Reclamation of aggregate mines in the Manawatu, Rangitikei and Horowhenua Districts, New Zealand.

A thesis presented in partial fulfilment of the requirements for the degree of PhD in Soil Science at Massey University

Robyn Catherine Simcock

1993
Abstract

Aggregate is the largest extractive industry in New Zealand, in terms of both volume and value of product. In central New Zealand unsustainable extraction of aggregate from rivers has encouraged development of alluvial terrace resources which are often overlain by valuable agricultural soils. Research at commercially reclaimed aggregate mines has shown long-term degradation of the soil resource with productivity of reclaimed land not being maintained at any reported site.

Field trials were designed and implemented on three soils characteristic of major landscape units containing aggregate resources which are mined in the greater Manawatu region. Rangitikei fine sandy loam represents free draining Recent soils; Ashhurst stony silty loam represents excessively draining Yellow-brown soils; and Ohakea silt loam represents imperfectly to poorly drained Yellow-grey soils. In each of the trials a "best-case" reclaimed soil was constructed by stripping and replacing soil horizons in their natural order while minimising compaction and ensuring non-limiting nutrient levels. The productivity and soil physical characteristics of other treatments, including different depths of replaced soil and mixed soil horizons, were compared with this "best-case" treatment. Compaction and drainage treatments were also investigated. Control treatments of soils which were ploughed were also used as a reference.

Soil depth and horizon mixing

* Spreading Rangitikei sand over compacted fill material to depths of 0, 0.4, 1.0 and 1.5 m depths resulted in incremental increases in yield of cereal of 92±21, 142±13, 169±14 and 184±7 kg ha\(^{-1}\) respectively.
* The same treatments had no consistent effect on production of clover and ryegrass for most harvests, probably because pasture roots were able to exploit the fill material as a source of moisture.
* Yields of pasture were reduced by removal of 0.5 m of the Ohakea upper B horizon, resulting from decreased aeration. This effect was mainly due to the closeness of the water table, which was exacerbated by the sunken surface of this treatment.
* In contrast, pasture yield was unaffected by removal of a 0.2 m deep Ashhurst B horizon, reflecting the lack of impediment to root extension to depth in the Ashhurst soil.
* Dilution of Ohakea topsoil by mixing with subsoil material resulted in an increase in soil particle density and bulk density and decrease in percentage of total soil organic carbon so that the mixed soil had properties similar to unmixed subsoil.
* Separate stripping and replacement of topsoil significantly increased establishment of pasture in Ohakea soil but not Rangitikei soil.
* Dilution of topsoil had no long-term detrimental effects on soil physical properties or pasture production in any of the three soils under the management practices used.
Compaction

* A compacted layer at 0.20 m (Ohakea soil $\rho_b=1.64\pm0.11$ on construction) either benefitted or did not effect pasture production over 13 of 14 harvests.
* The effect of compaction varied with position in the soil profile: pasture production and root length were negatively correlated with bulk density at 0.20 m depth.
* greater root mass was produced at 0.30 to 0.35 m depth in low compaction treatments
* A compacted layer at 0.20 m (Ashhurst soil $\rho_b=1.40\pm0.08$ on construction) had no significant effect on pasture production, although cumulative production over 9 harvests was 18% higher in the high compaction treatment.
* Pasture growing in a compacted Rangitikei soil ($\rho_b=1.61$) produced less than 40% of pasture growing in the same soil with $\rho_b=1.21$, and comprised a higher proportion of weeds.

Drainage

* Drainage lowered the volumetric water content of Ohakea soils at four increments to 0.60 m by a mean 3% on five measurement dates.
* Pasture production was similar in drained and undrained treatments for 9 of 14 harvests.

The Resource Management Act 1991 requires sustainable use of non-mineral resources. Sustainable use of soil resources requires reclamation of mined land. The highly competitive nature of the aggregate industry means reclamation is unlikely to occur unless it is both required and monitored by District and Regional Councils. A survey of aggregate extraction sites in the greater Manawatu region showed that, prior to the Resource Management Act, no sites were required to be reclaimed to their prior productivity. Results from the trials were used to identify basic strategies for reclamation, to pasture, of three groups of soils most commonly disturbed by extraction of alluvial aggregate. The strategies aim to ensure mining is an interim land use.

Mining of alluvial aggregate should be promoted on soils which are resilient to disturbance; i.e. free-draining Recent and Yellow-brown soils. Where post-mining land use is agricultural or horticultural production, conditions of extraction must include maintenance of pre-mining productivity under a strategy of rolling reclamation. Conditions related to reclamation must be specific and monitored, preferably by the extraction company under supervision of the authorising Council. Linking specific, measurable reclamation criteria to significant bonds would provide a strong incentive to extraction companies to reclaim land adequately.
Acknowledgements

I would like to thank the following people for their contributions towards this thesis:

Chief supervisor Dr Bob Stewart and assistant supervisor Dr Alan Palmer for their encouragement and friendship; for housing me on my flying visits to Palmerston North and, on occasions, providing the most highly qualified fencers and earth-movers seen at the trial sites.

Assistant professor Paul Gregg for helping make funds available and prodding throughout the dying stages.

The technicians in the Department of Soil Science for their assistance and companionship, particularly Heather Murphy with statistics, Malcolm Boag with proof reading, Mike Bretherton with computing (fixing corrupt disks and uncooperative printers) and Lance Curry in smoothing the path of analyses and printing. Thanks also to Bob Toes, Ian Furkert and Ross for tolerating penance on the end of a mower or spade.

Finally, I would like to acknowledge the stupendous tolerance of my family and especially my husband, Stuart Smith, with a project which was unpredictable and oblivious to any deadline.
CONTENTS

Abstract .. ii
Acknowledgements ... iv
Table of Contents ... v
List of Tables ... xii
List of Graphs ... xvi
List of Figures .. xviii
List of Photographs ... xx
List of Appendices ... xxiii

Chapter One Introduction

1.1 Objectives ... 2
1.2 Implementation of objectives ... 4

Chapter Two Aggregates and the aggregate industry

2.1 Introduction .. 5
2.2 Definition of aggregate ... 5
2.3 Uses and specifications of aggregate
 2.3.1 Requirements and characteristics of high quality, multi-purpose aggregate. .. 6
 2.3.2 Roading aggregate ... 7
 2.3.3 Railway aggregate ... 9
 2.3.4 Construction aggregate .. 9
 2.3.5 Other uses of aggregate ... 10
2.4 Geology of aggregate ... 11
2.5 Sources of aggregate in the greater Manawatu region 13
 2.5.1 Rivers ... 14
 Natural supply of aggregate sourced from rivers .. 16
 2.5.2 Alluvial terraces ... 17
 Quality of aggregate sourced from terraces ... 18
 Landscape evolution and physiography in the greater Manawatu region ... 18
 Suitability of soils for aggregate extraction in the greater Manawatu region 23
 2.5.3 Hard-rock quarries .. 30
 2.5.4 Foreshore deposits .. 31
 2.5.5 Other sources of aggregate .. 32
2.6 Organisations of aggregate producers ... 32
 2.6.1 Aggregates Association of New Zealand (Inc.) 32
 2.6.2 Institute of Quarrying ... 33
2.7 Demand for aggregates in New Zealand ... 34
 2.7.1 Aggregate extraction from 1900 to 1991 ... 36
 2.7.2 Aggregate use in the Central Inspectorate ... 38
Chapter Four: Field Trials

4.1 Introduction ... 111
 4.1.1 Vegetation and land use 112
 4.1.2 Climate ... 113

4.2 Rooting media at the Ohakea, Ashhurst and Rangitikei trial sites 117
 4.2.1 Ohakea soil ... 117
 Ohakea soil at the Ohakea trial site 118
 4.2.2 Ashhurst soil .. 120
 Ashhurst soil at the Ashhurst trial site 123
 4.2.3 Rangitikei soil 123
 Rangitikei soil at the Rangitikei trial site 125
 4.2.4 Fill material .. 125

4.3 Field trials ... 127
 4.3.1 Design of the Ohakea trial 127
 Construction of the Ohakea trial 130
 4.3.2 Design of the Rangitikei trial 131
 Construction of the Rangitikei trial 135
 4.3.3 Design and construction of the Ashhurst trial 137

Chapter Five: Soil Replacement

5.1 Introduction ... 140

5.2 Factors influencing the effects of topsoil mixing and optimum soil depth 141
 5.2.1 Post-mining land use 141
 5.2.2 Properties of overburden, spoil and subsoil 142
 Texture and physical properties 143
 Stone content ... 144
 Chemical properties .. 145
 5.2.3 Properties of topsoil 145
 Chemical and biological fertility 146
 Physical fertility ... 147
 Presence of soil organisms 148
 Presence of seeds and propagules 150
 5.2.4 Climate ... 151

5.3 Effects of mixing topsoil with other media (topsoil dilution) 151

5.4 Effects of replacing different depths of soil 153

5.5 Methods .. 154
 5.5.1 Bulk density .. 154
 5.5.2 Particle density 155
 5.5.3 Total porosity .. 156
 5.5.4 Soil water retention or pore size distribution 156
 Soil moisture content at 100 k Pa to 1500 k Pa suctions 156
 Soil moisture content at 5 and 10 k Pa suctions 157
 Cellulose acetate peels 157
 Plant stress days ... 158
 Field soil moisture content 159
 5.5.6 Pasture quantity and quality 159
 Dry matter production ... 159
 Pasture composition .. 160
 Root length .. 161
 Root mass .. 162
 Turnover of plant tissue in pasture swards 163
 5.5.7 Total carbon content 164
 5.5.8 Particle size analysis 164
5.6 Growing conditions over the period of the Ohakea and Rangitikei field trials
5.6.1 Summer 1988-89 ... 165
5.6.2 Autumn-Winter 1989 .. 165
5.6.3 Summer 1989-90 ... 166
5.6.4 Autumn-Winter 1990 .. 166
5.6.5 Summer 1990-91 ... 167
5.6.6 Autumn-Winter 1991 .. 168
5.7 Rangitikei trial soil replacement treatments ... 170
5.7.1 Reporting of statistics 170
5.7.2 The effect of soil depth 171
 Topsoiled treatments ... 172
 Nil-topsoil treatments ... 174
5.7.3 The effect of mixing horizons and replacing topsoil 177
 Properties of soils ... 177
 Pasture dry matter production 178
5.7.4 The effect of stripping soil on stone content of soil 180
5.8 Ohakea trial soil replacement treatments .. 180
5.8.1 Properties of soils .. 181
5.8.2 The effect of soil depth on production of above-ground dry matter production
 and pasture composition 181
5.8.3 The effect of topsoil replacement on production of above-ground dry matter and
 pasture composition ... 182
5.8.4 Characteristics of pasture roots 182
5.8.5 Concentrations of nutrients in soil and pasture ... 183
5.9 Ashhurst trial soil replacement treatments ... 184
5.10 Discussion ... 187
5.10.1 Soil depth .. 187
 Rangitikei trial .. 187
 Ohakea trial .. 189
 Ashhurst trial .. 189
5.10.2 Mixing horizons and replacing topsoil ... 190
 Rangitikei trial .. 190
 Ohakea trial ... 190
 Ashhurst trial .. 191
5.11 Conclusion .. 191

Chapter Six Compaction and Soil Water

6.1 Introduction .. 193
6.2 Literature review of compaction with an emphasis on reclaimed soils 194
6.2.1 Effect of compaction on soil physical properties 196
 Soil strength and soil density 196
 Soil porosity .. 196
6.2.2 Effect of compaction on soil biological properties 199
6.2.3 Effect of compaction on plant growth .. 199
 Germination .. 199
 Direct effect of compaction on plant root systems ... 200
 Indirect effects of compaction on plant root systems 200
 Availability and uptake of nutrients by plants .. 201
 Yield and crop attributes ... 201
 Pasture composition .. 203
6.2.4 Conclusion .. 204
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3</td>
<td>Literature review of drainage with an emphasis on reclaimed soils</td>
<td>205</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Introduction</td>
<td>205</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Causes of poor drainage</td>
<td>205</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Types of drainage and modes of action</td>
<td>205</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Effects of drainage and waterlogging on soil</td>
<td>206</td>
</tr>
<tr>
<td>6.3.5</td>
<td>Effects of drainage on soil management</td>
<td>208</td>
</tr>
<tr>
<td>6.3.6</td>
<td>Benefits of drainage to plant growth</td>
<td>208</td>
</tr>
<tr>
<td>6.3.7</td>
<td>Conclusion</td>
<td>210</td>
</tr>
<tr>
<td>6.4</td>
<td>Methods</td>
<td>210</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Proctor test</td>
<td>210</td>
</tr>
<tr>
<td>6.5</td>
<td>Ohakea trial compaction treatments</td>
<td>211</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Pasture dry matter production and herbage composition</td>
<td>211</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Bulk density</td>
<td>215</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Macroporosity</td>
<td>216</td>
</tr>
<tr>
<td>6.5.4</td>
<td>Root length</td>
<td>216</td>
</tr>
<tr>
<td>6.5.5</td>
<td>Soil volumetric water content and depth to water table</td>
<td>218</td>
</tr>
<tr>
<td>6.6</td>
<td>Ashhurst trial compaction treatments</td>
<td>219</td>
</tr>
<tr>
<td>6.7</td>
<td>Rangitikei trial compaction treatments</td>
<td>220</td>
</tr>
<tr>
<td>6.7.1</td>
<td>Commercially reclaimed area</td>
<td>220</td>
</tr>
<tr>
<td>6.7.2</td>
<td>Ripped fill and undisturbed fill treatments</td>
<td>223</td>
</tr>
<tr>
<td>6.8</td>
<td>Ohakea trial drainage treatments</td>
<td>226</td>
</tr>
<tr>
<td>6.8.1</td>
<td>Soil volumetric water content and depth to water table</td>
<td>226</td>
</tr>
<tr>
<td>6.8.2</td>
<td>Soil bulk density and macroporosity</td>
<td>227</td>
</tr>
<tr>
<td>6.8.3</td>
<td>Pasture dry matter production and herbage composition</td>
<td>227</td>
</tr>
<tr>
<td>6.9</td>
<td>Discussion</td>
<td>229</td>
</tr>
<tr>
<td>6.9.1</td>
<td>Compaction treatments</td>
<td>229</td>
</tr>
<tr>
<td>6.9.2</td>
<td>Drainage treatments</td>
<td>234</td>
</tr>
<tr>
<td>6.10</td>
<td>Conclusion</td>
<td>235</td>
</tr>
<tr>
<td>6.10.1</td>
<td>Compaction</td>
<td>235</td>
</tr>
<tr>
<td>6.10.2</td>
<td>Drainage (Ohakea trial)</td>
<td>236</td>
</tr>
</tbody>
</table>

Chapter Seven

Principles and recommendations for reclamation of soils in the greater Manawatu region.

7.1 Determining the success of reclamation | 237 |
7.1.1	Methods and measurements of the success of reclamation	237
Soil physical properties	239	
Pedological features	240	
Biological and chemical properties	240	
Plant productivity	241	
7.2	Identification of resilient soil types and classification of soils in the greater Manawatu region by ease of reclamation	242
7.3	Recommendations for reclamation of aggregate mines in the greater Manawatu region	245
7.3.1	Planning for reclamation	245
7.3.2	Stripping and handling of soil	246
Chapter Eight Reclamation Requirements and Activities

8.1 Introduction .. 262
8.2 Legislative requirements for aggregate extraction before the Resource Management Act 1991 ... 262
 8.2.1 Licences for extraction 262
 8.2.2 The Town and Country Planning Act 1977 263
 8.2.3 The Mining Act 1971 265
 8.2.4 Water quality and erosion controls 266
 8.2.5 Operational controls 267
 8.2.6 Effectiveness of pre-1991 legislation 267
8.3 Legislative requirements of the Resource Management Act 1991 ... 269
 8.3.1 Regional and district rules 272
 8.3.2 The process of gaining a resource consent 272
 8.3.3 Enforcement powers of councils 274
 8.3.4 Extraction under the Crown Minerals Act 1991 275
 8.3.5 Effectiveness of the Resource Management Act 275
 8.3.6 Environmental controls on mining outside the Resource Management Act 278
8.4 The social requirement for reclamation 278
8.5 Economic influences on reclamation 281
8.6 Survey of aggregate producers in the greater Manawatu region ... 283
 8.6.1 Objectives .. 283
 8.6.2 Results ... 283
 Legislative requirements 283
 Characteristics of extraction sites in the greater Manawatu region ... 286
 Reasons for the choice of post mining land use 287
 8.6.3 Discussion .. 288
 8.6.4 Conclusion ... 289
 Legislation .. 289
 Characteristics of extraction sites in the greater Manawatu region ... 289
 Post mining land use ... 289
8.7 Post mining land uses

8.7.1 No reclamation
8.7.2 Minimal reclamation
8.7.3 Generic reclamation
8.7.4 Forestry
8.7.5 Agriculture and horticulture
8.7.6 Active recreation and education
8.7.7 Amenity and non intensive recreation
8.7.8 Nature conservation
8.7.9 Landfill and waste disposal
8.7.10 Commercial and industrial property
8.7.11 Residential subdivision
8.7.12 Water storage and supply

8.8 Factors determining post mining land uses

8.8.1 Site limitations
8.8.2 Landscape and uses of surrounding land

8.9 Conclusion

References
List of Tables

Table 2.1: Quality standards for road aggregate in New Zealand .. 7
Table 2.2: Lithology and extraction status of rivers from which aggregate is extracted in the
greater Manawatu region ... 13
Table 2.3: Present and sustainable extraction rates of aggregate from rivers in the greater
Manawatu region .. 17
Table 2.4: The relationship between soil series and mean annual rainfall on Ohakea and
high terraces in the Pohangina district 21
Table 2.5: Summary of suitability of soil series for extraction of aggregate and main
characteristics of the underlying aggregate deposits in the greater Manawatu region
... 24
Table 2.7: Suitability of soil types on Recent river terraces in the greater Manawatu region
for extraction of aggregate ... 26
Table 2.8: Suitability soil series on intermediate terraces in the greater Manawatu region for
extraction of aggregate .. 28
Table 2.9: Suitability of soil series on high terraces in the greater Manawatu region for
extraction of aggregate .. 29
Table 2.10: Value ($) of the main products mined in the Central Inspectorate from 1987 to
1991 ... 41
Table 3.1: Growth in numbers of publications on land reclamation during the 1970’s 93
Table 3.2: Comparison of climatic regimes in California, England, Coastal South Australia,
Ontario, Alberta and New Zealand .. 103
Table 4.1: The orographic effect on rainfall in the Pohangina catchment from Feilding to
Table Flat .. 114
Table 4.2: Summary of differences in total weekly precipitation between the Ohakea trial
site, Rangitikei trial site and AgResearch (DSIR) climatological station ... 116
Table 4.3: Pasture species and sowing rates used to seed the Rangitikei and Ashhurst
trials .. 138
Table 4.4: A sample record card for recording the growth characteristics of ryegrass. The
location of a tag is given by the distance along a tape and angle from the tape.
Leaf type was either m (mown) or u (unmown) 163
Table 5.2: Rangitikei trial. Harvest dates and number of days of moisture stress prior to
each harvest for a hypothetical soil with 60 mm PAM in the surface 0.35 m
.. 168
Table 5.3: Ohakea trial. Harvest dates and probable days of moisture stress prior to each
harvests for a soil with 60 mm PAM in the surface 0.35 m 169
Table 5.4: Descriptions and zones of probability used to relate the statistical significance of
results in Chapters Five and Six .. 171
Table 5.5 Rangitikei trial. Description, symbol and total depth of spread sandy loam ("sandy materials" in text) of each soil replacement treatment 172
Table 5.6 Rangitikei trial. Dry matter production (kg ha\(^{-1}\)) from different total depths of sandy materials covered with a 0.1 m of sandy loam topsoil. 173
Table 5.7 Rangitikei trial. Dry matter production (kg ha\(^{-1}\)) from four nil-topsoil treatments with different depths of sandy loam. Duncan’s Test letters at p=0.10 are given on the RHS of each column of figures 175
Table 5.8 Rangitikei trial. Total organic carbon content of soil replacement treatments. Specific soil replacement treatments from which samples were taken are in brackets under “type of medium”. Significance = 0.0001 177
Table 5.9 Rangitikei trial. Gravimetric moisture content (% by mass) of water held in the soil pores of soil replacement treatments at 10 k Pa suction. N = number of cores taken .. 178
Table 5.10 Rangitikei trial. Dry matter production (kg ha\(^{-1}\)) from treatments in which topsoil was replaced (10A+30C) or mixed with 1.5 to 2 m of C horizon material (40C). Duncan’s Test letters are significantly different at p=0.10 179
Table 5.11 Rangitikei trial. Volume of stones (%) in undisturbed, stripped and fill media at four depths (m) .. 180
Table 5.12 Ohakea trial. Soil nutrient concentration (g m\(^{-3}\)) means and standard deviations on 17 August 1989. Duncan’s Test letters are on the RHS of each column 184
Table 5.13 Dates on which the Ashhurst trial was harvested 185
Table 5.14 Ashhurst trial. Percentage of water retained in soil pores of A horizon and diluted A horizon at applied suction of 1500 and 100 k Pa. The number of samples used in each analysis is in brackets on the RHS of each column 185
Table 5.15 Ashhurst trial. Pasture production (kg ha\(^{-1}\)) from soil replacement treatments. Duncan’s Test letters at p=0.10 are given on the RHS of each column 186
Table 6.1 Treatments used for the statistical analysis of the effect of compaction on Ohakea soil replacement treatments (Section 4.3.1 explains the soil replacement treatments). "na" treatments were not constructed 211
Table 6.2 The effect of high and low compaction treatments on dry matter production (kg ha\(^{-1}\)). Harvest dates for the Ohakea trial are given in Table 5.3. “Compaction effect” is the percentage difference in dry matter production between high and low compaction treatments. Significance is the probability that P=Ho, i.e. that the two treatments are not significantly different. Brackets in the row “Compaction effect” and throughout this chapter indicate a negative value 212
Table 6.3 Summary of significant bulk density and macroporosity correlations with dry matter production. The entire table of data is presented in Appendix 6.1.2 and 6.1.3. Within each box the Pearson Correlation Coefficient is given on the LHS and the RHS number is the Probability that the correlation is due entirely to chance. Brackets indicate a negative correlation 214
Table 6.4 Bulk density \((\text{Mg m}^{-3})\) measured at the compacted surface or equivalent depth at plot construction. The mean value is on the LHS and standard deviation on the RHS.

Table 6.5 Mean (LHS) and standard deviation (RHS) macroporosity (measured at 10 kPa suction) of high compaction and low compaction treatments for each soil replacement treatment. "High" = high compaction treatment, "Low" = low compaction treatment, "N" = number of samples. Samples were taken at soil depths of 0 to 0.05 m, 0.10 to 0.15 m, 0.20 to 0.25 m and 0.30 to 0.35 m.

Table 6.6 Mean (LHS) and standard deviation (RHS) root length (m per 1.2 l of soil sample) of high compaction and low compaction treatments for each soil replacement treatment. "High" = high compaction treatment, "Low" = low compaction treatment, N = number of samples.

Table 6.7 Correlation analyses of root length with bulk density and root length with macroporosity. The full data tables are presented in Appendix 6.1.11. and Appendix 6.1.12. Within each box the RHS number is the probability that the correlation is due entirely to chance. The Pearson Correlation Coefficient is given on the LHS where the \(P \leq 0.10\). Brackets represent a negative value.

Table 6.8 Effect of soil compaction treatments on oven-dry root mass (g per 1.2 l of soil). Samples were taken at soil depths of 0 to 0.05 m, 0.10 to 0.15 m, 0.20 to 0.25 m and 0.30 to 0.35 m. Brackets represent a negative effect of compaction.

Table 6.9 Correlation of root mass with bulk density and root mass with macroporosity. Within each box the RHS number is the probability \(>|R|\) under \(H_0: R=0\). The Correlation Coefficient is given on the LHS where \(P \leq 0.10\). Brackets signify a negative correlation.

Table 6.10 The effect of high and low compaction treatments on soil volumetric water content \((\theta, \text{measured by TDR})\) and water table height (WT). TDRx = measurement number. Brackets signify a negative effect of compaction.

Table 6.11 Ashhurst trial. Soil bulk density \((\text{Mg m}^{-3})\) of high and low compaction treatments immediately following compaction. Significance = 0.004.

Table 6.12 Rangitikei trial. Pasture dry matter production \((\text{kg ha}^{-1})\) mean (LHS) and standard deviation (RHS) of low compaction and high compaction fill treatments. Comparisons of pasture production begin in Harvest Four as there was nothing to harvest in the high compaction treatment until that harvest.

Table 6.13 Ohakea trial. Treatments used in analyses of drainage effects. "**" = treatment included in the statistical analysis, "na" treatments were not constructed.

Table 6.14 Ohakea trial. Mean volumetric water contents (%) of drained and undrained treatments measured by TDR on October 30, 1990. The "effect of drainage" is the reduction in volumetric water content (%) resulting from drainage.

Table 6.15 Ohakea trial. Influence of drainage on pasture dry matter production. "none" = differences not significant at \(p=0.10\) i.e. no effect of drainage, "+" = significant positive effect at \(p=0.10\), "++" = significant positive effect at \(p=0.05\). "-" significant negative effect at \(p=0.10\).
Table 6.16 Ohakea trial. Summary of correlation of volumetric water content with dry matter production for harvests 8 to 14. "none" = no significant correlation at p=0.10, "+" = significant positive correlation at p=0.10, "-" = significant negative correlation at p=0.10, "++" = significant positive correlation at p=0.05. "-/+" correlation differs with the depth over which volumetric water content is determined

Table 6.17 Ohakea trial. Pasture root length (m per 1.2 l of sample) of drained and undrained treatments at 0 to 0.05, 0.10 to 0.15, 0.20 to 0.25 and 0.30 to 0.35 m depths at the Ohakea trial. Brackets indicate a negative number, i.e. disadvantage of drainage

Table 7.1 Classes of soil series according to their ease of reclamation in the greater Manawatu region

Table 7.2: The soil replacement treatments in the Ohakea Trial. The * identifies the additional treatment which would allow 8 treatments to be used in a statistical analysis of the effect of compaction

Table 7.3: The probability that any differences between harvests of pasture and measurement of volumetric water content (TDR) at the Ashhurst trial can be ascribed to variation between the two blocks of treatments. The nearer the values are to 1.00 the less the probability that variation can be ascribed to differences between blocks

Table 8.0 The number and method of formal enforcement procedures used by Regional Councils from the passing of the Resource Management Act 1991 to August 1993. Data from Tompkins Wake Barristers and Solicitors

Table 8.1: The number of respondents to the survey of aggregate producers and their location in the greater Manawatu region

Table 8.2: The number and percentage of sites in the greater Manawatu region which required permission to extract aggregate and have conditions linked with extraction of aggregate

Table 8.3: Conditions associated with extraction of aggregate from sites in the greater Manawatu region

Table 8.4: The area or length of site and year extraction of aggregate started at surveyed sites in the greater Manawatu region. The number of sites is on the LHS and percentage of sites is on the RHS of each box

Table 8.5: Land use before extraction of aggregate from surveyed sites in the greater Manawatu region

Figure 8.6: Possible after uses associated with mineral workings based on their physical characteristics (from Coppin and Bradshaw, 1982) ++ = major possibilities, + = minor possibilities
List of Graphs

<table>
<thead>
<tr>
<th>Graph</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graph 2.1</td>
<td>Tonnes of aggregate and minerals produced in New Zealand in 1990</td>
<td>34</td>
</tr>
<tr>
<td>Graph 2.2</td>
<td>Value ($) of aggregate and minerals produced in New Zealand in 1990</td>
<td>35</td>
</tr>
<tr>
<td>Graph 2.3</td>
<td>Value ($) of coal, gold and aggregate produced in New Zealand from 1981 to 1990</td>
<td>35</td>
</tr>
<tr>
<td>Graph 2.4</td>
<td>Aggregate production in New Zealand between 1972 and 1990 for fill and reclamation, building construction, road and rail and total aggregate produced</td>
<td>37</td>
</tr>
<tr>
<td>Graph 2.5</td>
<td>The proportions of specific aggregate products produced by aggregate extraction sites in the Central Inspectorate in 1990</td>
<td>39</td>
</tr>
<tr>
<td>Graph 2.6</td>
<td>Volume of aggregate produced from individual aggregate extraction sites in the Central Inspectorate in 1990</td>
<td>39</td>
</tr>
<tr>
<td>Graph 4.1</td>
<td>Mean (1928 to 1980) rainfall, 10 percentile rainfall and 90 percentile rainfall and evapotranspiration at Palmerston North</td>
<td>114</td>
</tr>
<tr>
<td>Graph 4.2</td>
<td>Total moisture available for plant growth (PAM) (mm) at the end of each month in a year with mean rainfall, 10 percentile rainfall and 90 percentile rainfall for a soil with 60 mm PAM in the surface 0.3 m</td>
<td>115</td>
</tr>
<tr>
<td>Graph 4.3</td>
<td>Comparison of weekly rainfall measurements from AgResearch (Palmerston North, DSIR), Ohakea and Rangitikei trial sites April 1989 to March 1990</td>
<td>116</td>
</tr>
<tr>
<td>Graph 5.1</td>
<td>Weekly fluctuation of total plant available moisture (PAM) from November 14 1988 to December 30 1989 for a soil with 60 mm PAM in the surface 0.35 m of soil. Climatological data from AgResearch (DSIR), Palmerston North</td>
<td>165</td>
</tr>
<tr>
<td>Graph 5.2</td>
<td>Weekly fluctuation of PAM during 1990 for a soil with 60 mm PAM in the surface 0.35 m of soil. Climatological data from AgResearch (DSIR), Palmerston North</td>
<td>166</td>
</tr>
<tr>
<td>Graph 5.3</td>
<td>Total monthly precipitation, measured at AgResearch (DSIR) Palmerston North, and calculated monthly total evapotranspiration from January to December 1990</td>
<td>167</td>
</tr>
<tr>
<td>Graph 5.4</td>
<td>Weekly fluctuation of PAM from December 30 1990 to June 23 1991 for a soil with 60 mm PAM in the surface 0.35 m. Climatological data from AgResearch (DSIR), Palmerston North</td>
<td>168</td>
</tr>
<tr>
<td>Graph 5.5</td>
<td>Ohakea trial. Plant available soil moisture (mm) and times of harvests 1 to 14 for a soil with 60 mm total plant available soil moisture in the surface 0.35 m Climatological data from AgResearch (DSIR), Palmerston North</td>
<td>183</td>
</tr>
<tr>
<td>Graph 6.1</td>
<td>Proctor compaction test for Rangitikei fine sandy loam. Increasing soil compaction (dry bulk density) is graphed against gravimetric water content to illustrate the main stages of compaction</td>
<td>195</td>
</tr>
<tr>
<td>Graph</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>6.2</td>
<td>Dry matter production of high and low compaction treatments (kg ha⁻¹) (Top graph) with calculated weekly plant available water (mm) for an Ohakea soil with 60 mm of plant available water in the surface 0.3 m (bottom graph)</td>
<td>213</td>
</tr>
<tr>
<td>6.3</td>
<td>Rangitikei trial. Bulk density (Mg m⁻³) of high compaction and low compaction, commercially-reclaimed areas and control treatment at depths of 0 to 0.05, 0.10 to 0.15, 0.20 to 0.25 and 0.30 to 0.35 m</td>
<td>221</td>
</tr>
<tr>
<td>6.4</td>
<td>Rangitikei trial. Dry matter production (kg ha⁻¹) (bar graph on LHS) and herbage composition (% dry mass) (pie graph on RHS) of harvest one on 28-11-1989 from commercially-reclaimed, "high" and "low" compaction areas</td>
<td>223</td>
</tr>
<tr>
<td>6.5</td>
<td>Rangitikei trial. Dry matter production (kg ha⁻¹) (bar graph on LHS) and herbage composition (% dry mass) (pie graph on RHS) of harvest five compacted and ripped fill treatments</td>
<td>225</td>
</tr>
<tr>
<td>8.1</td>
<td>The number and category of applications for mining licences to the Ministry of Commerce in 1990</td>
<td>268</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Factors affecting the outcome of reclamation of aggregate extraction sites. The numbers in brackets indicate chapters in which the subject is discussed.</td>
<td>3</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Major rock types in the south-west of the North Island.</td>
<td>12</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Aggregate resources and associated land forms in the greater Manawatu region.</td>
<td>14</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Diagrammatic cross section showing soil profiles and the relationship between soils, parent materials and topography on the youngest aggradational (Ohakea) terrace.</td>
<td>20</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Diagrammatic cross section showing the relationship between soil series, topography and parent materials in the greater Manawatu region.</td>
<td>22</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Diagrammatic cross section showing the relationship between soil series, topography and depth to water table on Holocene river terraces.</td>
<td>22</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Cross section of alluvial deposits from Bunnythorpe to the confluence of the Manawatu and Oroua Rivers based on bore logs showing gravel and sand deposits.</td>
<td>25</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>(deleted)</td>
<td></td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Administrative centres and boundaries of mining regions administered by the Mining Inspectorate, Ministry of Energy.</td>
<td>40</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Sites associated with research into reclamation after mining of coal, aggregate, topsoil, iron sand and gold mine sites in New Zealand.</td>
<td>59</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Map of the North Island, New Zealand showing the greater Manawatu region and former constituent counties.</td>
<td>111</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Location of Ohakea, Ashhurst and Rangitikei trial sites in relation to the city of Palmerston North.</td>
<td>112</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Depth to concretions and iron-stained gravels (m) within the Ohakea trial site. Depth to concretions is indicated by contour lines which link points with concretions at equal depths.</td>
<td>119</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Contour map of the Ohakea trial site showing the relative heights of the ground surface. The colluvial fan slopes from top left to bottom right.</td>
<td>120</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Soils in the vicinity of Ohakea and Ashhurst trial areas. Part of New Zealand Soil Survey Report 24.</td>
<td>121</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Design of the Ohakea trial site and location of individual soil replacement treatments.</td>
<td>129</td>
</tr>
<tr>
<td>Figure 4.7</td>
<td>Schematic cross-section of soil replacement treatments at the Ohakea trial site.</td>
<td>128</td>
</tr>
</tbody>
</table>
Figure 4.8 The drainage system, comprising main drain, feeder drains and intercept drains, installed at the Ohakea site .. 130

Figure 4.9 Map of Te Matai Road, 9 km north east of Palmerston North, showing the pattern of aggregate extraction and soil series near the Rangitikei trial site 133

Figure 4.10 Design of the Rangitikei trial showing the location of individual soil replacement treatments ... 135

Figure 4.11 Schematic cross-section of soil replacement treatments at the Rangitikei trial site showing composition of the rooting media and total depths of applied soil 136

Figure 4.12 Design of the Ashhurst trial showing the location of individual soil replacement treatments ... 138

Figure 5.1 Schematic relationship between optimum soil depth and effective precipitation (EP) where EP = (rainfall + irrigation) - (deep percolation + evapotranspiration) ... 151

Figure 5.2 Ashhurst trial. Volumetric water content of each plot, measured with a TDR using 150 mm probes (mean of 4 measurements per plot). Changes in soil moisture content reflect changes in soil texture across the trial site 187

Figure 6.1 Soil physical factors which affect production of plant roots and herbage . 193

Figure 6.2 Schematic graph of the distribution of pore sizes of a soil before and after application of a compactive force. The volume of large pores is smaller in a compacted soil ... 197

Figure 6.3 Transformations of nitrogen in soil ... 202

Figure 6.4 Schematic relationship between level of soil compaction, plant yield and weather in (A) a wet year, (B) a normal year and (C) a dry year 203

Figure 6.5 The effect of subsurface drains on depth to water table in a soil comprising horizons of equal hydraulic conductivity ... 206
List of Photographs

Photograph 2.1	Tokomaru marine terrace (LHS skyline) and Ohakea aggradational terraces (LHS and RHS) flanking the Tintea River. The Tararua Ranges form the skyline and in the centre Holocene degradational terraces occupy the foreground. .. 19
Photograph 2.2	A quarry at Kiwitahi, near Morrinsville, illustrating the visual impact of an unscreened extraction site ... 47
Photograph 2.3	Dust generated on an unsealed road by trucks transporting aggregate to a crushing plant near Palmerston North ... 48
Photograph 2.4	Exposed pilings of the old Fitzherbert Bridge over the Manawatu River, Palmerston North in 1987, due to unsustainable extraction of aggregate from the river ... 51
Photograph 3.1	Reclamation of fore dune (RHS) and first secondary dune (LHS) after mining of mineral sands to the low tide level in Western Australia .. 62
Photograph 3.2	The Grey River Gold dredge, Westland (1990) showing the elevated tailings surface at the rear of dredge (RHS) due to swelling and excavation of the dredge pond ... 65
Photograph 3.3	An open cast coal mine (LHS) and reclaimed pasture with contour drains near Huntly, Waikato (1990). Inset: contour drains and associated plantings of native species ... 69
Photograph 3.4	The tailings pond batter (LHS) and tailings pond bund above the sediment settling pond which contains toxic rust-coloured leachate (RHS) at the Tui mine. Vegetation only grows on “islands” of organic matter on both ponds ... 71
Photograph 3.5	The Waihi Gold Mining Company mine. The pit, at bottom centre, is linked by a conveyor belt to the processing plant and tailings dam at top right ... 73
Photograph 3.6	Reclamation of a stockpile of laharic material adjacent to the main trunk railway, Ohakune. Manuka slash was laid directly on the laharic material (LHS) or on a 0.3 to 0.5 m layer of replaced forest soil (RHS) ... 87
Photograph 3.7	Forest trash has been spread to create microclimates for seedling growth adjacent to the railway, Ohakune. The original podocarp-hardwood forest is in the background and mudstone (papa) has been washed onto the site (foreground) ... 88
Photograph 3.8	A seasonally inundated pond created after extraction of clay to facilitate frog reproduction, Western Australia ... 100
Photograph 4.1	Profile of Ohakea silt loam near the Ohakea trial site ... 118
Photograph 4.2	Profile of an Ashhurst stoney silt loam near the Ashhurst trial site ... 122
Photograph 4.3 Profile of Rangitikei fine sandy loam near the Rangitikei trial site .. 124
Photograph 4.4 A fill area adjacent to the Rangitikei trial site ... 126
Photograph 4.5 The surface of the fill area at the Rangitikei trial site prior to reclamation. ... 126
Photograph 4.6 Construction of the Ohakea trial. The darker A horizon is being replaced on top of the lighter B horizon of an "AonB" treatment ... 131
Photograph 4.7 Construction of the Ohakea trial. The base (c.0.5 m deep) of an "Aonly" treatment is being compacted with a vibrating roller ... 132
Photograph 4.8 Commercial extraction of aggregate adjacent to the Rangitikei trial site. The sandy overburden has been removed and a hydraulic excavator is removing the first cut of aggregate ... 134
Photograph 4.9 The Rangitikei trial after completion of plot construction. A key to the treatments is presented below the photograph ... 137
Photograph 4.10 Construction of the Ashhurst trial. The trial has been sprayed with herbicide, pegged out and the treatments identified with fluorescent paint ... 139
Photograph 5.1 The root washing machine designed by Matthew (1992), Agronomy Department, Massey University which was used to separate roots from soil ... 161
Photograph 5.2 Rangitikei trial. The barley and oats crop immediately prior to harvest: ... 174
Photograph 5.3 Barley and oats crop growing on two nil-topsoil treatment plots: a "40C", 0.4 m of sandy medium (LHS), and a 100C treatment, 1.0 m of sandy C horizon (RHS). The crop in the 100C plot is noticeably darker green and bushier than the crop in the 40C plot ... 176
Photograph 5.4 Barley and oats crop growing on a "fill" (nil-topsoil) plot of loosened fill (LHS) and a "10A" topsoiled plot. The fill plot has a high proportion of weeds and barley plants with yellow lower leaves ... 176
Photograph 5.5 Rangitikei trial. Pasture on soil replacement treatments showing poorer establishment and clover-dominated sward on the nil topsoil treatment compared to the topsoiled treatments ... 179
Photograph 5.6 Ohakea trial. Pasture on A8mix (LHS) and AonB (RHS) soil replacement treatments prior to the first harvest. Pasture on the A8mix plot is more sparse. White tags mark the position of permanent TDR probes ... 184
Photograph 6.1 Rangitikei trial. The commercially reclaimed area following rainfall, May 1989. The highly compacted area is on the LHS and the low compaction area on the RHS ... 221
Photograph 6.2 Rangitikei trial. December 1989. Pasture in the high compaction area (LHS) is less productive than the low compaction area (RHS). Clover in the high compaction area is flowering (under stress) 222

Photograph 6.3 Rangitikei trial. The barley and oats crop on high compaction (undisturbed, in situ) fill treatment (LHS) and low compaction (ripped) treatment (RHS). .. 225

Photograph 8.1 Pine trees (Pinus radiata) for production of timber growing in a reclaimed aggregate pit, Greatford, New Zealand 292

Photograph 8.2 An inner city garden reclaimed after clay extraction, Perth, Australia. ... 296
List of Appendices

<table>
<thead>
<tr>
<th>Appendix 1</th>
<th>(deleted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 2</td>
<td></td>
</tr>
<tr>
<td>Appendix 2.1</td>
<td>Potential aggregate deposits in the Lower Rangitikei River, based on soils of the area</td>
</tr>
<tr>
<td>Appendix 2.2</td>
<td>Potential aggregate deposits in the Oroua and Mid-Manawatu Rivers, based on soil maps of the area</td>
</tr>
<tr>
<td>Appendix 2.3</td>
<td>Location of aggregate extraction companies, towns, major rivers and major roads in the south-west of the North Island</td>
</tr>
<tr>
<td>Appendix 3</td>
<td>(deleted)</td>
</tr>
<tr>
<td>Appendix 4</td>
<td></td>
</tr>
<tr>
<td>Appendix 4.1</td>
<td>Type profiles</td>
</tr>
<tr>
<td>Appendix 4.2</td>
<td>Ohakea trial. Profiles of soil replacement treatments</td>
</tr>
<tr>
<td>Appendix 4.3</td>
<td>Chemical analyses</td>
</tr>
<tr>
<td>Appendix 5</td>
<td></td>
</tr>
<tr>
<td>Appendix 5.1</td>
<td>Duncan’s Multiple Range Test</td>
</tr>
<tr>
<td>Appendix 5.2</td>
<td>Rangitikei trial: effect of soil depth</td>
</tr>
<tr>
<td>5.2.1:</td>
<td>Rangitikei trial. Herbage composition (% dry mass of weed, grass and clover) of topsoiled treatments and nil-soil (fill) treatment over five harvests. Note “grass” in harvest one is the percentage of barley+oats crop</td>
</tr>
<tr>
<td>5.2.2:</td>
<td>Rangitikei trial. Herbage composition (% dry mass of clover, grass and weed) of pasture from topsoiled treatments of the Rangitikei trial. na = no clover dissected in harvest one, the barley+oats harvest</td>
</tr>
<tr>
<td>5.2.3:</td>
<td>Rangitikei trial. Root length (m) and oven-dry root mass (g) per 1.2 l soil sample of topsoiled treatments. N = 2 for each treatment, each sample comprised two cores bulked together</td>
</tr>
<tr>
<td>5.2.4:</td>
<td>Rangitikei trial. Herbage composition (% dry mass of weed, grass and clover) of nil-topsoil treatments over five harvests. Note “grass” in harvest one is the percentage of barley+oats crop</td>
</tr>
<tr>
<td>5.2.5:</td>
<td>Rangitikei trial. Herbage dissection (% dry mass of clover, grass and weed) of pasture from nil-topsoil treatments. na = no clover dissected in harvest one, the barley+oats harvest</td>
</tr>
<tr>
<td>5.2.6:</td>
<td>Rangitikei trial. Root length (m) and oven-dry root mass (g) per 1.2 l soil sample of nil-topsoil treatments. N = 2 for each treatment, each sample comprised two cores bulked together</td>
</tr>
<tr>
<td>Appendix 5.3</td>
<td>Rangitikei trial: effect of mixing horizons and replacing topsoil</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Rangitikei trial. Particle density of rooting media. Significance = 0.22. Treatments with different "Duncan's test" letters are significantly different at a significance level of 0.10</td>
</tr>
</tbody>
</table>
5.3.2: Rangitikei trial. Soil moisture content at 1500 k Pa suction (permanent wilting point) of rooting media. Specific soil replacement treatments measured are in brackets under "Medium" (NB: Sig = 0.0001) 361

5.3.3: Rangitikei trial. Gravimetric moisture content at 5 k Pa suction of soil replacement treatments. N = number of cores taken 361

5.3.4: Rangitikei trial. Gravimetric moisture content at 10 k Pa suction of soil replacement treatments. N = number of cores taken. Duncan's Test results are on the RHS of each column 362

5.3.5: Rangitikei trial. Gravimetric moisture content of topsoiled and nil-topsoil replacement treatments at 5 and 10 k Pa suction. N = number of cores taken 363

5.3.6: Rangitikei trial. Herbage composition (% dry mass of weed, grass and clover) of nil-topsoil and topsoiled treatments showing the effect of mixing soil A and C horizons over five harvests. Note "grass" in harvest one is the percentage of barley+oats crop 364

5.3.7: Rangitikei trial. Herbage dissection (% dry mass of clover, grass and weed) of pasture from nil-topsoil and topsoiled treatments showing the effect of mixing A and C horizons over five harvests. na = no clover dissected in harvest 1 (barley and oats harvest) 365

Appendix 5.4: Ohakea trial soil replacement treatments 366

5.4.1: SAS programme used to analyse the significance of soil replacement treatments of the Ohakea trial 366

5.4.2: Ohakea trial. Particle density of Ohakea soil horizons. Significance = 0.24 367

5.4.3: Ohakea trial. Soil gravimetric moisture content at1500 k Pa suction (permanent wilting point) of Ohakea soil horizons. Significance = 0.0001 367

5.4.4: Ohakea trial. Total carbon content of Ohakea soil replacement treatments. Specific treatments sampled are given in brackets in the left hand column (Significance = 0.0001) 367

5.4.5: Ohakea trial. Bulk density (Mg m⁻³) of soil replacement treatments at specified soil depths. Duncan's Test letters, applied at a significance of 0.10 are given on the RHS of each column 368

5.4.6: Ohakea trial. Gravimetric moisture content (%) at 10 k Pa suction of soil replacement treatments at specified soil depths. Duncan's Test letters, applied at a significance of 0.10 are given on the RHS of each column 368

5.4.7: Ohakea trial. Pasture dry matter production (kg ha⁻¹) for soil replacement treatments. Duncan's test applied at 0.10 level of significance. Means with the same letter are not significantly different, * indicates results are significantly different at a 0.05 significance level 369

5.4.8: Ohakea trial. Herbage dissection of pasture by weed, clover and grass (% dry matter) for Harvests one and two. Duncan's Test letters are on the RHS of each column 369
5.4.9: Ohakea trial. Oven dry root mass (g) of pasture for soil replacement treatments. Duncan’s Test results at p=0.10 are given on the RHS of each column. 370

5.4.10: Ohakea trial. Root length (m) of pasture for soil replacement treatments. Duncan’s Test results at p=0.10 are given on the RHS of each column. * = Duncan’s Test letters significant at p=0.05. 370

5.4.11: Ohakea trial. Total N and total P concentrations (gm⁻³) in grass and clover of soil replacement treatments. 370

Appendix 5.5: Ashhurst trial soil replacement treatments. 371

5.5.1: Ashhurst trial. Soil replacement treatments placed in order of pasture dry matter production. The highest producing treatment is on the top of each column. c = control, un = undisturbed, A = Aonly, AB = AB mix and AonB = Aon B. 371

5.5.2: Ashhurst trial. Significant correlation analyses of soil volumetric moisture content with pasture dry matter production. 371

Appendix 5.6: Results from the acetate peel experiment. 372

5.6.1: Mean gravimetric water content of peeled and unpeeled soil cores from surface and subsoil horizons of Rangitikei and Ohakea soils. N = the number of samples analyzed, P = the probability that Ho is true. 372

Appendix 6

Appendix 6.1 Effect of Ohakea trial compaction treatments. 373

6.1.1 SAS statistical programme for analysing significance of high and low compaction treatments of the Ohakea Trial. 373

6.1.2 Ohakea trial. Correlation of dry matter production with bulk density. Correlation of root mass with dry matter production. Within each box the Pearson Correlation Coefficient is given on the LHS where the probability (RHS number) that the correlation is due entirely to chance is < 0.10. Samples were taken at soil depths of 0 to 0.05 m, 0.10 to 0.15 m, 0.20 to 0.25 m and 0.30 to 0.35 m. The dates of each harvest are given in Chapter 5.6. 374

6.1.3 Ohakea trial. Correlation of dry matter production with macroporosity. Within each box the Pearson Correlation Coefficient is given on the LHS where the probability (RHS number) that the correlation is due entirely to chance is < 0.10. Samples were taken at soil depths of 0 to 0.05 m, 0.10 to 0.15 m, 0.20 to 0.25 m and 0.30 to 0.35 m. 375

6.1.4 Ohakea trial. Interaction of soil replacement treatments and compaction treatments for harvests 1 to 14, showing means of dry matter production (LHS of boxes) and standard deviations (RHS of boxes) in kg ha⁻¹. "High" = high compaction treatment, "Low" = low compaction treatment. A key explaining soil replacement treatments is given in Chapter 4.3.1. 376

6.1.5 Ohakea trial. Pasture composition of high and low compaction treatments (as % dry mass) in Harvests 1 and 2. Four subsamples from each of 24 plots were used in the herbage analysis. Total clover, grass and weed percentages do not add up to exactly 100% because means of herbage analyses are used. 376
6.1.6 Ohakea trial. Effect of high and low compaction treatments on bulk density (Mg m⁻³). Brackets indicate negative values. Samples were taken at soil depths of 0 to 0.05 m, 0.10 to 0.15 m, 0.20 to 0.25 m and 0.30 to 0.35 m. "Significance" is the probability that Ho holds, i.e. that differences high and low compaction treatments are due to chance alone. ... 377

6.1.7 Ohakea trial. Mean (LHS) and standard deviation (RHS) bulk density (Mg m⁻³) associated with soil replacement and compaction interaction. N = number of samples. "High" = high compaction treatment, "Low" = low compaction treatment 377

6.1.8 Ohakea trial. Effect of high and low compaction treatments on soil gravimetric moisture content at 10 k Pa suction (%). Samples were taken at soil depths of 0 to 0.05 m, 0.10 to 0.15 m, 0.20 to 0.25 m and 0.30 to 0.35 m. Brackets represent a negative effect of compaction (difference between high and low compaction treatments in m) ... 377

6.1.9 Ohakea trial. Effect of soil compaction treatment on root length (m per 0.5 l of soil). Samples were taken at soil depths of 0 to 0.05 m, 0.10 to 0.15 m, 0.20 to 0.25 m and 0.30 to 0.35 m. Brackets represent a negative effect of compaction (difference between high and low compaction treatments in m) ... 378

6.1.10 Ohakea trial. Interaction between soil replacement and soil compaction treatments with respect to root mass means (LHS) and standard deviations (RHS). "high" = high compaction treatment, "low" = low compaction treatment, P = probability, N = number of samples ... 378

6.1.11 Correlation analysis of root length with bulk density. Within each box the RHS number is the probability that the correlation is due entirely to chance. The Correlation Coefficient is on the LHS. Brackets indicate a negative value. Significant correlations are bolded. Samples were taken at soil depths of 0 to 0.05 m, 0.10 to 0.15 m, 0.20 to 0.25 m and 0.30 to 0.35 m ... 378

6.1.12 Correlation analysis of root mass with bulk density. Within each box the RHS number is the probability that the correlation is due entirely to chance. The Correlation Coefficient is on the LHS. Brackets indicate a negative value. Significant correlations are bolded. Samples were taken at soil depths of 0 to 0.05 m, 0.10 to 0.15 m, 0.20 to 0.25 m and 0.30 to 0.35 m ... 379

6.1.13 Ohakea trial. Effect of compaction treatment on soil volumetric water content measured with a TDR. Brackets signify a negative effect of compaction 379

Effect of compaction treatment on soil volumetric water content measured on 30-10-90 ... 379

Effect of compaction treatment on soil volumetric water content measured on 13-11-90 ... 379

Effect of compaction treatment on soil volumetric water content measured on 27-11-90 ... 380

Effect of compaction treatment on soil volumetric water content measured on 12-5-91 ... 380
Appendix 6.2 Ashhurst trial compaction treatments .. 381

6.2.1 Ashhurst trial. Pasture dry matter production means (LHS) and standard deviations
(RHS) (kg ha⁻¹) of high and low compaction treatments. Dates of harvests are given in
Chapter 5.6 .. 381

6.2.2 Ashhurst trial. Soil volumetric water content (%) from compacted and uncompacted
plots, measured by TDR .. 381

6.2.3 Ashhurst trial. Proctor compaction curve for the A horizon of an Ashhurst A horizon.
More points are needed to characterise the drier end of the curve 382

Appendix 6.3 Rangitikei trial compaction treatments .. 383

6.3.1 Rangitikei trial. Means (LHS) and standard deviations (RHS) of bulk density in "high" and
"low" compaction areas (Mg m⁻³). Different letters indicate statistically significant
differences at a level of significance = 0.05 .. 383

6.3.2 Rangitikei commercially reclaimed area. Mean penetration resistance of "high" and "low"
compaction areas using a flat-tipped scalar penetrometer. Note: measurements are not
adjusted for soil moisture content, which was c.2% higher in highly compacted plots so
differences are likely to be greater than measured (Volumetric water content at 0 to 0.10
m depth was 10.4 ± 1.1% (n=16) in the compacted area and 7.9 ± 2.3% (n=16) in the low
compaction area) .. 383

6.3.3: Rangitikei commercially reclaimed area Total soil available water holding capacity to 0.4
m depth calculated from:

(\text{Field capacity} - \text{Permanent wilting point})\times400

Field capacity was taken to equal soil water content at 10 k Pa suction (1 m head) .. 384

6.3.4 Rangitikei commercially reclaimed area. Soil gravimetric moisture content at 10 k Pa
suction .. 384

6.3.5: Rangitikei commercially reclaimed area. Means (LHS) and standard deviation (RHS) dry
matter production for harvest one on 28 November 1989 from "high" and "low"
compaction areas (8 samples were taken from each area) .. 385

6.3.6 Rangitikei commercially reclaimed area. Means (LHS) and standard deviation (RHS) of
reproductive and vegetative clover (% by dry mass) for harvest one from "high" and "low"
compaction areas (8 samples were taken from each area) .. 385

6.3.7: a) Rangitikei commercially reclaimed area. Means (LHS) and standard deviations (RHS)
of pasture dry matter production for harvest two, February 1990 from "high" and "low"
compaction areas (8 samples were taken from each area) .. 385

b) Rangitikei commercially reclaimed area. Bar graph of pasture dry matter production
(LHS) and pie graph of herbage composition (RHS) for harvest two, February 1990 from
"high" and "low" compaction areas (8 samples were taken from each area) 386

6.3.8 Rangitikei trial. Mean (LHS) and standard deviation (RHS) pasture composition as (%
dry mass) of high compaction and low compaction fill treatments in Harvest Four and
Harvest Eight .. 386
Appendix 6.4 Ohakea trial drainage treatments .. 387

6.4.1 Ohakea trial. Volumetric water contents of drained and undrained treatments . 387

Soil volumetric water contents (%) on November 13 1990 387

Soil volumetric water contents (%) on November 27 1990 387

Soil volumetric water contents (%) on December 5 1990 387

Soil volumetric water contents (%) on 22 January and 7 and 20 February 1991 388

6.4.2 Ohakea trial. Effect of drainage treatment on depth to water table (m) at Ohakea trial. WT 1 = First water table measurement. Each reading comprises 32 measurements (1 per plot) ... 388

6.4.3 Ohakea trial. Mean soil bulk density (Mg m⁻³) of drained and undrained treatments at 0 to 0.05, 0.10 to 0.15, 0.20 to 0.25 and 0.30 to 0.35 m depths ... 388

6.4.4 Ohakea trial. Soil gravimetric moisture content (%., no units) at 10 k Pa suction of drained and undrained treatments at 0 to 0.05, 0.10 to 0.15, 0.20 to 0.25 and 0.30 to 0.35 m depths ... 388

6.4.5 Ohakea trial. Effect of drainage treatment on pasture dry matter production (kg ha⁻¹) from September 1989 to June 1991 ... 389

6.4.6 Ohakea trial. Root mass (g) and root length (m) of pasture taken from drained and undrained treatments. Samples taken at 0 to 0.05, 0.10 to 0.15, 0.20 to 0.25 and 0.30 to 0.35 m depths ... 389

6.4.7 Ohakea trial. Correlation of volumetric water content with dry matter production. Within each TDR measurement the bottom number is the Probability > /R/ under Ho: Rho=0 (where Ho=Null hypothesis). The Pearson Correlation Coefficient is given on the top line where the probability value is less than 0.10. The number of observations used in each correlation varies from 26 to 32 ... 390

Appendix 6.5 Results of muffle furnace experiment ... 391

Appendix 8

Appendix 8.1 Definition of Sustainable Management .. 391

Appendix 8.2 Fourth Schedule of the Resource Management Act 1991 (Section 88(6)(b) Assessment of effects on the environment ... 392

Appendix 8.3 Survey of aggregate extraction sites .. 394

Appendix 8.4 Alluvial Mining Standard Conditions and Restoration Schedule (Macleod and Rouse, 1991)