Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
AN INVESTIGATION INTO SHORT PRODUCTION
RUNS IN SPRAY DRYING PLANTS
OF THE NEW ZEALAND DAIRY INDUSTRY

A thesis presented in partial
fulfilment of the requirements
for the degree of Doctor of
Philosophy in Industrial
Management and Engineering at
Massey University

ROBERT KAY
1982
THE ROAD NOT TAKEN

Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth;

Then took the other, as just as fair,
And having perhaps the better claim,
Because it was grassy and wanted wear;
Though as for that the passing there
Had worn them really about the same,

And both that morning equally lay
In leaves no step had trodden black.
Oh, I kept the first for another day!
Yet knowing how way leads on to way,
I doubted if I should ever come back.

I shall be telling this with a sigh
Somewhere ages and ages hence:
Two roads diverged in a wood, and I —
I took the one less traveled by,
And that has made all the difference.

Robert Frost
The features of short production runs in spray-drying plants of the New Zealand Dairy Industry were examined and some methods developed to help improve productivity in dealing with them.

In particular a survey was carried out of the managers of all spray-drying plants in order to establish quantitative and qualitative information on short production runs. It was found that short production runs could be classified into those caused by interruptions to runs, such as mechanical breakdown, those caused by specification changes, and those caused by the decision to run the plant for a limited period, usually as a result of the limited milk available for processing.

The effect of capacity utilisation on spray-drying plants and the costs of smoothed milk flow were examined and it was found that smoothed milk flow could not be justified on economic grounds alone.

The occurrence of short runs due to specification changes in other industries is documented as are methods to overcome their costs. It was concluded that the major effects in spray-drying plants were likely to be through set-up cost and learning behaviour. However, it was found that neither of these seriously affected cost of powder manufacture, short production runs due to specification changes were dealt with without excess costs over normal manufacture.

The relationship between run length and energy consumption and run length and processing rate were examined and quantified. A computer based management information system was developed to assist in the control of costs in general and short production runs in particular in spray-drying plants.
ACKNOWLEDGEMENTS

There are many people who have been a great help in providing enthusiasm, inspiration and practical assistance in carrying out this research. I am grateful to the New Zealand Dairy Research Institute for kindly providing the funds to make it possible.

I would like to thank the staff of the N.Z.D.R.I., the N.Z. Dairy Board and Massey University, especially members of the Department of Industrial Management and Engineering, who were always helpful and positive in their advice.

Work in this industry has proven enjoyable and satisfying due to the generous co-operation of managers of spray-drying plants and other employees of dairy companies. My thanks go to them.

In particular I would like to thank Messrs P. Head and A. Wolland of Tui Co-operative Dairy Company, who have freely and willingly provided information and help.

My supervisors, Dr K.J. Kirkpatrick, Dr W.B. Sanderson and Professor J.K. Scott have been a continued source of constructive criticism and encouragement and I am most grateful to them.

I would also like to express my thanks to my typist, Mrs M. Garden, who has transformed the manuscript into a readily intelligible form with skill and efficiency.

Finally, I would like to thank my family, and especially my wife Jo, without whose support and encouragement through the past three years, this work would not have been completed.

R. Kay

1. New Zealand Dairy Research Institute
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>ii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>ix</td>
</tr>
<tr>
<td>GLOSSARY OF MILK POWDER SPECIFICATIONS</td>
<td>x</td>
</tr>
<tr>
<td>CHAPTER ONE: INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>LIST OF REFERENCES (Chapter 1)</td>
<td>7</td>
</tr>
<tr>
<td>CHAPTER TWO: THE SHORT PRODUCTION RUN IN HISTORY</td>
<td>8</td>
</tr>
<tr>
<td>2.1 The commonality of methods of management of production</td>
<td>8</td>
</tr>
<tr>
<td>2.2 The occurrence of short production runs</td>
<td>10</td>
</tr>
<tr>
<td>2.3 Classification of manufacturing systems</td>
<td>11</td>
</tr>
<tr>
<td>2.4 Batch production</td>
<td>14</td>
</tr>
<tr>
<td>2.5 Mass production</td>
<td>19</td>
</tr>
<tr>
<td>2.6 Short runs in spray drying plants</td>
<td>27</td>
</tr>
<tr>
<td>LIST OF REFERENCES (Chapter 2)</td>
<td>30</td>
</tr>
<tr>
<td>CHAPTER THREE: THE OCCURRENCE OF SHORT PRODUCTION RUNS IN SPRAY DRYING</td>
<td>34</td>
</tr>
<tr>
<td>3.1 Preparation of the survey</td>
<td>34</td>
</tr>
<tr>
<td>3.2 Results of the written questionnaire</td>
<td>39</td>
</tr>
<tr>
<td>3.3 Results of the interview questionnaire</td>
<td>51</td>
</tr>
<tr>
<td>LIST OF REFERENCES (Chapter 3)</td>
<td>68</td>
</tr>
<tr>
<td>CHAPTER FOUR: ANALYSIS OF THE OCCURRENCE OF SHORT PRODUCTION RUNS</td>
<td>69</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>69</td>
</tr>
<tr>
<td>4.2 Interruptions to production runs</td>
<td>69</td>
</tr>
<tr>
<td>4.3 Short production runs caused by specification changes</td>
<td>72</td>
</tr>
<tr>
<td>4.4 Short daily running time</td>
<td>76</td>
</tr>
<tr>
<td>4.5 Additional information</td>
<td>77b</td>
</tr>
<tr>
<td>4.6 Summary</td>
<td>78</td>
</tr>
<tr>
<td>LIST OF REFERENCES (Chapter 4)</td>
<td>80</td>
</tr>
</tbody>
</table>
CHAPTER FIVE: THE EFFECTS OF SOME ASPECTS OF DAIRY INDUSTRY INFRASTRUCTURE ON THE SHORT RUN PROBLEM

5.1 Introduction 81
5.2 The determinants of New Zealand's pattern of agricultural production 81
5.3 Comparison of costs of seasonal milk production with smoothed production 83
5.4 Pressures causing a higher peak milk supply 84
5.5 The market for milk powders 85
5.6 The New Zealand Dairy Board's effect on short runs 86
5.7 Conclusion 87

LIST OF REFERENCES (Chapter 5) 89

CHAPTER SIX: THE EFFECTS OF SHORT PRODUCTION RUNS IN THE SPRAY DRYING PLANT

6.1 Introduction 90
6.2 Spray drying factory cost structures 92
6.3 Cost of start-up and shut-down in a spray drying plant 96
6.4 Learning effects in spray drying plants 99
6.5 Capacity utilisation in spray drying plants 105
6.6 Cost effects of seasonal milk flow in spray drying plants 109
6.7 Simulation of smoothing milk supply 116
6.8 Conclusion 120

LIST OF REFERENCES (Chapter 6) 121

CHAPTER SEVEN: CONTROL OF THE EFFECTS OF SHORT PRODUCTION RUNS IN SPRAY DRYING PLANTS

7.1 Introduction 122
7.2 Determination of the relationship between energy consumption and daily run length 123
7.3 Factors affecting the rate of milk processing in a spray drying plant 137
7.4 Computer based management information system 162
7.5 Conclusion 166

LIST OF REFERENCES (Chapter 7) 167

CHAPTER EIGHT: THE EFFECTS OF TECHNOLOGICAL CHANGE ON SHORT PRODUCTION RUNS 168
8.1 Introduction 168
8.2 Mechanical vapour recompression 168
8.3 Reverse Osmosis 169
8.4 Energy developments 170
8.5 Computers and control 171
8.6 Evaporator cleaning 171
8.7 Changes in the size of spray drying plants 172
8.8 Conclusion 175

LIST OF REFERENCES (Chapter 8) 176

CHAPTER NINE: CONCLUSION 179

APPENDIX 1: THE SPRAY DRYING PLANT 187
APPENDIX 2: QUESTIONNAIRE LETTERS AND WRITTEN QUESTIONNAIRE BOOKLET 189
APPENDIX 3: EXAMPLE OF "TEN DAILY" REPORT 190
APPENDIX 4: EXAMPLE OF DAILY REPORT 196
APPENDIX 5: BACKGROUND TO THE EFFECTS OF SOME ASPECTS OF DAIRY INDUSTRY INFRASTRUCTURE ON THE SHORT RUN PROBLEM 200

LIST OF FIGURES, GRAPHS AND TABLES

Figures
2.1 The manner of action of production management 9
2.2 Production systems 12
2.3 The production continuum 14
List of figures (cont)

6.1 Examples of computer printouts from simulation ... 118
A1.1 Diagram of spray drying process .. 188

Graphs

4.1 Monthly average daily running time ... 77
6.1 Theoretically expected result of learning behaviour ... 100
6.2 Number of failures per day vs day of run .. 103
6.3 Number of failures per day as percent of all days of that number vs day of run 103
6.4 Utilisation index versus cost per tonne ... 107
7.1 Example of scatter plot of daily total oil consumption vs daily milk volume (for spec 607) .. 125
7.2 Rate of oil consumption per kilogram of product vs production volume per day 129
7.3 Rate of oil consumption per kg of product vs raw milk volume 130
7.4 Rate of electricity consumption per kg of product vs raw milk volume 131
7.5 Tukey plots of processing rate and processing time versus day number 139
7.6 Moving average plots of processing rate and processing time vs day number 141
7.7 Cumulative sum plots of processing rate and processing time vs day number 142
7.8 Regression lines of processing rate on 1/time ... 150
7.9 Predicted processing rate vs processing time .. 151
7.10 Processing rate vs processing time, days 69 to 92 ... 156
Graphs (continued)

7.11 Processing rate vs processing time, days 106 to 142 157
7.12 Processing rate vs processing time, days 173 to 210 158
7.13 Production rate vs processing time, days 69 to 92 159
7.14 Production rate vs processing time, days 106 to 142 160
7.15 Production rate vs processing time, days 172 to 210 161

Tables

2.1 Illustrative estimate of cost and scale in car manufacture 20
3.1 Interview questions and information sought 51
4.1 Occurrence of interruptions to production runs 70
4.2 Factories with short run lengths 72
6.1 1978-79 season, average costs in dollars per tonne and percent 94
6.2 Overall average percentage cost structure 95
6.3 Spray drying factory inflation rate 95
6.4 Results of examination of various runs for learning behaviour 102
6.5 Summary of results showing relationship between cost per tonne and capacity 106
6.6 Results summary - Equal groups of at equal periods 119
6.7 Results summary - Two herds at various separations 119
6.8 Results summary - One third of herd calves later 119
7.1 Summary of results of regression analysis 127
7.2 Yield of product per litre of raw milk 128
Tables (continued)

7.3 Values of co-efficient of determination (R^2) for various regressions of processing rate on processing time

7.4 Summary of results of regression of processing rate on 1/processing time (hr)

A5.1 Estimated gross margins 1981-82 season, Manawatu region

A5.2 Expenditure on average town milk and factory supply farms for 1978-79 season

A5.3 Percentage of New Zealand dairy products by weight sold in United Kingdom

A5.4 The ten principal milk powder markets for selected years since 1960

A5.5 Market sales of powders for selected years since 1960

A5.6 Quantities of dairy products given access to the U.K. market during the transitional period
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.M.P.</td>
<td>Buttermilk powder</td>
</tr>
<tr>
<td>C.I.P.</td>
<td>Clean in place</td>
</tr>
<tr>
<td>Co-op</td>
<td>Co-operative</td>
</tr>
<tr>
<td>E.E.C.</td>
<td>European Economic Community</td>
</tr>
<tr>
<td>hr</td>
<td>hour</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>k.w.h.</td>
<td>Kilowatt hour</td>
</tr>
<tr>
<td>M.V.R.</td>
<td>Mechanical vapour recompression</td>
</tr>
<tr>
<td>N.S.P.O.</td>
<td>Non-standard purchase order</td>
</tr>
<tr>
<td>N.Z.C.D.C.</td>
<td>New Zealand Co-operative Dairy Company Limited</td>
</tr>
<tr>
<td>N.Z.D.B.</td>
<td>New Zealand Dairy Board</td>
</tr>
<tr>
<td>N.Z.D.R.I.</td>
<td>New Zealand Dairy Research Institute</td>
</tr>
<tr>
<td>R.O.</td>
<td>Reverse Osmosis</td>
</tr>
<tr>
<td>R.P.D.</td>
<td>Rangitaiki Plains Co-operative Dairy Company Limited</td>
</tr>
<tr>
<td>S.M.P.</td>
<td>Skim milk powder</td>
</tr>
<tr>
<td>Spec</td>
<td>Specification</td>
</tr>
<tr>
<td>U.K.</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>W.M.P.</td>
<td>Whole milk powder</td>
</tr>
<tr>
<td>W.P.N.I.</td>
<td>Whey protein nitrogen index</td>
</tr>
<tr>
<td>N.C.</td>
<td>Numerical control</td>
</tr>
</tbody>
</table>
GLOSSARY OF MILK POWDER SPECIFICATIONS

Skim milk powder

\[
\begin{align*}
\{&600, 633, 6301\} & \text{Medium heat} \\
602, 607, 662, 672 & \\
\end{align*}
\]

Whole milk powder

\[
\begin{align*}
\{&800, 801, 802, 805, 821, 823\} & \text{Basic, conventional} \\
\{& \text{Limited bulk density range} \} \\
\end{align*}
\]

Special (whole milk) products

\[
\begin{align*}
\{&900, 930, 934, \text{SMA}\} \\
\end{align*}
\]