of software engineering.

226

Cha p te r 9

Conclusion and Future Work

If we knew what it was we were doing, it would not be called research, would it?

9.1 Introduction

Albert Einstein

The objectives of the research, as stated in section 1 . 7, are:

• Develop a novel meta-CASE tool methodology representation strategy that:

• Uses an object-orientated meta-model.

• Allows methodology descriptions to be re-used.

• J\finimises the coupling between methodology syntax and semantic descriptions

such that methodology syntax and semantic descriptions can be re-used

independently.

• Permits software engineering projects to be re-used, even if they are built with

different methodologies.

• Design and implement a prototype meta-CASE tool that realises the new

methodology representation strategy via the development of:

• Languages that support the description of syntax and semantics of a

methodology.

• The efficient execution strategy of syntax and semantic descriptions.

This thesis presents the development of a new modifiable CASE environment designed

to satisfy these objectives (Meta a:,ject Orientated Tool) . The results of this research are

manifest in the existence of NDL, SSL, SSL-BC, SSL-VM, NSM tables, the CKB, the

GOOKB and the MOOT prototype.

The thesis is summarised in section 9.2 and a critical evaluation of the study is presented

in Section 9.3. Some of the future work that has been envisaged is outlined in section 9.4.

Final concluding remarks are made in section 9.5.

227

9.2 Summary of the Thesis

Chapter 1 introduced and defined fundamental terms used throughout the thesis. The

type of CASE tool that is the subject of the research was defined (methodology CASE

tool) . A classification hierarchy o f methodology CASE tool categories was derived and a

review of CASE tools was presented with respect to the hierarchy. The limitations of

methodology CASE tools were discussed from organisational and CASE tool

perspectives and the goals of the study presented.

Chapter 2 examined meta-modelling and meta-CASE technology. In particular the

following limitations of meta-CASE technology were identified:

• Reliance on data models

• Separation of 'structural' and 'behavioural' elements of semantic descriptions, which

decreases the cohesion of semantic descriptions

• High coupling between the syntax and semantic descriptions, primarily because of an

assumed, fixed, mapping between elements of syntax and semantic descriptions

• No consideration of software process

• No consideration for re-use of methodology descriptions or software engineering

projects

• No relation between supported methodologies

• Very poor usability

Chapter 3 presented the approach taken to address the limitations of methodology CASE

tools and meta-CASE tools. The proposed architecture of a new modifiable CASE

environment (M:OOT) was presented. The methodology representation strategy

supported by MOOT was outlined and a prototype of MOOT described.

Chapter 4 presented the development of NDL (Notation Definition Language). An

overview of graphical notations used in software engineering methodologies was

presented. The requirements and design of NDL were discussed and a prototype NDL

interpreter (the basis of the MOOT CASE tool client) was presented.

Chapter 5 described the development of SSL (Semantic Specification Language). SSL

implements the MOOT meta-model; integrates the description of 'structure' and

'behaviour'; supports more than completeness and consistency checking; emphasises

228

programming, rather than formally defining the semantics; supports re-use and provides

efficient execution and platform independence.

SSL is an object-orientated language that supports a subset of the facilities of a general

purpose programming language. It is a statically type checked language that provides

clean separation between 'class interface' and 'class implementation'. SSL supports

dynamic binding, multiple inheritance, built-in primitive types, polymorphic collection

and iterator types and provides a module system.

Chapter 6 presented the development of the Core Knowledge Base (CKB) and the

Generic Object Orientated Knowledge Base (GOOKB). The CKB was derived using a

meta-modelling approach and implements a meta-model of methodology, which provides

simple facilities for cognitive support. The GOOKB was derived by meta-modelling and

implements a meta-model of concepts germane to all object-orientated methodologies.

Chapter 7 discussed the realisation of methodologies and software projects in MOOT.

The derived Methodology Description Table (MD1), Notation-Semantic Mapping

(NSM) tables and the communication protocol between the CASE tool client and

MOOT core were presented. It was shown that the association of syntax and semantic

descriptions involved: the relation between a software engineering project, in terms of its

models, diagrams and documents, to the methodology used to create it; the relation

between the syntax and semantic descriptions expressed with NDL and SSL; the relation

between logical actions performed using the CASE tool client and semantic actions

performed by the MOOT core.

Chapter 8 presented a series of examples showing how the results of the research can be

applied. This included: implementing Coad and Y ourdon's methodology; implementing

support for patterns as part of the GOOKB; initial work on describing the UML meta­

model as an extension of the GOOKB; initial work on supporting the semantics editor

and initial development ofJoosten's Workflow methodology.

Table 9-1 summarises the practical work and the publications completed as a result of

this research.

229

Chapter Practical Work

3 Prototype of the
MOOT Core

4

5

6

7

Prototype NDL
Interpreter

SSL Compiler

Core Knowledge Base
and Generic Object
Orientated Knowledge
Base

Communication
protocol in the CASE
tool client

Implementation Details Related Publications

""" 90 classes Page et al., 1 997, 1 998

""" 8000 lines of C++ Mehandjiska et al., 1 997

""" 80 classes

""" 5000 lines C++

""'1 600 lines tcl

""" 450 lines of PCCTS
grammar

""" 80 classes

Page et al., 1 994

Mehandjiska et al., 1 995b,
1 996a

Page et al., 1 997, 1 998

""" 5000 lines of C++ Mehandjiska et al., 1 997

""" 800 lines of PCCTS
grammar

:::::: 45 classes

""' 1 000 lines of SSL

""' 10 classes

""' 800 lines of] ava

Page et al., 1 998

Mehandjiska et al., 1 996b,
1 996c, 1 997

Mehandjiska et al., 1 997

Phillips d al., 1 998b, 1998c

Table 9- 1 Practical work completed during the research

9.3 Discussion

The discussion summarises the novel meta-CASE tool methodology representation

strategy. The overall MOOT approach is critically reviewed and the new modelling

languages (NDL and SSL) are discussed in turn. Finally two re-usable libraries of

semantic methodology descriptions (the CKB and GOOKB) are considered.

9.3.1 The Novel M eta-CASE Tool Methodology Representation Strategy

The novelty of this research is the philosophy and implementation of the new

methodology representation strategy for meta-CASE tools.

Novel Prindples of the Methodology Representation Strategy

• A language for modelling methodology syntax. This is an advantage in contrast to

existing approaches, which only provide simple support for 'pen and paper'

notations.

230

• A single modelling language for representing methodology semantics. This is an

advantage in contrast to existing approaches, which are typified by 'data model and

separate constraints.'

• Independent development of syntax and semantic descriptions. This is supported by

the scope of the modelling languages and late binding of methodology syntax and

semantic descriptions.

• Re-usable methodology description components.

• Explicit relation between methodology descriptions.

• Facilities such as auto-correction, intelligent feedback and cognitive support.

Novelty of the Implementation

• An object-orientated meta-model used for a meta-CASE tool.

• NDL, a new language for describing methodology notations.

• SSL, a new language for describing methodology semantics.

• SSL-VM, a new virtual machine which supports efficient processing of SSL.

• CKB and GOOKB, two libraries of re-usable methodology semantic description

components.

9.3.2 The MOOT Approach

The approach described in the thesis addresses issues related to CASE tools and meta­

CASE tools. Positive and negative ramifications of the novel methodology representation

strategy and its implementation in MOOT have been identified based on empirical results

gained by using the MOOT prototype. The positive ramifications are related to: the

adoption of an object-orientated meta-model, the scope and separation of NDL and SSL,

and the emphasis on re-use. The negative ramifications are common to all meta-systems

and are related to redundancy, efficiency and complexity.

9.3.2. 1 An Of?ject-Orientated Meta-Mode/

The integration of state and behaviour

Previous meta-CASE tools typically provide two or more separate languages for the

semantic specification of methodologies. One is used to define 'structure' and the second

231

to define constraints on the structure (a form of behaviour). There are several problems

with this approach: a) there are multiple languages for the same task b) the coupling of

methodology semantic specifications increases and c) the cohesion of methodology

semantic specifications decreases. MOOT addresses these issues by providing a single

language (SSL) that integrates the description o f structure and behaviour.

Inheritance and pofymorphism

Using inheritance is the logical extension of the support for 'sub-typing' that the majority

of meta-CASE tools provide. The integration of state and behaviour in SSL, combined

with inheritance and polymorphism, fosters a 'model by derivation' approach to

methodology meta-modelling in MOOT. This approach has significant advantages in

comparison to some meta-CASE tools, which only support accidental re-use of previous

methodology meta-modelling results.

Support for re-use

An object-orientated approach promotes re-use, as widely propounded in the literature.

The benefits of an object-orientated approach, in terms o f fostering and enabling re-use,

applies to MOOT methodology semantic descriptions, as MOOT incorporates an object­

orientated meta-model and meta-modelling is simply modelling, at a different level of

abstraction.

9.3.2.2 Separate Syntax and Semantic Modelling Languages

Key benefits of the separation of the syntax and semantic modelling languages in a meta­

CASE tool include:

• Syntax and semantic descriptions can be developed in isolation

The new approach to meta-modelling in MOOT allows syntax and semantic

descriptions to be derived separately. Methodology engineers with sound HCI skills

can develop notations whilst those with sound modelling skills can derive

methodology semantic descriptions. This permits the development of effective

'screen' notations to be considered. If it can be said, "to a user of a system, the

interface is the system" (Apperley and Duncan, 1 994), perhaps it can analogously be

said, "to a user of a methodology, the notation is the methodology."

232

• Increased cohesion and reduced coupling

This is a direct consequence of ensuring that the syntax modelling language can only

be used to model syntax and the semantic modelling language can only be used to

model semantics. Therefore, the cohesiveness of syntax and semantic descriptions

must be the same as, or better than, that achieved with other meta-CASE tools. The

coupling between the descriptions is certainly low as each may be developed

independently.

• Syntax and semantic descriptions can be plugged together

The MOOT approach fosters a culture of 'develop the semantics once' rather than

developing similar semantic descriptions with different syntax, which in turn

emphasises that 'different syntax' and 'same semantics' is not the same as 'different

methodology.'

• The modelling languages mqy be extended in the future without affecting each other

A complete separation of NDL and SSL ensures that each language may be extended

independently in the future.

9.3.2.3 Viewing MethodoloJJJ Descriptions as Potentialfy Re-usable Components

The development of the CKB and GOOKB was driven by the realisation of the

homology of object-orientated methodologies. The fact that the CKB and GOOKB can

be built at all is evidence of the potential of the MOOT approach. These two libraries have

successfully been used to derive Coad and Yourdon's methodology, the semantics of

SSL, the UML meta-model and support for patterns.

9.3.2.4 Redundanry

The existence of two separate languages in MOOT may lead to redundancy in the

methodology descriptions. For example, the developer of a syntax description for an

object-orientated methodology constrains inheritance connections to occur between

classes, a feature also captured by the semantic description. However, MOOT syntax and

semantic descriptions serve completely different purposes. Therefore the scope and

representation of similar concepts (in syntax and semantic description) is different. The

MOOT approach increases the cohesion of methodology descriptions and reduces the

syntax - semantic coupling.

233

9.3.2.5 E.fficienry

Meta-systems typically suffer with respect to efficiency in time and space because of the

additional layers of representation they entail. There are three aspects of the MOOT

system where efficiency should be considered: processing NDL specifications, processing

SSL messages and mapping syntax and semantics with NSM tables. The time/ space

efficiency considerations include:

• Processing NDL specifications

Empirical experience gained thus far, from using MOOT, indicates that the

additional overhead in terms of time is not noticeable in the client. For example

NDL is used to dynamically update symbols, as a user types text directly onto the

drawing surface. An NDL template is subsequently interpreted, in between

keystrokes, to resize affected symbols and connections. However, no delay noticeable

by users of the CASE tool client0: has been observed.

Size q[NDL specifications

The space overhead of NDL specifications is insignificant. For example, a complete

textual NDL definition of Coad and Yourdon, including support for logical

distortion, is approximately 4500 bytes. The major overhead in the client is the space

it takes to represent NDL templates in memory. Currently the client parses the NDL

specification and builds an abstract syntax tree for each template. The overhead is,

however, not large.

• Processing S SL messages

Two aspects of processing SSL messages have been considered. The first is the time

taken to execute the body of a method. SSL is compiled to a platform independent

binary representation to address this issue. The second is the time it takes to bind a

message to an SSL object. SSL is statically type checked to address this issue. In

addition the SSL class run-time representation includes a method lookup table.

This research has not been concerned with multi-user access, so the current

prototype only implements very primitive multi-user facilities6B. The impact of object

on low-end computer, such an l ntd Pentium 1 50 based machine

users can connect to the .\f()(Yf core and all ret]UC<'ts for access to SSl > objects

234

\lCindows-95.

succeed.

level locking, therefore, cannot be qualitatively or quantitatively assessed at this time,

although it is expected to be significant.

• Size of SSL specifications

The space overhead of maintaining semantic specifications (SSL classes in MOOT) is

no greater than that of other meta-CASE tools m.

• Appfying NSM tables

Empirical evidence gained from using MOOT shows that the run-time cost of

implementing late binding of syntax and semantic descriptions, with NSM tables, is

not significant in comparison to processing NDL and SSL.

• Size qfNSM tables

The space overhead of NSM tables is insignificant in comparison to the NDL and

SSL specifications that comprise a methodology description and the NDL views and

SSL objects that comprise a software engineering project.

9.3.2.6 Complexity

MOOT is more complex than a methodology CASE tool and some existing meta-CASE

tools as two languages are needed to describe a methodology (NDL and SSL). However,

the contention of the MOOT approach is that the scope and separation of these

languages provide significant advantages to the methodology engineer, which compensate

for the complexity.

The current MOOT prototype requires a methodology engineer to write code in NDL,

SSL and develop NSM tables by hand. Learning two new languages constitutes a

significant learning overhead. This issue can be resolved by providing visual editors to aid

the methodology engineer in the task of creating methodology specifications (see the

Semantics editor, Notation editor and Methodology editor in Figure 3-10 - Proposed, top

level, system architecture) .

9.3.2. 7 Structure of the Persistent Store

The meta-modelling approach adopted requires careful design of the MOOT repository.

Methodology descriptions consist of a collection of SSL classes, NDL specifications, an

that MOOT supports more than

235

NSM table and an entry in the Methodology D escription Table . Software engineering

projects consists of a collection of NDL views and SSL objects. The persistent store

contains instances of the C++ classes that implement SSL class, SSL object and so on.

The structure of the persistent store, whilst logically is very rich (it corresponds to the

SSL class hierarchies), is physically flat (as it contains instances of approximately four

C++ classes). The significance of this becomes apparent when browsing of software

engineering projects is considered. The MDT provides sufficient indexing to locate the

SSL objects that correspond to individual projects, models and diagrams. However,

browsing a software engineering project is also concerned with browsing the content of the

models that have been derived. A method for supporting browsing of software engineering

projects in MOOT, at granularity finer than that of the diagram, has not yet been

proposed.

9.3.3 The Notation Definition Language

NDL allows notations to be described and supports the 'screen notation' in contrast to

the limited support for 'pen and paper' notations provided by other meta-CASE tools.

The limitations of NDL are related to supporting operations over groups of symbols and

connections, facilities that are not supported by the syntax representation mechanism

adopted by other meta-CASE tools. Some notations represent semantic information by

the relative positions of symbols and connections (e.g. RDD). Whilst NDL can be used

to describe the symbols and connections of such notations, it does not provide facilities

to capture such a spatial relation. Composite symbols such as the Booch bubble (where a

class bubble may appear inside another Booch bubble) and the Coad and Yourdon

subject area cannot be represented. This is the purpose of the NDL composite template,

which has yet to be implemented.

Each of these limitations are addressed in section 9.4 - Future Work

9.3.4 The Semantic Specification Language

Existing specification languages and virtual machines were investigated to determine their

applicability to the implementation of MOOT. The main reasons for deriving a

specialised language for MOOT were:

236

• The approach adopted by other meta-CASE tools only focuses on completeness and

consistency checking. MOOT was required to support additional features such as

cognitive support and auto-correction.

• The formal approach adopted by other meta-CASE tools does not allow a software

engineering project to be in an inconsistent state. This is a barrier to an exploratory

approach to development that software engineers naturally use.

• A new language can be readily extended and modified based on results gained form

its use and future research ideas.

The SSL execution strategy was developed based on the requirement for efficient

execution of SSL specifications and platform independence. The decision to translate SSL

to a platform independent representation and execute it on a virtual machine was a

natural one.

Existing object-orientated virtual machines were investigated (e.g. the Smalltalk virtual

machine and the J ava virtual machine) . The following issues were noted:

• Existing virtual machines implement representations of general-purpose

programming languages and therefore provide facilities that SSL does not require

(such as support for input and output) .

The support required for concurrency is different to that of existing virtual machines.

SSL requires only a single thread of control to be active in the SSL-VM, yet multiple

instances of the SSL-VM can be active at the same time processing messages from a

common pool of SSL objects. Object-level locking is therefore required and is tightly

coupled with the virtual machine.

• In contrast to other virtual machines, the SSL-VM only required a small instruction

set and a close correlation to SSL.

9.3.5 Core Knowledge Base and Generic Object Orientated Knowledge Base

One of the primary goals in developing the CKB and GOOKB was to demonstrate the

feasibility of producing libraries of re-usable methodology semantic components for a

meta-CASE tool.

237

The CKB is a base, from which other meta-models may be derived in the future. It is

similar in scope and intent to the OMG Meta Object Facility. For example the GOOKB

has been defined as an extension of the CKB (see section 9.4 - Future Work).

The focus of the GOOKB is limited to static modelling of class hierarchies and the

various types of association supported by object-orientated methodologies. The GOOKB

was designed to model concepts germane to all object-orientated methodologies. Its

scope is similar to the latter COMMA project, which was for a "critical minimality that

could be supported by all methods" (Henderson-Sellers and Bulthuis, 1 996a) .

Implementing the support for behavioural modelling in MOOT is addressed in section

9.4 - Future Work.

Meta-modelling of 'software process' is a significant research task in its own right and is

on-going in the MOOT project. The inclusion of the process and document classes in the

CKB acknowledges the importance of these concepts, which is an improvement over

existing meta-CASE tools.

9.4 Future Work

The overall goal of MOOT is to support all phases of the software development life­

cycle, promote re-use and support component based software engmeenng

methodologies. The planned future work can be classified as:

1 . Extending the MOOT prototype so it completely implements the architecture

proposed in chapter 3.

2. Extending the methodology representation strategy.

3. Extending the scope of MOOT.

Subsequent sections describe future work related to categories two and three.

9.4.1 The Notation Definition Language

Extension if existing ND L facilities

• Introduce a module system and improve the scope rules for NDL Currently

template names and NDL IDs are unique within an NDL specification. Therefore,

portions of an NDL specification can not be easily re-used. Experience gained by

238

using NDL indicates that the group template mechanism is very useful and that

building libraries of group templates is efficacious.

• Consider supporting format specification for text areas. Currently text fields contain

strings in an 'unparsed' form. The CASE tool client transfers the content of the text

fields to the MOOT core, which translates them. The communication between the

CASE tool client and the MOOT core can be reduced if the CASE tool client can

check the syntax of text fields.

• Introduce a general action template to improve user-defmed actions. NDL supports

two built-in action types, update and transition. User defined actions are currently

supported by permitting a user defined action ID to be associated with an active area.

These actions are propagated by a CASE tool client to the MOOT core but cannot

have any arguments.

Adding new facilities to ND L

• Support parameterised symbol and connection types. For example a class symbol

could be parameterised by an outside and an inside group template. A parameterised

template could be instantiated to create a concrete template type.

• Consider manual re-sizing of symbols. This could be implemented by simple scaling.

However this would lead to symbols that are distorted. better solution would be to

include optional 'stretch in x' and 'stretch in y' properties for the primitive template

types that correspond to graphical elements.

• Support repetitive subgroups in symbols. This would allow a greater range of

notations to be described and also simplify the description of others. This technique

could also be used to replace the multi-line-text template segment type.

Implementing the support for repetitive subgroups would provide better targeting of

events and actions to sub-parts of symbols.

• Allow 'position information' to be propagated to the MOOT core. One possible

technique is to apply a logical grid over a diagram with a 'snap to grid factor'. The

origin of this grid would be relative to the first symbol placed in a diagram.

• Support constraints on item placement. One possible technique is to use the

Meta View idea of Clusters.

239

• Investigate supporting animation of diagrams. This is something that is outside the

initial scope of NDL.

9.4.2 The Semantic Specification Language

Extension if existing 5 5L facilities

• Permit SSL classes to define local methods, which have the same visibility as the

attributes and are only relevant to the class implementation. This ensures the class

interface does not become polluted with operations that are onfy related to the class

implementation.

Add support for parameterised types to SSL.

Extend the use of the SSL tuple type.

Adding new facilities to 5 5L

Consider implementing the CKB classes Methodology, Model, Diagram, Concept and

Relation as built-in SSL types. This work implies an extension of the SSL-VM.

Address optimisat:ion of compiled SSL.

Investigate the need to support concurrency m SSL. MOOT allows multiple

instances of the SSL-VM to be active at the same time, processing messages from a

common pool of SSL objects (a form of concurrency). Supporting concurrency in

SSL would require more than one thread of control in the SSL-VM and perhaps in

SSL objects. Two approaches are: a) provide explicit programmer support (e.g. a

programmer API or programming language constructs, related to concurrency) b)

automate the support for concurrency.

The preferred method for supporting concurrency in SSL would be the second

approach.

9.4.3 Notation Semantic Mapping Tables

Two avenues of future work are envisaged for NSM tables:

• NSM tables could be extended with a simple scripting language (NSM-SL). The

elements on the right-hand-side of the majority of table entries would consist of a

240

block of NSM-SL code. This would support mapping the creation of an NDL view

to the creation of one or more SSL objects; mapping the server side creation of an SSL

object to instance s o f one or more NDL templates and mapping an NDL action to

several messages to several SSL objects.

• Generalise the NSM table to permit representations other than NDL to be bound to

SSL. For example a simple command-line client has been implemented and

associated to an SSL semantic description via an NSM table.

9.4.4 Support for Re-use

A significant amount of research has already been conducted on adopting re-use

strategies and on the problems of building, indexing and searching through, a collection

of re-use assets (Yu, 1 999). Future research must consider how these techniques can be

applied and extended within the context of MOOT. This includes:

• Descriptions of re-usable components in the re-use pool. One possibility is to extend

SSL to permit descriptions of 'meaning' to be attached to SSL objects. Another is to

use a separate language for describing the components in the re-use pool.

Assistance in selecting re-usable components, which includes intelligent searching of

the re-use pool and the promotion of new items into the re-use pool.

The management of re-usable components over their lifetime.

Implementation o f a re-use pool browser.

This work must also consider the requirements of emergmg, component -based,

development methodologies (D'Souza and Wills, 1 998; Wills and D'Souza, 1 997) and

technologies such as SOM, COM, DCOM, CORBA, JavaBeans IIOP and ActiveX

(Forman et aL, 1 995; I-Kinetics, 1 998; LaMonica, 1 997; Montgomery, 1 997; OMG, 1 991 ,

1 992, 1 998; Orfali et al., 1 996; Siegel et al., 1 996; Soley, 1 998) .

241

9.4.5 Cognitive Support

This future work involves implementing the ARGO/UML7u scheme for cognitive

support (Robbins et al., 1 996, 1 997, 1 998), in the context of the Core Knowledge Base.

This would be an extension of the Critic SSL module of the CKB to support:

Building user models.

• Providing a change history. The CASE tool client currendy implements this in a

primitive way. It records the request-result pairs that correspond to communication

with the MOOT core and displays them in a separate window for the user to view.

• Supporting auto-correction.

• Introduce support for ARGO /UML style Critics. The ARGO scheme allows critics

to be active and monitor the user as they work.

The ARGO/UML approach is specific to object-orientated methodologies and focuses

on the support of design. The scope of the ARGO /UML scheme must be re-considered

in terms of:

• Generality. MOOT is a meta-CASE tool that aims to support arbitrary methodologies.

• Scope. MOOT is intended to support methodologies across a wide portion of the life­

cycle. Ultimately this includes tasks such as requirements gathering and

implementation.

9.4.6 Meta-Modelling

• Core Knowledge Base and Generic Olject Orientated Knowledge Base

The CKB and GOOKB should be compared to other meta-modelling

developments, as they become stable. Further modelling of the UML71 meta-model

(see section 8.4 - Supporting UML) and the OPEN meta-model as extensions of the

GOOKB is necessary. A comparison of the OMG Meta Object Facility to the CKB

is also of particular interest.

The current

""'''ndent C\SE tool

related to support the cotrmtl'vc

of the U :vn . meta-modcl has not anv modifications to the CKB or G()(JKB.

242

• Meta-modelling if sqftware engineering process

The result of this research will be a software process meta-model, which can be

defined in SSL as a part of the Core Knowledge Base. This research is also related to

the future work on cognitive support for software engineers as it deals with the

suggestions and guidelines implicit in the software process.

Meta-modelling the behavioural modelling languages supported f?y oiject-orientated methodologies

This research will consider the behavioural modelling languages adopted by object­

orientated methodologies. It will also consider the COMMA project, the UML meta­

model and the submissions for the OMG OA&D facility.

• Meta-modelling other approaches to srftware engineering

The original intent of the MOOT project was to solely address object-orientated

methodologies. The subsequent development of the CKB, however, suggested that

the MOOT approach is more widely applicable than was initially intended.

The objective of this research is to determine if meta-models of other software

engineering approaches can be implemented as extensions of the CKB. These meta­

models will have the same scope and intent as the GOOKB. Examples include

Workflow methodologies (preliminary work on this is described in section 8.6) and

Information Engineering.

9.4.7 Validation of a Complete Implementation of MOOT

A complete implementation of the MOOT CASE architecture (proposed in chapter 3)

must be validated with respect to the two types of user that MOOT supports; it must be

validated as a CASE tool and as a meta-CASE tooL

An evaluation framework has been derived (appendix I) to support validation of a

complete implementation of MOOT. The results of applying the evaluation framework

to MOOT will be compared to evaluation results already generated for other CASE and

meta-CASE tools (Choi, 1 996; Gray, 1 995; Phillips et aL, 1 998a).

243

9.5 Conclusion

This research has demonstrated the efficacy of adopting an object-orientated approach to

the development of a methodology representation strategy for meta-CASE tools. The

novel methodology representation strategy reinforces fundamental object-orientated

principles:

Encapsulation

Everything related to the description o f a methodology's syntax is written in a single,

separate, purpose built language (NDL) and grouped together. Everything related to the

description of a methodology's semantics is written in a single, separate, purpose

built language (SSL) and grouped together.

• Information Hzding

The implementation of syntax and semantic descriptions of a methodology are totally

hidden from each other. Semantic elements do not know, and do not need to know, how

they are visualised. Syntax elements do not know, and do not need to know, what they

represent.

• Pojymorphism and Late Binding

An NDL specification can be bound to any SSL specification via an NSM table.

• Re-Use

Re-use is promoted by viewing methodology specifications as potentially re-usable

components and by the development and subsequent use of the CKB and GOOKB.

The results of this research are manifest in the existence of NDL, SSL, SSL-BC, the SSL­

VM, NSM tables, the CKB, the GOOKB and the MOOT prototype. Empirical results

gained from applying the MOOT prototype demonstrated the flexibility, extensibility and

potential o f the novel methodology representation strategy. This approach permitted the

implementation and modelling of UML and patterns, two recent advances of object

technology that did not when research commenced.

The novel strategy presented in this thesis is more than an untried theory. It has been

implemented, applied and is being evaluated. Simply, it is real and it works.

244

Appendix I

Appendix ii

Appendix III

Appendix IV

Appendix V

Appendix VI

Appendix VII

Section IV

Appendices

Evaluation Framework

NDL Grammar

SSL Grammar

SSL Examples

SSL-VM Instruction Set

SSL Compiler

The SSL Virtual Machine

245

246

249

253

258

269

277

285

A ppe n d i x I

Evaluation Framework

1.1 Existing Evaluation Frameworks

A CASE tool Evaluation Framework should support both qualitative and quantitative

assessment. The framework should provide the structure from which a set of questions

can be generated that are designed to assess the functionality, methodology support and

usability of CASE tools.

Examples of evaluation frameworks that have been developed in

work of Misra (1990), Mosley (1992) and Ovum (1996).

past include the

These approaches suffer from several important problems. Existing evaluation

frameworks:

• Do not address all the features and characteristics of CASE tools.

• Are often out of date with respect to CASE and software engineering technology.

• Cannot be systematically modified to address new advances in CASE technology.

Their structure is not conducive to simple extension or refinement.

• Cannot be easily targeted toward tools of a particular type. For example some of the

evaluation criteria related to meta-CASE tools are not relevant to a methodology

dependant tool.

• Are difficult to use to focus on one particular dimension of

tools (e.g. usability) .

1 .2 A New Evaluation Framework

properties of CASE

new evaluation framework has been developed, as a part of this research, to address

the problems identified with existing evaluation frameworks (Phillips, 1998a).

246

The new evaluation framework:

1 . addresses usability, methodology support, life-cycle support and information

exchange

2. can be easily extended in the future to allow for emerging technology

3. copes with the plethora of different methodologies and tools

The new evaluation framework is based on a classification hierarchy of 00 CASE tool

categories (Figure 1-3 - Classification hierarchy of CASE tool categories) .

Each node in the hierarchy represents a CASE tool category and has a set of associated

evaluation criterion. Each node inherits evaluation criteria from parent nodes. The

hierarchical structure permits the framework to be extended to support new types of

CASE tool.

A classification based evaluation framework provides the necessary flexibility needed to

cope with changing CASE and software engineering technology. This structure also

prevents the evaluation framework from becoming unmanageable, as evaluation criteria

are always associated with a node in the classification hierarchy of an appropriate level of

abstraction. This structure also permits evaluation criteria to be specialised and refined in

a systematic way, in less abstract CASE tool categories.

Evaluation criteria are further classified with respect to usability, methodology support,

life-cycle support and information exchange. The four evaluation criteria hierarchies are

orthogonal to the CASE-tool-category classification hierarchy (Figure I-1). Each

evaluation criteria hierarchy is further structured into a hierarchical series o f categories.

Evaluation criterion is therefore classified in two ways a) based on the CASE tool

category it is relevant to and b) based on the property of CASE tools it addresses.

247

Methodology
Support

Usabi l ity

A 00 CASE Tools

c. Multi-Methodalogy
CASE Tools

E. Meta CASE Tools

Figure I - 1 - Dimensions of the evaluation framework

Lifecycle
Support

Information
Exchange

For further information on the evaluation framework and its application see (Choi, 1 996,

Gray, 1 995, Phillips et aL , 1 998a) .

248

App e n d i x I I

NDL Grammar

11.1 Introduction

The following grammar is an abridged version of the PCCTS grammar used by the CASE

Tool Client. This grammar uses version 2.x of the PCCTS syntax.

A description of PCCTS can be found at the PCCTS web site (PCCTS, 1 998).

II.2 Reserved Words

NOTAT I ON CONNECTI ON_ TERMINATOR_ TEMPLATE

II.3

II.4

CONNECTION_SYMBOL_TEMPLATE

{ }
(

GROUP TEMPLATE -
DEFAULT TEXT

L INE ARC

GROUP DA

AREA TRANSITION

UPDATE POINT

RECT l.JNCONSTRAINED

HEAD TAIL

HEIGHT GROUPWIDTH

MAX MIN

T ERMI NATORS

Operators

+

I

Grammar

n o ta t i on

NOTATION I DENTIFIER

(group) *

() *
(

() *
(connec t i on) *

249

C ONNECTION_ TEMPLATE

S YMBOL_ TEMPLATE

ARITY

L I STTEXT

ACTIVE

T O

BOUNDING

TOP

W I DTH

GROUPHEIGHT

S YMBOL

*

group :

GROUP_TEMPLATE I DENT I F I ER

BEG I N

expres s i ons graphi cal_component s a c t i ve_areas

bounding_r e g i o n

END

temp l a te

exp r e s s i ons graph i ca l _c omponents bound ing_reg i on

symbo l

SYMBOL_TEMPLATE I DENT I F I ER

BEG I N

ac t ive_areas docking_areas

de faul t_t ext_prope r ty) ?
END

defau l t_text_proper ty

DEFAULT TEXT

OPENBRACKET I DENT I F I ER C OMMA IDENT I F I ER CLOSEBRACKET

INTEGERVAL

conne c t i on_symbo l

CONNECTION_SYMBOL_TEMPLATE I DENTIFIER

BEG I N

t emp l a t e TOP p o int dock i ng_areas

END

CONNECTION_TERMINATOR_TEMPLATE IDENT I F I ER

BEG IN

t emp l a t e HEAD point TAI L

END

conn e c t i on

CONNECTION_TEMPLATE IDENTI F I ER

BEG I N

ARI TY INTEGERVAL

(SYMBOL I DENT I FI E R) ?
TERMINATORS I DE NT I F I ER (IDENT I F I ER) *

END

expr es s i on s

(I DE NT I F I ER EQUALS exp re s s i on ENDEXPR) *

250

expres s i on
(

term

PLUS expres s i on expres s i on
M INUS expres s i on expres s i on
T IMES expres s i o n expres s ion
DIVIDE expres s i on expres s ion
t erm

I NTEGERVAL I funct i on I IDENTIFIER)

funct ion

W IDTH
H EIGHT
GRP_WIDTH

O PENBRACKET IDENTIFIER CLOSEBRACKET
OPENBRACKET I DENTIFIER CLOSEBRACKET
O PENBRACKET I DENTIFIER CLOSE BRACKET

GRP_HEIGHT O PENBRACKET IDENTIFIER CLOSEBRACKET
MAX argument_l i s t
MIN argument_l i s t

argument_l i s t
OPENBRACKET

expres s i o n (COMMA expre s s i on) *
CLOSEBRACKET

graphi c a l _c omponen t s

(
L I NE po i nt point (
ARC point point p o i n t
TEXT IDENT IFIER point
L I STTEXT IDENT IFIER po int

) *

Group IDENT IFIER IDENTI FIER
) *

ACTI VE AREA poi nt a c t i on) *

act i on

UPDATE I DENT I FIER
I TRANS ITION TO I DENTIFIER

251

point

docking_areas :
(POINT DA point c onne c t i on_count point

a l l owable_conne c t o r s
LINE DA f lag rect_a r e a conn ec t ion_count INTEGERVAL

al l owabl e_connec t o r s
ARC DA rec t_area p o i n t f lag c onne c t i on_count

INTEGERVAL a l l owab le_conne c t o r s
) *

rect area :
po int point

c onnec t i on_coun t :
UNCONSTRAI NED / INTEGERVAL)

a l l owable c onnec tors :
OPENBRACKET (I DENT I F I ER) * CLOSEBRACKET

bounding_reg i on
BOUNDING RECT point

point
OPENBRACKET expres s ion COMMA expres s ion CLOSEBRACKET

252

A ppe n d i x I I I

SSL Grammar

111.1 Introduction

The following grammar is an abridged version of the PCCTS grammar used by the SSL

compiler. This grammar uses version 1 .33 of the PCCTS syntax. A description of PCCTS

can be found at the PCCTS web site (PCCTS, 1998) and in Terrance Parr's PCCTS book

(Parr, 1 997) .

111.2 Reserved Words

MODULE USES
OPERATIONS CONSTRAINT

111.3

}
[

BOO LEAN
ITERATOR
DEBUG_PRINT
CURRENT_DIAGRAM
IF
END LOOP

Operators

+

I
<

< =

and

(
J
I NTEGER
STRING
CREATE
S ELF
CURRENT
ELSE
WHEN

d iv
>

o r

111.4 Grammar

modul e i nterface
MODULE IDENT I FI ER
u se s_l i s t s
c l a s s inter facede f s

u s e_clau s e) *

PROJECT

253

ATTRIBUTES
{
)

REAL
COLLECTION
DESTROY
CURRENT_MODEL
NO_OBJECT
LOOP
RETUR..l'J

*

mod
> =

<>

not

u s e_c l au s e :
USES u s e s i tem (COMMA u s e s i tem) * ENDSTATEMENT

u s e s i t em :
IDENT I F IER MODULESCOPE I DE NT IF I ER EQUALS I DENTIFIER)
IDENTI F I ER

c l as s name
IDENTI F I ER I I DE NT I FI ER MODULESCOPE I DENT I F I ER)

c l a s s inter facede f s
(c la s s interfacede f) *

c l a s s inter facede f
I DENT I F I ER
{ superc las s l i s t }
BEGIN

(operati on) *
END

opera t i on
(

DESTROY LPAREN RPAREN
I (CREATE I { operat ion_resu l t } I DENTIFIER)

parameter_l i s t

module
MODULE I DENTIFIER
uses_ l i s t s
c la s s de f s

c l a s s de f s
(c l a s s def) *

i s t ENDSTATEMENT) *

c l a s sde f
I DENT I FI ER
BEGIN

ATTRIBUTES
OPERATIONS
CONSTRAINT

method) *
expr e s s i on) *

END

I SA c l as sname
(

COMMA classname

) *

254

a t t ribut e_l i s t :
type I DENT IFIER

(COMMA I DENT I FIER) *

type
I NTEGER

REAL
STRING
BOO LEAN
c la s s name
COLLECTI ON LSQBRACKET type RSQBRACKET
I TERATOR LSQBRACKET type RSQBRACKET

method
opera t i on
(a t

block
i s t ENDSTATEMENT) *

s ta t ement l i s t
(s tat ement) *

b l ock
BEG I N s tatement l i s t END

opera t i on_res u l t
type
I L PAREN type

p aramet e r_l i s t
L PAREN

COMMA type) * RPAREN

{ type IDENTIFIER (COMMA type IDENTIFIER) * }
RPAREN

s ta t emen t

s end_me s sage ENDSTATEMENT

r eturn_s tatemen t

s el e c ti on
i teration

ENDSTATEMENT

DEBUG_PRINT LPAREN expres s i on RPAREN ENDSTATEMENT

255

lva l ue :
I DENTIF IER
j LPAREN IDENTIFIER (COMMA IDENT I F I ER) * RPAREN

as s ignment
lvalue EQUALS expre s s i on ENDSTATEMENT

return s ta t ement :
RETURN (exp r e s s i on (COMMA expre s s i on) *) ENDSTATEMENT

s end_message

{ (IDENT I F I ER I SELF I D IAGRAM I P ROJECT) DOT }
{ LSQBRACKET c las sname RSQBRACKET }
I DENTIF IER
L PAREN { exp r e s s i on (COMMA expres s i on) * } RPAREN

create_me s s age
c l a s sname DOT CREATE
L PAREN { expres s ion (COMMA expres s i o n) * } RPAREN

des troy_me s sage :
I DENTIFIER DOT DESTROY L PAREN RPAREN

s e l ec t i on
i f sta t ement

i terat ion
l oops tatement

i f s ta tement
I F condi t i on block

approx
ELSE b lo c k }

l o o p s tatement
LOOP
BEGIN

s tatemen t l i s t
ENDLOOP WHEN cond i t i on ENDSTATEMENT
s tatement l is t

END

c on di ti on
LPAREN expre s s i on RPAREN

256

expres s i on
arithme t ic_expres sion
{ (EQUAL S j NOTEQUALS j LESS j LESSEQ j GREATER j GREATEREQ

a r ithmet ic_expression

ari thme t i c_expres s i on
rnul t ip l i ca t ive_expression
((PLUS j MINUS j OR)

rnul tipl i cative_expres s i on
) *

mul t i p l i cat ive_expression
fact o r
((TIMES j DIVIDE j DIV j MOD j AND

factor
) *

fact o r
INTEGERVAL

BOOLEANVAL
STRINGVAL
CURRENT_MODEL
CURRENT_DIAGRAM
CURRENT_PROJECT
NO_OBJECT
SELF
IDENTIFIER
s end_mes s age
c reate_rnes s age
LPAREN e xpres s ion RPAREN
NOT fact o r
MINUS factor

257

A ppe n d i x I V

S SL Examples

IV.1 The Sieve ofEratosthenes Version 1

This implementation of the Sieve of Eratosthenes72 was written during the development

of SSL to test the efficiency of object creation, object destruction and message binding. It

is not intended to be an efficient implementation of the Sieve of Eratosthenes. The

classes involved in this example are given in Figure N -1 .

In this example a

: from, I nteger : step)
: from, I nteger : step) : Lisff!erator

<<Instantiates>>

collectively implement a linked
list

<<Uses>>

IY -1 Sieve of Eratosthenes version 1

object maintains a linked list of boolean flags of a fixed size. The

lined list is implemented with the ListNode and Listltem classes. The sieve object uses

instances of the Listlterator class to perform traversals of the list.

for numbers.

258

IV.J.J Interface Module

module s i eve

l i s t
{

new ()
c ons (integer value)
l i s titerator f ront ()
tail ()
boolean i s Empty ()

l i st i tem

new (integer value)
s e t (boolean i s Pr ime
boolean i s Pr ime ()
integer val u e ()

l i s tNode
{

new (l i s t i t em i , l i s tnode n)
l i stitem i t em ()
l is tnode next ()

l i s t i terator
{

}

new (l i s tnode p
l i sti t em i t ern ()
next ()
boolean end ()

s ieveClass
{

integer s ta r t ()
init (integer top

()
mark (l i s t i t e rator 1 , integer s tep
integer numPrimes ()
l istiterator (l i s t it erator l , integer n)

}

IV. 1.2 Implementation Module

module s i eve

s ieveClas s
{

attributes

l i s t int s ;
integer t op ;

259

operat ions

integer s tart ()
l istitem i ;
l ist iterator l i ;

i nit (1 0 0 0) ;
f indPrimes () ;
return numPrimes () ;

i ni t (integer t)
integer c ;

t op = t ;
c = top ;
i nts = l i s t . create () ;
ints . new () ;
l oop

{
ints . cons (c) ;

endloop when (c
c = c - 1 ;

f indPrimes ()
integer s tep ;
integer upper l imi t ;
l i s t i terator 1 ;

l istitem i ;

2) ;

s t ep = 2 ;

upperlimi t
loop

top div 2 ;

{
1 skip (ints . front () , step 2) ;

i f (not l . end ())

{
i 1 . i tern () ;
i f (l . ()
{

debug_print (s te p) ;
mark (l , s tep) ;

step = s tep + 1 ;
endloop when (s tep

260

) ;

mark (l i stiterat o r 1 , integer s)
l i s t i tem i ;

{

}

loop

{
1 = skip (1 , s) ;

endloop whe n (l . end ()) ;
i = 1 . i tern () ;
i . s et (fal s e) ;

integer numPrime s ()
integer total ;
l i s ti terator 1 ;
l i s t i tem i ;

t o t a l = 0 ;
1 = ints . front () ;
l oop

{
endloop whe n (l . end ()) ;
i = 1 . i tern () ;
i f (i . ispri me ()
{

total = t o ta l + 1 ;

l . next () ;

return total ;

l i s t it erator skip (l i s t i terator 1 , integer n)
i nteger c ;

c = 0 ;

l oop

{
endloop whe n (l . end () OR (c
l . next () ;
c = c + 1 ;

}
return 1 ;

l i stNode
{

attributes

l i s t i tem
l i s tNode next_ ;

operat i ons

new (l is titem i , l is tnode n)
{

i tem_ i ; next n ;

261

n) } ;

}

l i s t
{

l i s t i tem i t em ()
{

return

l i s tnode next ()
{

return next_ ;

attribute s

l i s tnode l ;

operations

new ()
{

1 = no_obj ect ;

cons (integer value
l i s t i tem i ;
l i s tno de newl ;

i = l i s titem . create () ;
i . new (value) ;
newl = l i s tnode . create () ;
newl . new (i , 1) ;

1 = newl ;

l i s ti t erator front ()
l is ti t erator it ;

i t = l istiterator . create () ;
i t . new (1) ;
return it ;

tai l {)
{

if (not (1 = no_obj ect l)
{

1 = 1 . next () ;

boo lean
{

return 1

()

no_object ;

262

l i s t i tem
{

attributes

boolean pr ime ;
integer val ;

operations

new (integer value
{

}

prime = t rue ;

val = value ;

s e t (bool ean i s Prime
{

= i sPrime ;

boolean i s Pr ime ()
{

return p rime ;

integer value ()
{

return val ;

l i s t i terator

attributes

l i s tnode p o s ;

operations

new (i stnode p)
{

pos = p ;

l i stitem i tem ()
{

return p o s . i tem () ;

next ()
{

i f (not (pos = no_obj ect

{
pos = pos . next () ;

263

boolean end ()
{

return pos no_obj ect ;

Sample output from executing this implementation of the Sieve of Eratosthenes

algorithm with an early prototype of the SSL virtual machine is given below.

> mooto - c s i eve : s i eveclass -p 2

No message spec i f i ed , u s ing s tart- #

There are 1 i t em (s) in the stack .
I tem 1 i s an integer (1 6 8)

Total number o f opcodes interpreted
Total time (seconds)
Opcode s / Sec
A t otal of 2 4 9 8 obj e c t s were created

3 3 6 7 9 6 9

3 5 2

9 5 6 8

A total o f 6 1 7 0 4 7 mes s ages were proces sed
>

It was executed on a Sun Spare Server 1 OOOe. On average, 1 0000 SSL-VM instructions

and 1 800 messages were processed per second.

264

IV.2 The Sieve ofEratosthenes Version 2

This implementation of the Sieve of Eratosthenes was written during the development of

SSL to test the SSL collection and iterator types. The classes involved in this example are

given in Figure IV-2.

marklll:era.tor.,us:tltem> : from , Integer : step)

o.:

: l!erator
: Boolean

: from , Integer : step) : lterator<Listltem>

<<Instantiates>>

Listltem

prime · Boolean
: Integer

<<Instantiates>>

IY -2 - Sieve of Eratosthenes version 2

IV.2.1 Interface Module

modul e s i eve2

l i s t i tem

}

new (integer val u e)

s e t (boolean i s Pr i me

boolean i s Prime ()

integer val u e ()

265

<<USes>>

s i eveC l a s s

integer s tart ()

i ni t (integer top

f in d P r imes ()

mark (i terator [l i s t i t em] 1 , integer s)

i te ra t or [l i s t i tem] s k i p (i t e rator [l i s t i t em] l , integer n)

integer numPrime s ()

IV.2.2 Implementation Module

modu l e s i eve2

s i eveC l a s s

{
attributes

c o l l ection [l i s t i tem] i n t s ;

i nt eger top ;

operati ons

integer s tart ()

{
i n i t (1 0 0 0) ;

f indPrimes () ;

return numP r imes () ;

i n i t (integer t)

integer c ;
l istitem i ;

{

}

t op = t ;

c = 2 ;

l oop

{
i l i s t i t em . create () ;

i . new (c) ;

int s . add (i) ;
endloop when (c 1 0 0 0) ;

c = c + 1 ;

266

f indPr irnes ()

integer s t ep ;

integer upper l irni t ;

iterator [l i s t i t ern] 1 ;
l i s t i t em i ;

s t ep = 2 ;

uppe r l imi t t op div 2 ;

debug_print (" Wo r k i ng ") ;

loop

{
1 skip (i n t s . front () , s t ep 2) ;

i f (not l . end ())

{

}

l = l . i t ern () ;

i f (i . i sp r irne ()

{
debug_print (s t ep) ;

mark (1 , s t ep) ;

s tep = s tep + 1 ;
endloop when (s tep uppe r l irni t) ;

mark (i terator [l i s t i tern] 1 , integer s)

l i s t i t ern i ;

loop

{
1 = skip (1 , s) ;

endloop when (l . end ()) ;

i = l . i tern () ;

i . s et (fal s e) ;

integer nurnPrirne s ()

integer t o t a l ;

i terator [l i s t i t ern] l ;

l i s t i tern i ;

t o t a l = 0 ;

l = ints . front () ;

loop

{
endloop when (l . end ()) ;

i = l . i t ern () ;

i f (i . ())

{
total t o t a l + 1 ;

l . next () ;

debug_print (" number o f

debug_print (t o t a l) ;

return total ;

267

under 1 0 0 0 i s ") ;

i terator [l i s t i tem]

s k i p (i terator [l i s t i tem] l , integer n)
integer c ;

c = 0 ;
l oop

{
end loop when (l . end () OR (c

l . next () ;
c = c + 1 ;

return l ;

l i s t I tem

[
attribute s

boolean p r ime ;

integer val ;

operat i ons

new (integer value

{

}

p rime = true ;

val = va lue ;

s e t (boolean i s Pr ime

{
= i s Pr ime ;

boolean i s P r ime ()

return

integer value ()

{
return val ;

268

n)) ;

Appe n d i x V

S SL-VM Instruction S et

V.1 Introduction

Instructions described here have the following format:

Name Type-mode Address-mode [Operands]

Name is the instruction name. Ijpe-mode corresponds to the type that an instruction

operates on. Address-mode specifies where the instruction's arguments are.

Ijpe-mode is one of the following:

Boo lean Int Real

Collection Iterator ObjRef

Address-mode is one of the following:

Imp (Implicit) Imm (Immediate)

V.2 Instruction Set

Mgs 1 Send a message to an object

Format Mgs ObjRef Ind aReference

String

Ind (Indirect)

aMessage

Retrieve the object reference indicated by aReftrence from the context. Send
alvfessage to the object identified by object reference.

Cmg Send a create message to a class

Format Cmg ObjRef Imm class name

Create an instance of the class with the name indicated by classname.

269

Smg Send a scoped message

Format Smg ObjRef Imm aReference classname aMessage

Retrieve the object reference indicated by aR.eflrence from the context. Send
aMessage to the object identified by the object reference, as if it were an
instance of classname.

Rtn Return from message

Format Rtn Void Imp

Set the instruction counter (Iq to -1 (end of a message) .

Psh Push item onto the s tack

Format Psh Int Imm anlnt

Psh Int Ind aReference

Psh Real Imm aReal

Psh Real Ind aReference

Psh Boo lean Imm aBoolean

Psh Boo lean Ind aReference

Psh Collection Ind aReference

Psh String Imm aString

Psh String Ind aReference

Psh ObjRef Imm anObjRef

Psh ObjRef Ind aReference

Psh Iterator Ind aReference

If AddrMode is Ind, get the value from context and push it into stack. If
AddrMode is !mm, get the following value and push it into stack.

270

j
Pop

Format

Add

Format

Pop an item from the stack

Pop Int Ind aReference

Pop Real Ind aReference

Pop Boo lean Ind aReference

Pop Collection Ind aReference

Pop String Ind aReference

Pop ObjRef Ind aReference

Pop Iterator Ind aReference

Reset the variable indicated by aReftrence in the context, with the value on
the top of the stack. Remove the top item from the stack.

Addition

Add Int Imp

Add Real Imp

Add String Imp

Add Collection Ind aReference

Add Iterator Ind aReference

Int and Real

The top two values are popped off stack and added together. Push the
result onto the stack. The two values of stack must have the same type.

String

The top two values are popped off stack and appended. The result is
pushed back onto stack.

Collection

Pop the item off the stack and add it into the collection indicated by
aReftrence context.

Iterator

Move the iterator indicated by aReftrence forwards along the list it points to.

271

Sub

Format

Subtraction

Sub Int Imp

Sub Real Imp

Sub Collection Ind

Int, Real

Pop the top two items off stack. Subtract them and push the result onto
stack. Both items must be o f the same type.

Collection

Pop an iterator off the stack and remove the item that the iterator points to
from the collection.

Mul Multiplication

Format

Div

Format

Mul Int Imp

Mul Real Imp

Pop the top two items o ff stack. Multiply them and push the result onto
stack. Both items must be of the same type.

Division

Div I mp

Div Real Imp

Pop the top two o ff stack. If the second operand is zero, a maximum
value is pushed onto stack. O therwise divide them and push the result onto
stack. Both items must be of the same type.

Mod Modulus

Format Mod Int Imp

Pop the top two items o ff stack. If the second operand is zero, a maximum
value is pushed onto stack. Otherwise apply the modulus operation and

i push the result onto stack.

272

Cnv Convert type

Format

Neg

Format

And

Format

Or

Format

Not

Format

Cnv Int Imp

Cnv Real Imp

Pop a value off stack, convert its type from Int to Real or from Real to Int,
and push the result back to stack.

Unary minus

Neg Int Imp

Neg Real Imp

Change the sign of the topmost value on stack.

Boolean And

And Boo lean Imp

Pop two boolean values off stack. Push the logical conjunction of these
values onto the stack.

Boolean Or

Or Boo lean Imp

Pop two boolean values off stack. Push the logical disjunction of these
values onto the stack.

Boolean Not

Not Boo lean Imp

Pop topmost boolean value off stack. Push the logical negative of it onto
the stack.

273

Eq

Format

Neq

Format

Grt

Format

Typed equal comparison

Eq Int Imp

Eq Real Imp

Eq Boo lean Imp

Eq String Imp

Pop two values off stack. If their value and type is equal push true onto the
stack otherwise push false.

Typed not equal comparison

Neq Int Imp

Neq Real Imp

Neq Boo lean Imp

Neq String Imp

Pop two values o ff stack. If their value and type are not equal push true
onto the stack otherwise push false.

Greater than

Grt Int Imp

Grt Real Imp

Grt String Imp

Pop two values off stack. If the first is greater than the second one push
true onto the stack otherwise push false. Both operands must have the same
type.

274

Lss Less than

Format Lss Int Imp

Lss Real Imp

Lss String Imp

Pop two values off stack. If the first is less than the second one push true
onto the s tack otherwise push false. Both operands must have the same
type.

Brt Branch if true

Format

Brf

Format

Fnt

Format

End

Format

Brt Boo lean Imm anAddr

Pop top value off stack. If it has the value tme, set the IC to the address
. anAddr.

Branch if false

Brf Boo lean Imm anAddr

Pop top value off stack. If it has the value false, set the IC to the address
anAddr.

Create an iterator

Fnt Collection Ind aReference

Create an iterator that points to the first item of the collection indicated by
aReftrence in the context. Push the iterator onto stack.

Test if iterator is at the end of a collection

End Iterator Ind aReference

If the iterator indicated by aRiference refers to the end of a collection, push
tme to stack. Otherwise, push false to stack.

275

Format Itm Iterator Ind aReference

Push the item that the iterator refers to onto the stack. If the iterator is at
the end of a list, push no_oiject onto the stack.

Prj Get the value of the project register

Format Prj Void Imp

Push the value of the project register onto the stack.

Mdl Get the value of the project register

Format Mdl Void Imp

Push the value of the model register onto the stack.

Dgm Get the value of the project register

Format Dgm Void Imp

Push the value of the diagram register onto the stack.

276

A ppe n d i x V I

SSL Compiler

VI.l Introduction

This appendix describes the design and implementation of the SSL compiler (SSLC).

VI.2 The SSL Compiler

The SSL compiler (SSLC) is a command line tool that accepts a collection of SSL module

names as input. It initially compiles each interface module and then compiles the

corresponding implementation modules. Any additional interface modules that are used

by these modules are also compiled, if needed. SSLC generates SSL-BC and SSL­

assembler for each class.

SSLC was developed using:

• Gnu 2.7.2 for Solaris 2.5

• Microsoft Visual C++ 5.0 for Windows 9 5/NT

PCCTS 1 .33 (Parr, 1 997; PCCTS, 1 998)

PCCTS (Purdue Compiler Construction Tool Set) is a public domain tool that aids in the

construction of language recognisers and translators. It consists of a parser generator

(ANTLR) and a lexical analyser generator (DLG). PCCTS generates LL(k) parsers that

dynamically adjust token look-ahead depth (k). PCCTS v 1 .33 generates lexical

analysers and parsers in C and C++.

An abridged PCCTS grammar for SSL is given in appendix III.

The major components of the compiler are shown in Figure VI-1 .

277

No Type() : SSL_SimpleType
Boolean() : SSL�SimpleType

Real() : SSL __ SimpleType

Integer() : SSL�SimpleType

String() : SSL_ SimpleType

SSL� Type __ Manager

Void() : SSL�SimpleType

NoObject{) : SSL�SimpleType
.Tuple(: SSL__Tuple) : SSL�Tuple !Collection(: SSL�Collection) : SSL. Collection

lterator(: SSL�Ite rator) : SSL�Iterator

Class(: SSL�Ciass) : SSL�Ciass
Classname(: SSL .. CiassName) : SSL�CiassName

I lockup(: SSL� Tuple) : SSL� Tuple

Lockup(: SSL�Colleetion) : SSL�Collection
Lookup(SSL�Iterator) : SSL�Iterator
Lookup(SSL _Ciass) : SSL�Ciass

Lockup(: SSL _CiassName) : SSL�CiassName
getAiias(: string) : SSL�Aiias

deduce Type(: OP .. TYPE : SSL�Expression) SSL.SimpleType
deduce Type(: SSL�Expression : OP �TYPE, : SSL�Expression) SSL_SimpleType

\"I- 1 The main components of the SSL compiler

moduleinterface()

SSL Compiler is a singleton (Gamma et al., 1 995) class that is responsible for parsing the

compiler command line and generating a vector of SSL modules that need to be

compiled. It directs the action of the parser, type checker and code generator.

SSL ParserBlack13ox is a parameterised class that is responsible for binding a parser and

lexer object together. The parsing sub-system of the compiler is made by instantiating the

Lexer and Parser type arguments of SSL ParserBlack13ox with SSL Lexer and SSL Parser

respectively. The SSL Lexer class is the lexical analyser that is generated by the DLG and

ANTLR tools. The SSL Parser class is the parser that is generated by the DLG and

278

AN1LR tools. The interface of SSL_Parser consists of a set of member functions, which

correspond to the rules in the SSL grammar (appendix Ill).

Actions (such as creating nodes for an abstract syntax tree) can be associated with the

rules in a PCCTS grammar. The embedded actions are copied into the related member

functions of the PCCTS generated parser. These actions have been placed into a

singleton class (Parser Action) so the entire parser does not need to be regenerated and

recompiled each time an action is modified.

Ijpe Manager is a singleton class that stores details relating to the SSL classes, SSL

collections, SSL iterators and SSL tuples as they are recognised by the parser. It provides

facilities for searching for and registering new types, checking to see if a type is defined

and for deducing the type of an expression. It is used during type-checking.

The PstoreProxy class isolates the compiler from the persistent store. It provides facilities

for retrieving and storing classes, interfaces, modules and their compiled representations.

Symbol Table is a singleton class that stores details related to attributes of SSL classes, local

variables of SSL methods and message arguments.

Visitor is an abstract super-class that implements the Visitor pattern (Gamma et al, 1 995).

SSL Ijpe Checker, SSL Bytecode Generator and SSL Assembler Generator are all sub-classes of

Visitor. The use of the Visitor pattern is discussed in more detail in section Vl.4.

VI.3 Representing Types in the SSL Compiler

Figure Vl-2 illustrates how types are represented in the SSL compiler. All primitive types

are represented by a single instance of SSL Simple Ijpe that is managed by SSL Ijpe

Manager. Classes, collections, iterators and tuples are represented by sub-classes of SSL

Simple Type. The type manager is responsible for maintaining all instances of the type

classes. It provides facilities for checking to see if types have been previously defined and

for registering new types.

279

SSL� Type_Manager

NoTypeQ : SSL�SimpleType

Boolean() : SSL�SimpleType
Real() : SSLSimpleType
I nteger() : S S L�SimpleType
String() : SSL,,SimpleType
Void() : SSL�SimpleType
NoObject() SSL�SimpieType

Tuple(, SSL� Tuple) : SSL,Juple
Collection(: SSL�Collection) , SSL�Colleclion
lterator(: SSL�Iterator) : SSL�Iterator
Class(: SSL_Ciass) : SSL�Ciass
Classname(SSL�CiassName) : SSL_CiassName
Lookup(: SSL� Tuple) : SSL_ Tuple
Lockup(: SSL�Collection) : SSL�Collectron
Lookup(: SSL�Iterator) : SSUterator
Lookup(: SSL�Ciass) : SSL_Ciass
Lookup(: S SL�Ciass Name) : SSL_ CiassName
getAiias(: string) SSL_Aiias
deduce Type(: operator, : SSL_Expression)
deduceType(, SSL�Expression,

\'l-2

VI.4 Representing Statements and Expressions in the SSL Compiler

Figure VI-3 shows how statements and expressions are represented by the SSL compiler.

The parser (SSL Parser in Figure VI-1) builds Abstract Syntax Trees (AST) for each

method. The types of node

Figure VI-3.

the AST are defined by the sub-classes o f AST Node m

The interface of the abstract Visitor class of Figure VI-3 defines a visit operation that

corresponds to each sub-class of AST_Node. Concrete classes of the AST node hierarchy

280

implement the Accept operation defined in AST Node. The sub-classes of Visitor

implement specific operations of the compiler (such as type checking and code

generation) . The type checker and code generators are related by the order in which they

visit nodes in an AST (i.e. the traversal algorithm is the same).

Figure \T3 S tatements and expressions in the SSL cotnpJller

281

VI.5 Representing Modules in the SSL Compiler

Figure VI-4 shows the classes involved in representing SSL modules in the compiler.

SSL�SimpleType

methods in the SSL compiler

282

The classes in Figure VI-4 can be grouped into three categories:

Classes that represent interfaces (SSL Module Interface, SSL Class Description and SSL

Operation Description) .

• Classes the represent implementations (SSL Module Implementation, SSL Class

Implementation and SSL Method).

• Classes that represent compiled implementations (SSL Compiled Class, SSL Compiled

Class ASSM, SSL Compiled Class BC, SSL Compiled Method, SSL Compiled Method

ASSM and SSL Compiled Method Bq.

SSL Module Interface represents an SSL interface module. It contains a collection of SSL

Class Description instances (one for each class interface in the interface module) and is

associated with an instance of SSL Module Implementation.

All Class Description objects have an associated instance of SSL ClassName. Class names are

always fully qualified by a module name. SSL Alias extends SSL ClassName by overriding

and overloading the isEqual operation. An instance of SSL Alias corresponds to a local

alias introduced with a modules uses list.

The interface of an SSL class contains all of its operations and defines its super-classes.

Operations are represented with an instance of SSL Operation Description. Each operation

parameter is represented by an instance of SSL VarRef(a sub-class of AST Node in Figure

VI-3).

A class's method lookup table is derived based solely on its interface. The Method Lookup

Table class encapsulates a collection of Lookupitem objects, each of which is an SSL Class

Name - SSL Operation Description pair.

SSL Module Implementation (Figure VI-4) represents SSL implementation modules. It

contains a collection of SSL Class Implementation instances, one for each Class Description

instance in its associated SSL Module Interface object.

Each SSL Class Implementation object has a Variables Description object that defines the

number of attributes, of each type, the SSL class has. The operations that are

implemented by the SSL class are represented by a collection of SSL Method objects. The

283

body of the method is represented by an instance of SSL Statement (a sub-class of AST

Node in Figure VI-3) .

SSL Module Implementation, SSL Class Implementation and SSL Method all provide a Generate

Code operation, which takes an SSL Code Generator object as an argument. SSL Assembler

Generator overrides the newCiass and newMethod operations to create instances of SSL

Compiled Class ASSM and SSL Compiled Method ASSM respectively. SSL ByteCode Generator

overrides the newCiass and newMethod operations to create instances of SSL Compiled Class

BC and SSL Compiled Method BC respectively.

SSL Compiled Class (Figure VI-4) defines the internal representation of compiled SSL

classes. Its sub-classes (SSL Compiled Class ASSM and SSL Compiled Class BC) override the

name method to produce flle names for classes compiled into assembler or SSL-BC. The

current implementation only uses a different format for the methods (i.e. assembler vs.

SSL-BC) so the write method in only defined in SSL Compiled Class. SSL Compiled Class

ASSM and SSL Compiled Class BC may override the write method in the future.

SSL Compiled Method defines the internal representation of compiled methods. Its sub­

classes (SSL Compiled Method ASSM and SSL Compiled Method BC) override the write

method to produce SSL assembler code and SSL BC code respectively.

284

A pp e n d i x V I I

The SSL Virtual Machine

VII.l Introduction

This appendix presents the design and implementation of the SSL Virtual Machine. The

initial implementation of the SSL virtual machine is presented in (Griffin, 1 997; Page et

al., 1 997, 1 998; Mehandjiska et al., 1 997).

VII.2 The SSL Virtual Machine

The SSL-VM was developed using:

• Gnu 2.7.2 for Solaris 2.5 and Linux

• Microsoft Visual C++ 5.0 for Windows 95/NT

The primary design goal of the SSL-VM was that it be easy to modify, especially with

respect to its instruction set. The SSL-VM design makes heavy use of patterns (especially

the proxy pattern). The S SL-VM implementation makes heavy use of the C++ STL

(Standard Template Library).

The major classes in the design of the SSL-VM are given Figure VII - 1 .

The class Virtual Machine has a stack (Alpha 5 tack) and three registers (Prrject Register, Model

&gister and Diagram Register;. All message requests that occur whilst a method is executing

on the SSL-VM are satisfied via the Request Broker, which is implemented using the

singleton pattern (Gamma et al, 1 995).

The classes SSL Instance Manager and SSL Class Manager correspond to the SSL Oiject

Client and SSL Class Client of the Methodology Interpreter (Figure 3-1 0 - Proposed, top

level, system architecture and Figure 3-1 1 - Architecture of the MOOT prototype). SSL

Class Manager and SSL Instance Manager are responsible for isolating the SSL-VM from

persistent store.

285

DecremerrtCo!lectlonRef{!d SSLinstanceiD)

Resolvei D(id • SSLinstanceiD) SSLOb19C!

ResolveCo!lecUonlD{!d SSL!nstance!D) SSLCollect10n

NewtDO SSLinstancelD

SSUnstanceiD

YII-1 - of the SSL-Y:\1

The Debugger class in Figure VII-1 provides facilities for tracing the messages and SSL­

VM instructions that are executed by an instance of the SSL-VM. It also provides

profiling of methods.

The MsgCall class represents a request for a particular message to be executed on the

virtual machine. It encapsulates a message selector, a message receiver and a reference to

the SSL-VM that the message is to be executed on; more detailed description of

binding and message execution is presented in sections VIIS - Processing Messages and

VII.6 - Binding.

286

VII.3 Representing SSL Types

The SSL types are implemented in the following manner:

Type Implemented with

SSL integer C++ long

SSL real C++ double

SSL boolean C++ bool

SSL String C++ STL string

SSL Collection C++ STL map

SSL lterator C++ STL pair

SSL Class C++ class called SSL Class

Table YU- 1 - Implementation of SSL types in the SSL-\':\f

Variables of the primitive types (integer, real, boolean and string) contain instances of the

corresponding C++ types, Variables of SSL Collection and SSL Class contain a proxy

object. Variables of an SSL iterator contain an instance o f STL pair, where the first item is

a collection proxy and the second is an index into the collection. The classes involved in

representing SSL classes and SSL objects are discussed in section VII.4 SSL Proxies.

VII.4 SSL Proxies

One of the goals of the design of the SSL-VM was that the persistence of SSL objects

should be completely hidden. To achieve this goal, access to instances of SSL Class and

SSL Collection is always via a proxy object. SSL proxies are an example of the Proxy

design pattern (Gamma et al., 1 995) .

Proxies encapsulate a unique ID and a static reference to a man.ager object. The manager

object is responsible for resolving unique IDs into concrete objects and collections.

The SSL instance manager is responsible for managing instances of classes and

collections. The SSL class manager is responsible for managing classes.

287

SSUnstance-Proxy)

+tnhented stale

YII-2 SSL and SSL classes

288

An instance of SSL Class encapsulates a Variable Info object that describes the number of

attributes, of each type, that the class defines. Instances of an SSL Class encapsulate a

Variable Space object that defines the state of the object. A Variable Space object contains

collections of instances of the basic types and collections of proxy objects for SSL

Collections and SSL Objects. The sizes of the collections are defines by a Variable Info

object.

An instance of SSL Class encapsulates a collection of SSL Class Proxy objects that identify

its direct and indirect super-classes. An instance o f SSL Object encapsulates a collection of

SSL Instance Pro:ry objects that correspond to the state described by the super-class SSL

Class Pro:ry collection defined in its class.

VII.5 Processing Messages

Figure Vll-3 shows the classes involved in processing a message on the SSL--VM.

A MsgCa/1 object identifies a method to be executed for an object, on a particular SSL­

VM.

The Context class encapsulates the context a method is interpreted in. It includes the

attributes of se!f (the object that receives the message), the message arguments and local

variables that are used within the method. The attributes are represented with an instance

of Van'able Space. Message arguments and local variables are represented with a second

instance of Variable Space. SSL--VM instructions that change the value of an attribute, local

variable or message argument act on an instance of Context.

Methods are executed by sending an Interpret message to an instance of the Method class.

The method body consists of a sequence of bytes that corresponds to a set of SSL-VM

instructions and their operands.

289

SSLlnstanceProx:y, NewVM
SSUnstanceProY:J, NewVM V!rtua1Mach1ne)

VII-3 "Ibe classes involved in pn:>c<�ssJ,ng a message on the
SSL-VM

Figure VII-4 shows an abridged fragment of C++ from the Interpret method m the

Method class.

290

L ong IC

d o

0 ; 1 1 Ins t ru c t i on Counter

{
i f (IC < 0 1 1 IC > = S i z e) { / * s i gna l an erro r * / }

1 1 Fetch

Opc ode next Ge tinstru c t i on (Code + I C) ;

1 1 Decode

I n s t ruc t i on * Instr

1 1 Execute

I C Ins t r - >Execu t e (

theCon t ext ,

VM ,
IC ,

Ins t ruc t i onTab l e () [next . in s t Code ()] ;

Code + IC + s i z e o f (Opcode) ,

next . addrMode ()) ;

wh i l e (IC ! = Re t urnFromMes sage) ;

Figure \·II-4 - Executing a method on the SSL-\•:\f

Figure VII-4 shows the fetch-decode-execute cycle that is performed for each SSL-VM

instruction. The first step (fetch) involves translating the byte located at the Instruction

Counter (IC) into an SSL-VM opcode. The next step (decode) involves retrieving the

corresponding instance of the Instruction class from the InstructionTable (Instr'). The

Instruction class, and its sub-classes, are instances of the Flyweight design pattern (Gamma

et al, 1 995). The last step (execute) is performed by the Opcode object (Instr') itself.

VII.6 Binding

Figure VII-S shows how a message is bound to method and executed on the SSL-VM.

The message binding process starts when the message request broker receives a request

to dispatch a message to a particular object. The request will be accompanied by:

• An SSL Instance Pro:x:y object

• An instance of the MsgCall class VII-3)

The SSL Instance Proxy object identifies the object that is to receive the message. The

MsgCall object identifies the method to be executed and the particular SSL-VM it is to be

executed on.

291

2: AcceptMessage(M)

� I, proxy to class of receiver :

SSLC\assProxy

J 3: Dereference() � 1 : Dereference()

9: Getl nstance(proxy to defining class)
proxy to message receiver :

SSLi nstanceProxy

J 8: Dereference() I
' D•""""'�""''"·'"" "' ="w; � I

10 : l nterpret(proxy to instance of defining class, VM)

�

5: find(messagename) /

Figure Yil-5 Binding a message to a method on the SSL-Y.\I

The following steps are performed to bind a message to a method and execute it on an

SSL-VM:

1 . The message request broker first de-references the proxy to rece1vmg object

(proxy to message receiver in Figure VII-S) . It then asks the message receiver object to

accept the message.

2. The message receiver object (message recetver m Figure VII-5) delegates the

responsibility of finding an appropriate method to its class. It must first de-reference

the that defines its class (pro:x:y to class of receiver Figure The message

receiver then sends a Dispatch Message message to its class (class if receiver in Figure

VII-S), with the message and a proxy to itself as arguments.

3. The class o f the message receiver (class if receiver in Figure VII-S) uses its Method

Lookup Table to determine which class defines a method that can be bound to

message.

292

4. The class of receiver object then de-references the proxy to the method defining class

(pro:x;y to difining class in Figure VII-5). The method defining class (difining class in Figure

VII-S) is then asked to provide a method that corresponds to the message (method to

execute in Figure VII-5).

5. The class of receiver object then asks the message receiver object to return a proxy to the

instance of the method defining class (pro>ry to instance of difining class in Figure VII-5).

The proxy returned will either: correspond to the message receiver, or to the instance

of one of the super-classes, of the message receiver's class (that is part of its inherited

state).

6. Finally the method to execute object is asked to interpret itself (message number 10 in

Figure VII-5) .

VII.7 Garbage Collection

The garbage collection scheme is completely transparent to the Virtual machine. It is a

simple adaptation of the reference counting garbage collection algorithm Oones and Lins,

1 996).

Figure VII-6 shows the classes involved in

scheme used in the SSL-VM.

reference counting garbage collection

The classes SSL Instance Seroer and SSL Class Seroer correspond to the SSL Object Server

and SSL Class server in Figure 3-10 - Proposed, top level, system architecture and Figure

3-1 1 - Architecture of the MOOT prototype respectively.

In the prototype implementation of the MOOT core SSL Instance Manager and SSL Class

Manager simply forward requests directly on to the corresponding server object. SSL

Instance Seroer maintains a map of SSL Objects (indexed by their SSL Instance ID) and a

map of SSL Collections (also indexed by their SSL Instance ID). It maintains two maps o f

reference counts (indexed b y an SSL Instance ID), one for th e Instance Map and one for th e

Collection Map. When a collection o r object i s registered for th e first time a new entry is

added to the appropriate Riference Count Map with an initial count o f 1 .

293

Figure VII-6 shows that the SSL Class Seroer maintains a map of SSL Classes (indexed

their SSL Class ID). The SSL Class Server also maintains complementary maps of SSL

class names and SSL Class ills.

SSLinstarx:eProxy
I D : SSLi nstanceiD

SSLCollectionProxy
I D : SSLinstancel D SSLinstarx:eProxy(Thelnstarx:e : SSLObject)

SSLinstarx:eProxy(toCopy : SSLinstanceProxy)
SSLCollectionProxy(toCopy : SSLCollectionProxy) , SSLinstarx:eProxy(l nstanceiD : SSLinstarx:eiD)
SSLCollectionProxy(lnstarx:e i D : SSLinstanceiD) <>--

Dereference() : SSLObject
lsValid() : boolean SSLCollectionProxy(Collectio niD : SSLinstanceiD)

Dereference() : SSLCollectlon isEqual(comp : SSLinstanceProxy) : boolean
lsVaiKl() : boolean GeliD() : SSLinstanceiD
isEqual(comp : SSLCollectionProxy) : boo lean ,) GeliD() : SSLinstance i D

SSLCiassProxy +StheSSLinstance Manager +StheSSLinstance Manager
,

name : SSLCiassl D
SSLinstarx:eManager

SSLCiassProxy(cName : string) Register(id : SSLinstarx:eiD)
SSLCiassProxy(TheCiass : const SSLCiass) UnRegister(id : SSLinstanceiD)
Dereference() : SSLCiass RegisterCollection(id : SSLinstarx:eiD)
lsVaiKl() : boolean UnRegisterCollection(id : SSLinstancel D)
isEqual(comp : SSLCiassProxy) : boo lean , l rx: rement(id : SSLinstanceiD)
GetName() : SSLCiassiD '---- Decrement(id : SSLinstanceiD)

0 1
l rx:rementCollectionRef(id : SSLinstanceiD)
DecrementCollectionRef(id : SSLinstarx:eiD)
ResolveiD(id : SSLinstanceiD) : SSLObject

, +StheSSLCiassManager
ResolveCollectioniD(id : SSLinstanceiD) : SSLCollection

SSLCiassManager
Register(name : string) : SSLCiassiD
UnRegister(id : SSLCiassl D)
GetName(id : SSLCiassiD) : string
ResolveName(id : SSLCiassiD) : SSLCiass

I
I
I
I I
I
I

�
SSLCiassServe r

Register(cName : string) : SSLCiassiD
Unregister(Name : SSLCiassiD)
GetName(Name : SSLCiassiD) : string
ResolveName(Name : SSLCiassi D) : SSLCiass

NewiD() : SSLinstanceiD
NewCollectioniD() : SSLinstanceiD

SSLinstarx:eServer
Register(ID : SSLinstarx:eiD)
Unregister(I D : SSLinstanceiD)
RegisterCollection(ID : SSLinstanceiD)
UnRegisterCollection(ld : SSLinstanceiD)
lrx:rement(ID : SSLinstarx:eiD)
Decrement(ID : SSLinstanceiD)
lrx:rementCollectionRef(id : SSLinstanceiD)
DecrementCollectionRef(id : SSLinstarx:eiD)
ResolveiD(ID : SSLinstanceiD) : SSLObject

'I (

1

��
ResotveCollectioniD(ID : SSLinstanceiD) : SSLCollection
GetNewiD() : SSLinstanceiD 1 GetNewCollectioniD() : SSLinstancei D I ClassNameMap y I 1 l\

,-----::-,..--:-'-----,
l t

1

1 nd(ID : SSLC iassi D) · stnng
1

1

1 �� ���C�Ia_ss�M�����I
lfind(I D SSC i assiD) SSLCiass 1
c__ _______ _; I ClassiDMap I I lnstanceM� I 1 flnd(I D : string) : SSLCiassiD 1 1 find(I D : SSLinstanceiD) SSLOb1ect 1

1
·Spersistent store 1 I Collection Map I

Store 1 find(ID : SSLinstance) : SSLCollection 1
DeleteObject(: SSLinstanceiD)
GetObject(ID : SSLinstanceiD) : SSLObject 1 I ReferenceCountMap I putObject(Obj : SSLinstance)
getCollecbon(ID : SSLinstance i D) : SSLCollection lfind(ID : SSLinstanceiD) : Long 1 1
putCollection(c : SSLCollection)
GetCiass(cName : string) : SSLCiass
GetNextiD() : SSLinstancei D
GetNextCollectioniD() : SSLinstanceiD
getNSMTable(tName : string) : NSM_ Talble
getNotation(notationName : string) : string

·Spersistent store

Figure VII-6 - Implementation of the reference counting garbage
collection scheme

294

The SSL Instance Pro:>g and SSL Collection Pro:>g classes in Figure VII-6 drive the reference

counting process. Proxy objects notify their manager whenever they are created, copied

and deleted. Creating and copying proxies corresponds to incrementing a reference count

and deleting a proxy corresponds to decrementing a reference count. Such a scheme is

easily implemented as shown in Figure VII-7.

1 1 a proxy wi th I D z ero corresponds to no obj ect

S SLinstanc eProxy : : SSLins tanceProxy () I D (O) { }

1 1 contructed from an exi s i t ing obj e c t

S S L i nstanceProxy : : SSLins t anceProxy (

c ons t SSLOb j e c t &The ins tance) : I D (The ins tanc e . Ge t i D ())

assert (I sVa l i d ()) ;

Manager - > Incr ement (ID) ;

1 1 c reate f rom an exi s i t ing SSL ID

S SLins tance Proxy : : S SL ins t anceProxy (

c ons t SSL i n s t anc e i D & Ins tanceiD : I D (Ins tance i D

assert (I sVa l i d ()) ; a s s ert (Instanc e i D ! = 0) ;

Manager - >Regi s t e r (ID) ;

Manager - > In c r ement (ID) ;

1 1 c opy cons truc t o r

S SLinstanc e Proxy : : S SLins t anceProxy (

cons t SSLins t anceProxy& toCopy)

{
assert (I sVa l i d ()) ;

i f (ID) Manage r - > I nc rement (ID) ;

1 1 destruc tor

S SLinstanc e P roxy : : -SSLins tanceProxy ()

{
assert (I sVa l i d ()) ;

i f (ID) Manager- >Decrement (ID) ;

}
1 / assignment operator

I D (toCopy . ID)

S SLinstanc e Proxy &SSLins tanceProxy : : operator

const SSL i n s t an c e P roxy &Copy)

}

i f (thi s ! = & Copy)

{
assert (I sVa l i d ()) ;

i f (I D) Manager - >Dec rement (I D) ;

ID = C opy . Ge t i D () ;

i f (I D) Manager - > Increment (I D) ;

return * th i s ;

Figure YII-7 - Implementation of the SL Instance Proll:y class

295

An instance of SSUnstancePro:>ry (Figure VII-7) sends Increment and Decrement messages to

its manager in the constructors, destructor and the overloaded assignment operator.

These C++ member functions collectively define the primitive operations on a type in

C++ (i.e. duplication, instantiation, deletion and assignment) .

296

References

Adams, S. K (1 998) Development of a Client Interface for a Methodology Independent
Object-Oriented CASE Tool, Massey University Masters Thesis, Department of
Computer Science, Massey University, Palmerston North, New Zealand

Alderson, A. (1991) Meta-CASE Technology, Proceedings of Software Devdopment
Environments and CASE Technology, LNCS, Springer-Verlag, New York, Vol. 509,
pp81 -91

Alfabet (1998) Alfabet CASE Tool homepage, http:/ /www.alfabet.de/

Amulet (1998) Amulet home page
http:/ /www.cs.cmu.edu/ Groups/ amulet/ amulet-home.html

Apperley, M. and Chester, M. (1995) Tree Browsing, Working Paper 96/ 1 3, Department of
Computer Science, The University of Waikato, Hamilton, ew Zealand

A.pperley, M. and Duncan, A. (1 994) Human-Computer Interface Design in the oftware
Lifecycle, SRIG-ET'94, University of Otago, IEEE Computer Society Press, pp60-64

Aranow, E. (1 996) Growing a Software Reuse Program, Tutorial notes for TOOLS ew
Zealand Workshop

A.mold, P., Bodoff, S., Coleman, D., Gilchrist, H. and Hayes, F. (1991) An Evaluation of
Five Object Oriented Development Methods, Research Report, Hewlett Packard
Laboratories, Bristol, nited Kingdom

Artsy, Y.S. (1995) Meta-modelling the 00 methods, Tools, and Interoperability Facilities,
position paper for Meta-modelling in 00 OOPSLA.'95 Workshop

A D (1995a) Graphical Designer Language ver 1 .2.24 dvanced Software Technologies Inc

ASD (1995b) Graphical Designer sers 1anual, Advanced oftware Technologies Inc

A.SD (1998) Advanced Software Technologies Ltd (Graphical Designer) homepage
http:// www.advancedsw.com/

A.yoma, M. (1 998) ew ge of Software Development: How Component-Based Software
Engineering Changes the Way of Software Development, ICSE International
Workshop on Component-Based Software Engineering, Kyoto, J apan

Barbacci, M.R and Weinstock, C.B. (1 998) Mapping MetaH into ACME, Software
Engineering Institute Special Report CMU /SEI-98-SR-006, Carnegie Mellon
University

Behforooz, A. and Hudson, J . (1996) Software Engineering Fundamentals, Oxford
University Press, Oxford

297

Bergner, K., Rausch, A. and Sihling, M. (1998) Componentware - The Big Picture, ICSE
International Workshop on Component-Based Software Engineering, Kyoto, Japan

Beynon-Davies, P. (1989) Information Systems Development: An Introduction to
Information Systems Engineering, Computer Aided Information Systems
Engineering (CAISE), Macmillan Press Ltd, London, pp 75-81

Blanchard, T. (1995) Meta-Models as a Foundation for Implementation of Business Rules,
position paper for Meta-modelling in 00 OOPSLA'95 Workshop

Boehm, B . W. (1976) Software Engineering, IEEE Transactions on Computers, C-25(12),
pp 1226- 1 241

Booch, G. (1991) Object Oriented Analysis and Design with Applications, The Benjamin
Cummings Publishing Company Inc., Redwood City, California

Booch, G. (1994) Object Oriented Analysis and Design with Applications, 2nd edition, The
Benjamin Cummings Publishing Company Inc., Redwood City, California

Booch, G. (1996) Object Solutions: Managing the Object-Oriented Project, Addison­
Wesley, Reading, Massachusetts

Booch, G . and Rumbaugh,]. (1995) Unified Method, Version 0.8, Rational Software
Corporation, (unpublished)

Booch, G., Rumbaugh,] . and J acobson, I . (1999) The nifi.ed Modelling Language User
Guide, Addison-Wesley, Reading, Massachusetts

Brinkkemper, S . , Hong, S., Bulthuis, A. and van den Goor, G. (1998) Object-Oriented
Analysis and Design Methods a Comparative Review,
http:/ /W'.vwis.cs.utwente.nl:8080/ dmrg/OODOC/ oodoc/ oo.html

Brough, M. (1992) Methods for CASE: a Generic Framework, dvanced Information
ystems Engineering: 4th International Conference CAiSE'92, Ed. Loucopoulos, P.,

Springer-Verlag, Berlin, pp524-545

Brown, . W. (1997) CASE in the 21" Century: Challenges Facing Existing CASE Vendors,
Proceedings of the 8d1 International \Vorkshop on Software Technology and
Engineering Practice (STEP'97), IEEE Computer Society Press, London, UK.

Brown, A.\! . and J aeger, K. (1998) The Future of Enterprise pplication Development with
Components and Patterns, August, terling oftware, Tennyson Parkway, Plano,
Texas

CDIF (1998) CDIF homepage, http:/ /www.cdif.org/

Choi, M.D. (1996) Object-Oriented Meta C SE Tools: Information Interchange between
Methodologies, Massey University Honours Report, Department of Computer
Science, Massey University, Palmerston orth, ew Zealand

Clark, P. (1994) Med1odology Independent CASE Tool - A Prototype. Massey niversity
Masters Thesis, Department of Computer Science, Massey niversity, Palmerston

orth, ew Zealand

298

Coad, P. and icola, J . (1993) Object Oriented Programming, Yourdon Press, Englewood
Cliffs, New Jersey

Coad, P. and Yourdon, E. (1990) Object Oriented Analysis, Yourdon Press, Englewood
Cliffs, New Jersey

Coad, P. and Yourdon, E. (199 1 a) Object Oriented Analysis, 2nd edition, Yourdon Press,
Englewood Cliffs, ew Jersey

Coad, P. and Yourdon, E. (199 1 b) Object Oriented Design, Yourdon Press, Englewood
Cliffs, New Jersey

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F., and J eremaes, P.
(1993) Object-Oriented Development: The Fusion Method, Prentice-Hall

Collins (1 995) Collins Shorter English Dictionary: The Authority on Current English,
Harper-Collins publishers, Glasgow

COTAR (1 998) Centre for Object Technology Applications and Research homepage,
http:/ /www.csse.swin.edu.au/ cotar/

Coxhead, G. and Fisher, B. (1 994a) An Introduction to Ipsys (Tool Fragment), Lincoln
Software Limited Manchester, England

Coxhead, G. and Fisher, B. (1 994b) An Introduction to Ipsys (SSADM 4+), Lincoln
Software Limited Manchester, England

Coxhead, G., Ellyard, J. and Stead, . (1994) An Introduction to Ipsys (HOOD 4.2. 1),
Lincoln Software Limited Manchester, England

Cribbs,]., Roe, C. and Moon, S. (1 992) An Evaluation of Object-Oriented Analysis and
Design Methodologies, SIGS books, ew York

Crozier M., Glass, D., Hughes, J .C., Johnston, \V and McChesney, I. (1 989) Critical Analysis
of Tools for Computer-Aided Software Engineering, Information and oftware
Technology, Vol. 31 (9), pp486-496

D'Souza D., and Wills A. (1 998) Objects, Components, and Frameworks with UML: The
Catalysis pproach, http:/ /www.trireme.com/ catalysis/book/

Dasari, S., Mehandjiska, D. and Page, D. (1995) Construction of a Generic Knowledge Base
for a Methodology Independent C E Tool. ddendum to the ES'95
Proceedings, The Second Z International Two-Stream Conference on Artificial

eural etworks and Expert ystems, Dunedin, pp466-473

Day, D. (1 998) Behavioural Effects of ttitudes Toward Constraint in C SE: The Impact
of Development Task and Project Phase, Centre for Advanced Empirical oftware
Engineering, The University of ew South Wales, Sydney 2052, Australia

de Champeaux, D. and Faure, P. (1992) Comparative Study of Object Oriented Analysis
Methods, Journal of Object Oriented Programming, Vol. 5 (1), pp21 -32

Demetrovics, J ., Knuth, E. and Rado, P. (1 982) Specification Meta Systems, IEEE
Computer, pp29-35

299

Demphlous, S. and Lebastard, F. (1 995) Persistence of Multiple Object Models, position
paper for Meta-modelling in 00 OOPSLA'95 Workshop

Deutsch L. and Schiffman, A. M. (1984) Efficient Implementation of the Smalltalk-80
System, Proceedings of the 1 1 th Annual ACM Symposium on the Principles of
Programming Languages POPL84, Salt Lake City, Utah

Douglas, B.P (1 998) Real-Time UML: Developing Efficient Objects for Embedded Systems,
Addison-Wesley, Reading, Massachusetts

Ebert,] . , Suttenbach, R. and Uhe, I. (1 996) Meta-CASE in practice: A Case for KOGGE,
Technical report 22/96 University of Koblenz-Landau Institute of Software
Technology

EIA (1998) Electronic I ndustry Association homepage, http:/ /www.eia.org/

EIA CDIF (1 994a) Extract of Interim Standard - CASE Data Interchange Format -
Overview EIA / IS-1 06

EIA CDIF (1 994b) Extract of Interim Standard - CDIF Framework for Modelling and
Extensibility EIA/ IS-1 07

EIA CD IF (1994c) Framework for Modelling and Extensibility, Interim Standard, EIA

EIA CD IF (1 994d) I ntegrated Meta-model, Data Flow Subject Area, Interim Standard, EIA

EIA CDIF (1 994e) Integrated Meta-model, Foundation Subject Area, Interim Standard,
EIA

EIA CD IF (1994£) Trans fer Format - General Rules for Syntaxes, Interim tandard, EIA

EIA CDIF (1994g) Trans fer Format - Transfer Format Encoding - E CODING. 1 , Interim
Standard, EIA

EIA CDIF (1994h) Transfer Format - Transfer Format yntax - S TAX 1 , Interim
Standard, EIA

EIA CDIF (1 996) Integrated Meta-model, Common Subject Area, Interim tandard, EIA

Ernst, J. (1 996) EIA/CDIF Technical Committee, Working Document - Aligning Meta­
meta-models C D IF-J E- 27-V1 , ovember 1 3

ExcelSoftware (1 998) Homepage o f the MacA&D and WinA&D CA E tools,
http:/ /www.excelsoftware.com/

Ferguson, I . (1 998) The Centre for MetaCASE and Method Engineering homepage,
http:// osiris.sunderland.ac. uk/ rif/ metacase/ metacase. home.h tml

Feylock, S. (1 977) Transition Diagram-Based CAI/HELP systems, Int. J . Man-Machine
Studies, Vol. 9, pp399-41 3

Fichman R.G. and Kemerer, C.F. (1992) Object-Oriented and Conventional Analysis and
Design Methodologies: Comparison and Critique, IEEE Computer 1 992, pp22-38

300

Findeisen, P. (1993) The Graphical Extension for the EARA Model - vers10n 2,
Department of Computer Science, University of Alberta

Findeisen, P. (1 994a) The EARA Model for MetaView - A Reference, Department of
Computer Science, University of Alberta

Findeisen, P. (1994b) A Complete Definition of Data Flow Diagram Environment for
Meta View, Department of Computer Science, University of Alberta

Findeisen, P. (1994c) The MetaView System, Department of Computer Science, University
of Alberta

Findeisen, P. (1 994d) Environment Constraint Language - A Draft Proposal, Department
of Computer Science, University of Alberta

Firesrnith, D.G. (1 993) Object-Oriented Requirements Analysis and Logical Design,
Addison-Wesley, Reading, Massachusetts

Firesrnith, D.G and Eykholt, E.M (1995) Dictionary of Object Technology, SIGS Books
Inc., ew York

Firesrnith, D. G. and Henderson-Sellers, B. (1998a) Clarifying Specialised Forms of
Association in ML and OML, Journal of Object-Oriented Programming, Vol. 1 1
(2), pp47-50

Firesrnith, D.G. and Henderson-Sellers, B. (1 998b) Upgrading OML to Version 1 . 1 Part I.
Referential Relationships, Journal of Object-Oriented Programming, Vol. 1 1 (3),
pp48-57

Firesrnith, D., Hender on-Sellers, B. and Graham, I. (1 997) OPE Modelling Language
(OML) Reference Manual, SIGS Books Inc., ew York, pp271

Flatscher, R. G. (1 996) Modelling of Business Information Systems: An Overview of the
Architecture of EIA's CASE Data Interchange Format (CDIF), Journal of the WG
5.2, Architecture of Information Systems-German Society of Informatics, SG 5.2. 1 ,
Vol. 3 (1), pp26-30

Forman, I.R., Conner, M.H., Danforth, S.H. and Raper, L.K. (1995) Release-to-Release
Binary Compatibility in SOM, Tenth Annual Conference on Object-Oriented
Programming Systems, Languages and Applications OOPSLA'95, Austin, Texas,
USA, pp426-438

Fowler, M. (1 997) Analysis Pattems: Reusable Object Models, Addison-'V esley, Reading,
Massachusetts

Fowler, M. and Scott, K. (1 997) U IL Distilled - Applying the S tandard Object Modelling
Language, Addi on-Wesley, Reading, Massachusetts

FreeCASE (1 998) The FreeCA E project, http:/ /www.freecase.seul.org/index.html

Froeh.lich, G. (1994) Process Modelling in Meta View, University of Saskatchewan Masters
thesis, Department of Computer Science, University of Saskatchewan, Saskatoon,
Saskatchewan, Canada

301

Fung, M., Henderson-Sellers, G. and Yap, L. (1 997) A Comparative Evaluation of 00
Methodologies from a Business Rules and Quality Perspective, The Australian
Computer Journal, Vol. 29 pp95-1 0 1

Gadwal, D . , Lo, P . and �1illar, M . (1 994a) EDL/GE User's Manual, Department of
Computer Science, Cniversity of Alberta

Gadwal, D., Findeisen, P., Sorenson, P.G., Tremblay, J .P. and Millar, B.L. (1 994b)
Generating Customisable Software Specification Environments Csing MetaView,
Research Report 94-2, Department of Computer Science, University of Saskatchewan

Gamma, G. , H elm, R., J ohnson, R. and Vlissides, J. (1 995) Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-\\'esley, Reading, Massachusetts

Gibson, l\.f. (1 988) A Guide to Selecting CASE Tools. Datamation, pp65-66

Goldberg A. and Robson D. (1 983) Smalltalk-80: The w•''"'�·"!'.� and its Implementation,
, Reading, Massachusetts

G oldberg, A. and Rubin, K.S (1 995) Succeeding v..':ith Objects: Decision frameworks for
Project Addison-\\' esley, Reading, Massachusetts

Graham, I.M. Migrating to Object Technology, Addison-Wesley, \X'okingham, CK

Graham, I. and Henderson-Sellers, B. (1 997) OPEN's Toolbox of Techniques, Addison­
' Reading, Massachusetts

Graham, I., H enderson-Sellers, B. and Younessi, H.
Specification, , Reading, Massachusetts

Gray, A. (1 995) GCI of Object Oriented C\SE Tools,
Department of Computer Science,
Zealand

The OPEN Process

Honours Report,
Palmerston New

From the Ridiculous to the Sublime: and Execution of
Vle:tnc•do•lOfl'r i'V1eta-l'-HO'I.\'Iec1o-e in an Object Oriented Meta-CASE

of

Second Generation CASE: Can it be
t�r<)spects, Eds. Spurr, K and Layzell, P., J ohn

pp 137- 1 45

The OPEN-Mentor
(9), pp56-59

Henderson-Sellers, B. OPEN
Journal o f Object-Oriented Programming, Vol. 1 0

302

CASE: Current Practice -
and Sons New

and

Henderson-Sellers, B. (1998) OPE Relationships - Associations, Mappings, Dependencies,
and Uses, J ournal of Object-Oriented Progranuning, Vol. 1 0 (9), pp49-57

Henderson-Sellers, B. and Bulthuis, A. (1 996a) An overview of the COMJvf.A project,
Report on Object Analysis and Design, Vol. 2 (7), pp49-52

Henderson-Sellers, B. and Bulthuis, A. (1996b) COMMA: Sample Metamodels, Journal of
Object-Oriented Progranuning, Vol. 9 (7), pp44-48

Henderson-Sellers, B. and Bulthuis, A. (1997) Object-Oriented Metamethods, Springer­
V erlag, ew York

Henderson-Sellers, B. and Edwards,] . (1 994) The Working Object, Book Two of Object­
Oriented Knowledge, Prentice-Hall, Object-Oriented Series, Englewood Cliffs, N ew
Jersey

Henderson-Sellers, B. and Firesmith, D. (1997a) COMMA: Proposed core model, Journal o f
Object-Oriented Progranuning, Vol. 9 (8), pp48-53

Henderson-Sellers, B. and Firesmith, D. (1997b) Evaluating Third Generation 00 Software
Development Approaches submitted to Information and Software Technology,
http:/ /www.csse.swin.edu.au/ cotar/OPEN /istwww.pdf

Henderson-Sellers, B. and Graham, I . M. (1996) OPE : Toward Method Convergence?,
IEEE Computer, Vol. 29(4), pp86-89

Henderson-Sellers, B., Graham, I .M., Firesmith, D., Reenskaug, T., Swatman, P. and
Winder, R. (1996) The OPE heart, TOOLS 21, Eds. Mingins, C., Duke, R. and
Meyer, B., TOOLS/ISE, pp1 87-196

Henderson-Sellers, B., Firesmid1, D.G. and Graham, I.M. (1997a) COMMA: Its Influence
on OPEN, J ournal of Object-Oriented Programming, Vol. 10 (1), pp47-51

Henderson- ellers, B., Firesmid1, D.G. and Graham, I .M. (1997b) Methods Unification: The
OPE Modelling Language (OML), Journal of Object-Oriented Progranuning, Vol.
10 (5), pp28-34

Henderson-Sellers, B., Graham, I.M. and Firesmith D.G. (1 997d) Methods Unification: The
OPEN Methodology, Journal of Object-Oriented Progranuning, Vol. 1 0 (2), pp4 1 -
43, 55

Henderson-Sellers, B. , Graham, I . and Younessi, H. (1997e) The OPE Process
pecification, Addison-Wesley, Reading, Massachusetts

Hoffman, D. and Strooper, P. (1 995) Software Design, utomated Testing and
Maintenance: A Practical pproach International Computer Press London

Hong, S., van den Goor, G. and Brinkkemper, S. (1 993) Formal Approach to the
Compari on of Object-Oriented Analysis and Design Methodologies, Hawaii
International Conference on System Sciences (HICSS), IEEE Computer Society
Press, Hawaii, Vol. IV, pp689-698

Huff, C., Smith, D., Stepien-Oakes, K. and Morris, E. (1 992) Proceedings of the CASE
Adoption Workshop, Technical Report CMU/SEI-91-TR- 1 4 ESD-TR-91 - 1 4

303

Hutt A.T.F. (1994) Object Analysis and Design: Comparison of Methods, Ed. An drew, T.F.,
John Wiley and Sons Inc., New York, USA

ICON (1998) ICO Computing, http :/ /www.iconcomp.com/

!-Kinetics (1998) The Internet, Java & CORBA Resource Guide,
http:/ /www.component:ware.com/wp/ijcprimer.htm

Innovative Software (1998) Object Engineering Workbench homepage,
http:/ /world.isg.de/world/

Isazadeh, H. and Lamb, D.A. (1997) CASE Environments and MetaCASE Tools, External
Technical Report ISS -0836-0227-1997-403, Department of Computing and
Information Science, Queens University, Ontario

ISO (1998a) International Standards Organisation homepage, http:/ /www.iso.cn/

ISO (1998b) ISO/IEC JTC1 /SC7 homepage,
http:// saturne.info.uqam.ca/Labo_Recherche/Lrgl/ se 7/

Jacobson, I., Christenson, M., Jonsson, P. and Overgaard, G. (1993) Object Oriented
Software Engineering: A Use Case Driven Approach, Addi on-Wesley, Wokingham,
England

Jacobson, I., Booch, G. and Rumbaugh, J . (1996) nified Standard Moves Closer, Object
E>.."Pert, Vol. 1 (6), pp64-65

Jacobson, I., Booch, G. and Rumbaugh, J . (1999) The Unified oftware Development
Process, Addison-Wesley, Reading, Massachusetts

Jacobson, I., Ericsson, M. and Jacobson, A. (1995) The Object Advantage: Business Process
Reengineering with Object Technology, Addison-Wesley, Reading, Massachusetts

Jones, R. and Lins, R. (1996) Garbage Collection: Algorithms for Automatic Dynamic
Memory Management, John Wiley & Sons Ltd, ew York, USA

Joosten, S. (1995) Method for Analysing Workflows. Tutorial for Workflow Management
Support, ECSCW'95

JrC · SE (1998) The CSIRO-Macquarie University J oint Research Centre for Advanced
Systems Engineering, CAS Maker, http:/ /www. jrcase.mq.edu.au/

LaMonica, M. (1997) Middleware - Managing Objects: DCOM and CORBA v1e for
upremacy, Info'\ orld Electric, October 20

Lang, B. (1991) CASE Support for the Software Process: Advances and Problems, ESEC'91
Eds. Lamsweerde, A. and Fugetta, A., Springer-Verlag, Berlin, pp5 12-5 1 5

Lano, K. and Haughton, H . (1994) Object-Oriented Specification Case Studies, Prentice­
Hall, London

Leung, Y.K. and Apperley, M. D. (1993) A Taxonomy of Distortion-Oriented Techniques
for Graphical Data Presentation, Eds. Salvendy, G . and Smith, M., dvances in
Human Factors /Ergonomics, Vol. 1 9B, Elsevier, Amsterdam, pp 104- 1 10

304

Leung, Y.K and Apperley, M.D. (1994) A Review and Taxonomy of Distortion-Oriented
Presentation Techniques, ACM Transactions on CHI, Vol. 1 (2), pp1 26-1 60

Leung, Y.K, Spence, R. and Apperley, M.D. (1 995) Applying Bifocal Displays to
Topological Maps, I nternational Journal of Human-Computer Interaction, Vol. 7(1),
pp79-98

Lincoln (1994) The FastPath Approach to Client/Server Development, Lincoln Software
Limited Manchester, England

Lincoln (1 998) Lincoln software - Toolbuilder homepage, http:/ /www.ipsys.com/

Lindholm T. and Yellin F. (1 997) The Java Virtual Machine Specification, Addison-Wesley,
Reading, Massachusetts

Lo, P. (1 995) Graphical Interface for C E environment definitions in MetaView,
University of Alberta Masters thesis, Department of Computer Science, University of
Alberta, Canada

Loy, P.H. (1990) A Comparison of Object-Oriented and Structured Development Methods,
ACM SIGSOFT Software Engineering otes, Vol. 1 5 (1), pp44-48

Lyytinen. K, Kerola, P., Kaipala, J . , Kelly, S., Lehto,]. , Liu, H., Marttiin, P., Oinas­
Kukkonen, H., Pirhonen,]. , Rossi, M., Smolander, K, Tahvanainen. V. and
Tolvanen,]. (1 994) MetaPHOR: Meta-Modelling, Principles, Hypertext, O bjects and
Repositories, Tech Report TR-7, Depart of Computer Science and I n formation
Systems, University of Jyvaskyla, Finland

Malmborg, L. (1 992) Diffusion of C SE An Obstacle Race?, Scandinavian J ournal of
Information Systems, Vol. 4, pp105-1 1 8

Maokai, G . and Scott, L. (1 998) Developing the User Interface for the MetaCASE Toolset
(Concept document), ftp:/ /ftp.mpce.mg.edu.au/pub/jrcase/metaCA E/metaui.ps.Z

Mark V (1 994) ObjectMaker Version 4 User's Guide Mark V Systems, Limited

MarkV (1 998) ObjectMaker homepage, http:/ /www.marh.-v.com/

Marlin, C. (1 996) Multiple Views Based on nparsing Canonical Representations - The
MultiView Architecture, Proceedings of International Workshop on Multiple
Perspectives in oftware Development (Viewpoints'%), Association for Computing
Machinery, ew York, pp222-226

Marlin, C., Peuschel, B., McCarthy, M.J. and Harvey, J .G . (1 993) MultiView-Merlin: An
Experiment in Tool Integration, Proceedings 1993 oftware Engineering
Environments Conference, Reading, England, pp35-48

Martin,] . and Odell, J.J . (1 995) Object-Oriented Methods: A Foundation, Prentice-Hall,
Englewood Cliffs, ew J ersey

Martin, J . and Odell, J .J. (1 993) Principles of Object Oriented Analysis and Design, Prentice­
Hall, Englewood Cliffs, ew Jersey

305

Marttiin, P. (1 994) Towards Flexible Process Support with a CASE Shell, Advanced
Information Systems Engineering, Proceedings of the 6th international conference
CaiSE'94, Springer-Verlag, pp1 4-27

Marttiin, P., Ross� M., Tahvanainen, V. and Lyytinen, K. (1 993) A Comparative Review of
CASE Shells: A Preliminary Framework and Research Outcomes, Information and
Management, Elsevier Science Publishers B.V, pp 1 1 -31

Mathiassen, L. and S0rensen, C. (1 995) The \\lhy, \\!hat, \\lho, Where, and How of CASE
Management, Proceedings of the Information Systems Research Seminar in
Scandinavia, http:/ /iris.informatik.gu.se/ conference/

McWirter, J . (1 998) Escalante homepage,
http:/ /www.cs.colorado.edu/ -jeffm/ research/ escalante/ escalante.html

Mc\\lhirter, J.D. and utt, G.J. (1 994) Escalante: An Environment for the Rapid
Construction of Visual Language Applications, IEEE/CS Symposium on Visual
Languages (VL'94), IEEE Computer Society Press, pp 1 5-22

MDC (1 997) Metadata Interchange Specification (MDIS) Version 1 . 1

MDC (1 998) Meta Data Coalition homepage, http:/ /www.he.net/ -metadata/

Mehandjiska D., Page, D. and Clark P. (1 994) An Intelligent Object Oriented CASE Tool,
Proceedings of 1 st International Conference on Object-Oriented Information
Systems, Eds. Patel, D., Sun, Y. and Patel, S., Springer-Verlag, London, pp 1 68- 1 72

Mehandjiska, D., Apperley, M.D., Phillips, C., Page, D . and Clark, P. (1995a) A
Methodology Independent Object Oriented CASE Tool, ew Zealand Journal of
Computing, Vol. 6 (lA), ew Zealand Computer Society Conference, Wellington,
pp95- 105

Mehandjiska, D., Page, D. and Ham,] . (1 995b) Template Generator for Methodology
Independent Object Oriented CASE Tool, Proceeding of 2nd International
Conference on Object-Oriented Information Systems, Eds. Murphy,] . and Stone, B.,
Springer-Verlag, Dublin, I reland, pp43 1 -440

Mehandjiska, D., pperley, M.D., Phillips, C.H.E., Dasari, S. and Page, D. (1996a)
Advancing Information Technologies Through CASE, Proceedings of the 1 9th
Australasian Computer S cience Conference (AC C'96), Ed. Ramamohanarao, K.,
Melbourne, Australia, pp2 1 3-222

Mehandjiska, D., Page, D. and Choi, MD. (1 996b) Meta-Modelling and Methodology
upport in Object-Oriented CASE Tools, Proceedings of 1996 International

Conference on Object-Oriented L1formation Systems, Ed . Pate!, D., un, Y., Patel,
S., Springer-Verlag, London, pp370-386

Mehandjiska, D., Page, D. and Dasari, S. (1 996c) Generic Knowledge Base for a
Methodology Independent Object-Oriented CASE Tool, Proceedings of the
lASTED International Conference on Artificial I ntelligence, Expert Systems and

eural etworks, Ed. H amza, M., lASTED/ Acta Press, Honolulu, Hawaii, pp23-26

306

Mehandjiska, D., Page, D., Griffin, D . and Usherwood, L. (1997) Methodology Knowledge
Representation and Interpretation for a Methodology Independent 00 CASE Tool,
Proceedings of lASTED International Cenference on Software Engineering (SE'97),
ACTA Press, San Francisco, USA, pp243-247

MerridanMarketing (1998) MetaEdit+: Linking Software Development To Business
Modelling, http:// www.meridian-marketing.com/MET AED IT/ index.h tml

MetaCase Consulting (1 996a) Developing ew Methods with the MetaEdit Personal
Environment, \"Xlhite Paper. MetaCase Document o. PEWP-1 .0

MetaCase Consulting (1 996b) MetaEdit+: A Fully Configurable Multi-User and Multi-Tool
Case and CAME Environment, \XIhite Paper

MetaCASE Consulting (1998) MetaEdit+ homepage, http:/ /www.jsp.fi/metacase/

MetaModel.com (1 998) MetaModel.com homepage, http:/ /www.metamodel.com/

Meta View (1 9 98) Meta View project homepage,
http:/ /web.cs.ualberta.ca/ -softeng/Metaview / project.shtml

Meyer, B. (1 995) Object Success: A Managers Guide to Object Orientation, its Impact in the
Corporation and its Use in Reengineering the Software Process, Prentice-Hall,
London

Meyer, B. (1997) Object-Oriented Software Construction - 2nd Edition, Prentice-Hall, ew
Jersey

finas, M. and Viehstaedt, G. (1 995) DiaGen: A Generator for Diagram Editors Providing
Direct Manipulation and Execution of Diagrams Proceedings 1 1th International
IEEE Symposium on Visual Languages, IEEE Computer Society Press, Los
Alarnitos, California, pp203-2 1 0

rnip GmbH (1 998a) Alfabet frequently asked questions mip GmbH & Co. Berlin

rnip GmbH (1 998b) Alfabet Technology Overview rnip GmbH & Co. Berlin

rnip GmbH (1 998c) Alfabet User Manual mip GmbH & Co. Berlin

rnip GmbH (1 998d) Introduction to the Alfabet-Technology mip GmbH & Co. Berlin

Mirriam-'\ ebster (1 998) W\'(!Webster Dictionary,
http :/ /w'-'AV.m-w.com/ netdict.htrn

l\llisra, S. K. (1 990) Analysing C SE System Characteristics: Evaluative Framework,
Butterworth-Heinemann Ltd, Vol. 32 (6)

Monarchi, D.E. and Puhr, G.I . (1992) A Research Typology for Object-Oriented Analysis
and Design, Communications of the CM, Vol. 35 (9), pp35-4 7

Montgomery, J . (1 997) Distributing Components, BYTE, http:/ /www.byte.com, April

Mosely, V. (1 992) How to Assess Tools Efficiently and Quantitatively, IEEE Software, Vol.
9 (3), p p 1 60- 163

307

Mugridge, W.B., Hosking, J .G. and Grundy, J .C. (1 998) VLxels, CreateThroughs,
DragThroughs and AttachmentRegions in BuildByWire, Proceedings Australasian
Computer Human I teraction Conference, OZCHI '98, IEEE Computer Society
Press, Adelaide, South Australia, pp320-327

Muller, P. (1997) Instant U:ML, Wox Press Ltd., Olton, Birmingham

MultiView (1998) MultiView project home page,
http:// see.cs.flinders.edu.au/Projects/MultiView /

Myers, B.A., McDaniela, R., Miller, R., Ferrency, A., Faulting, A., Borinson, E., Kyle, B.,
Mickish, A., Klimovitski, A. and Doane, P. (1997) The Amulet Environment: ew
Models for Effective User Interface Software Development, IEEE Transactions on
Software Engineering, Vol. 23 (6), pp347-365

ilsson, E. G. (1990) CASE Tools and Software Factories, A dvanced Information Systems
Engineering, CAiSE'90, Eds. Goos, G . and Hartmanis, J . , Springer-V erlag, Berlin,
pp42-47

uttals (1 902) uttals Standard Dictionary, Frederick Warne and Company Publications,
Chandos House, Bedford St, Strand, London.

Oakes, K . . , Smith, D. and Morris, E. (1 992) Guide to CASE Adoption Technical Report
CMU/SEI-92-TR- 15 ESC-TR-92-01 5

Object Agency (1998) A Comparison o f Object-Oriented Development Methodologies,
http:/ /www. toa.com/pub/html/mcr.htrnl

Odell,]. (1995) Meta-Modelling, position paper for Meta-modelling in 00 OOPSLA'95
Workshop

OMG (199 1) The Common Object Request Broker: Architecture and Specification, OMG
Document umber 9 1 . 12. 1, Revision 1 . 1 , Framingham, SA

OMG (1 992) Object Management Architecture Guide, OMG TC Document 92. 1 1 . 1 ,
Revision 2.0, Framingham, SA

OMG (1 997a) Meta Object Facility (MOF) Specification OMG Document ad/97-08-1 4

OMG (1 997b) Meta Object Facility Appendices OMG Document ad/97-08-1 5

OMG (1997c) OA&D CORBA facility v l . l , Rational and Partners Submission to the MG
OA&D facility, ad97-08-09

OMG (1 997d) Object Constraint Language pecification v l . l , Rational and Partners
ubmission to the OMG OA&D facility, ad97-08-08

OMG (1997e) UML Extension for Business Modelling v l . l , Rational and Partners
Submission to the OMG OA&D facility, ad97-08-07

OMG (1 997£) UML Extension for Objectory Process for Software Engineering vl . l ,
Rational and Partner Submission to the OMG 0 · &D facility, ad97-08-06

308

OMG (1997g) UML Notation Guide v l . l , Rational and Partners Submission to the OMG
OA&D facility, ad97-08-05

OMG (1997h) UML Proposal Summary v1 . 1 , Rational and Partners Submission to the
OMG OA&D facility, ad97-08-02

OMG (1997i) UML Semantics and appendices v 1 . 1 , Rational and Partners Submission to
the O MG OA&D facility, ad97-08-04

OMG (1 997j) UML Summary v l . l , Rational and Partners Submission to the OMG OA&D
facility, ad97 -08-03

OPEN (1 996) Proposing an Open Standard, Object Expert, 2(1), pp14-15

OPE (1 998) O PEN homepage, http:/ /www.csse.swin.edu.au/cotar/OPE /

Orfali, R., H arkey, D. and Edwards,] . (1996) The Essential Distributed Objects Survival
Guide, J ohn Wiley & Sons Inc., ew Y ark, USA

Ovum (1996) Ovum Evaluates: CASE Products, http:/ /www.ovum.com

Oxford (1 990) Consise Oxford Dictionary - 8th Edition, Oxford University Press, Walton
Street, Oxford, England

Page, D., Clark, P. and Mehandjiska, D. (1 994) An Abstract Definition of Graphical
orations for Object-Orientated Information Systems, Proceedings of 1"

International Conference on Object-Oriented Information Systems (OOIS'94), Eds.
Pate!, D., Sun, Y. and Pate� S., Springer-Verlag, London, pp266-276

Page, D., Griffin, D., Usherwood, L. and Mehandjiska, D. (1 997) Implementation of a
Semantic Specification Language Interpreter for a Methodology Independent 00
CASE Tool, Proceedings of lASTED International Cenference on Software
Engineering (SE'97), CTA Press, San Francisco, USA, ovember 2-4, pp239-242

Page, D., Mehandjiska, D. and Phillips, C.H.E. (1 998) Methodology Independent 00
CASE: upporcing Methodology Engineering, Proceedings of Software Engineering:
Education and Practise (SE:E&P'98), IEEE Computer Society Press, Dunedin, ew
Zealan d, pp373-380

Papahristos, . and Gray, \1 . A. (1991) Federated CASE Environment, dvanced
Information Systems Engineering, CAiSE'91 , Eds. Goos, G. and Hartmanis, J. ,
Springer-V erlag, Berlin, pp461-4 78

Parr, T.J . (1 9 97) Language Translation Using PCCTS & C++, Automata Publishing
Company

PCCTS (1 998) PCCTS and TLR home page, http:/ /www.antlr.org/

Phillips, C.H.E., Mehandjiska, D. and Page, D. (1 998a) The sability Component of a ew
Framework for the Evaluation of Object-Oriented CASE Tools, Proceedings of
Software Engineering: Education and Practise (SE:E&P'98), IEEE Computer Society
Press, Dunedin, New Zealand, pp1 3 1 - 1 4 1

309

Phillips, C.H.E., Adams, S., Page, D. and Mehandjiska, D. (1 998b) The Design of the Client
User Interface for a Meta Object-Oriented CASE Tool, Proceedings of TOOLS
Pacific'98, Monash Printing Services, Victoria, pp145-1 57

Phillips, C.H.E., Adams, S., Page D. and Mehandjiska, D. (1 998c) Design of the User
Interface for a Methodology Independent 00 CASE Tool, Proceedings of
OZCHI'98, IEEE Computer Society Press, Los Alamitos, California, pp1 06- 1 14

Platinum (1 998) Pardigm+ homepage,
http : / /'\vww.platinum.com/products/appdev/pplus_ps.htm

Popkin Software (1998) System Architect CASE tool, http:/ /www.popkin.com/

Pree, W. (1994) Design Patterns for Object-Oriented Development, Addison-Wesley,
Reading, Massachusetts

Pressman, R.S. (1997) Software Engineering: A Practitioners Approach, 4th Edition,
McGraw-Hill Companies Inc., ew York

Purchase, H.C. (1998) The Effects of Graph Layout, Proceedings Australasian Computer
Human Iteraction Conference, OZCHI'98, IEEE Computer Society Press, A delaide,
South Australia, pp80-86

QED (1992) Object Management Group, The Common Of?ject Request Broker: Architet"ture and
Spetijication, distributed by QED Publishing Group, Wesley, MA

Quantrani, T. (1 997) Visual Modelling with Rational Rose and UML, ddison-Wesley,
Reading, Massachusetts

Rational (1 997a) UML oration Guide, version 1 .0 (unpublished)

Rational (1 997b) ML Semantics Guide v l .O (unpublished)

Rational Software (1998) Rational Software homepage, http:/ /www.rational.com/

Read, M.C. and Marlin, C.D. (1 996) Generating Direct Manipulation Program Editors
within the MultiView Programming Environment, Proceedings I nternational
Workshop on Multiple Perspectives in Software Development (Viewpoints'%),

ssociation for Computing Machinery, ew York, pp232-236

Read, M.C. and Marlin CD. (1998) pecifying and Generating Program Editors with ovel
Visual Editing Mechanisms, Tenth International Conference on Software
Engineering and Knowledge Engineering, San Francisco, California, pp41 8-425

Readers Digest (1988) The Readers Digest Dictionary niversal Dictionary, Readers Digest
Association Ltd, London

Reenskaug, T., Wold, P. and Lehne, O.A. (1 996) Working with Objects. The OOram
Software Engineering Manual, Manning, Greenwich, CT, USA

Robbins, J .E., Hilbert, D.M. and Redmiles, D.F. (1 996) Using Critics to Analyse Evolving
Architectures, Proceedings Second International Software Architecture \Vorkshop
(ISA W-2), SigSoft'96, pp90-93

310

Robbins, J .E., Hilbert, D.M. and Redrniles, D.F. (1 997) Argo: A Design Environment for
Evolving Software Architectures, Proceedings of 1 9th I nternational Conference on
Software Engineering, I CSE97, Springer, pp600-601

Robbins, J.E., Hilbert, D.M. and Redrniles, D.F. (1 998) Software Architecture Critics in
Argo Proceedings of the 1 998 Conference on Intelligent User Interfaces, Adaptation
and Critiquing, pp 1 41 - 1 44

Rossi, M., Gustafsson, M., Smolander, K., Johansson, L. and Lyytinen, K. (1 992) Meta­
Modelling Editors as a Front End Tool for a CASE Shell, CAiSE'92, Ed.
Loucopoulos, P., Springer-Verlag, Berlin

Rumbaugh, J , Blaha. M., Premerlani, W., Eddy, F. and Lorensen, \V (1991) Object Oriented
Modelling and Design, Prentice-Hall Englewood Cliffs, New Jersey

Rumbaugh, J . (1 995a) OMT: The Functional Model, J ournal of Object Oriented
Programming, Vol. 8. (1) , pp95

Rumbaugh, J. (1 995b) OMT: The Object Model, J ournal of Object Oriented Programming,
Vol. 7 . (8), pp21

Rumbaugh, J ., J acobson, I. and Booch, G. (1 999) The Unified Modelling Language
Reference Manual, Addison-Wesley, Reading, Massachusetts

Sahraoui, H., Missaoui, R., and Gagnon, J. (1 995) Using a Meta-Modelling Approach for
Building an Object-Oriented Database Modelling and Design Tool, position paper
for Meta-modelling in 0 0 OOPSLA'95 Workshop

Schach, S.R. (1 993) Software Engineering - 2nd Edition, Richard D Irwin Inc. and Aksen
Associates I nc., Boston

Schach, S.R. (1 997) Software Engineering with Java, Richard D Irwin Inc., Boston

Schmidt, R. and Assmann, . (1 99 8) Concepts for Developing Component-Based Systems,
ICSE I nternational Workshop on Component-Based Software Engineering, Kyoto,
J apan

Schottland, G. (1996) Successful Design Tool election and Deployment, Object Magazine,
ovember

Scott, L. (1998) MetaCASE Concept Document, Macquarie University Joint Research
Centre for Advanced Systems Engineering , ydney, Australia
ftp:// ftp.mpce.mq.edu.au/ pub/jrcase/ metaC SE/ concept.ps.Z

Seacord, R.C., Hissam, S.A. and \Vallnau, K.C. (1998) gora: earch Engine for Software
Components, Software E ngineering Institute Technical Report CMU/SEI-98-TR-
0 1 1 , Camegie Mellon U niversity

EI (1 998) Software Engineering I nstitute, http:/ /www.sei.cmu.edu/ sei-home.html

Senn, J . A. (1 990) Information Systems in Management - 4th Edition, Tools and Methods
for Developing Information Systems, \Vadsworth Publishing Co., Belmont,
California, pp 727-736

31 1

Sharble, R.C. and Cohen, S. S. (1 993) The Object Oriented Brewery: A Comparison of Two
Object Oriented Development Methods, Software Engineering Notes, Vol. 1 8 (2),
pp60-73

Shlaer, S. and Melior, S. J. (1988) Object Oriented Systems Analysis: Modelling the World in
Data, Yourdon Press, Englewood Cliffs

Shlaer, S. and Melior, S. J . (1991) Object Lifecycles: Modelling the World in States, Yourdon
Press, Prentice-Hall, Englewood Cliffs, New J ersey

Short, K. (1 997) Component Based Devdopment And Object Modelling, Version 1 .0,
Sterling Software, February, Sterling Software, Tennyson Parkway, Piano, Texas

Siegel, J . , Mirsky, H., Hudli, R., de Jong, P., Thomas, A., Coles, W., Baker, S. and Balick, M.
(1996) Corba: Fundamentals and Programming, John Wiley & Sons Inc., ew York,
USA

Sigfried, S. (1996) Understanding Object Oriented Software Engineering, IEEE Computer
Society Press, Los A.lamitos

Smith, R. and Anderson, P. (1 996) Relating Distortion to Performance in Distortion
Oriented Displays, Proceedings of OzCHI'96, Hamilton, ew Zealand, pp6- 1 1

Smolander, K, Lyytinen, K., Tahvanainen, V. P. and Marttiin, P. (1991) MetaEdit: A Flexible
Graphical Environment for Methodology Modelling, Proceedings of Advanced
Information Systems Engineering CAiSE'91 , Eds. G. Goos and J. Hartmanis,
Springer-V erlag, Berlin, pp 168-1 93

Soley, R . . (1996) The World Wide Web and Distributed Computing: A atural Match?,
Java Developer's J oumal, Vol. 1 , Issue 2

Somrnerville, I. (1 996) Software Engineering, Addison-Wesley , Reading, Massachusetts

Sorensen, C. (1993) \XIhat Influences Regular CASE Use In Organisations? An Empirically
Based Mode� candinavi.an Journal of lnformation ystems, ol. 5, pp25-50

Sorenson, P. G. (1 988) First Generation CASE
Research Report, Dept Computational
Saskatoon, Canada, pp1-8

Tools: All Form but Little Substance,
cience, University of Sa katchewan,

orenson, P. G., Tremblay, J. and McA.llister, A. J. (1 988) The Meta View System for Many
Specification Environments, IEEE Software, Vol. 5 (2), pp30-38

Sterling (1 998) Team\' ork CASE tool http://www.cool.sterling.com/products/

STP (1998) Software though Pictures homepage,
http:/ /www.ide.com/Products/SMS/ sms.html

umner, M. (1 992) The Impact of Computer- ssisted Software Engineering on Systems
Development, IFIP Transactions - The Impact of Computer Supported Technologies
on Information Systems Development, Eds. K.endall, K.E, Lyytinen, K. and
DeGross J . I . , Elsevier Science Publishers, Amsterdam

SU (1 998) Sun Microsystems Java homepage, http://java.sun.com/

3 1 2

Taskon A/S (1 997) The OOram Meta-Model: combining role models, interfaces, and
classes to support system centric and program centric Modelling. Version 1 .0 A
proposal in response to OMG OA&D RFP-1 8

Taylor, D.A. (1 998) Object Technology: A Managers Guide, 2nd Edition, Addison-Wesley,
Reading, Massachusetts

Tolvanen, J. and Lyytinen, K (1 993) Flexible Method Adaptation in CASE, Scandinavian
Journal of lnformation Systems, Vol. 5, pp5 1 -77

UML-RTF (1 998) UML Revision Task Force homepage, http:/ /uml.shl.com/

van den Goor, G., H ong, S. and Brinkkemper, S. (1 992) A Comparison of Si.x Object
Oriented Analysis and Design Methods, Report Centre of Telematics and
Information Technology, U niversity of Twente, the etherlands and Computer
Information Systems Department, Georgia State University, Adanta, USA

Verhoef, T.G, Hofstede, A.H.M. and Wijers, G.M. (1991) Structuring Modelling Knowledge
for CASE Shells, Advanced Information Systems Engineering, Proceedings
CAiSE'9 1 , Eds. Goos, G . and H artrnanis, J ., Springer-Verlag, Berlin, pp502-524

Vessey, I., J arvenpaa, S. and Tractinsh.7, . (1 992). Evaluation of Vendor Products: CASE
Tools as Methodology Companions, Communications of the ACM Vol. 35(4), pp90-
1 05

Walden, K and erson, J. (1 995) Seamless Object-Oriented Software Architecture
Analysis and Design of Reliable Systems, Prentice-Hall, ew York

Wallnau, KC. (1 992) Issues and Techniques of CASE Integration "vith Configuration
Management, Software Engineering Institute Technical Report CMU/SEI-92-TR-5,
Carnegie Mellon University

Wallnau, KC. and Feiler P.H. (1 991) Tool Integration and Environment Architectures,
Software Engineering Institute Technical Report CMU/SEI-91 -TR- 1 1 , Carnegie
Mellon ruvers1ty

Warmer, J. and Kleppe, A. (1 999) The Object Constraint Language: Precise modelling in
ML, Addison-\Vesley , Reading, Massachusetts

Warwick, B., Mugridge, B., Ho king, J . G . and Grundy, J .C. (1 996) Towards a Constructor
Kit for Visual orations, Proceedings 1 996 Australasian Computer Human Iteraction
Conference, OZCHI'96, IEEE Computer ociety Press, Hamilton, ew Zealand,
pp1 69-1 76

\Xlebster, B.F. (1 995) Pitfalls of Object-Oriented Development, f&T Books, ew York

Weiderman, . , orthrop, L., Smith, D., Tilley, S. and \ allnau, K (1 997) Implications of
Distributed Object Technology for Reengineering, Software Engineering Institute
Technical Report CMU/SEI-97-TR-005 Camegie Mellon University

\XIhitten, J.L., Bendey, L.D. and Barlow M. (1 994) Systems Analysis and Design Methods -
Third Edition, Irwin Inc, Sydney, Australia

3 1 3

Wills, A. and D'Souza, D. (1 997) Rigorous Component-Based Development, Trireme
Object Technology & ICON Computing

\'V'ir fs-Brock, R.J. and Johnson, R.E. (1 990) Surveying Current Research in Object-Oriented
Design, The C ommunications of ACM, Vol. 33(9), pp1 04- 1 1 24

Wirfs-Brock, R., Wilkers on, B. and \'\'iener, L. (1 990) Designing Object-Oriented Software,
Prentice-Hall

Y ounessi, H. and Henderson-Sellers, B. (1 998) Cooking Cp Improved Software Quality,
Object Magazine, Vol. 7 (8), pp 1 4- 1 5

Yourdon, E. and Argila, C. (1996) CASE Studies in Object-Oriented Analysis and Design,
Prentice-Hall

Yu, H. A Web-Based Interface for a Methodology Independent O bject-Orientated
CASE Tool, Masters Thesis be submitted), Department of
Computer Science, , Palmerston N orth, New Zealand

Zarrella, P.F. CASE Tool Integration and Standardisation, Software E ngineering
Institute Technical Report Cl\fC/SEI-90-TR-1 4, Camegie Mellon

Smith, D.B. and
Institute Technical

Issues in Tool �\cquisition, Software
CJ'vfC /SEI-91 -TR-8, Camegie Mellon

Zhuang, Y. Object-Oriented Modelling in o f Alberta Masterate
Department of Computer Science, · , ,,., ... ,,,. of Alberta, Canada

Y. Findeisen, P. and Sorenson, P.
Department o f Computer Se1ence,

314

Object-Oriented Modelling in MetaView,
o f Alberta

Errata Sheet
Spelling Errors and Clarifications

page 6, Fig 1 .2

page 8, line 1 6
page 1 4, line2
page 29, line 1 9
page 36, line 1 9
page 48, line 7
page 64, Fig 3.3
page 75, footnote
page 87, Fig 4.4
page 93, line 1 3
page 1 24, Fig 5. 1
page 1 28, line 1 7
page 1 29
page 1 37, Fig 5 .6
page 2 1 0, section 8 .3

page 2 1 3

page 3 1 3

The arrow with the 'Meta' label only points from the 'modelling process ' on
the left to the 'modelling process' on the right
'Some of the most prominent' should read 'Some prominent'
'Existing CASE tools' should read 'Several existing CASE tools'
'CASE Date' should read 'CASE Data'
'tool configuration' should read 'tool configurations'
'Primary' should read 'Primarily'
Directed arrows correspond to inheritance relations
Warwick et aL 1 996 should read Mugridge et aL 1 996
'hieght' (bottom left of figure) should read 'height'
'to separate' should read 'to a separate'
'persistance' (bottom right of figure) should read 'persistence'
'currnt_mode! ahould read 'current_mode!
The memory management scheme has reference loop detection
listiterator and listlterator are the same as SSL is not case sensitive
Instantiate is overridden to achieve different behaviour for pattern
instantiation (see footnote page on page 2 1 1)
Consistency between models is achieved by the meta-modelling approach
supported by MOOT
Reference Warwick, B., Mugridge, B . , Hosking, J .G . and Grundy, J . C .
(1 996) should read Mugridge, \VB., Hosking, J .G. and Grundy, J .C. (1 996)

Systems Relating to Graphical Notations

Additional information about some of the systems noted m chapter 4 - otation Definition
Language, is given below.

DiaGen (Minas and Viehstaedt, 1995)

This system is used to generate a bespoke editor for a particular graphical notation. ott'ltions are
defmed using hypergraphs, hypergraph grammars and layout constraints. The role of DL in the
MOOT system is similar to role of the hypergraphs, hypergraph grammars and layout constraints in
the DiaGen system.

BuildByWire (Mudgridge et al., 1996, 1998)

BuildByWire generates a collection of J avaBean components that correspond to a notation, as well as
an editor J avaBean component. BuildByWire is similar to the MOOT otation Editor, which
generates DL descriptions of notations that are subsequently interpreted by the CASE tool client.

Amulet (Amulet, 1998; Myers et al., 1997)

Amulet is a User Interface development toolkit. It does not have a separate language for describing
visual notations, but provides an extendable hierarchy of widget classes. The coupling between
application and notation presentation logic is much higher in Amulet than between DL and SSL.

Escalante (Mc Whirter, 1998; Mc Whirter and Nutt, 1994)

Escalante is an environment for specifying and generating applications for graph based visual
languages. A language (and its notation) is described via elements of a type hierarchy tl1at provide the
base classes for the various components of graph based languages. These include s tructural and
visual language constructs (eg. nodes and edges) and a set of structured graphics objects. Escalante is
used to build bespoke visual language systems. The coupling between application and notation
pre entation logic is much higher in Escalante than between DL and SL.

	20001
	20002
	20003
	20004
	20005
	20006
	20007
	20008
	20009
	20010
	20011
	20012
	20013
	20014
	20015
	20016
	20017
	20018
	20019
	20020
	20021
	20022
	20023
	20024
	20025
	20026
	20027
	20028
	20029
	20030
	20031
	20032
	20033
	20034
	20035
	20036
	20037
	20038
	20039
	20040
	20041
	20042
	20043
	20044
	20045
	20046
	20047
	20048
	20049
	20050
	20051
	20052
	20053
	20054
	20055
	20056
	20057
	20058
	20059
	20060
	20061
	20062
	20063
	20064
	20065
	20066
	20067
	20068
	20069
	20070
	20071
	20072
	20073
	20074
	20075
	20076
	20077
	20078
	20079
	20080
	20081
	20082
	20083
	20084
	20085
	20086
	20087
	20088
	20089
	20090
	20091
	20092
	20093
	20094
	20095
	20096
	20097
	20098
	20099
	20100
	20101
	20102
	20103
	20104
	20105
	20106
	20107
	20108
	20109
	20110
	20111
	20112
	20113
	20114
	20115
	20116
	20117
	20118
	20119
	20120
	20121
	20122
	20123
	20124
	20125
	20126
	20127
	20128
	20129
	20130
	20131
	20132
	20133
	20134
	20135
	20136
	20137
	20138
	20139
	20140
	20141
	20142
	20143
	20144
	20145
	20146
	20147
	20148
	20149
	20150
	20151
	20152
	20153
	20154
	20155
	20156
	20157
	20158
	20159
	20160
	20161
	20162
	20163
	20164
	20165
	20166
	20167
	20168
	20169
	20170
	20171
	20172
	20173
	20174
	20175
	20176
	20177
	20178
	20179
	20180
	20181
	20182
	20183
	20184
	20185
	20186
	20187
	20188
	20189
	20190
	20191
	20192
	20193
	20194
	20195
	20196
	20197
	20198
	20199
	20200
	20201
	20202
	20203
	20204
	20205
	20206
	20207
	20208
	20209
	20210
	20211
	20212
	20213
	20214
	20215
	20216
	20217
	20218
	20219
	20220
	20221
	20222
	20223
	20224
	20225
	20226
	20227
	20228
	20229
	20230
	20231
	20232
	20233
	20234
	20235
	20236
	20237
	20238
	20239
	20240
	20241
	20242
	20243
	20244
	20245
	20246
	20247
	20248
	20249
	20250
	20251
	20252
	20253
	20254
	20255
	20256
	20257
	20258
	20259
	20260
	20261
	20262
	20263
	20264
	20265
	20266
	20267
	20268
	20269
	20270
	20271
	20272
	20273
	20274
	20275
	20276
	20277
	20278
	20279
	20280
	20281
	20282
	20283
	20284
	20285
	20286
	20287
	20288
	20289
	20290
	20291
	20292
	20293
	20294
	20295
	20296
	20297
	20298
	20299
	20300
	20301
	20302
	20303
	20304
	20305
	20306
	20307
	20308
	20309
	20310
	20311
	20312
	20313
	20314
	20315
	20316
	20317
	20318
	20319
	20320
	20321
	20322
	20323
	20324
	20325
	20326
	20327
	20328
	20329
	20330
	20331
	20332
	20333
	20334
	20335
	20336
	20337
	20338
	20339

