Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in

Earth Science

at Massey University (Palmerston North, Manawatu)

New Zealand

Natalia Pardo Villaveces

2012
Mt. Ruapehu is Te Whare Toka o Paerangi (The House of Stone of Paerangi, Ngāti Rangi ancestor), Matua te Mana (The Powerful One; “Mana” means prestige and enduring, spiritual power) in Ngāti Rangi maori culture. The Waikato-iti stream, in the Rangipō Desert, is Te Onetapu (sacred place) where Ngāti Rangi people rise their “karakia” to the volcano, their ancestor.
Dedicated to the Ngāti Rangi Iwi on behalf of all the indigenous communities living around active volcanoes in the world, who constantly teach us about the unfolding of life, the dynamic interdependence between people and the environment, and how to integrate all sources of knowledge to consciously and truly build sustainable communities

He Ruruku: Mai ara rā!

Mai ara rā! Mai ara rā!
Mai ara rā te Tupua!
Mai ara rā te Tawhito!

Tēnei au
Tēnei au te rangahau ana, ki te ao, ki te pō
Kia Ranginui e tū iho nei,
Kia Papatuānuku e takoto ake nei.

Mai ara rā, mai whea ra tōku ahunga mai?
Tāhuri whakataumaha, hurt whakamāmā
E te Kāhui Maunga ko wai ra koe?

Inā, Matua Te Mana te aunahi pūheta matahi
Pikimai Rawea te kai-kukume ake matua whenua rō wai

Te rongo nei ia hīhī,
Te rongo nei ia hāhā me huka tātairango.
Tina, tina toko te manawa ora, he manawa ora!

Ko te Roi-a-Rangi mo Rua-te-Tipua
Ko te Roi-a-Rangi nō Nukuahu e
Te pātukituki ka tū whakahirahira Kāhui Maunga mā.

Ko toka pokohiwi ka hora maru tapu, e Ngā Turi-o-Murimetotu
Te ahi kā o Paerangi i te Whare Toka
Te puta mai te Kāhui-o-Rangi, te Kāhui-a-Rua
Tōna hekenga mai i Te Wai-ā-Moe ki Pareteataitonga
Ko te ara hekenga, ko te ara hokinga mo ngā uri kōtuku
Ka tuku, ka tuku atu i ngā hau kaha ia Parakakariki, ia Mouwhakaarahia

Hei tohu, hei whakaatu ki te ao!
Whiti, whano, hara mai te toki!
Haumia! Hui e!
Taiki e!¹

¹ Karakia (i.e. prayer) offered by Ngati Rangi Iwi to Mt. Ruapehu, their ancestor. Provided by Che Wilson, Ohakune 2011, Aotearoa.
ABSTRACT

A new detailed stratigraphy was developed for a sequence of pyroclastic deposits including the largest known eruptions associated with Mt. Ruapehu, deposited in the period ~27-10 ka BP cal. From the largest Plinian eruption deposits in this sequence, subtle lithofacies variations within componentry, pumice textures and sedimentary features were used to identify a systematic change in eruptive conditions over time. Early eruptions involved steady eruption columns, while younger eruptions involved unsteady, collapsing columns. Isopach and Isopleth (pumice and lithic) mapping of most widespread and distinctive units show that the largest explosive eruptions known from this volcano attained peak column heights between 22 and 37 km, with mass discharge rates reaching 10^7-10^8 kg/s.

To characterise the conditions controlling the style of Plinian eruptions at this andesitic volcano, and to explain the systematic variation in column stability over time, five key units were sampled in detail, exemplifying the major contrasting lithofacies. The sampled tephras underwent grain-size analysis, along with quantification of componentry, porosimetry and density on particles of a range of size classes, as well as 2D and 3D microtextural analyses of juvenile pumice clasts to define vesicularity and crystallinity. In addition, physiochemical factors such as melt-evolution and volatile-contents were determined by analysing bulk pumice, glass-inclusions and residual glasses with electron microprobe and FTIR-spectroscopy.

Bulk compositions of these tephras vary from basaltic-andesite to andesite (56-62 wt.%, SiO$_2$), and had minimum pre-eruptive H$_2$O contents of 4-5 wt.%. The evolution of eruption behaviour over time was not correlated to any progressive change in bulk geochemical properties, but instead resulted from variations in physical processes within the conduit. Ascending magmas experienced heterogeneous bubble nucleation, and later-erupted units showed increasing degrees of rheological heterogeneities developed across the conduit. Differences between units were due to changes in the magma decompression rates, the degree of bubble-crystal-melt interactions and bubble shearing, as well as the composition of the residual melt. Conditions that led to the most variable physical states of the magma reaching the fragmentation level resulted in the highest variability in pumice textures, the greatest range in styles of fragmentation, and the most unstable eruption columns.

A new model describing the pre-eruptive magma storage region, conduit processes, magma fragmentation, and pyroclastic dispersal during Plinian eruptions at Mt. Ruapehu is proposed. This hypothesises that eruption column unsteadiness and collapse occurs when magma shear reaches extreme levels along the conduit under conditions of low isolated porosity (<3 vol.%). This situation also generates the worst-case hazard scenarios expected for Ruapehu, eruptions, where Plinian columns of over 30 km may produce widespread tephra fall, as well as partially collapse to generate pyroclastic density currents of over 15 km runout.
ACKNOWLEDGMENTS

This thesis would not have been possible without the guidance and the help of several people who, in one way or another, contributed and extended their valuable assistance in the preparation and completion of this study. I would first like to acknowledge my first teacher of Volcanology, Héctor Cepeda, for keeping alive from afar my passion for volcanoes and question our role as scientists within any local community. He also dragged my attention to explore this side of the world, Aotearoa (New Zealand). Professor Claus Siebe (UNAM-Mexico), who encouraged me to come and continue my studies in Volcanology, suggesting without hesitation Professor Shane Cronin as my supervisor. My utmost gratitude goes to Professor Shane Cronin who continuously motivated me and supported me along the difficult PhD process, providing excellent guidance, lessons, discussions and encouragement, together with his patience with my “Colombian English” and exhaustive final edition. He, together with my other co-supervisors, Drs. Alan Palmer and Karoly Németh, and Associate Professor Ian Smith, helped me to keep up every day’s motivation in the research. I will always be grateful to Alan Palmer for all his assistance and guidance during the extensive field-work and data collection phases of this study. Dr. R.B. Stewart (Massey University), Dr. Ben Kennedy (Canterbury University), and Dr. Katherine Cashman (University of Oregon, U.S.A.) are greatly thanked for the examination of this thesis, all the comments, discussions, and suggestions that significantly improved the final version.

Some of the most difficult tasks of this project would definitely not have been possible without the teachings, hospitality and guidance of Dr. Heather Wright (USGS, California, USA). During and after the X-ray synchrotron analyses at California, she always found time to discuss and review my ideas until outputs were reached that we could trust. Also, Dr. C. Ian Schipper (ISTO-CNRS, Orléans, France), who arrived at the precise moment to rescue me from the frustrating sample preparation for FTIR measurements and taught me that patience, persistence, and having fun are the best ingredients to be successful in any lab procedure.

This study was financed by the New Zealand Foundation for Research Science and Technology, (now the Ministry of Science and Innovation, NZ Natural Hazards Research Platform) programme, “Living with Volcanic Risk” and by a Massey University Doctoral Research Scholarship. I am also grateful for the support of the Tongariro Natural History Society through a Memorial Award. H. Keys, J. Johnson (Department of Conservation), and the Range Control staff of the NZ National Army camp at Waiouru are thanked for allowing access to the Tongariro National Park and Army land.

I also thank Alastair McDowell for his training and aid during the CT-scanning at Lawrence Berkeley National Laboratory (Berkeley, California). Dr. C. Ian Schipper for scanning the samples at ISTO-CNRS (University of Orléans, France), along with Dr. Alan Burgisser and ERC grant 202844 under the European FP7, for providing the facilities within this micro-CT laboratory. Dr. Anja Moebis, for helping with the complex FTIR sample preparation, and together with Professor Bob Stewart and Dr. C.I. Schipper, for discussing and developing the corresponding methodology at Massey University. Drs. Anja Moebis and Clel Wallace, thank you for teaching me how to deal with the serious mission of thin sectioning pumice and polishing. Mr. Doug Hopcroft and Dr. Jianyu Chen are gratefully acknowledged for their collaboration with the Scanning Electron and Confocal microscopes. A very special acknowledgment goes to Ritchie Sims, at University of Auckland, who made every second of the tedious microprobe analysis fun and enriching. His help and friendship were always there. I am extremely grateful to Ian Furkert, Bob Toes, Matthew Irwin, and Mike Bretherton for bringing all their best energy and enthusiasm while assisting me in the different laboratory procedures. It was very
important to be surrounded by their kindness and smiles, which made the long journeys in the lab peaceful and joyful. I also thank them for making me stop sometimes and forcing me to go home.

Dr. R.B. Stewart, Dr. G. Lube, and Dr. J. Procter, as well as Professors V. Neall, and M. Bebbington, for their helpful lessons and discussion. All the PhD-students, friends and staff of Volcanic Risk Solutions of Massey University were extremely helpful and supportive. I am very grateful to Dr. Marco Brenna, Dr. Gert Lube, Ms. Emma Phillips, Dr. Jon Procter, and Dr. Ting Wang for their support in the field. Thanks to Marco, Ting, and Gert for being always there in my moments of panic, especially with software and calculations. This project could not have achieved the desired progress without the efficiency, promptness, and help of Dr. Kate Arentsen, who dealt with most of the exhaustive logistics. She, and Dr. A. Moebis greatly contributed to the final edition and formatting. My gratitude goes also to Moira Hubbard and Liza Haarhoff for all their assistance and kindness with administrative issues during the PhD.

Chapter reviews by Dr. Claus Siebe (UNAM-Mexico), Dr. Guido Giordano (Italy), Dr. Roberto Sulpizio (Italy), an anonymous reviewer, Dr. Setsuya Nakada, and Dr. James White, were gratefully received and proved extremely useful for improving the quality of the resulting manuscripts. The final publications are available at www.springerlink.com.

Warm and special gratitude to my “kiwi brother”, Andy Dolling, for being so present and filling my soul with joy, poetry, and music, needed to survive the PhD. Through the ukulele and drums he always found a way to keep me singing, creating, and smiling even in the most difficult moments. Along with him, all my friends in Whanganui, Mike and Loraine Dolling, Ron Riddel and Saray Torres, Chika and Richie Janutka, and David Griffiths who became a beautiful and supportive family in this country. Niji, Kiwa, and Kaho Janutka, thank you all for remind me to keep my inner child alive and strong, even while doing a PhD.

Vilma Rodríguez, German Molano, and Alvaro Martínez, for helping me to keep connected with my roots, my dreams, my reasons, my questions. They have been a wonderful example and reference; a grounding point, guiding me in my own personal search within this hybrid Colombian personality dancing between arts, science, and social justice. Erica Lattughi and Matiu Te Huki, for opening a new perspective of freedom and possibilities, nurturing my will to choose our own path and work with love for our dreams. Erica, Jen Hyde, and Korty Wilson, for supporting and helping me to contribute to the real, physical, daily world by reinforcing the meaning of community and sustainable living while we conduct scientific research. Jaime Dorner and Marisol Vargas, for opening the paths of theatre, allowing me to keep vibrant the creative artistic world, contributing to balance the scientific days and to keep exploring the depths, multiplicity, and possibilities of the human being. I also thank my first friends and flatmates, Sadia Tahir and Mazidah Abdul Rahman, who created a beautiful and supportive connection between women from different countries and cultures arriving to a common place, Te Papaioea (Palmerston North). Also to newer friends in this town, including Angela and Gabor Kereszturi, as well as my wonderful flat-mate, friend, and supportive shoulder, Javier Agustín-Flores. Thank you all for listening and sharing.

Last, but not least, my thanks to my wonderful, missed family in Colombia and overseas, for giving me strength, believing in my dream, and letting me fly with my own wings.
Table of Contents

Karakia
 iii

Abstract
 iv

Acknowledgements
 vi

Table of contents
 viii

List of abbreviations used in this study
 xxv

CHAPTER 1. Introduction
 1

 1.1 Research questions and motivation
 1

 1.2 Literature review
 4

 1.2.1 Subplinian and Plinian eruptions
 4

 - Magma Ascent and Fragmentation
 5
 - Plinian and subplinian eruptive plumes and resulting deposits
 10
 - On the resulting pyroclasts
 13
 - Documented cases
 16
 - Experiments and numerical models
 17

 1.2.2 The Tongariro Volcanic Centre
 18

CHAPTER 2. Methodology
 22

 2.1 Fieldwork and physical parameters
 22

 2.2 Laboratory
 26

 - 2.2.1 Grain-size analysis
 26

 - 2.2.2 Componentry
 27

 - 2.2.3 Gas-Pycnometry: pumice density and porosity
 28

 - Bulk density
 29

 - Skeletal and solid Density
 30

 - Porosity
 31

 - 2.2.4 Pyroclast 2D-microtextures and ash morphology
 32

 - 2.2.5 Pyroclast 3D-Micro-textural analysis
 34

 - High resolution X-ray and computed micro-tomography
 34

 - Image visualization and processing
 36

 - 2.2.6 Dissolved volatiles
 38

 - Fourier Transform IR-spectroscopy (FTIR)
 38
CHAPTER 3. Tephrostratigraphy of the Bullot Formation and characterisation of the largest explosive eruptions of Mt. Ruapehu .. 43

3.1 Introduction .. 43

3.2 Reconstructing the largest explosive eruptions of Mt. Ruapehu, New Zealand: lithostratigraphic tools to understand subplinian-Plinian eruptions at andesitic volcanoes . 46

3.2.1 Abstract .. 46

3.2.2 Introduction .. 47

3.2.3 Geological Setting ... 48

3.2.4 The largest explosive eruptions recorded at Mt. Ruapehu 49

3.2.5 Physical volcanology implications: towards a classification of subplinian-Plinian eruptions at Mt. Ruapehu ... 74

3.2.6 Discussion ... 79

3.2.7 Conclusions ... 82

CHAPTER 4. Physical Volcanology ... 84

4.1 Introduction .. 84

4.2 Andesitic Plinian eruptions at Mt. Ruapehu: Quantifying the uppermost limits of eruptive parameters ... 86

4.2.1 Abstract .. 86

4.2.2 Introduction .. 87

4.2.3 Mt. Ruapehu Plinian eruption lithofacies associations 88

4.2.4 Ash morphology .. 105

4.2.5 Eruptive parameters .. 107

Eruptive volumes .. 107
5. Steady Vs. Unsteady Plinian Eruptive Columns: magma composition, fragmentation, and pyroclastic deposition. ... 119

5.1 Introduction ... 119

5.2 Results: Contrasting Plinian behaviour at Mt. Ruapehu .. 120

5.2.1 Non-collapsing, oscillatory columns of intermediate height (20-25km): The Mangatoetoenui eruptive unit ... 120

Lithofacies (pumice textures, componentry, and ash morphology) 120
Chemical composition ... 133
Discussion .. 134

5.2.2 Steady and sustained, high (> 29km) columns: Shawcroft Eruptive Unit 137

Lithofacies (pumice textures, componentry, and ash morphology) 137
Chemical composition ... 145
Discussion .. 145

5.2.3 Unsteady and collapsing, high (> 30km) columns: Orumatua Eruptive Unit 147

Lithofacies (pumice textures, componentry, and ash morphology) 147
Chemical composition ... 155
Discussion .. 156

5.2.4 Unsteady, collapsing columns of intermediate height (<25 km): Okupata-Poruahu eruptive unit .. 158

Lithofacies (pumice textures, componentry, and ash morphology) 158
Chemical composition ... 166
Discussion .. 167

5.3 Conclusions ... 169

CHAPTER 6. Magma degassing and conduit dynamics .. 172

6.1 Introduction ... 172

6.2 Results ... 175

6. 2.1 The Mangatoetoenui unit pumice textures .. 175

Density and Porosity ... 175
3d-Textures ... 176
Volatile content obtained in melt inclusions ... 183
Interpretation .. 185
6.2.2 The Shawcroft unit pumice textures ... 186

Density and Porosity ... 186
3d-Textures .. 194
Volatile content obtained in melt inclusions 191
Interpretation ... 192

6.2.3 The Oruamatua unit pumice textures ... 194

Density and Porosity ... 194
3d-Textures .. 194
Volatile content obtained in melt inclusions 198
Interpretation ... 192

6.2.4 The Okupata tephras pumice textures ... 200

Density and Porosity ... 200
3d-Textures .. 202
Volatile content obtained in melt inclusions 206
Interpretation ... 207

6.3 Glass composition and closure pressures ... 209

6.4 Discussion .. 210

6.4.1 Bubble nucleation mechanisms ... 210
6.4.2 Degassing processes in contrasting Plinian eruptions 212
6.4.3 Implications for column stability ... 213

6.5 Conclusions .. 215

CHAPTER 7. Discussion: An integrated model for the most violent explosive eruptions expected at Mt. Ruapehu ... 218

7.1 Introduction .. 218

7.2 Magma storage system .. 219

7.2.1 Whole-rock Geochemistry ... 219
7.2.2 Groundmass glass and glass inclusions .. 229
7.2.3 Storage and magma supply model for Ruapehu Plinian eruptions ... 233

7.3 Conduit dynamics during Ruapehu Plinian eruptions 234

7.3.1 Vesiculation and crystallisation processes 235
7.3.2 Magma fragmentation and eruptive mechanisms 237

x
CHAPTER 8. Conclusions: a new understanding of Mt. Ruapehu Plinian eruptions 252

8.1 Summary ... 252

8.2 Specific findings of this study .. 254

8.2.1 Identification of a systematic change in the dominant lithofacies association, Plinian style, vent location, and eruptive column behaviour over time of Deposition of the Bullot Formation .. 254

8.2.2 Clarification of the source of the Pahoka Tephra ... 254

8.2.3 (Re)Definition of the largest Plinian eruption of Mt. Ruapehu ... 254

8.2.4 Metrics of the largest Ruapehu Plinian eruptions .. 255

8.2.5 Tephra distribution patterns of Plinian eruptions at Mt. Ruapehu .. 256

8.2.6 Relationships between chemical and eruption variability of Mt. Ruapehu Plinian eruptions ... 256

8.2.7 Evolution of the eruptive/magmatic system at Mt. Ruapehu ... 256

8.2.8 Glass transition and fragmentation style changes .. 257

8.2.9 Controls on eruption column height and steadiness .. 258

8.3 Concluding statement and future research questions .. 259

REFERENCES ... 261

APPENDICES

A. Studied locations
 A.1 Locations maps and overview
 A.2 Coordinates
 A.3 Stratigraphic profiles
 A.4 Stratigraphic correlation
 A.5 Thickness data

B. Eruptive parameters
 B.1 Isopach data
 B.2 Isopleth data
B.3 Eruptive volumes and column heights (.xls files): comparative methods

C. Grain-size
 C.1 Data
 C.2 Statistics (KWare SFT; K. Wohletz 2007 version) results (.pdf files)

D. Optical microscopy
 D.1 The Mangatoetoenui unit
 D.2 The Shawcroft unit
 D.3 The Oruamatua unit
 D.4 The Okupata-Poruahu unit

E. Componentry
 E.1 The Mangatoetoenui unit
 E.2 The Shawcroft unit
 E.3 The Oruamatua unit
 E.4 The Okupata-Poruahu unit
 E.5 SEM images of ash particles ≤3 μ

F. Geochemistry
 F.1 Whole-rock analyses
 F.1.1 Legend
 F.1.2 XRF data
 F.1.3 LA-ICP-MS
 F.1.4 Filtered data and variation diagrams
 F.2 Groundmass glass data
 F.3 Glass inclusions
 F.4 Mineral data
 F.5 Norm CIPW calculated with K. Hollocher norm 4 (free online software)

G. Porosity
 G.1 Porosity results for individual eruptive units
 G.2 Bulk and envelope volumes and solid density data

H. X-ray Microtomography
 H.1 High resolution X-Ray microtomography
 H.1.1 Beamline 8.3.2 at Lawrence Berkeley National Laboratory
 H.1.3 Sample preparation
 H.1.4 Beam setup at Lawrence Berkeley National Laboratory (guide)
 H.1.5 References
 H.2 Examples of individual steps during Image processing
 H.3 3D Textural quantification of pumice clasts (.xls files)
 H.3.1 The Mangatoetoenui unit
 H.3.2 The Shawcroft unit
 H.3.3 The Oruamatua unit
 H.3.4 The Okupata-Poruahu unit
 H.3.5 Summary table
 H.4 Videos
 H.4.1 The Mangatoetoenui unit
 H.4.2 The Shawcroft unit
 H.4.3 The Oruamatua unit
 H.4.4 The Okupata-Poruahu unit

I. FTIR
 I.1 Samples
 I.2 Results
 I.2.1 Spectra (.SPA files readable with Thermo-Nicolet Omnic software)
 I.2.2 Results and calculations
I.3 Inclusions geochemical data
I.4 Summary table

J. PUBLICATIONS (available at www.springerlink.com)

List of figures

Figure 1.1 Typical Plinian-supplinian eruptive column, showing the three distinctive regions mentioned in the text. After Cioni et al. (2000) ………………………………………………………………………………….. 12

Figure 1.2 Study area. a) North Island of New Zealand tectonic setting (modified from Reyners et al. (2006) and Villamor et al. (2010)), showing the Hikurangi-Kermadec subduction margin. TVZ: Taupo Volcanic Zone, with andesitic Tongariro Volcanic Centre (TgVC) and the rhyolitic Okataina (OCC), Rotorua (RCC), and Taupo calderas (TCC); b) TgVC comprises Mt. Ruapehu and Mt. Tongariro composite volcanoes. SH: State highways connect the urban centres (red squares). Study sites indicated by blue circles; main reference type sections labelled as “B” ……………………………………………………………………………………………….. 19

Figure 3.1 Figure 3.1 Deposits of the Bullot Formation at location B1 (i.e. Type location of Donoghue 1991; Appendix A). LA; Lithofacies Association type as will be defined in this Chapter. In Roman numbers some of the main pyroclastic beds are indicated. M1, M2, and M3, as well as the Hokey Pokey Lapilli and Pink Lapilli correspond to the marker beds identified by Donoghue (1995b). The position of rhyolitic ash marker beds is shown in white boxes. Mgt: Mangatoetoenui; Sw: Shawcroft; Oru: Oruamatua; Ak: Akurangi are new eruptive units defined in this study. Okp: Okupata Tephra (Topping 1973) …………………………………………….. 43

Figure 3.2 Deposits at location 14 (Appendix A), not included within the original definition of the Bullot Formation but indicating similar eruptive behavior. Thick pumice lapilli fall beds are found below: a) the Kawakawa Tephra or fluvial deposits reworking this tephra, and (b) the deposits described by Donoghue (1991) and Donoghue et al. (1995b) as the first unit (I) of the Bullot Fm… …………….…….………….. 44

Figure 3.3 Bullot Formation as seen on the eastern Ring Plain: a) Lower part of the studied sequence, 15 km from Crater Lake; b) Middle part of the sequence, 17 km from Crater Lake. Important markers are shown: the Okataina caldera Rerewhakaaitu (Rw) and Waiohau (Wh) tephras, Mt. Ruapehu Okupata Tephra (Okp), and Mt. Tongariro Pahoka Tephra (Pk); c-d) Upper part of the sequence, 15-17 km from Crater Lake. Ng-1-2: Ngamatea Lapilli 1-2 as defined by Donoghue (1991) are the last subplinian eruptions from Mt. Ruapehu before the onset of the most explosive period of Mt. Tongariro, represented by the Pahoka-Mangamate sequence, as redefined by Nairn et al. (1998) ………………………………………………..…………………….…… ……..................... 51

Figure 3.4 Figure 3.4 Hokey Pokey eruptive unit: a) General stratigraphic profile of the Hokey Pokey eruptive unit b) HP subunits (HP-1 to 4) –9 km from the vent, with the main lapilli fall deposits and interbedded, thinly stratified diluted lahars and fluvial deposits; c) Bread-crust bombs in the main Plinian fall deposits are common in the first 10 km from the vent. Solid lines represent regionally exposed, major discontinuities limiting eruptive units, and dashed lines indicate locally exposed, minor discontinuities separating deposits of eruptive phases/pulses within the same unit …………………………………………………………………………. 52

Figure 3.5 Post-Okareka, pre-Rerewhakaaitu eruptive units IX to XVI as: a) exposed within 10 km from source, showing the inner distinctive subunits as described in the text. The white arrow points the 17,625 ± 425 cal years BP rhyolitic marker; b) Detailed deposits overlying unit IX, with the distinctively pink fall bed of eruptive unit XIII; c) NW–SE stratigraphic correlation from unit IX to XVI; d) Exposure at a small tributary to the Upper Waikato stream, showing the lateral facies variation of the inter-eruptive fluvial deposits: thick fluvial sequences commonly fill paleochannel structures (arrows) ……………………………………………………………………………………………. 55
Figure 3.6 General stratigraphic profile showing the eruptive units IX to XVI, accumulated between the Okareka Tephra (Ok) and the Rerewhakaaitu Tephra (Rw). The legend for the sedimentary structures is the same as in Fig. 3.4. Solid lines represent regionally exposed, major discontinuities delimiting eruptive units, and dashed lines indicate locally exposed, minor discontinuities separating deposits of eruptive phases/pulses within the same unit... 56

Figure 3.7 Proximal deposits on the eastern slopes of Mt. Ruapehu showing angular discontinuities. There is one distinctive above which unit XIII was deposited. Rw: 17,625 ± 425 cal years BP, rhyolitic Rerewhakaaitu Tephra marker... 57

Figure 3.8 a) Fall deposits of units XIII to XIX as exposed at medial distances. Interbedded fluvial deposits lateral facies variation is evident, with thicker sequences filling paleochannels; b) Zoom of the lithic-rich unit XVII; c) Zoom of the lithic-poor Upper XVIII unit; d-e) Stratigraphic correlation from unit XVII to XIX 59

Figure 3.9 General stratigraphic profile showing the eruptive units XVII to XXII, as described in the text. The legend for the sedimentary structures is the same as in Fig. 3.4. Solid lines represent regionally exposed, major discontinuities limiting eruptive units, and dashed lines indicate locally exposed, minor discontinuities separating eruptive phases/pulses within the same unit... 60

Figure 3.10 Units XVII and XVIII at location B49 (Appendix A) showing pyroclastic density current (PDC) facies, characterised by: a) poorly sorted, matrix-supported, block (bombs) and pumice lapilli deposits; blocks and bombs (b) have different degrees of oxidation and vesicularity, usually showing vesicular cores and dense rims with radial joints (c)... 61

Figure 3.11 Deposits signalling the beginning of the Tukino Eruptive Period: a) Zoom in eruptive unit XIX. b and c show the overlying units XX and XXI, with the distinctive dark grey, dilute lahar depositional facies ... 63

Figure 3.12 a) Eruptive units grouped within the Karioi Eruptive Period (XXIII to XXVI) highly distinctive in their high lithic content and lithic type variability; b) Zoom into the Shawcroft lapilli (Plinian phase of eruptive unit XXVI), presenting bread-crust bombs of ~30 cm in diameter 10 km downwind the main SE depositional lobe; c) Detailed stratigraphic profile of the eruptive units XXIII to XXVI comprising deposits of the Karioi Eruptive Period ... 65

Figure 3.13 a-b) Stratigraphic correlation of units XXVII to XXIX, characterized by well bedded deposits shown in c-to-e; c) Matrix supported facies of unit XXVII, interpreted as resulting from pyroclastic density currents... 68

Figure 3.14 a) Uppermost part of the studied stratigraphic record, showing the distinctive white lapilli fallout bed of unit XXX and the widely distributed Okupata Tephra (zoomed in b), both formed during the Taurewa Eruptive period; c) General stratigraphic profile showing the eruptive units XXX to the Mt. Tongariro sourced Pahoka Tephra. The pyroclastic density current deposits (PDC) of the unit XXI corresponds to the Pourahu pyroclastic flow of Donoghue et al. (1995a) ... 71

Figure 3.15 Pyroclastic density current (PDC) deposits within the Okupata-Pourahu eruptive unit (Okp-Ph), characterised by poorly sorted (a), channel-infilling (b), matrix-supported pumice lapilli and blocks (c) facies, varying in thickness with distance (d) ... 73

Figure 3.16 Classification diagrams of the studied Mt. Ruapehu units, based on key field criteria for lithofacies correlation: a) Bed structure; b) Dominant component; c) Pumice colour, directly linked to pumice textures as shown ... 77

Figure 3.17 Schematic interpretation of the studied stratigraphic record, to visualize in a comparative way, the most plausible eruptive styles for Mt. Ruapehu’s explosive activity between the time of accumulation of the Hokey Pokey lapilli (younger than 27,097 ± 957 cal years BP and older than 24,800 ± 500 cal years BP), and the 11,620 ± 190 cal years BP Okupata Tephra. The Plinian activity of Mt. Tongariro is firstly identified in the interbedded Rotoaira units (as identified by Shane et al., 2008), followed by the here named “black lapilli”, and clearly beginning the series of major eruptions that produced the ~11 ka BP cal., Pahoka-Mangamate eruptive sequence (Narin et al., 1998). The newly defined eruptive units: Mangatoetoenui (Mgt), Shawcroft (Sw), Oruamutau (Oru), Akurangi (Ak), and Okupata-Pourahu (Okp-Ph) typically represent contrasting lithofacies associations and related eruption behaviour... 81
Figure 4.1 Lithofacies association type 1, represented by the Mangatoetoenui Tephra. a) Stratigraphic position within the Bullott Fm., above the 21,800 ± 500 cal years BP, rhyolitic Okareka Tephra; b) Exposure 15 km from source showing normally graded L-Mgt and massive U-Mgt pumice lapilli beds, locally separated by syn-eruptive fluvial deposits (IX-1d); c) Phases distinguished in proximal areas by contrasting grain-sizes; d) Composite stratigraphic profile. Relative proportion of juvenile glass (J), crystals (X), and lithics (L) are given for the main Plinian deposits as vol.% based on component analysis of 300 grains within 1, 2, and 3 φ size fractions .. 91

Figure 4.2 Isopach maps for: a) Mgt-Mangatoetoenui Eruptive Unit (lithofacies association-type 1); b) Sw-Shawcroft Eruptive Unit (lithofacies association-type 2); c) Oru-Oruamatua Eruptive Unit; d) Ak-Akurangi Eruptive Unit; e) Okp-Lower and Upper Okupata tephras(c-e: lithofacies association-type 3); f) U-Pk-Mt. Tongariro sourced Upper Pahoka Tephra (N: current Ngauruhoe vent; R: current Mt. Ruapehu Crater Lake). Contours are labelled within white squares and shown in centimetres (cm), drawn on a proximal 5 m DEM combined with a distal 20 m DEM. In black squares some of the local average field data values are shown (see Appendix B.1). Upper right sub-quadrants show the contours interpreted from field data to illustrate the dispersion axes in relation to intermediate-distal urban areas (e.g. Napier, Hastings) .. 93

Figure 4.3 Isopleth maps showing the distribution of lithic and pumice clast diameters in mm: a-b) Mangatoetoenui; c-d) Shawcroft; e-f) Oruamatua; g-h) Akurangi; i-j) Okupata; k-l) U-Pahoka. Isopach traced axis extrapolated towards the craters are shown in subfigures suggesting North Crater as the most probable vent for most units, but not the youngest Okupata tephras, which originated from a vent closer to Crater Lake, and the Pahoka tephra which was produced by Mt. Tongariro. NC: North crater, CC: Central Crater, SC: South Crater, N: Mt. Ngauruhoe (see Appendix B.2 for complete field data set) .. 98

Figure 4.4 Lithofacies association type 2, represented by the Shawcroft Eruptive Unit (Sw); a) Stratigraphic position above the 13,635 ± 165 cal years BP, rhyolitic Waiohau Tephra (Wh); b) close-up view at 10 km from the vent showing the deposits of individual phases; c) Typical lithic-rich, coarse grained lithofacies of the main phase (i.e. Shawcroft lapilli) with bread-crust bombs up to 30 cm in diameter; d) Proximal outcrop (5 km) showing cross-laminated pyroclastic surge deposits (XXVI-1s) interbedded within the main lapilli fall deposits. Note the impact-sag (sketched in e), under a ballistic clast, the crossed lamination and accretionary lapilli (arrows) in f; g) Composite stratigraphic profile. Relative proportion of juvenile glass (J), crystals (X), and lithics (L) are given for the main Plinian deposits as vol.% based on component analysis of 300 grains within 1, 2, and 3 φ size fractions .. 99

Figure 4.5 Bedded lithofacies association type 3, Oruamatua and Akurangi eruptive units: a) Relative stratigraphic position above Sw; b) Individual subunits representing different eruptive phases within the Oruamatua eruptive; c) Lithic-rich Lower-Oru; d) Middle-Oru showing three beds indicating three main fallout phases separated by fine ash (oscillating columns or wandering plume effects); e) Upper-Oru, partially reworked here (B15 in Appendix A) .. 100

Figure 4.6 Stratigraphic profile from the Oruamatua and Akurangi eruptive units showing lateral variation from fall to pyroclastic density current deposits (PDC) .. 101

Figure 4.7 Uppermost studied units, comprising: a) the last known Plinian deposit sourced at Mt. Ruapehu (Okp-Ph) and the first Plinian deposit of the Pahoha-Mangamate explosive period of Mt. Tongariro (Upper Pahoha Tephra); b) Detail of the two main fall deposits forming the Okupata-Pourahu eruptive unit (L-and-U-Okp), separated by a co-ignimbrite ash at proximal locations (and in the same stratigraphic position as the pyroclastic flow deposit named Pourahu member by Donoghue et al. 1999; Ph-1d bed); c) Composite stratigraphic profile (See legend Fig. 4.4). Relative proportion of juvenile glass (J), crystals (X), and lithics (L) are given for the main Plinian deposits as vol.% based on component analysis of 300 grains within 1, 2, and 3 φ size fractions .. 102

Figure 4.8 Upper Pahoha Tephra as exposed a) In proximal locations (< 6 km from source) on the northeastern slopes of Mt. Ruapehu. Note the dense, chilled bombs b) Typical facies at intermediate locations (13.5 km from source), showing the detailed textures representing the phases described in the text ... 104

Figure 4.9 SEM images of juvenile ash grains: a) Mgt juvenile, highly vesicular glass shards; b) Sw poorly vesicular glass shards. Note the conchoidal fracture and sharp edges zoomed on the uppermost-right image; c) Oru coarsely vesicular shards with thick vesicle walls around large, irregular vesicles d) Ak platy-shaped and poorly vesicular glass shards; e) Okp fibrous glass shards; f) Mt. Tongariro Pk glass shards 106
Figure 4.10 Whole-deposit isopach data plots for each eruption showing: a) Thickness vs. Isopach area; b) Log (T) vs. Distance expressed as (Isopach Area) \(^{1/2}\). Individual eruptive units show two to three individual segments with different slopes: c) Mangatoetoenui (Mgt); d) Shawcroft (Sw); e) Oroumatua (Oru); f) Akurangi (Ak); g) Combined Lower and Upper Okupata (Okp); h) Upper Pahoka (U-Pk). Colours in c-h separate different segments (S): proximal S\(_0\) (red), proximal-intermediate S\(_1\) (blue), and in some cases intermediate-distal S\(_2\) (yellow) ... 108

Figure 4.11 Classification schemes for the studied eruptions: a) Isopach and Isopleth data in the Pyle (1989) diagram lie within the Plinian field; b) Isopleth data in the Carey and Sparks (1986) diagram for column height and wind-speed, based on 0.8 cm-diameter lithic clasts data; c-d) Sparks (1986) diagram to determine Mass discharge rates considering column heights obtained with the Carey and Sparks (1986) method (c) and Sulpizio (2005) method (d). Other eruption parameters are respectively plotted for comparison .. 112

Figure 4.12 Comparison of eruptive parameters with others published for Plinian eruptions at andesitic volcanoes worldwide. Our data indicate: a) Increasing column heights with erupted volume as obtained from the whole deposit of each unit and b) with MDR; c-d) Eruptive intensity (MDR) and column height vs. magnitude (M = Log (Mass of the deposit in kg) – 7), with higher intensities (c) and column heights (d) reached at larger magnitudes.. 113

Figure 5.1 Mangatoetoenui Eruptive Unit, consisting of two main subunits separated by a thin fluvial deposit (IX-1d) marking a short-time break in the eruptive activity. The L-Mgt indicates a vent/conduit opening phase (IX-1a) immediately followed by the main Plinian event (IX-1b-and-c). The second Plinian (IX-2) deposit locally overlies a thin fluvial deposit. (B15 is located at LAT: -39.27671548, LONG: 175.68911796, Z: 1165 m above sea level) ... 121

Figure 5.2 Detail of the Mangatoetoenui Eruptive Unit and inferred eruptive phases. Grain-size distribution histograms for the main eruptive phases are shown, with the corresponding cumulative curve and statistic parameters as calculated with SFT software. Results are typical of pyroclastic fall deposits .. 122

Figure 5.3 Pumice types identified at the same stratigraphic level within: a) L-Mgt and b) U-Mgt. Note contrasting vesicle sizes. Thin sections from three end-members are shown, including: c) Foamy end-member with subspherical vesicles between 50 and 200 µm in diameter, and with smooth vesicle outlines and thin walls. Different degrees of coalescence are illustrated: single-direction arrows show the initial stages of slight vesicle wall deformation, while double-direction arrows point out aperture throats and interconnection. This pumice is transitional to coarsely vesicular, expanded types; d) Fluidal pumice clasts with strong alignment and elongation of vesicles, parallel to tabular phenocrysts; e) Crystal-rich, microvesicular end-member with highly irregular and distorted micro-vesicles showing abrupt terminations and refolded shapes. Note the increase in phenocrysts, glomerocrysts (Gx), and microlite content from a typical foamy (f), fluidal (g), to microvesicular (h) texture... 123

Figure 5.4 Back scatter electron images (BSE), at three different magnifications, showing pumice samples with contrasting textures, varying from: a-c) foamy with subspherical vesicles showing thin walls and smooth outlines; d-f) fluidal texture formed by aligned and oriented vesicles showing thick walls, some wrinkled. Vesicles are irregular, most of them showing pinched edges. Note the relatively high phenocryst content; g-i) Microvesicular texture within the U-Mgt, with abundant and larger phenocrysts and greater oxides content (ox). Microlite content is also high and vesicles are extremely distorted, most of them showing collapse structures.. 124

Figure 5.5 Main crystal phases in the Mgt unit (a). Plagioclase phenocrysts are commonly euhedral, zoned (b), subhedral sieved (c, d), an occasionally show plastic micro-deformation (e). Clinopyroxenes are commonly subhedral to anhedral and occasionally show “bubble wall-texture” (f, g). Orthopyroxenes (h, i) are commonly euhedral to subhedral, sieved, and vesicles do not seem to wet the crystal. Oxides are commonly embedded within vesicles (j, k). Vesicles embedding pumice fragments (l) or glass shards (m) are common. Non juvenile fragments are mainly volcanic aphanitic (n) or microphaneritic andesites (o-q)... 125

Figure 5.6 Bulk componentry analysis for ash size fractions \(\leq 0 \phi \), based on 300 grains counted per size fraction and normalized as vol.%. Analyzed eruptive units from oldest to youngest are: a) Mangatoetoenui, b) Shawcroft, c) Oroumatua, d) Akurangi, e) Okupata.. 126

Figure 5.7 Relative proportions of the different glass morphology normalized over total glass content as vol.%... 128
Figure 5.8 a) Main pumice clasts classes identified within the Mangatoetoenui Unit, under binocular microscope; b) Foamy, highly vesicular pumice shard with subspherical vesicles; c) Cuspate glass shard derived from bubble bursting; d) Fibrous shard; e) Fluidal-shaped glass with ellipsoidal vesicles having thick walls; f) fused-shaped pyroclast with smooth, “melted” surfaces; g) Plate, poorly vesicular glass; h) Poorly vesicular clast with flattened vesicles having over-thicken walls; i) Blocky shaped, non vesicular shards; j) Conchoidal fractures on glass surfaces; k) Lithic aggregates, probably recycled from the vent walls/floor; l) Dark grey, fresh andesites; m) Pale grey, fresh andesites; n) Partially altered, vesicular lavas; o) Hydrothermally altered volcanic ranging from aphanitic to porphyritic; p) Altered accidental white sedimentary clast................................. 129

Figure 5.9 Juvenile ash morphological types identified within the 3 φ size fraction of the eruptive units selected for this study. Observations were carried on with a FEI Quanta 200 Environmental Scanning Electron Microscope (SEM) on gold coated ash particles at 20 kV. The relative proportions within this size fraction over time are shown to the right. Calibrated radiocarbon ages correspond to interbedded rhyolitic tephas as reported by Froggatt and Lowe (1990), Newnham et al. (2003), and Lowe et al. (2008). For the complete stratigraphy refer to Chapter 3, Appendices A and J.1. Eq.>0 φ: equivalent very coarse ash and lapilli-sized textural types................................. 130

Figure 5.10 Relative proportions of non juvenile lithic clasts types normalized over total lithic content as vol.%. Units and subunits are shown in stratigraphic order from base (a) to top (e).......................... 131

Figure 5.11 Total alkalis vs. silica (TAS) diagram (Le Bas et al., 1986) showing the bulk and glass composition of juvenile clasts within the Mgt unit as well as glass inclusions trapped within pyroxene crystals. The variability of groundmass glass composition within the L-Mgt is related to the heterogeneous textures (i.e. crystal content), whereas the homogeneous, more silica-rich glass composition of the U-Mgt reflects the higher crystal content of predominantly microvesicular pumice clasts.. 134

Figure 5.12 Detail of the Shawcroft Eruptive Unit deposits and inferred eruptive phases. Note the contrasting grain sizes among fallout beds in a, b, and d, indicating varying eruptive styles between phases. Lateral variations with distance include proximal parallel bedding (a), massive facies at medial and distal locations along the dispersal axis (b and c), and proximal pyroclastic surge deposits interbedded within the fallout beds (d) showing impact sags (arrow in d1), low-angle cross laminations and accretionary lapilli (d2). Grain-size distribution diagrams for the main eruptive phases are shown, with the corresponding cumulative curve and statistic parameters as calculated with SFT software.. 138

Figure 5.13 Pumice fabrics identified at the same stratigraphic level within the Shawcroft lapilli at: a) the base and b) top of the deposit. Three main textural end-members are shown, varying from: c-d) foamy to expanded clasts with subspherical vesicles between 100 and 800 µm in diameter, having smooth vesicle outlines and thin walls. Different degrees of coalescence are illustrated: double-direction arrows point out aperture throats and interconnection paths; e-f) finely vesicular, glomerocrystic, microvesicular clasts with some irregular vesicles (contorted arrow) and higher microlite content than c; g-h) crystal-rich, porphyritic, dense end-member with highly irregular and distorted micro-vesicles and abundant microlites.. 140

Figure 5.14 Back-scatter electron images (BSE) of pumice samples of the Shawcroft lapilli at three different magnifications: a-c) Microvesicular with subspherical vesicles showing thick walls and irregular, occasionally sharp edges (white arrows in a, b). The groundmass glass contains feldspar and pyroxene microlites (c). d-f) Dense end-member with highly distorted vesicles showing thick walls and relatively higher phenocrysts and microlite content... 141

Figure 5.15 a-b) Plagioclase phenocrysts within the Shawcroft lapilli showing: a) the complex glomerophytic texture of largest sized Pl, where the core has a sieved texture, glass inclusions, and a subrounded outline; this core is mantled by a subhedral crystal with oscillatory zoning; b) border resorption indicated by the rounded outline of the phenocryst, which also has complex intergrowths and twins; c) Example of a cracked Pl where individual fragments are pulled apart; d-e) Mafic cumulates consisting of subhedral to anhedral Cpx and Opx, with interstitial Pl and rare Mt; f) Rounded clinopyroxene with local embayments indicating resorption; g-i) Non juvenile, entrapped lithics distinguished by a contrasting texture and sharp outline, varying from andesites (g-h) to microphaneritic diorites (i)... 142

Figure 5.16 a) Main pumice textures identified within the Shawcroft eruptive unit, as seen under binocular microscope; b) Foamy, highly vesicular particles with subspherical vesicles; c) Expanded; d) Fluidal; e) Fluidal glass with ellipsoidal vesicles having thick walls and smooth surfaces; f) Pelée’s tear; g) Poorly vesicular glass; h) Poorly vesicular clast with flattened altered, mossy-like surface; i) Blocky shaped, poorly to non vesicular
shards; j) Glass shard derived from bubble bursting; k) fluidal shard with tube-like vesicles; l) Fluidal, bulbous surface with unburst vesicles (arrow); m) Step-fractured glass surface with conchoidal fractures, grooves, and “V”-shaped pits (arrows); n) Typical lithic lapilli; o) Altered, rounded, recycled pumice from the vent walls/floor; p) Dark grey andesites; q) Pale grey, fresh andesites; r) Brown, fresh Pl+Cpx, hypabyssal andesite (note that they are not necessarily accidental but could also derived from the degassed magma at the base of the conduit; however it contributes to the low-temperature material of the erupting mixture); s) Brown, vesicular lava; t) Altered accidental white (Rhyolitic?) pumice; u) Hydrothermally altered lavas ranging from aphanitic to porphyritic in texture, and v) microphaneritic lava clasts.---------------------------143

Figure 5.17 Total alkalies vs. silica (TAS) diagram (Le Bas et al., 1986) showing the bulk and glass composition of juvenile pumice clasts within the Sw lapilli. The homogeneity in pumice textures relative to Mgt samples is also reflected by a single cluster of groundmass glass compositions. Glass inclusions are consistently more silicic than groundmass glass (dacitic to rhyolitic).---145

Figure 5.18 a) Detail of the stratigraphic sections comprising the Oruamatua (Oru) and Akurangi (Ak) eruptive units, including the inferred eruptive phases (see details in Chapter 3); b) Note the stratified (shower-bedded) nature of these units, with multiple parallel beds contrasting in grain-size; c) Grain-size distribution histograms for the main eruptive phases within Oru are shown, with the corresponding cumulative curve and statistical parameters as calculated with SFT software. Results are typical of pyroclastic fall deposits, although the M-Oru shows transitions to matrix-supported deposits, with polymodal distributions consistent with the accumulation of Pyroclastic flows (e)..151

Figure 5.19 a) Macrotextural variations within the same stratigraphic level of the Oruamatua Tephra. b) Dense, microfluidal textural end-member, usually pale, greyish brown in colour. Note the alignment of elongated vesicles. Some vesicles are highly distorted or show abrupt termination (arrows), which is in part due to the high microlite content (c). Different degrees of vesicle deformation can be traced, from: d) Localized shear bands evident at higher magnitudes, with sigmoid-like and distorted vesicles (arrows), contrasting to neighboring spherical vesicles. Note the sharp edges of some of the vesicles dictated by the neighboring crystals (red arrows); to e) extremely flattened and refolded vesicles with irregular outlines; f) Banded microvesicular texture, common in the U-Oru. Note the difference between the dark brown and the pale brown bands. Under crossed nicols (g) the bands are distinguished by the microlite content..152

Figure 5.20 Backscattered electron images of the main contrasting textures within the Oruamatua unit, including a-e) microfibrous, coarsely porphyritic clasts with feldspars phenocrysts showing micro jigsaw structures (a), and elongated vesicles, some with pinched edges (b) and thin vesicle walls (c); d-f) dense textures are coarsely porphyritic (d), vesicles are extremely distorted, showing pinched edges (b) and very thick walls in a microlite-rich glass groundmass (f)..152

Figure 5.21 a) typical lithic (L) and juvenile (P) Oru lapilli in the field. Note that lithic clasts are commonly entrapped within pumice clasts (arrow); b) Euhedral to anhedral plagioclase phenocrysts show cracks oriented both parallel and perpendicular to the longest axis, with individual fragments pulled apart a few microns (see arrows); c) Euhedral orthopyroxene with twining; d) Euhedral Pl-Glomerocrysts with a few anhedral Orthopyroxene microcrystals; e) Glomerophyric 2-Px+Pl texture; f) Metasedimentary clast embedded in a dense clast..152

Figure 5.22 Main ash components identified within the Oruamatua Unit, under a binocular microscope: a) highly vesicular particles; b) microfibrous particles with different colours due to different microlite content and degree of oxidation; c) grey, microvesicular to dense particles with sharp edges; d) crystal-rich, dense, coarse-grained porphyritic (glomerophyric) particles. Ash particles within the 3 φ fraction under SEM include: e) Foamy to expanded, highly vesicular pumice shard with subspherical vesicles; f) Fibrous shard; g) scoreaceous particle having distorted vesicles with thick walls; h) Typical mossy-like end-member, poorly vesicular and with occasional melted surfaces. Shards derived from bubble-wall rupture include: i-j) tube-like; k) Pelée-like, and l) blocky-shaped shards. In detail, m) shows the flattened vesicles having over-thickened walls within g. Conchoidal fractures are common (arrows in n and o) as well as stepped surfaces (p). Accidental clasts include: q) fresh, dark and pale grey andesites; r) Partially altered dense and vesicular andesites; s) Hydrothermally altered volcanic ranging from aphanitic to porphyritic lavas; t) Altered accidental white sedimentary clasts...154

Figure 5.23 Total alkalies vs. silica (TAS) diagram (Le Bas et al., 1986) showing the bulk and glass composition of juvenile pumice clasts within the Oru unit as well as the glass inclusions in pyroxene crystals. Note that the
high groundmass glass silica contents are consistent with more crystal-rich textures relative to earlier eruptive units, as well as glass inclusions being more mafic than groundmass glass.

Figure 5.24 Exposures of the Okp-Ph unit. Proximal locations are shown at: a) 11.2 km from the vent to the E; b) 5.5 km to the East, showing pyroclastic density current facies in the upper Whangaehu valley; c) 7.4 km to the NW; d) 12.3 km to the NE; and e) 9.4 km from the vent to the NE; f-h) Grain-size distribution of the different subunits as analyzed from samples taken 0.5 km from the vent (proximal facies).

Figure 5.25 Typical juvenile pumice clasts within the a) Lower and b) Upper Okupata Tephras, characterized by c-d) Highly vesicular clasts with irregular vesicles, some of them showing pinched edges. Anomalous large vesicles are found, showing advanced stages of interconnection. Feldspars are the dominant crystal phase, commonly showing cracks parallel and perpendicular to the longest axis and vesicle elongation/orientation; e-f). Pale, microfibrous textures with an accidental sedimentary clast; g-h) Dark, dense, end-member, with large phenocrysts and highly irregular vesicles having sharp edges and pinched terminations; i-j) Banded texture imparted by differences in glass colour, vesicle-crystal sizes and content. Note the irregular boundary and the predominance of feldspar as pheno and microcrysts, occasionally showing jigsaw microstructure.

Figure 5.26 a) Typical microlite-rich, porphyritic, microvesicular texture of the L-Okp, with feldspars commonly showing micro-jigsaw cracks; note the high microlite content in b), small subspherical and larger irregular vesicles in c. d) Typically microfibrous, coarsely porphyritic texture of U-Okp with very thin, commonly wrinkled vesicle walls. Vesicles are commonly elongated, refolded or sheared (e), and different degrees of coalescence occur (f). g) Dense, colour-banded texture of U-Okp, where bands correspond to different size and shape of vesicles. Some bands corresponds to zones of significant vesicle collapse as shown by highly distorted pores (h) with sharp edges, some evidencing coalescence in a microlite-rich groundmass glass (i) w: wrinkled thin vesicle walls; f: flat walls; c: coalesced vesicle; r: refolded vesicle; s: localized shear.

Figure 5.27 Photomicrographs a-b) showing a broken Plagioclase crystals, illustrating how the cracks served as vesication sites and formation of glass fibres; c-d) Common glomerophyric texture with 2Px, interstitial Pl and Mt. e-f) Microphaneritic lithic clast entrapped in the groundmass glass, where individual components are seen under crossed-nicols (f). Note that the border is broken and individual grains look detached from the main lihric.

Figure 5.28 a-d) Main pumice clasts classes identified within the Okupata-Pourahu eruptive Unit, as seen under a binocular microscope; a) Microvesicular pumice with subspherical vesicles; b) fibrous, microlite-rich pumice; c) Dark brown, expanded to mossy-like pumice having irregular vesicles with thick walls; d) Dense, porphyritic clast. Juvenile shards within the L-Okp comprise: e) Highly vesicular, scoreaceous shards; f-g) Fluidal glass with ellipsoidal vesicles having thick walls and “melted” surfaces. h) Poorly to non-vesicular shards with occasional melted surfaces. The U-Okp unit is characterized by: i-j) Cuspate glass shard derived from bubble bursting; k,l) Fluidal and tube-like shard derived from walls of elongated vesicles; m) the top-right shard is similar to “i-j”, and bottom-left shard is “drop-like” glass with smooth surfaces (e.g., Wohletz and Krimsky 1982); n) Typical “bubble-wall” texture around Px-phenocrysts; o) Lithic aggregates, probably recycled from the vent walls/floor; p) Dark grey, porphyritic anesite; q) Pale grey, fresh anesites; r) Hydrothermally altered clasts.

Figure 5.29 Total alkalis vs. silica (TAS) diagram (Le Bas et al., 1986) showing the bulk and glass composition of juvenile pumice clasts within the Okp unit. Note the large compositional span within the same unit, and the high glass groundmass silica content consistent with more crystal-rich textures relative to previous eruptive units. Data are consistent with previous published analyses (Donoghue 1991; Donoghue et al., 1995a).

Figure 6.1 Porosity and density frequency distributions within lapilli of the Mangatoetoenui unit. The individual parameters were obtained from measurements of: a) Bulk sample volume and envelop density; b) Connected + Isolated porosities relative to the bulk sample volume; c) Skeletal density d) Solid density determined in milled samples; e) Comparative plots of individual parameters against bulk porosity. Black histograms illustrate all data (n= 69), while red shows that of L-Mgt and yellow the U-Mgt.

Figure 6.2 Reconstructed X-ray images as orthoslices and rendered subvolumes of three lapilli samples from the Mgt unit: a-e) Shows crystal-poor, foamy lapilli with subspherical vesicles having thin walls; f-i) Shows crystal-bearing, fluidal texture with elongated vesicles having thicker walls. White arrows in H point out glass shards included within a vesicle. Dashed arrows in (i) show a region of internal heterogeneity in the sample; j-
m) Illustrate a porphyritic, microfluidal pumice clast. a-i are synchrotron images (1 pixel = 4.5 \(\mu m \)), and j-m are computed micro-CT images (1 pixel = 3.6 \(\mu m \)).

Figure 6.3 3D Quantitative analysis of: a) Vesicle Volume Distribution (VVD), (b) Cumulative Vesicle Volume Distribution (CVVD), (c) Vesicle Size Distribution (VSD), and (d) Cumulative Vesicle Size Distribution (CVSD) obtained from X-ray synchrotron and computed micro-CT 3D images. Arrows point steps in the CVVD and CVSD curves interpreted to represent coalescence (foamy and microfluidal case) or multiple events of nucleation and growth (fluidal case).

Figure 6.4 Near-Infrared spectra obtained using an FTIR microscope in glass inclusions hosted in Cpx and Opx within the Mangatoetoenui (Mgt) eruptive unit: a) Total spectra showing the main peaks of total and molecular water, as well as the location of the CO\(_2\) peak (not detected in these samples); b) filtered data showing those spectra that are free of "noise".

Figure 6.5 Porosity and density frequency distributions within the Shawcroft Lapilli. The individual parameters were obtained from measurements of: a) bulk sample volume and envelop density; b) connected + isolated porosities relative to the bulk sample volume; c) skeletal density d) solid density determined in crushed samples; e) comparative plots of individual parameters against bulk porosity. Black histograms illustrates all samples measured (n=99), dark blue are basal samples, and cyan are from the top of the fall deposit.

Figure 6.6 Reconstructed X-ray images as orthoslices and rendered subvolumes of two different textures: a-d) Porphyritic, microvesicular pumice clast; e-h) Porphyritic, microlite-rich, dense clast; note the presence of micro jigsaw feldspars (arrow in c, g); a-d are synchrotron images (1 pixel = 4.5 \(\mu m \)), and e-h are computed micro-CT images (1 pixel = 4.4 \(\mu m \)).

Figure 6.7 3D determinations of: a) Vesicle volume distribution (VVD), (b) Cumulative Volume distribution (CVVD), (c) Vesicle Size distribution (VSD), and (d) Cumulative Vesicle Size distribution (CVSD).

Figure 6.8 Near-Infrared spectra obtained in glass inclusions hosted in Cpx and Opx within the Shawcroft (Sw) eruptive unit: a) Total spectra showing the main peaks of total and molecular water, as well as the location of the CO\(_2\) peak (not detected here); b) filtered data showing spectra free of "noise".

Figure 6.9 Porosity and density frequency distributions within the Oruamatua eruptive unit. The individual parameters were obtained from measurements of: a) Bulk sample volume and envelop density; b) Connected + Isolated porosities relative to the bulk sample volume; c) Skeletal density; d) Solid density determined in crushed samples; e) Comparative plots of individual parameters against bulk porosity. Black histograms are for all analyses (n=99), while others show the individual analyses from the different stratigraphic positions.

Figure 6.10 Reconstructed X-ray images as orthoslices and rendered subvolumes of three different textures: a-d) microvesicular; e-h) microfibrous; i-l) dense. All samples were scanned with the \(\mu \)CT (1 pixel = 3.5, 3.1, and 4.2 \(\mu m \) respectively).

Figure 6.11 3D Quantitative results for: a) Vesicle volume (VVD), (b) Cumulative Volume (CVVD), (c) Vesicle Size (VSD), and (d) Cumulative Vesicle Size (CVSD) distributions obtained from \(\mu \)CT.

Figure 6.12 Near-Infrared spectra obtained in glass inclusions hosted in Cpx and Opx within Mid-Oruamatua eruptive unit: a) Total spectra showing the main peaks of total and molecular water b) filtered data showing those were "noise" was least present.

Figure 6.13 Porosity and density frequency distributions within the Okupata-Pourahu eruptive unit. The individual parameters were obtained from measurements of: a) Bulk sample volume and envelop density; b) Connected + Isolated porosities relative to the bulk sample volume; c) Skeletal density d) Solid density determined in crushed samples; e) Comparative plots of individual parameters against bulk porosity. Black histograms are for the total sample (n=60) and colour-coded distributions are for Lower (L-Okp) and Upper (U-Okp) subunits.

Figure 6.14 Reconstructed X-ray images of: a-d) microvesicular-dense clasts within the L-Okp (\(\mu \)CT scan 1 pixel = 4.2 \(\mu m \)); e-h) dense, coarsely porphyritic clasts within the U-Okp (\(\mu \)CT scan 1 pixel = 4.0 \(\mu m \)). Note the typical micro-jig-saw structures in crystals (arrow in g) and irregular voids with sharp edges surrounding feldspars (g). i-n) Microfibrous (d); synchrotron: 1 pixel = 1.8 \(\mu m \); e; \(\mu \)CT scan: 1 pixel = 2.0 \(\mu m \)), coarsely porphyritic textures within the U-Okp, where vesicles have thin walls, commonly wrinkled (w); note the thin
glass films crossing cracked feldspars (I) and the alignment of small vesicles and microcrysts (m); Typically, all textures show highly distorted vesicles, many refolded (r) and with pinched terminations (p). .. 203

Figure 6.15 3D analysis results for: a) Vesicle volume (VVD), (b) Cumulative Volume (CVVD), (c) Vesicle Size (VSD), and (d) Cumulative Vesicle Size (CVSD) distributions obtained from Okupata Tephra samples. Note the high textural heterogeneity within any single clast. Arrows mark steps in the CVVD curves, above which coalescence occurs. Steps pointed with arrows in VSD and VSD mark more than one nucleation event. ... 205

Figure 6.16 Near-Infrared spectra obtained by microscopic FTIR in glass inclusions hosted in Cpx and Opx within Mid-Oruamatua eruptive unit: a) Total spectra showing the main peaks of total and molecular water; b) In the U-Okp tephra measurements did not produce clean spectra and calculated volatile contents shown in Table 6.6 represent rough estimations. ... 207

Figure 6.17 Glass composition in the selected eruptive units from Mt. Ruapehu projected in the Qz-Ab-Or ternary diagram with water-saturated phase relations from Tuttle and Bowen (1958; in Cashman and Blundy 2000). Plots of individual units are shown to the left and a parallel trend is shown to the right, indicating crystallization during decompression. ... 209

Figure 6.18 Comparison between studied Mt. Ruapehu samples and published data obtained both in natural samples and experimental samples. Textural variability seems to correspond to different glass composition and textural maturity: higher Nv are reached at higher SiO$_2$ content, whereas total vesiculaty at similar N depend on textural maturity from initial conditions of free bubble expansion and growth, to intermediate conditions of restricted growth due to high crystallinity, and final conditions of extensive vesicle distortion and even collapse. ... 211

Figure 7.1 a) Juvenile Pumice whole-rock classification of the selected eruptive units following Le Bas et al., 1986. Different textural types are indicated in the legend as: 1) Foamy to expanded, consisting of sub-spherical vesicles. 2) Fluidal, with predominantly elongated, ellipsoidal, and oriented vesicles. 3) Fibrous, occasionally colour-banded, microlite-rich, with highly elongated vesicles showing very thin walls; collapsed vesicles are common. 4) Dense, occasionally banded, microlite-rich pumice clasts with highly distorted, collapsed vesicles. b) Comparison between the studied tephras and the lava formations reported by Price et al. (2012, and references therein). Ar/Ar ages for lava formation are shown as reported by Gamble et al. (1999, 2003), and Price et al. (2012) ... 220

Figure 7.2 Variation in selected major oxide composition with time. Note a general trend towards more evolved compositions and wider compositional variability in the youngest eruption units. This coincides with larger textural heterogeneity among pumice clasts in any stratigraphic level. Higher compositional variability is also correlated with collapsing eruption columns ... 225

Figure 7.3 Harker diagrams of whole-rock composition from the studied Ruapehu tephras, showing the variation of major oxides with silica content and the comparison between to published data on lava formations reported by Price et al. (2012). The colours correspond to the legend of Figs. 1 and 2. In inset boxes only tephra data are shown ... 226

Figure 7.4 Harker diagrams of trace element data (see Chapter 2.2.7 for analytical details) showing the variation of trace elements with silica content. Commas separating elements indicate that those elements behave in the same way with silica content ... 227

Figure 7.5 Harker diagrams of whole-rock geochemistry (See Chapter 2.2.7 for analytical details) showing the variation of selected trace elements with MgO content. The general trends indicated by data published by Price et al., (2012) on coeval lava formations are shown in inset boxes. The colours correspond to the legend of Figs. 1-2 ... 228

Figure 7.6 TAS diagrams (Le Bas et al., 1986) showing bulk, glass groundmass and glass inclusions compositions for: a) the Mangatoetoenui, b) Shawcroft, c) Oruamatua, and d) The Okupata-Poruhu eruption units. The most silica-rich glass inclusions relative to groundmass glass are shown in a-and-b, and the change to more evolved residual glass compositions is seen in c-and-d ... 231
Figure 7.7 Schematic diagram proposed by Price et al., (2005) showing Mt. Ruapehu magmatic system. This system includes: 1) underplating basaltic magmas heating the lower crust; 2) fractionation of lower-crust magmas and interaction between them and mantle-derived magmas; 3) The generation of smaller and dispersed storage systems throughout the crust, subject to fractionation and crustal assimilation, mixing and mingling ... 233

Figure 7.8 Schematic representation of the storage system inferred for the Plinian eruptions of Mt. Ruapehu between ~27 and 10 ka BP cal. Different degrees of mingling and mixing occurred in the upper crustal magma reservoir producing: (a) Mangatoetoenui; (b) Shawcroft, (c) Oruamatua, and (d) Okupata-Pourahu eruptive units. The most chemically homogeneous system was associated with the Sw eruption ... 234

Figure 7.9 Schematic representation of the conduit processes occurred during the studied, Late Pleistocene, Mt. Ruapehu, Plinian eruptions. Dark grey zones correspond to the conduit lining material of slowest ascent rate (i.e. largest crystal content, densest clasts); Arrows point towards different ascent rates within and across the conduit: (a) L-Mgt-Highest ascent rates in the conduit centre; (b) U-Mgt-more degassed conditions with bubble expansion limited and microfluidal to dense zones being generated; (c) Sw-nearly homogeneous conditions, with vesicles forming under decompression at intermediate rates; (d) Oruamatua and (e) Okupata-Pourahu units where shearing bands developed along with slow ascent rates and variable bubble shapes, generating a complex flow regime. Local acceleration due to bubble shearing occurred in some zones (microfluidal); others had viscous stresses dominating, where subspherical vesicles behaved as rigid objects (microvesicular); friction occurred along conduit walls (dense/banded). In addition, for (e) intense shearing and very slow ascent rates favoured advanced bubble interconnection and development of permeable channels .. 236

Figure 7.10 Schematic representation of the variation in fragmentation processes that occurred during the studied, Late Pleistocene, Mt. Ruapehu, Plinian eruptions. (a) Magma fragmentation of older eruptions, represented by the Mangatoetoenui Unit was expanded-acceleration dominated. (b) Following eruptions represented by the Shawcroft Unit were decompression-dominated; whereas (c) younger eruptions were characterized by shear-induced fragmentation with magma-water during the Oruamatua and Akurangi units and (d) dry, but weak fragmentation conditions during the Okupata-Pourahu eruption. The variability of fragments found within a particular unit reflects the heterogeneity of the magma reaching the fragmentation level at different rates ... 240

Figure 7.11 Correlation between the non-dimensional fragmentation Index (D) as a measure of eruptive violence and textural, componentry and geochemical parameters obtained in this study ... 247

Figure 7.12 Merged mapped units showing the accumulated thickness in cm of the major Plinian fallouts during the Late Pleistocene: Mgt: Mangatoetoenui; Sw: Shawcroft; Oru: Oruamatua, and Ak: Akurangi eruptive units. Okupata-Pourahu is here excluded for simplicity (See the corresponding isopachs in Fig. 4.2); a) The Tongariro National park and the main urban centres repeatedly affected during Late Pleistocene eruptions; b) Overview showing the extent of mapped tephras towards the east coast of North Island ... 249

List of tables

Table 2.1 Macrotextural classification of pumice rocks collected from Mt. Ruapehu, Late Pleistocene, Plinian eruptions.. 29

Table 2.2 Samples used for X-ray microtomography study, from the Mangatoetoenui (Mgt), Shawcroft (Sw), Oruamatua (Oru), Lower and Upper Okupata tephras (L-U-Okp). Each sample was cored to a 0.5 to 1 cm diameter cylinder (up to 1 cm high) and image stacks of the dimensions indicated as “Sample field of view” were obtained. Sample volume used refers to the sample volume used for 3D image processing and quantification. Pixel size refers to the resolution limit. Subvolumes size indicates the maximum size of each sample subvolume that could be analysed, limited by the computer power... 36

Table 3.1 Correlation of the eruptive units defined here with the published stratigraphy and main field characteristics of key eruptive units of this study. Donohue’s (1991) equivalent nomenclature of the lapilli beds representing Plinian phases within each eruptive unit are shown in brackets. Whole-rock and glass composition are taken from Donoghue et al. (2007). Componentry, density and vesicularity proportion as expressed as average vol.% from gas-pycnometry measurements (Appendix G). The average bulk density of the whole deposit (*ρ_{bulk}) is reported in g/cm3 for some of the units... 53
Table 3.2 Synthesis of the general characteristics of the different lapilli and ash fall beds found in the studied stratigraphic record. Numbers correspond to the total of individual beds of that particular type found in the record..78

Table 4.1 Isopach data for individual units and resulting geometrical values calculated with ArcGis 9.0 for the whole deposit and for individual lobes. T: Thickness, A: Area, P: Perimeter, Sh: Shape Factor, A_{NE}: area of the southeast lobe, A_{NE}: area of the northeast lobe ..109

Table 4.2 Eruptive volumes in km3 obtained using methods from different authors, considering 1 single segment, multiple segments, as well as the data from whole-deposits and as obtained from individual depositional lobes. k: slope (thinning rate) when all data are fit within a single curve; k$_0$: slope of the proximal segment when multiple segments are identified (maximum case). A_{IP}: observed isopach area at the inflexion point when multiple segments are considered. V_P: proximal volume. V_T: total volume. $A_T^{1/2}$: distance from vent expressed as the square root of the isopach area in km. The suffix “calc” stays for calculated when using Sulpizio (2005) method. BS$_{12}$: break in slope between the first two segments; BS$_{23}$: break in slope between the second and third segments. D: Dispersal index obtained by extrapolating the area enclosed within the 0.01T_{max} isopach (Walker 1973). T_{max}: maximum thickness, Eruptive units: Mangatoetoenui (Mgt), Shawcroft (Sw), Oruamatua (Oru), Akurangi (Ak), Okupata Tephras (Okp*), and Upper Pahoka Tephra (UPk)..110

Table 4.3 Geometrical parameters obtained from whole-deposit isopach and isopleths data. Following the terminology of Pyle (1989): bt= “thickness half-distance” is the distance at which the thickness decreases to one half of its maximum value, which describes the morphology of the deposit; bc = “clast half-distance” is the distance at which the maximum clast diameter halves with respect to its maximum value, reflecting the corresponding column height. Hence, bc/bt gives an estimation of the fragmentation index. 1Seg: considering all data as one single segment; S0-2: Individual segments as separated by colours in Fig. 4.10..111

Table 4.4 Estimated eruptive parameters considering the volume (expressed as a minimum value Vol*) calculated by using the method of Sulpizio (2005). Eruptive units: Mangatoetoenui (Mgt), Shawcroft (Sw), Oruamatua (Oru), Akurangi (Ak), Combined Lower and Upper Okupata tephras (Okp*), and Upper Pahoka Tephra (U-Pk). H_{TLENE}: total column height for the southeast and northeast lobe, respectively. Q: Volume discharge rate; the suffix SE or NE stays for estimated Q based on the southeast or northeast lobe H_t data. MDR: Mass discharge rate; the suffix SE or NE stays for estimated MDR based on the southeast or northeast lobe H_t data. M: Eruptive Magnitude calculated from the total mass of the deposit...114

Table 5.1 Statistical results of grain-size analyses carried on for each eruptive unit at localities B50 and B14 (9-10 km from the vent; Appendix A), L/U-Mgt: Lower/Upper Mangatoetoenui; Sw: Shawcroft; Oru: Oruamatua; L/U-Okp: Lower/Upper Okupata Tephra; Ph: Pourahu ..121

Table 6.1 Summary Table of density and porosity measurements using Gas-pycnometry and Envelope pycnometry (see methodology Chapter 2.2.3 and results in Appendix G). Mgt: Mangatoetoenui unit; Sw: Shawcroft unit; Oru: Oruamatua Unit; Okp-Ph: Okupata-Pourahu eruptive unit..178

Table 6.2 X-ray microtomography results on merged subvolumes of each sample. Legend: #= number of measured vesicles φ = vesicularity; χ = mafic crystallinity; N_v = vesicle number density; N_x = mafic crystal number density; G = mean growth rate; T= timescale of nucleation and growth; n_i = initial bubble nuclei; N_t = total vesicle number density; L= vesicle dominant diameter; VVD = Vesicle volume distribution; CVSD = Cumulative vesicle size distribution; CVD = mafic crystal volume distribution; CCSD = Cumulative mafic crystal size distribution. Exp. = Exponential trend; PL = Power-law trend. MLT = Multiple nucleation and growth; CN = Continuous nucleation. See text and Appendix H for more explanation and texture type nomenclature..182

Table 6.3 Summary of microprobe and micro-FTIR analyses of glass inclusions for the Mangatoetoenui Unit. Chemical data are given in wt.%; H_2O contents measured at 3550 and 1630 cm$^{-1}$ are given in wt.%. Calc. Saturation P = Calculated saturation pressure following Newman and Lowerstern (2002). Calc density = calculated density based on glass composition..184

Table 6.4 Summary of microprobe and micro-FTIR analyses of glass inclusions for the Shawcroft eruptive unit. Chemical data are given in wt.%; H_2O contents measured at 3550 and 1630 cm$^{-1}$ are given in wt.%..............191

Table 6.5 Summary of microprobe and micro-FTIR analyses on glass inclusions for the Oruamatua eruptive unit. Chemical data are given in wt.%...198
Table 6.6 Summary of microprobe and micro-FTIR analyses on glass inclusions for the Okupata Tephra. Chemical data are given in wt.%; H$_2$O contents measured at 3550 and 1630 cm$^{-1}$ are given in wt.%;..206

Table 7.1 Whole-rock, major (XRF) and trace element (LA-ICP-MS) data for the Mangatoetoenui Eruptive Unit pumice clasts ..221

Table 7.2 Whole-rock, major (XRF) and trace element (LA-ICP-MS) data for the Shawcroft Eruptive Unit pumice clasts ..222

Table 7.3 Whole-rock, major (XRF) and trace element (LA-ICP-MS) data for the Oruamatua Eruptive Unit pumice clasts ..223

Table 7.4 Whole-rock, major (XRF) and trace element (LA-ICP-MS) data for the Lower and Upper Okupata pumice clasts ..224

Table 7.5 Eruptive parameters calculated from field data and average componentry results (from counts on binocular and scanning electron microscope (SEM)) for the Mangatoetoenui (Mgt), Shawcroft (Sw), Oruamatua (Oru), and Okupata (Okp) eruptive units ..244

Table 7.6 Textural and geochemical parameters obtained from He-Pycnometry, X-ray microtomography, X-ray fluorescence (XRF) and Electron Microprobe (EMP) in correlation with the fragmentation index D (Walker 1973), and volatile content obtained with infrared microscopy (micro-FTIR). Ves: vesicularity; x: mafic crystallinity; N$_v$ and N$_x$: vesicle and mafic crystal number density, respectively. Ves L= vesicle dominant diameter; n$_0$=initial vesicle nuclei; GT = growth rate (G) in a given timescale (T); XL= mafic crystal dominant diameter; liquid density ($\delta$$_{liq}$), melt viscosity ($\nu$) and temperature (T) were calculated with the software norm x4, based on geochemical ..245
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locations and Stratigraphic Units</td>
<td></td>
</tr>
<tr>
<td>Fm.</td>
<td>Formation</td>
</tr>
<tr>
<td>TVZ</td>
<td>Taupo Volcanic Zone</td>
</tr>
<tr>
<td>TgVC</td>
<td>Tongariro Volcanic Centre</td>
</tr>
<tr>
<td>CL</td>
<td>Crater Lake</td>
</tr>
<tr>
<td>Rhyolitic tephras (Okatania Caldera):</td>
<td></td>
</tr>
<tr>
<td>Ok</td>
<td>Okareka Tephra</td>
</tr>
<tr>
<td>Rw</td>
<td>Rerewhakaaitu Tephra</td>
</tr>
<tr>
<td>Wh</td>
<td>Waihau tephra</td>
</tr>
<tr>
<td>Mt. Ruapehu andesitic tephras:</td>
<td></td>
</tr>
<tr>
<td>HP</td>
<td>Hokey Pokey Eruptive Unit</td>
</tr>
<tr>
<td>Mgt</td>
<td>Mangaitoetou Eruptive Unit</td>
</tr>
<tr>
<td>Sw</td>
<td>Shawcroft Eruptive Unit</td>
</tr>
<tr>
<td>oru</td>
<td>Onamatau Eruptive Unit</td>
</tr>
<tr>
<td>Ak</td>
<td>Akurangi Eruptive Unit</td>
</tr>
<tr>
<td>Okp-Ph</td>
<td>Okupata-Pourahu Eruptive Unit</td>
</tr>
<tr>
<td>L-</td>
<td>Lower</td>
</tr>
<tr>
<td>M-</td>
<td>Middle</td>
</tr>
<tr>
<td>U-</td>
<td>Upper</td>
</tr>
<tr>
<td>Mt. Tongariro andesitic tephras:</td>
<td></td>
</tr>
<tr>
<td>Pk</td>
<td>Pahoka Tephra</td>
</tr>
<tr>
<td>Rt</td>
<td>Rotoaira lapilli</td>
</tr>
<tr>
<td>LA</td>
<td>Lithofacies Association</td>
</tr>
<tr>
<td>Eruption parameters</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Tephra volume [km3]</td>
</tr>
<tr>
<td>Vp</td>
<td>Proximal tephra volume [km3]</td>
</tr>
<tr>
<td>Vt</td>
<td>Total tephra volume [km3]</td>
</tr>
<tr>
<td>T</td>
<td>Deposit thickness [cm]</td>
</tr>
<tr>
<td>T$_0$</td>
<td>Extrapolated thickness at the vent [cm]</td>
</tr>
<tr>
<td>A</td>
<td>Area [km2]</td>
</tr>
<tr>
<td>A$_0$</td>
<td>Break-in-slope distance [km]</td>
</tr>
<tr>
<td>k</td>
<td>slope</td>
</tr>
<tr>
<td>H$_b$</td>
<td>Eruption column neutral buoyancy level [km]</td>
</tr>
<tr>
<td>H$_t$</td>
<td>Eruption column total height [km]</td>
</tr>
<tr>
<td>b$_c$</td>
<td>Clast half-distance</td>
</tr>
<tr>
<td>b$_t$</td>
<td>Thickness half-distance</td>
</tr>
<tr>
<td>D</td>
<td>Fragmentation Index of Walker (1973)</td>
</tr>
<tr>
<td>Q</td>
<td>Volume discharge rate [m3/s]</td>
</tr>
<tr>
<td>MDR</td>
<td>Mass discharge rate [kg/s]</td>
</tr>
<tr>
<td>M</td>
<td>Eruption magnitude</td>
</tr>
<tr>
<td>Sh</td>
<td>Shape factor</td>
</tr>
<tr>
<td>Grain-size parameters</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Mode</td>
</tr>
<tr>
<td>Md</td>
<td>Median</td>
</tr>
<tr>
<td>σ_G</td>
<td>Graphic standard deviation</td>
</tr>
<tr>
<td>Skd</td>
<td>Graphic asymmetry</td>
</tr>
<tr>
<td>Mz</td>
<td>Mean</td>
</tr>
<tr>
<td>σ_I</td>
<td>Inclusive standard deviation</td>
</tr>
<tr>
<td>Sk</td>
<td>Inclusive graphic asymmetry</td>
</tr>
<tr>
<td>K$_g$</td>
<td>Kurtosis</td>
</tr>
<tr>
<td>Density and porosity parameters</td>
<td></td>
</tr>
<tr>
<td>δ_{skel}</td>
<td>Skeletal density [g/cm3]</td>
</tr>
<tr>
<td>δ_{sol}</td>
<td>Solid density [g/cm3]</td>
</tr>
<tr>
<td>ϕ_{conn}</td>
<td>Connected porosity [vol.%]</td>
</tr>
<tr>
<td>ϕ_{iso}</td>
<td>Isolated porosity [vol.%]</td>
</tr>
<tr>
<td>Textural parameters</td>
<td></td>
</tr>
<tr>
<td>N$_v$</td>
<td>Vesicle number density [cm$^{-3}$]</td>
</tr>
<tr>
<td>N$_m$</td>
<td>Mafic crystals number density [cm$^{-3}$]</td>
</tr>
<tr>
<td>VVD</td>
<td>Vesicle volume distribution</td>
</tr>
<tr>
<td>CVVD</td>
<td>Cumulative vesicle volume distribution</td>
</tr>
<tr>
<td>VSD</td>
<td>Vesicle size distribution</td>
</tr>
<tr>
<td>CVSD</td>
<td>Cumulative vesicle size distribution</td>
</tr>
<tr>
<td>CVD</td>
<td>Mafic crystals volume distribution</td>
</tr>
<tr>
<td>CCVD</td>
<td>Mafic crystals Cumulative volume distribution</td>
</tr>
<tr>
<td>CSD</td>
<td>Mafic crystals size distribution</td>
</tr>
<tr>
<td>CCSD</td>
<td>Mafic crystals Cumulative size distribution</td>
</tr>
<tr>
<td>Mt</td>
<td>Magnetite</td>
</tr>
<tr>
<td>PI</td>
<td>Plagioclase</td>
</tr>
<tr>
<td>Px</td>
<td>Pyroxene</td>
</tr>
<tr>
<td>Cpx</td>
<td>Clinopyroxene</td>
</tr>
<tr>
<td>OPx</td>
<td>Orthopyroxene</td>
</tr>
<tr>
<td>Mt</td>
<td>Magnetite</td>
</tr>
<tr>
<td>Ox</td>
<td>Oxides</td>
</tr>
<tr>
<td>Glomrocyst</td>
<td>Glomrocyst</td>
</tr>
<tr>
<td>Others</td>
<td></td>
</tr>
<tr>
<td>ϵ</td>
<td>Molar absorptivity coefficient [Liters/(mol x cm$^{-2}$)]</td>
</tr>
<tr>
<td>LOI</td>
<td>Water from loss on ignition</td>
</tr>
<tr>
<td>ΔP</td>
<td>Decompression rate</td>
</tr>
<tr>
<td>ΔP_{SS}</td>
<td>Supersaturation pressure</td>
</tr>
<tr>
<td>Pc</td>
<td>Closure pressure</td>
</tr>
<tr>
<td>GT</td>
<td>Growth rate in a given timescale</td>
</tr>
<tr>
<td>n_i</td>
<td>Number of initial nuclei</td>
</tr>
<tr>
<td>L</td>
<td>Dominant diameter</td>
</tr>
<tr>
<td>Ves</td>
<td>Vesicle</td>
</tr>
<tr>
<td>Techniques and equipment</td>
<td></td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscope</td>
</tr>
<tr>
<td>BSE</td>
<td>Back-scatter electron image</td>
</tr>
<tr>
<td>µ-CT</td>
<td>X-ray microtomography</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transform infra-red</td>
</tr>
<tr>
<td>EMPA</td>
<td>Electron Microprobe</td>
</tr>
<tr>
<td>XRF</td>
<td>X-ray fluorescence spectrometry</td>
</tr>
<tr>
<td>LA-ICP-MS</td>
<td>Laser Ablation Inductively Coupled Mass Spectrometry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBNL</td>
</tr>
<tr>
<td>ISTO</td>
</tr>
</tbody>
</table>