Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Local Area Positioning of Multiple Moving Objects

A thesis presented in partial fulfilment of the requirements for
the degree of Doctor of Philosophy at
Massey University, Palmerston North,
New Zealand

Timothy Tristan James Brooks
2012
“It doesn’t prove anything much except that the awesome splendour of the universe is much easier to deal with if you think of it as a series of small chunks.”

“Mort” Terry Pratchett, 1987
This research examines a number of aspects of position tracking in complex environments. It postulates that configuring the receivers of the system in a regular fashion does not give optimum results when obstructions are present (especially moving obstructions). The tracking of rugby players is used as a primary example of position tracking in a complex environment. Other applications are considered.

The current literature in the field of position tracking and synchronisation was examined to find the state of the art. This suggests that the method best suited to the research goals is a time-based positioning method using unsynchronised transmitters attached to the players coupled with time-synchronised receivers.

Specifications were generated that defined the minimum operating requirements for a position tracking system that is suitable for use in a sporting application. These specifications are used to create and assess a minimalist tracking system.

A suitable system is characterised and the results are used to derive a model predicting the visibility of a player to the tracking system. For given player positions, and system components, the model determines the visibility of the players. It is designed to be fully configurable to handle any position tracking system and operating environment. The model is used as part of an expert system for performance assessment.

Configuration of the receivers is an important optimisation parameter for the tracking system’s performance. A genetic-algorithm optimisation process was tested with several objective functions to find the optimal placement of receivers in both open-field and static-obstruction situations. Calculated optimum solutions are shown to be superior to solutions-by-inspection. Furthermore, the optimisations confirm the premise regarding regular receiver configurations.

Test results show that some loss of visibility is inevitable in a minimalist system and that missing data can be recovered by software, thus increasing system performance while maintaining minimal equipment. A reconstruction algorithm was developed to handle missing data. The known behaviour of objects (specifically rugby players) was characterised into a series of rules to reconstruct missing data from data nearby in both time and space.

Finally, a simulation was performed using game data provided by the Industrial Partner and bringing together the various, disparate threads of research. The system as a whole achieved 93-99.5% player visibility with the use of optimum receiver placements and application of the reconstruction algorithm.

It is concluded that eight is the optimum number of receivers to satisfy the specifications of a minimalist system and that the expert system was successful.

The knowledge created by this research can be applied to any tracking system in order to maximise its efficiency in a given environment. It also demonstrates that the required volume of equipment can be reduced through the use of software tools.
Many individuals have helped me during the course of this research. The help was invaluable, and without it I would not have been able to reach this point. It would take far too long to name each of these people individually but I would like to thank the following people and organisations.

- To my supervisors: Huub, Wyatt and Ken. Your supervision and guidance throughout the entire project allowed me to go from a naïve and ignorant graduate to a confident expert in this field. You always pushed me to ‘crank the handle’ one more time and search for the deeper meaning in the results.

- To George and the staff of Verusco Technologies, Palmerston North, New Zealand for teaching me all I now know about the game of rugby and giving me the driving ambition to improve the analysis methods. Also for giving up their time to help with the testing. There is nothing quite as satisfying as ordering a bunch of people to walk around an open field waving sticks above their heads.

- My parents and family for helping with the editing process and interesting discussions on grammar and meaning of the English language. This has been a learning experience for all of us and it goes to show that the process of learning never ends.

- To Red and Woodsy, for their lessons on construction techniques and innovation. Being able to design and build on a shoe-string budget allowed this project to be completed.

- To my lovely wife Desiree for pushing me during the final editing.

- And finally, to Heather for her moral support and friendship throughout this project. You have embodied the true definition of a friend. I couldn’t have done the testing without you.
Table of Contents

Abstract ... iv
Acknowledgements .. v
Table of Contents .. vi
Table of Figures ... x
List of tables .. xiv

1 **Introduction** ... 1
 1.1 Contributions .. 2
 1.2 Publications ... 3
 1.3 Nomenclature .. 3
 1.4 Industrial Partner .. 3

2 **Background** .. 5
 2.1 Position Tracking .. 5
 2.1.1 Geometric Dilution of Precision (GDOP) .. 5
 2.1.2 Basic Triangulation ... 7
 2.1.3 Video position tracking ... 8
 2.1.4 Time of Flight (TOF) ... 11
 2.1.5 Time Difference of Arrival (TDOA) .. 14
 2.1.6 Angle of Arrival (AOA) .. 16
 2.1.7 Combined angle and time-based methods ... 19
 2.1.8 Tracking Multiple Objects ... 19
 2.1.9 Position Tracking Literature Conclusions .. 20
 2.2 Synchronisation ... 21
 2.2.1 The Need for Synchronisation .. 22
 2.2.2 Synchronisation Difficulties .. 22
 2.2.3 Reference Broadcast Synchronisation (RBS) 23
 2.2.4 Measured Propagation Delay Synchronisation 24
 2.2.5 Atomic Clock .. 24
 2.2.6 GPS timing .. 25
 2.2.7 Network timing protocol (NTP) .. 26
 2.2.8 Ultra Wide Band Synchronisation .. 27
 2.2.9 Synchronisation Literature Conclusions .. 27

3 **Methodology** .. 30
 3.1 Background ... 30
 3.2 Specifications .. 30
 3.3 Tracking system selection ... 31
 3.4 System characterisation .. 31
 3.5 Player visibility modelling .. 32
 3.6 Receiver-placement optimisation .. 33
 3.7 Position Reconstruction .. 34
 3.8 Simulated tracking-system performance ... 35
Local Area Position Tracking of Multiple Moving Objects

3.9 Repetition ...36

4 Specifications ..37
 4.1 No physical interference ..37
 4.2 Durability ...38
 4.3 Portability ..38
 4.4 Maximised operation time ..38
 4.5 Minimal cost ..39
 4.6 Measurement accuracy ...39
 4.7 Ease of use ..39
 4.8 Timely availability of data ...40
 4.9 Issues and constraints ..40

5 Development of a prototype tracking system ...41
 5.1 Nordic Semiconductors ..41
 5.2 Paric Measurement ..42
 5.3 Multispectral Solutions Inc ..43
 5.3.1 Tag hardware requirements ...45
 5.3.2 Receiver hardware requirements ..46
 5.3.3 Ultra wide band ...47

6 System Characterisation ..50
 6.1 Field trial equipment ...50
 6.2 Tag spectrum measurements ...52
 6.3 Receiver lobe patterns ..53
 6.4 Tag placement ...54
 6.5 Sapphire Dart trials ..55
 6.5.1 Three receiver system ...56
 6.5.2 Four receiver system ...57
 6.6 System characterisation results ...57
 6.6.1 Tag spectrum measurements ...57
 6.6.2 Receiver lobe patterns ..60
 6.6.3 Tag placement ..62
 6.6.4 Sapphire Dart system trials ..64
 6.7 System characterisation conclusions ..65

7 Player Visibility Modelling ...67
 7.1 Input data for modelling ..67
 7.2 Calculating visibility ...69
 7.2.1 Range ..69
 7.2.2 Transmission angle ..70
 7.2.3 Player obstruction ..71
 7.2.4 Combined visibility model ..75
 7.2.5 Static obstruction modelling ..77
 7.3 Visibility model results ..82
 7.3.1 Static obstruction model results ...83
7.4 Further development ... 87
7.5 Visibility model conclusions ... 87

8 Receiver Placement Optimisation .. 89
 8.1 Genetic algorithm optimisation ... 89
 8.2 Optimisation configuration .. 91
 8.3 Training data ... 92
 8.3.1 Clear field ... 93
 8.3.2 Evenly distributed occupancy ... 93
 8.3.3 Real Game Data ... 93
 8.4 Fitness Measures .. 93
 8.4.1 Field coverage .. 93
 8.4.2 Position Measurement Accuracy .. 94
 8.4.3 Invisibility rate .. 94
 8.4.4 Receiver separation ... 94
 8.5 Objective functions .. 94
 8.5.1 Solution by inspection ... 95
 8.5.2 Maximise field coverage ... 96
 8.5.3 Look-up table .. 96
 8.5.4 Rewards, penalties and non-linearity 96
 8.5.5 Minimise Average Position Error ... 97
 8.5.6 Minimise the Number of Obstructions 98
 8.5.7 Variable Height ... 98
 8.5.8 Weighted field coverage and receiver separation 99
 8.5.9 Static obstructions .. 99
 8.5.10 Validation and verification .. 101
 8.6 Results ... 102
 8.6.1 Solution by inspection ... 102
 8.6.2 Maximum field coverage .. 102
 8.6.3 Look-up table .. 103
 8.6.4 Rewards, penalties and non-linearity 103
 8.6.5 Small sample interference .. 104
 8.6.6 Combined field coverage and receiver separation 106
 8.6.7 Static Obstructions results .. 109
 8.7 Optimisation conclusions .. 114

9 Position Reconstruction ... 115
 9.1 General position reconstruction/correction methods 116
 9.1.1 Linear interpolation ... 116
 9.1.2 Speed ... 119
 9.1.3 Multiple tag data ... 119
 9.2 Application specific position reconstruction/correction methods ... 120
 9.2.1 Rucks and mauls ... 120
 9.2.2 Scrums .. 121
 9.2.3 Lineout .. 122
 9.3 Human intervention ... 123
Table of Figures

Figure 2.1: Positional uncertainty caused by uncertainty in the range loci for a system of two receivers with the object on the line connecting them .. 6
Figure 2.2: Positional uncertainty region of a two receiver time-of-flight where the object is far from the line connecting the receivers .. 6
Figure 2.3: The sum of squares position uncertainty perpendicular to a pair of TOF receivers ... 6
Figure 2.4: GDOP with three receivers in a triangle formation ... 7
Figure 2.5: Mathematical approach to triangulation .. 8
Figure 2.6: TOF positioning method .. 12
Figure 2.7: Base station experiencing multi-path fading .. 13
Figure 2.8: Basic operation of a two receiver AOA positioning system 17
Figure 2.9: A single element rotating Doppler antenna ... 17
Figure 2.10: A multi-element antenna array that operates as a Doppler antenna 18
Figure 2.11: Three node, distributed network ... 23
Figure 2.12: (a) Rx\textsubscript{1} sends a synchronization command. (b) Other stations transmit local TOA. (c) All clocks updated with the average signals ... 23
Figure 2.13: Atomic clock suitable for use at the circuit level .. 25
Figure 2.14: Network timing protocol hierarchy .. 26
Figure 4.1: Boundaries of a Rugby pitch. Crosses denote goal posts 40
Figure 5.1: Sapphire Dart precision asset location system .. 43
Figure 5.2: Configuration page of the Multispectral tracking system 43
Figure 5.3: Receivers may be connected in a star, daisy chain or combination configuration. .. 44
Figure 5.4: Speaker stand ... 46
Figure 5.5: A UWB signal in both (a) time domain and (b) frequency domain[144] 48
Figure 6.1: Typical output of the Sapphire Dart tracking system 52
Figure 6.2: Tag-spectrum measurements, experimental setup ... 52
Figure 6.3: Multispectral’s measurements of the PSD of the transmitter tags 53
Figure 6.4: Known track of the player for the tag placement tests 55
Figure 6.5: Receiver configuration for tag placement test ... 55
Figure 6.6: Configuration of three receivers for field trials .. 57
Figure 6.7: Configuration of four receivers for field trials .. 57
Figure 6.8: Free-space, time-domain signal from the badge tag 58
Figure 6.9: Attempt to capture frequency-domain trace of UWB tags 58
Figure 6.10: Water obstruction halfway between transmitter and receiver 58
Figure 6.11: Water obstruction close to the transmitter .. 59
Figure 6.12: Edge of water obstruction on direct path .. 59
Figure 6.13: Water obstruction close to, but not on, the direct path 59
Figure 6.14: Polar plots of measured range of each receiver type in conjunction with a mini tag. (a) Mid Gain, (b) Omni, and (c) High Gain ... 60
Figure 6.15: Tag placement test results with the tag on the right shoulder blade 62
Figure 6.16: Tag placement test results with tag on the player’s elbow 62
Figure 6.17: Tag placement test results with the tag on the back of the leg 63
Figure 6.18: Tag placement test results with the tag on the back of the shoe 63
Figure 6.19: Result of a single person walking the field lines in a three-receiver system....64
Figure 6.20: Results of a single person walking field lines in a four-receiver system........65
Figure 7.1: Decision tree for player orientation calculation..68
Figure 7.2: Occupancy plot of the data suite...69
Figure 7.3: Example of Out of Angle criterion...70
Figure 7.4: (a) A standard bounding box. (b) A bounding box that has been limited in size to account for the player of interest being in line with the receiver..............................72
Figure 7.5: Finding the shortest distance between possible obstruction player and the connecting line...73
Figure 7.6: Annotated diagram to indicate variables in equations (7.4) and (7.5)...........73
Figure 7.7: (a) No obstruction in the z plane. (b) Obstruction in the z plane..................73
Figure 7.8: Decision tree for visibility model execution..76
Figure 7.9: Example of a bitmap image used for visibility analysis of complex environments...78
Figure 7.10: Raw map of the area of interest...78
Figure 7.11: The resulting terrain map...79
Figure 7.12: Terrain map with track data included...80
Figure 7.13: Decision tree for static obstruction model..81
Figure 7.14: Typical output of the analysis model..82
Figure 7.15: Close up of a clustered formation...82
Figure 7.16: Bar plot showing the visibility statistics of an analysed game of rugby.....83
Figure 7.17: Histogram of contiguous invisibility..83
Figure 7.18: Singe-dot obstruction terrain map...83
Figure 7.19: 6-receiver coverage of the single dot area. (a) clustered and (b) spread.....84
Figure 7.20: 6-receiver GDOP of the single dot area. (a) clustered and (b) spread.........85
Figure 7.21: Close obstruction terrain map...85
Figure 7.22: 6-receiver coverage of the close obstruction terrain map............................85
Figure 7.23: Six-receiver GDOP of the close obstruction terrain.....................................86
Figure 7.24: 6-receiver small area coverage on the Massey map....................................86
Figure 7.25: 6-receiver small area GDOP on the Massey map..87
Figure 8.1: Illustration of crossover breeding...90
Figure 8.2: Illustration of mutation..90
Figure 8.3: Rastrigin, optimisation test function...91
Figure 8.4: Solutions by inspection for (a) 6, (b) 8, and (c) 16 receivers.......................95
Figure 8.5: Matlab code fragment for introducing non-linearity...................................97
Figure 8.6: Terrain maps. (a) dot (Figure 7.18), (b) four-building (Figure 7.21) and (c) Riddet (Figure 7.11)..100
Figure 8.7: Riddet terrain map with known track included in blue................................100
Figure 8.8: Solutions by inspection of the test terrain maps..101
Figure 8.9: Results of a 6-receiver maximised field coverage optimisation....................103
Figure 8.10: Position of receivers from a 6-receiver optimisation with rewards, penalties. ...103
Figure 8.11: Maximum field cover truncated solution space..104
Figure 8.12: Best fitness (red) and mean population fitness (blue) in an optimisation suffering small sample interference...105
Figure 8.13: Minimised number of obstructions truncated solution space, suffering from small sample interference... 105
Figure 8.14: Optimisation in which the angle weighting is too low. 106
Figure 8.15: Optimum solution from (a) 6-receiver, (b) 8-receiver, (c) 10-receiver combination field coverage and receiver separation optimisation. 107
Figure 8.16: Typical optimisation progression.. 107
Figure 8.17: Maximised coverage and receiver separation truncated solution space. 107
Figure 8.18: Comparison of results. ... 108
Figure 8.19: Solution with a random rotational component.. 108
Figure 8.20: Six-receiver, minimum average GDOP, solution by inspection on the Dot terrain map. ... 109
Figure 8.21: Six-receiver, minimised average GDOP on the Dot terrain map. 109
Figure 8.22: Six-receiver truncated solution space on the Dot terrain map. 110
Figure 8.23: Six-receiver, minimum average GDOP, solution by inspection on the Four-Building terrain map... 110
Figure 8.24: Six-receiver truncated solution space on the Four-Building terrain map... 110
Figure 8.25: Ten-receiver, minimum average GDOP, GA optimisation on the Four-Building terrain map... 111
Figure 8.26: Six-receiver, minimum average GDOP, solution by inspection on the Riddet terrain map... 111
Figure 8.27: Six-receiver, minimised average GDOP Nelder-Mead simplex optimisation on the Riddet terrain map... 111
Figure 8.28: Six-receiver, minimised average GDOP pattern-search optimisation on the Riddet terrain map... 112
Figure 8.29: Ten-receiver, minimum average GDOP optimisation on the Riddet terrain map... 112
Figure 8.30: Truncated solution space for the Riddet terrain map.............................. 113
Figure 8.31: Six-receiver, GDOP solution by inspection for the Riddet-Track map....... 113
Figure 8.32: Six-receiver, minimised average GDOP for the Riddet-Track map......... 113
Figure 8.33: Eight-receiver minimised average GDOP for the Riddet-Track map....... 114
Figure 9.1: Positions of a single object reconstructed using first order linear interpolation. ... 116
Figure 9.2: Linear interpolation used in a situation where the SLI is too high. 117
Figure 9.3: Example of second order interpolation. .. 118
Figure 9.4: An example of interpolation when the player is on a discontinuous path. ... 118
Figure 9.5: Sidestep interpolation with the initial point missing. 119
Figure 9.6: A ruck ... 120
Figure 9.7: A maul. ... 121
Figure 9.8: A scrum, about to engage.. 121
Figure 9.9: Locations of players from each team in a standard scrum formation[158].... 122
Figure 9.10: A lineout formation... 123
Figure 9.11: Block diagram for the reconstruction algorithm 124
Figure 9.12: Player moving around the perimeter of the field. No corrections. 125
Figure 9.13: Applying linear interpolation to recover missing positions. 125
Figure 9.14: Positions filtered based on player speed and linear interpolations applied... 126
Figure 9.15: Single player wearing two tags moving around the field. 127
Figure 9.16: Combined track of a single player wearing two tags................................. 127
Figure 9.17: Player loses visibility when entering a ruck.. 128
Figure 9.18: Missing position recovered through detection of a ruck............................ 128
Figure 9.19: Scrum including some invisible players with the scrum template superimposed
on the formation... 129
Figure 9.20: Scrum with reconstructed positions... 129
Figure 10.1: Percentage invisibility after application of the player visibility model...... 132
Figure 10.2: Histogram of contiguous invisibility... 133
Figure 10.3: Comparison of invisibilities before and after reconstruction................. 133
Figure 10.4: Histogram of contiguous invisibility, after applying the reconstruction
algorithm... 134
Figure 10.5: Histogram of continuous invisibility after applying linear interpolation only.
.. 134
Figure 10.6: Summary of reconstruction... 135
Figure 10.7: Contiguous invisibility after the second application of the reconstruction
algorithm... 136
Figure 10.8: Comparison of invisibility levels.. 137
Figure 13.1: Circle-circle intersection situation.. 153
Figure 14.1: Game 1 occupancy.. 161
Figure 14.2: Game 2 occupancy.. 161
Figure 14.3: Game 3 occupancy.. 161
Figure 14.4: Game 4 occupancy.. 161
Figure 14.5: Game 5 occupancy.. 162
Figure 14.6: Game 6 occupancy.. 162
Figure 14.7: Game 7 occupancy.. 162
Figure 14.8: Game 8 occupancy.. 162
Figure 14.9: Game 9 occupancy.. 162
Figure 14.10: Game 10 occupancy.. 162
List of tables

Table 2.1: Comparative summary of position tracking methods.................................21
Table 2.2: Comparative summary of synchronisation methods...................................29
Table 5.1: Physical characteristics of Multispectral tracking tags..............................45
Table 6.1: Table of data header possibilities...51
Table 6.2: Spectrum analyser configuration for tag PSD measurement......................52
Table 8.1: Summary of GA input parameters...92
Table 15.1: DVD index...163
Table 16.1: Table of acronyms used in this thesis...165
Table 16.2: Table of symbols..166