Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Design and Evaluation of Mass Evacuation Support Systems Using Ontologies for improved Situation Awareness

A dissertation presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Information Sciences

at Massey University, Albany, New Zealand

Yasir Javed

2012
Abstract

Large-scale emergencies, such as tsunamis, are managed by several teams, e.g., emergency managers, military, police, fire services, health care professionals, etc. Close co-ordination within and between teams is essential since the failure of a single link can risk the whole operation, for example, the mass evacuation of a city or region. Decision-making in such emergencies is necessarily complex as the situations are dynamic, unfolding rapidly, and invariably stressful. Computerised decision support systems can facilitate and improve co-ordination and decision making by presenting, structuring, processing, and interpreting huge amounts of information in a short span of time.

However, the power of such systems is enhanced even further if they are designed to improve the situation awareness (SA) of individual managers, their shared situation awareness (SSA), and team situation awareness (TSA). The goal is to ensure that team members have a comprehensive understanding of the situation, not just for their individual roles but also for the roles of their colleagues. The aim of the thesis is to design a computer based information system to support SA, SSA, and TSA of emergency managers for effective decision making and collaborative task performance.

The thesis describes elicitation of the information requirements for various emergency management roles during a mass evacuation using a cognitive task analysis technique. Based on the requirements, it explains the design and development of a computer based system dubbed Situation Aware Vigilant Emergency Reasoner (SAVER) using ontologies for situation assessment and reasoning.

It is demonstrated that ontologies can be used to classify the SA information since they can model the situations in detail and allow the inference on rules and axioms. Ontology based reasoning successfully provided the automatic situation assessment according to the SA levels. The thesis also details the evaluation of SAVER by measuring SA, SSA and TSA of emergency managers using Situation Awareness Global Assessment Technique (SAGAT) in simulated mass evacuation scenarios. The evaluation demonstrated the superior performance of the computer based system for improving SA, SSA and TSA of emergency managers. Moreover, the user interfaces of SAVER were also evaluated positive for the human computer interaction (HCI) parameters such as usability, ease of use, understandability, learnability, functionality, etc.
Acknowledgements:

In the name of Allah, the most Gracious and the most Merciful.

First and foremost, I would like to praise and thank Allah Almighty, Who has granted me the grace, courage, and blessing to start such a huge research endeavour and complete it.

I am deeply indebted to my chief supervisor, Professor Tony Norris, whose help, creative suggestions and motivation helped me throughout my research project. His profound knowledge and experience have been of great value to this project and my research training. I would also like to thank my co-supervisor, Professor. David Johnston, for his useful comments and feedback.

I want to express my gratitude to many people for their contribution, assistance, support, and guidance, especially Clive Manley (Auckland Civil Defence Controller and Manager of Civil Defence and Emergency Management for Auckland Council), Greg Holland, David Neil, Thomas Harre, Jamie Richards from Civil Defence Emergency Management (CDEM), who helped me with data collection and understanding the emergency management environment of New Zealand. I also want to thank Anuradah Mathurani and Ian Bond for advice and useful feedback on my initial research proposal.

I wish to thank my family, especially my parents and parents-in-law who prayed for my success and gave me great strength and confidence by sending me so far from them to achieve this milestone. I owe my deepest gratitude, respect, and affection to my loving wife and cute daughters, Imaan and Inaya, for their patience and continuous support, without which this research was impossible. I am also thankful to all my brothers and sister for their prayers and belief in me. I thank all my friends for keeping me energetic and lively throughout this research. I would also like to show my gratefulness to Sonya Eastmond, Annette Warbrooke, and Freda Mickisch for their continuous administrative and moral support.
Table of Contents

Abstract... 1
Acknowledgements.. 2
List of Figures .. 10
List of Tables... 13
List of Publications .. 14

INTRODUCTION ...16

1.1 Aim of the Research .. 16
1.2 Research Contributions .. 17
1.3 Theoretical Framework .. 18
 1.3.1 Emergency Management overview ... 18
 1.3.2 Decision Making in Emergency Management ... 20
 1.3.3 Importance of SA / TSA and SSA in Decision Making ... 21
 1.3.4 Ontology based SA .. 22
1.4 Research Context .. 24
1.5 Research Objectives and Questions ... 25
1.6 Research Approach .. 25
1.7 Scope of the Research Enquiry ... 26
1.8 Overview of Thesis .. 27
 1.8.1 Chapter 2: Theoretical Foundation and Literature Review .. 27
 1.8.2 Chapter 3: Research Methodology ... 28
 1.8.3 Chapter 4: SAVER: Situation Aware Vigilant Emergency Reasoner 28
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8.4 Chapter 5: Improving Individual Situation Awareness Using SAVER</td>
<td>29</td>
</tr>
<tr>
<td>1.8.5 Chapter 6: Improving Shared and Team Situation Awareness Using SAVER</td>
<td>30</td>
</tr>
<tr>
<td>1.8.6 Chapter 7: Discussion</td>
<td>30</td>
</tr>
<tr>
<td>1.8.7 Chapter 8: Summary, Conclusions and Future Work</td>
<td>30</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>32</td>
</tr>
<tr>
<td>2.2 Emergency Management</td>
<td>33</td>
</tr>
<tr>
<td>2.2.1 Emergency management in the context of mass evacuation</td>
<td>34</td>
</tr>
<tr>
<td>2.2.2 Mass evacuation in case of tsunami</td>
<td>37</td>
</tr>
<tr>
<td>2.2.3 Emergency management in New Zealand</td>
<td>38</td>
</tr>
<tr>
<td>2.3 Emergency Decision Making</td>
<td>40</td>
</tr>
<tr>
<td>2.3.1 An overview</td>
<td>40</td>
</tr>
<tr>
<td>2.3.2 Models of emergency decision making</td>
<td>43</td>
</tr>
<tr>
<td>2.3.3 Intuitive or Naturalistic Decision Model</td>
<td>45</td>
</tr>
<tr>
<td>2.3.4 Rational or Analytical Decision Model</td>
<td>46</td>
</tr>
<tr>
<td>2.4 Situation Awareness (SA)</td>
<td>48</td>
</tr>
<tr>
<td>2.4.1 SA definition</td>
<td>48</td>
</tr>
<tr>
<td>2.4.2 Endsley’s three level model of SA</td>
<td>49</td>
</tr>
<tr>
<td>2.5 Situation Awareness in Collaborative Systems</td>
<td>51</td>
</tr>
<tr>
<td>2.5.1 Shared Situation Awareness (SSA)</td>
<td>51</td>
</tr>
<tr>
<td>2.5.2 Team Situation Awareness (TSA)</td>
<td>52</td>
</tr>
</tbody>
</table>
5.5.3 Human Computer Interface (HCI) evaluation of SAVER.............................. 157

5.6 Summary and Conclusions... 163

IMPROVING SHARED AND TEAM SITUATION AWARENESS USING SAVER…………... 167

6.1 Introduction ... 167

6.2 Problem Identification.. 168

6.3 Suggested Solution to the Problem .. 170

6.4 Design and Development .. 171

6.4.1 SSA and TSA requirements elicitation ... 171

6.4.2 Ontology based SSA and TSA oriented system design.................................... 178

6.5 Evaluation... 184

6.5.1 Experiment design... 184

6.5.2 Experiment results... 188

6.6 Summary and Conclusions... 199

DISCUSSION .. 202

7.1 Introduction ... 202

7.2 Formalising SA, SSA and TSA Definitions... 202

7.3 Information Requirements for SAVER Design ... 207

7.4 Ontology based SA, SSA and TSA... 208

7.5 Improving SA using SAVER... 211

7.6 Improving SSA using SAVER... 213

7.7 Improving TSA using SAVER.. 215

7.8 Relationship Between Individual SA and Various Models of TSA 216
7.9 Implementation Requirements of SAVER

7.9.1 Organisational requirements

7.9.2 Architecture requirements

7.9.3 Graphical user interface (GUI) requirements

7.9.4 Testing requirements

7.10 Summary

SUMMARY, CONCLUSIONS

AND FUTURE WORK

8.1 Research Questions Answered

8.1.1 How to design a computer based system for automatic situation assessment based on situation awareness (SA) requirements in emergency situations?

8.1.3 How to design a computer based system supporting shared and team SA (SSA and TSA) of the emergency managers in mass evacuation operations?

8.2 Future Work

8.2.1 Option Awareness

8.2.2 Agents and Trust

8.2.3 Integration of various disaster management sectors; health, fire, police

8.2.4 Training of emergency managers

8.2.5 Extension to mobile technologies

8.2.6 Business decision making

8.2.7 Military applications

References

APPENDIX A

Research Information Sheet
List of Figures

Figure 1.1: Emergency management cycle ...19
Figure 1.2: Flow of thesis chapters ...31
Figure 2.1: Phases of evacuation ...35
Figure 2.2: Threat of a catastrophic tsunami on coastal areas37
Figure 2.3: CIMS Structure ...39
Figure 2.4: Information sources of SA ..50
Figure 2.5: Shared Situation Awareness ...52
Figure 2.6: TSA, the goals and SA requirements53
Figure 2.7: Factors that build high levels of SSA and TSA53
Figure 2.8: Summary of literature review and theoretical framework66
Figure 3.1: Design Science Research Cycles ..70
Figure 3.2: General design cycle ...74
Figure 3.3: Dividing the problem in DSRM according to the thesis chapters76
Figure 3.4: Steps of design ..87
Figure 3.5: System architecture of SAVER ..82
Figure 3.6: Evaluation method ...84
Figure 3.7: Overview of research methodology85
Figure 4.1: Steps of GDIA ...90
Figure 4.2: Steps of EGDIA ...91
Figure 4.3: Ontology based situation awareness97
Figure 4.4: Example rules for detecting tsunami generation107
Figure 4.5: Initial state of working space ...107
Figure 4.6: State of working space after rules scanning108
Figure 4.7: Rule for tsunami generation ...108
Figure 4.8: SAVER system architecture for Situation assessment112
Figure 4.9: OWL snippet showing data value assertion for earthquake magnitude...... 112
Figure 4.10: OWL snippet showing rule for high intensity earthquake113
Figure 4.11: Fragment of ontology showing earthquake & tsunami parameters114
Figure 4.12: Fragment of ontology showing various roles115
Figure 4.13: Fragment of ontology showing situation awareness representation115
Figure 4.14: Fragment of ontology showing different phases of tsunami116
Figure 4.15: Situation ontology showing different concepts on abstract level ……116
Figure 4.16: Object properties showing relationships between various concepts ……117
Figure 4.17: Four different scenarios used in simulations ……………………………..118
Figure 5.1: Personalised information for users using contextual information ………132
Figure 5.2: SAVER architecture design for personalised information ………………..134
Figure 5.3: Partial ontology using contextual concepts ……………………………….136
Figure 5.4: Partial ontology showing information requirements according to the various emergency phases and roles…………………………………………………………136
Figure 5.5: Interface showing levels of SA information about earthquake attributes ……139
Figure 5.6: Interface showing three levels of SA information about wave information ……140
Figure 5.7: Providing comprehension and projection about the evolving situation ……139
Figure 5.8: Example SAGAT query ……………………………………………………..145
Figure 5.9: Data for non-SAVER user …………………………………………………146
Figure 5.10: Order of the experiments …………………………………………………147
Figure 5.11: Order of experiments red circles showing the two groups of participants ………………………………………………………………………………………………………149
Figure 5.12: Comparing performance of the SAVER users (orange circles) and non-SAVER users (green circles) in the first session with the second session …………150
Figure 5.13: Comparison of Individual SA measures with and without SAVER ……151
Figure 5.14: Comparison of the SA level 1 measures with and without SAVER ……151
Figure 5.15: Comparison of the SA Level 2 measures with and without SAVER ……152
Figure 5.16: Comparison of the SA Level 3 measures with and without SAVER ……152
Figure 5.17: Comparison of average time taken by a user to answer the queries and count of wrong answers using and without using SAVER ……………………..154
Figure 5.18: Comparison of SA performance based on experience using SAVER….. 156
Figure 5.19: Comparison of SA performance based on experience without SAVER...157
Figure 5.20: HCI factors and their measurable attributes ……………………………..159
Figure 5.21: The example queries about the HCI of SAVER …………………………159
Figure 6.1: Overall goal and task division for the team of emergency managers ……168
Figure 6.2: Co-ordination between NCMC, GEOC, and LEOC ……………………..172
Figure 6.3: Example of Shared and Team Situation Awareness in GEOC …………..173
Figure 6.4: Team of teams involved in mass evacuation ……………………..176
List of Tables

Table 4.1: Planning and Intelligence (P&I) function information requirements........98
Table 4.2: Operations function information requirements100
Table 4.3: Logistics function information requirements102
Table 4.4: Welfare function information requirements103
Table 4.5: Controller function information requirements104
Table 4.6: SAVER’s output from scenario 1 ...119
Table 4.7: SAVER’s output from scenario 2 ...120
Table 4.8: SAVER’s output from scenario 3 ...121
Table 4.9: SAVER’s output from scenario 4 ...122
Table 5.1: Boolean representation of various emergency phases135
Table 5.2: Distribution of participants ..144
Table 5.3: A sample of SA query pool and example responses148
Table 5.4: Grouping of participants based on years of experience155
Table 5.5: Responses to questions related to the usability of SAVER160
Table 5.6: Responses to questions related to the functionality of SAVER161
Table 5.7: Responses to related subjective measure of SA using SAVER163
Table 6.1: SSA level 1 requirement of Situation Reporting Section (P&I) ...175
Table 6.2: SSA level 3 requirement of Situation Reporting Section (P&I) ...177
Table 6.3: TSA level 2 requirement of Situation Reporting Section (P&I) ...177
Table 6.4: Example SSA queries ...186
Table 6.5: Example TSA queries ...187
Table 6.6: Distribution of participants in teams188
Table 7.1: Levels of SSA and TSA ...207
Table 7.2: Comparison of experienced and novice emergency managers’ performance with and without SAVER ...213
Table 7.3: Correlations between of TSA, common SA and TSA as cognition and belief model ..217
List of Publications

IEEE Internal Global Humanitarian Conference (GHTC), Seattle, Washington, USA, pp. 462-466.

