Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
A silver-staining study of the nucleolus organizer regions of the chromosomes of domestic sheep (Ovis aries)

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Genetics at Massey University

Leigh Marian Henderson
March 1979
ABSTRACT

A study was made of various aspects of the nucleolus organizer regions (NORs) on sheep mitotic chromosomes, using the Ag-AS and Ag-I techniques. The sheep used in this study were carriers of the t₁, t₂ and t₃ Robertsonian translocations in various heterozygous and homozygous combinations. The locations of the NORs were determined to be at the telomeres on the metacentric chromosomes lp, 2q and 3q and on the acrocentric chromosomes 4 and 25. The identity of the NO-chromosome was confirmed by a duplicate G-banding and Ag-I technique. The terminal location of the NORs indicates that they do not have a causative role in acrocentric association or Robertsonian translocation in domestic sheep. They also do not coincide with the regions in which secondary constrictions are sometimes seen.

Individual animals were found to have a characteristic silver-staining pattern. The chromosomal distribution of the Ag-staining NORs (Ag-NORs), the frequency and size of the Ag-NORs were fairly constant in different cells of an individual and in replicate cultures of an animal. Differences between cells and replicates in Ag-staining involved variation in the frequency of staining of Ag-NORs with small Ag-deposits. Overall, the metacentrics had the highest frequency of Ag-NORs, followed by chromosome 25 and then chromosome 4.

The association frequency of individual NO-chromosomes was found to be positively correlated with the frequency of Ag-NORs and the size of the Ag-deposit. The frequency of each pairwise combination of associating chromosomes was determined solely by the frequency of Ag-NORs of the component chromosomes. No evidence was found for a non-random fusion of NORs. These observations provide an explanation of the reports of non-random participation of acrocentric chromosomes in satellite association in man. The increased association of NO-chromosomes with large deposits could be due to an increased chance of fusion of larger nucleoli or to differences in the disintegration rate of different sized nucleoli.
The presence of a NOR on the chromosome 25/\(t_3\) polymorphism was utilized in inheritance studies of Ag-stainability. Five pedigree groups in which this chromosome was segregating were studied and in all cases the size of the Ag-deposits and frequency of staining was consistent between consecutive generations. The value of Ag-staining in genetic mapping studies is discussed.

In 3 animals, the Ag-staining patterns of transformed lymphocytes and fibroblasts were compared and found to be similar.

A comparative study was made of 5 species of the Bovidae: domestic sheep (Ovis aries), domestic goat (Capra hircus), aoudad (Ammotragus lervia), bharal (Pseudois nayaur) and cattle (Bos taurus). Five NO-chromosome pairs were found in sheep, goat, aoudad and cattle and these chromosomes have homologous banding patterns. The bharal has at least four NO-chromosome pairs homologous to sheep. These results indicate a conservation of the NORs during evolution in this family.

Based on the results of the frequency of Ag-staining of NORs, the heritability of Ag-stainability and the constancy of Ag-staining patterns found in the tissue studies, the nature of the Ag-staining is discussed and a model on the basis of the Ag-stainability of individual chromosomes is presented.
ACKNOWLEDGEMENTS

I would like to thank sincerely Professor A.N. Bruère for his supervision of this project and his encouragement and help throughout its duration. I am grateful to Dr Helen Chapman for her useful discussions during the early part of this project. I would also like to thank Dr A. Wilkins for his very helpful discussions of parts of this thesis.

Priscilla Ellis provided competent technical assistance with this work, for which I am very appreciative. I would like to thank Mr T. Law for his help with photography. Dr R. Harris provided assistance with the statistical analyses in this thesis. Karen Armitage aided in the final preparation of the photographs in this thesis.

I am very grateful to the farm staff of the Massey No 2 Sheep Unit for their work in the maintenance of the experimental flock and their assistance in blood collection. I would like to thank all the staff of the Veterinary Clinical Sciences Department who have been so obliging in assisting me in collecting blood, obtaining samples from surgery and general assistance in other aspects of this work.

I am grateful to Angela Lowe and Mrs J. Pearce for typing drafts of this manuscript. I appreciate very much the time and effort put into typing the final manuscript by Val Darroch.

This work was funded by a demonstratorship in the Department of Microbiology and Genetics and I am grateful to Professor D. Bacon for making this position available to me.

Finally, my thanks go to Neville who has provided so much encouragement and help throughout the course of this work.
TABLE OF CONTENTS

Acknowledgements iv
Table of Contents v
List of Tables xii
List of figures xiv

Chapter 1: Introduction 1

Chapter 2: Structure and Identification of Nucleolus Organizer Regions in sheep 4

2.1. Introduction 4
 2.1.1 The nucleolus 4
 2.1.2 The formation of the nucleolus on specific chromosome regions 5
 2.1.3 Secondary constrictions 6
 2.1.4 Structure of the nucleolus organizer regions 6
 2.1.4.1 Definition of the term 'nucleolus organizer region' 6
 2.1.4.2 Location of 18S and 28S rRNA genes in the NOR 9
 2.1.4.3 Structure of the NORs in man 10
 2.1.4.4 Structure of the NOR in maize 10
 2.1.4.5 Structure of the NOR in the sciarid fly 12
 2.1.4.6 Structure of the NOR in salamander 12
 2.1.4.7 Clarification of terminology 12
 2.1.4.8 Other sites involved in nucleolus organization 13
 2.1.5 Nucleolus-associated heterochromatin 13
 2.1.6 Staining Techniques in the identification of NORs 14
 2.1.7 Duplicate banding 16
 2.1.8 Robertsonian translocations and NORs in sheep 17
2.2. Materials and Methods
 2.2.1 Blood culture and harvesting techniques 18
 2.2.2 Animals 18
 2.2.3 Ag-AS technique 19
 2.2.4 Ag-I technique 21
 2.2.5 Duplicate G-banding and Ag-I staining 21

2.3. Results
 2.3.1 Location of nucleolus organizer regions 21
 2.3.2 Ag-AS technique 30
 2.3.3 Ag-I technique 31
 2.3.4 Duplicate banding 31
 2.3.5 An anomalous cell 34
 2.3.6 Ag-staining in interphase, prophase and metaphase cells 34

2.4. Discussion
 2.4.1 Structure of sheep nucleolus organizer regions 34
 2.4.2 Possible roles of the secondary constrictions on sheep chromosomes 35
 2.4.3 Association of nucleolus organizer regions 38
 2.4.4 Applications of silver-staining 39
 2.4.5 Anomalous silver-staining region 39

Chapter 3: The Frequency of Ag-NORs and Regulation of NOR activity 41

3.1. Introduction
 3.1.1 Evidence that silver stains active NORs 41
 3.1.2 Regulation of NORs
 3.1.2.1 Variation in the level of rDNA 41
 3.1.2.2 NOR regulation in interspecies hybrids 44
 3.1.2.3 rRNA gene activation during development 47
 3.1.2.4 The effect of NOR dosage on NOR activity 48
 3.1.2.5 The effect of NOR dosage on Ag-NOR numbers 50
 3.1.2.6 Summary of evidence on the control of rRNA transcription 50
 3.1.3 Variation in frequency of Ag-NORs 52
3.2. Materials and Methods

3.2.1 Materials
3.2.2 Scoring of size polymorphisms

3.3. Results

3.3.1 Average frequency and range of Ag-NORs per metaphase
3.3.2 Individual variation in number of Ag-NORs
3.3.3 Variation between replicates in the number of Ag-NORs
3.3.4 Chromosome distribution of Ag-NORs
3.3.4.1 Pooled data for all individuals
3.3.4.2 Frequency of Ag-NORs on C25 and t3
3.3.4.3 Individual variation in distribution of Ag-NORs
3.3.5 Differences in deposit size between individuals
3.3.6 Relationship of deposit size to Ag-NOR frequency
3.3.7 Relationship of deposit size to between-culture differences

3.4. Discussion

3.4.1 Variation in the number of Ag-NORs between animals
3.4.2 Chromosomal distribution of Ag-NORs
3.4.3 Polymorphism in size of Ag-NORs
3.4.4 Relation of rDNA content to Ag-staining
3.4.5 Ag-stainability and NOR regulation

Chapter 4: Association of nucleolus organizer regions

4.1. Introduction

4.1.1 Satellite associations and nucleolar fusions
4.1.2 Studies on NOR-associations in species other than man
4.1.3 Participation of individual chromosomes in satellite association
4.1.4 Relationship of satellite association to NOR morphology
4.1.5 Relationship of satellite association to rDNA content 76
4.1.6 Relationship of satellite association to staining polymorphisms 77
4.1.7 Association of NORs in sheep 83

4.2. Materials and Methods 83
4.2.1 Materials 83
4.2.2 Method of scoring associations 83

4.3. Results 83
4.3.1 Observations on association complexes of NO-chromosomes 83
4.3.2 Frequency of association 84
4.3.3 Relationship of association frequency to the frequency of expression 84
4.3.4 Relationship of the association frequency to the deposit size 91
4.3.5 Combinations of associating chromosomes 91

4.4. Discussion 95
4.4.1 Frequency of association 95
4.4.2 Factors affecting the association index of individual chromosomes 97
4.4.3 Combinations of chromosomes in association complexes 99

Chapter 5: Inheritance of Ag-stainability 101

5.1. Introduction 101

5.2. Materials and Methods 101
5.2.1 Mating records 101
5.2.2 Establishment of mating groups 104
5.2.3 Determination of karyotypes of lambs 104
5.2.4 Culture staining and analysis techniques 105
5.2.5 Notation 105
5.3. Results
5.3.1 Pedigrees taken from mating records
 5.3.1.1 Pedigree 1
 5.3.1.2 Pedigree 2
5.3.2 Results of mating experiments
 5.3.2.1 Lambing results of Pedigree 3
 5.3.2.2 Lambing results of Pedigree 4
 5.3.2.3 Lambing results of Pedigree 5
5.3.3 Recombination of Ag-NORs
5.3.4 Inheritance of frequency of Ag-NORs and size polymorphism

5.4. Discussion
5.4.1 Inheritance of Ag-stainability
5.4.2 Recombination of Ag-NORs

Chapter 6: Comparison of silver-staining patterns in fibroblasts and lymphocytes
6.1. Introduction
6.2. Materials and Methods
 6.2.1 Tissue Source
 6.2.2 Fibroblast culture technique
 6.2.3 Subculturing
 6.2.4 Harvesting of fibroblast cultures
 6.2.5 Ag-staining
6.3 Results
 6.3.1 Frequency of Ag-NORs in different tissues
 6.3.2 Size polymorphism of Ag-NORs in different tissues
6.4 Discussion

Chapter 7: Homology of NORs in the sheep, goat, aoudad, bharal and cattle
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1. Introduction</td>
<td>137</td>
</tr>
<tr>
<td>7.1.1 Chromosomal evolution in the Bovidae</td>
<td>137</td>
</tr>
<tr>
<td>7.1.2 Studies on the evolution of NORs</td>
<td>139</td>
</tr>
<tr>
<td>7.1.3 NOR studies in the Bovidae</td>
<td>141</td>
</tr>
<tr>
<td>7.2. Materials and Methods</td>
<td>144</td>
</tr>
<tr>
<td>7.2.1 Animals</td>
<td>144</td>
</tr>
<tr>
<td>7.2.2 Karyotyping and comparative studies</td>
<td>144</td>
</tr>
<tr>
<td>7.3. Results</td>
<td>146</td>
</tr>
<tr>
<td>7.3.1 Location of NORs</td>
<td>146</td>
</tr>
<tr>
<td>7.3.2 Variation in number and size of Ag-NORs</td>
<td>152</td>
</tr>
<tr>
<td>7.4. Discussion</td>
<td>152</td>
</tr>
<tr>
<td>7.4.1 Assignment of NORs to specific chromosomes</td>
<td>152</td>
</tr>
<tr>
<td>7.4.2 Nomenclature and presumptive homologies of the chromosomes of the Bovidae</td>
<td>155</td>
</tr>
<tr>
<td>7.4.3 The ring chromosome of the bharal</td>
<td>157</td>
</tr>
<tr>
<td>7.4.4 Frequency of Ag-NORs</td>
<td>157</td>
</tr>
<tr>
<td>7.4.5 Homology of NORs in sheep, goat, cattle, aoudad and bharal</td>
<td>158</td>
</tr>
<tr>
<td>7.4.6 Relationship of NORs to Robertsonian translocations in the Bovidae</td>
<td>160</td>
</tr>
<tr>
<td>Chapter 8: Conclusions</td>
<td>163</td>
</tr>
<tr>
<td>8.1. Relation of Ag-staining to NOR activity</td>
<td>163</td>
</tr>
<tr>
<td>8.2. The nature of the Ag-staining polymorphisms</td>
<td>165</td>
</tr>
<tr>
<td>8.3. A model of NOR regulation and Ag-staining in diploid organisms</td>
<td>166</td>
</tr>
<tr>
<td>8.4. The stability of NORs</td>
<td>169</td>
</tr>
<tr>
<td>8.5. Summary of advances made in this study</td>
<td>171</td>
</tr>
</tbody>
</table>
Appendices

I Personal communications 173

II Leucocyte culture technique 174

III Giemsa stain 175

IV Fibroblast culture materials 175

V G-banding technique 176

VI Washing of laboratory glassware 177

VII Photography techniques 177

VIII History and management of experimental animals 177

IX Distribution of counts of number of Ag-NORs per metaphase 179

X Two-way ANOVA for replicate cultures 180

XI Example of size polymorphism data score 181

XII Data on Ag-NOR frequency in inheritance study 182

XIII Copy of the publication "Association of nucleolus organizer chromosomes in domestic sheep (Ovis aries) shown by silver staining" 184

XIV Copy of the publication "Conservation of nucleolus organizer regions during evolution in sheep, goat, cattle and aoudad" 185

XV Abstract of paper presented to New Zealand Genetical Society Conference, 1978 186

Bibliography following page 186
<table>
<thead>
<tr>
<th>List of Tables</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1. Examples of varying usages of the term 'nucleolus organizer region' and its derivatives</td>
<td>8</td>
</tr>
<tr>
<td>3-1. Summary of evidence on the control of rRNA transcription</td>
<td>51</td>
</tr>
<tr>
<td>3-2. The distribution of average number of Ag-NORs per metaphase in 33 individuals</td>
<td>54</td>
</tr>
<tr>
<td>3-3. Average frequency and distribution of Ag-NORs in individual sheep</td>
<td>56</td>
</tr>
<tr>
<td>3-4. Analysis of variation due to replicate differences in between-animal differences</td>
<td>57</td>
</tr>
<tr>
<td>3-5. Data on the chromosomal distribution of Ag-NORs</td>
<td>58</td>
</tr>
<tr>
<td>3-6. Chromosome distribution of Ag-NORs in individuals other than those involved in pedigree study</td>
<td>59</td>
</tr>
<tr>
<td>3-7. Distribution of the number of cells in which a chromosome has a given size deposit</td>
<td>63</td>
</tr>
<tr>
<td>3-8. Relationship of deposit size to between-culture differences</td>
<td>66</td>
</tr>
<tr>
<td>4-1. Comparison of association frequency with expected values based on frequency of Ag-NORs</td>
<td>86</td>
</tr>
<tr>
<td>4-2. Relationship between deposit size and association frequency of C4, C25 and t3</td>
<td>89</td>
</tr>
<tr>
<td>4-3. Relative participation in nucleolar organization of NO-chromosomes in 5 animals used in combinational analysis</td>
<td>92</td>
</tr>
<tr>
<td>4-4. Observed and expected values of pair-wise combinations of NO-chromosomes</td>
<td>94</td>
</tr>
</tbody>
</table>
4-5. Reported frequencies of satellite association in man 96

5-1. Lambing and Ag-staining results of pedigree 3 107

5-2. Lambing and Ag-staining results of pedigree 4 109

5-3. Lambing and Ag-staining results of pedigree 5. 116

5-4. Inheritance of stainability in sheep heterozygous for Ag-stainability 117

5-5. Size of Ag-NORs in 5 animals and their progeny 119

6-1. The frequency of Ag-NORs in lymphocyte and fibroblast cultures from 3 animals 129

6-2. Size polymorphism of Ag-NORs in each tissue from 3 animals 133

7-1. Comparison of location and number of NORs in man, chimpanzee, orangutan and gorilla 140

7-2. G-banding homology between sheep, aoudad, cattle, goat and bharal autosomes 145

7-3. Modal values and range of number of Ag-NORs per metaphase in sheep, aoudad, cattle and goat 153

7-4. Involvement of chromosomes in centric fusion during karyotypic evolution and within species 161
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1.</td>
<td>Drawing showing the morphology of the NOR in man (text figure)</td>
<td>7</td>
</tr>
<tr>
<td>2-2.</td>
<td>Drawing showing the morphology of the NO-chromosome in maize (text figure)</td>
<td>11</td>
</tr>
<tr>
<td>2-3.</td>
<td>Flow-diagram of Ag-AS and Ag-I staining techniques</td>
<td>20</td>
</tr>
<tr>
<td>2-4.</td>
<td>Karyotype showing location of Ag-NORs on chromosomes 1, 2, 3, 4 and 25</td>
<td>22</td>
</tr>
<tr>
<td>2-5.</td>
<td>Karyotype showing Ag-NOR on t3 chromosome</td>
<td>23</td>
</tr>
<tr>
<td>2-6.</td>
<td>Ag-I stained metaphase showing absence of Ag-staining on a secondary constriction</td>
<td>24</td>
</tr>
<tr>
<td>2-7.</td>
<td>Absence of silver-staining on secondary constrictions in 3 metaphases stained by Giemsa, destained and Ag-stained</td>
<td>25</td>
</tr>
<tr>
<td>2-8.</td>
<td>Metaphase stained by Ag-AS technique (colour plate)</td>
<td>26</td>
</tr>
<tr>
<td>2-9.</td>
<td>Metaphase stained by Ag-I technique (colour plate)</td>
<td>27</td>
</tr>
<tr>
<td>2-10.</td>
<td>Metaphase treated by Ag-I technique and then G-banded (colour plate)</td>
<td>28</td>
</tr>
<tr>
<td>2-11.</td>
<td>Karyotype of NO-chromosomes identified by duplicate G-bandng and Ag-I staining</td>
<td>29</td>
</tr>
<tr>
<td>2-12.</td>
<td>Karyotype of a cell with Ag-deposits on both telomeres of a chromosome 1.</td>
<td>32</td>
</tr>
<tr>
<td>2-13.</td>
<td>Ag-stained cells showing differences in amount of Ag-staining material at different stages of the cell cycle</td>
<td>33</td>
</tr>
</tbody>
</table>
3-1. Diagram of Nucleolar dominance in F₁ hybrids of _D.mulleri_ and _D.arizonensis_ 46

3-2. Two metaphase cells showing Ag-deposits of different sizes 53

3-3. Histograms illustrating the average number of Ag-NORs on the 3 chromosome types 61

3-4. Histograms of size of Ag-NORs in 8 animals 62

3-5. Graph showing correlation of deposit size and frequency of expression on chromosome 25 and _t₃_ 64

4-1. Metaphase cell showing chromosomes in association 78

4-2. Metaphase cell showing chromosomes lying adjacent but not associated 78

4-3. Metaphase cell with chromosomes associated by one chromatid and by both chromatids 79

4-4. Two metaphases with associated chromosomes joined by a long connecting strand 80

4-5. Metaphase cell showing an associated chromosome with no detectable Ag-stain 81

4-6. Metaphase cell showing four chromosomes in one association complex 82

4-7. Metaphase cell with seven chromosomes involved in association complexes 82

4-8. Scattergram showing correlation of association index with frequency of Ag-NORs 88

4-9. Graph showing correlation between Ag-deposit size and association index 90
5-1. Pedigree chart of pedigree 1

5-2. Pedigree chart of pedigree 2

5-3. Ag-stained karyotype of one of the sires of pedigree 3 (121/5)

5-4. Karyotype of NO-chromosomes of two progeny of pedigree 3

5-5. Ag-stained karyotype of sire of pedigree 4 (60/5)

5-6. G-banded karyotype of lamb 123/8

5-7. Karyotype of NO-chromosomes of four progeny of pedigree 4

5-8. Karyotype of sire of pedigree 5 (176/6)

5-9. Karyotype of NO-chromosomes of six progeny of pedigree 5

5-10. Scattergram showing correlation between Ag-NOR frequency in parent and progeny

5-11. Scattergram showing relationship of Ag-NOR size polymorphism in parent and progeny

6-1. Histograms of average number of Ag-NORs per metaphase in fibroblasts and lymphocytes in three animals

6-2. Histograms of size polymorphism of Ag-NORs in lymphocyte cultures

6-3. Karyotype of NO-chromosomes from three tissues of 155/6
7-1. Taxonomy of bovid species used in this study 143
7-2. Karyotype of Ag-stained metaphase from cattle showing location of NORs 147
7-3. Metaphase cells from 1/29 bull showing Ag-NORs on 2 small acrocentric chromosomes 147
7-4. Karyotype of Ag-stained metaphase of a goat showing location of NORs 148
7-5. Karyotype of Ag-stained metaphase of an aoudad showing location of NORs 149
7-6. Partial metaphase from an aoudad showing an Ag-NOR on chromosome 1 149
7-7. Metaphase cell from bharal 150
7-8. Karyotype of an Ag-stained metaphase cell from a bharal showing the location of NORs 150
7-9. Two metaphases from a bharal showing 'ring' chromosomes 151
7-10. Idiogram of the NO-chromosomes in the five bovid species showing homologies 156