Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Efficient Boosted Ensemble-based Machine Learning in the Context of Cascaded Frameworks

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Computer Science

at Massey University,
Auckland, New Zealand

Teo Sušnjak

2012
Abstract

The ability to both efficiently train robust classifiers and to design them for fast detection is an important goal of machine learning. With an ever increasing amount of available data being generated, the task of expeditiously producing real-time capable classifiers is becoming more challenging. In the context of the increasing complexity of the task, ensemble-based learning methods have proven themselves to be effective approaches for satisfying these requirements.

Ensemble methods produce a number of weak models that are strategically combined into a single classifier. They have been particularly effective when combined with boosting algorithms and strategies that structure the ensembles into cascades. The strength of cascaded-ensembles lies in the separate-and-conquer approach they employ during the training of each layer. Class decision-boundaries for trivial cases are learned in the early rounds, while more difficult decision boundaries are refined with each succeeding layer. In a two-class problem domain, non-target instances learned in initial layers are removed and replaced by more complex samples, frequently referred to as bootstrapping. With this procedure, efficient coarse-to-fine learning is accomplished.

The contribution of this thesis lies in three main areas that centre around the concept of improving the efficiency in the training and execution process. The first explored ways in which the conventional ensemble-cascades could be combined with an even more aggressive separate-and-conquer strategy that further partitions the ensemble inside each layer. The focus was on the two-class learning problem and used face detection as the medium to observe the trade-offs involved concerning both the accuracy and the efficiency of the resulting classifiers. The algorithm was further developed in a way that enabled the bootstrapping of positive samples within a cascade, alongside the conventional approach that bootstraps only the negative samples. Secondly, the negative effect of dynamic environments on static classifiers on binary class problems was considered. A method was developed which enabled the cascaded classifiers to efficiently adapt to the changing environment on domains with high volume streaming data. This environment was simulated using face detection as well. Lastly, the open problem of creating integrated multiclass cascades was researched and an algorithm was devised.

Overall, the findings have shown that invariably a trade-off is incurred between reduced training runtimes resulting from aggressive separate-and-conquer strategies and the accuracy of the final classifiers. Using the CMU MIT test dataset, the experiments showed that though the proposed positive sample bootstrapping component succeeded in significantly reducing the training runtimes without compromising the accuracy, the general decomposition strategy did lower the accuracy when compared to the benchmark Viola-Jones classifiers. The proposed adaptive cascade learning algorithm for drifting concepts was also evaluated on a face detection problem set. The results demonstrated its ability to effectively adapt to dynamic environments in high speed data streams without requiring explicit re-training of the individual classifiers. The multiclass cascaded algorithm was compared to three existing algorithms on 18 UCI datasets. It was found to be, on average, several times faster to train and to execute, while generating comparable accuracy rates. The algorithm exhibited scalability to large datasets but was found to be susceptible to producing overly complex classifiers on datasets with a large number of class labels.
Acknowledgements

My thanks to the Institute of Information and Mathematical Sciences at Massey University for enabling me to grow over the years in my academic pursuits and for fostering an environment which allowed this to take place. Thanks in particular to the faculty at the Department of Computer Science. You have inspired, encouraged and taught me not just knowledge, but the value of it. My gratitude goes to all the administration staff at the institute for their help and assistance over the years, as well as to all my colleagues from whom I have learned much.

I am grateful to the Tertiary Education Commission for providing me with a generous doctorate scholarship. I express my thanks also to the Ministry of Science and Innovation for their internship grant that enabled me to implement research and expertise arising from this research into the industrial setting. A special thanks to Compac Sorting Ltd. for their support in the final year and for providing me with an opportunity to apply my research to solving real-world problems.

I would like to extend my thanks to the members of the doctoral defence committee, Prof. Pitoyo Hartono, Prof. Alvis Fong and Assoc. Prof. Chris Scogings for their time as well as valuable input and engagement with me in a fruitful discussion. Also a special thanks to Prof. Anne de Bruin for her role as convenor of the examination.

Thanks to my friends and family for your support over the years and a special thanks to a few of you who have reviewed the initial manuscript. I look forward to now seeing and spending more time with all of you. Christoph Schumacher, without your encouragement I do not think I would have embarked on this path. Thank you for your friendship and continuous support.

Brian and Beverley for never doubting, but always believing. Expressing my gratitude to you both seems so inadequate. To my mum and dad who have unceasingly encouraged and urged me on from distant shores, thank you; ovo je i vaš uspjeh, hvala vam za sve.

Ken Hawick, my heartfelt gratitude to you for being my co-supervisor. You have been a source of wisdom, advice and encouragement during many phases of this research. To my supervisor Andre Barczak, I am so indebted to you. You have been my teacher, my mentor and have also become a close friend. I look forward to our conversations over coffee continuing for many years to come.

To my beautiful wife Sarah; I love you. You have been my rock every step of the way.

Teo Sušnjak
Auckland, New Zealand
October, 2012
Contents

1 Introduction 1
 1.1 Objectives ... 3
 1.2 Contributions .. 4

2 Ensemble-Based Machine Learning Theory 7
 2.1 Theory ... 7
 2.1.1 Ensemble Diversity .. 9
 2.1.2 Combining Ensemble Outputs 10
 2.1.3 Optimal Ensemble Training Procedures 12
 2.2 Boosting .. 14
 2.2.1 Binary Class Problems 14
 2.2.2 Multiclass Problems .. 16
 2.3 Emerging Challenges and Coarse-to-fine Learning 21
 2.3.1 Cascades of Ensembles 22
 2.3.2 Ensembles of Nested Dichotomies 27
 2.4 Summary .. 28

3 Methodology 29
 3.1 Face Detection Datasets and Feature Types 29
 3.2 Multiclass Classification Datasets 33
 3.3 Weak Learner .. 33
 3.4 Training Procedures .. 34
 3.5 Classifier Evaluation Methods 35

4 Applications of PSL to Face Detection 39
 4.1 Motivation ... 39
 4.2 Related Work ... 40
 4.3 The PSL Algorithm ... 43
 4.4 Experimental Setup ... 45
 4.5 Results ... 46
 4.6 Discussion ... 52
 4.7 Summary .. 54

5 PSL with Positive Sample Bootstrapping 57
 5.1 Motivation ... 57
 5.2 Related Work ... 58
List of Figures

2.1 Viola-Jones cascade. .. 24
2.2 Parallel cascades. ... 25
2.3 A detector tree of boosted classifiers. 27

3.1 Haar-like feature set. .. 31
4.1 The PSL cascade structure ... 42
4.2 Training runtimes in seconds for all classifiers on the four CMU MIT datasets. .. 47
4.3 Rate of learning positive samples by PSL classifiers ($\Phi = 10$). .. 48
4.4 Typical PSL convergence patterns for FPR where $\Phi = 10$. .. 49
4.5 Weak classifiers totals for each classifier. 50
4.6 ROC graph on the CMU MIT datasets 51
4.7 Total error rate on the CMU MIT test set, as a function of the training runtime. .. 52
4.8 Execution runtimes for PSL and Viola-Jones classifiers on the CMU MIT test datasets. .. 53

5.1 The propagation of the positive samples in the BPSL bootstrapping method. .. 60
5.2 Example of the positive dataset instances. 61
5.3 Training runtimes for PSL, BPSL and VJ classifiers 62
5.4 Convergence of positive samples at training. 63
5.5 Mean ROC curve with the standard deviations for a BPSL classifier .. 64
5.6 Classifier ROC graph curves on the CMU MIT dataset. 65
5.7 Cost/benefit trade-off between test error rates and training runtimes of VJ and PSL .. 66
5.8 PSL node analysis. ... 67
5.9 Examples of images learned at various nodes. 68
5.10 ROC curves for PSL and BPSL classifiers with thinning. 72
5.11 ROC curves for BPSL.r, BPSL and PSL classifiers where $\Phi = 10$. .. 75
5.12 ROC curves for BPSL.r, BPSL and PSL classifiers where $\Phi = 20$. .. 76
5.13 ROC curves for BPSL.r, BPSL and PSL classifiers where $\Phi = 15$. .. 77
5.14 Averaged training runtimes for each of the BPSL.r, BPSL and PSL classifiers .. 78

6.1 Diagram of the concept-drift learning algorithm. 88
6.2 Example of test images in a dynamic environment 91
6.3 Total false positive detections per layer 93
List of Tables

2.1 Example of a coding matrix for a four class problem. 17
3.1 Training dataset details with properties for describing the static classifier. 32
3.2 Properties of the multiclass datasets. 33
4.1 Training settings and dataset details. 46
5.1 Training settings and dataset details. 61
5.2 Comparison between the training runtimes of VJ, PSL, BPSL. 63
5.3 Cost associated with the re-sampling procedure. 79
5.4 Total weak classifiers generated by each of the training structures. 79
6.1 Dataset and static classifier training properties. 90
6.2 Characteristics of the concept-drift learning dataset and the method. 91
7.1 Classifier training runtime results. 117
(a) Cascaded.DP $\Phi = 5$ training runtime comparison. 117
(b) Cascaded.DP $\Phi = 10$ training runtime comparison. 117
(c) Cascaded.DP $\Phi = 25$ training runtime comparison. 117
(d) Cascaded.DP $\Phi = 50$ training runtime comparison. 117
7.2 Classifier accuracy results on datasets with uniform class distributions. 123
7.3 Statistical results of the Friedman and Iman-Davenport tests. 124
7.4 Classifier accuracy results on datasets with skewed class-distributions. 126
7.5 F-value results for each class on the Yeast dataset. 127
7.6 F-value results for each class on the Glass dataset. 127
7.7 F-value results for each class on the Page Blocks dataset. 127
7.8 Statistical test results for classifier accuracies on skewed-distribution datasets. 128
7.9 Multiclass execution runtimes. 129
(a) Cascaded.DP $\Phi = 5$ execution runtime comparison. 129
(b) Cascaded.DP $\Phi = 10$ execution runtime comparison. 129
(c) Cascaded.DP $\Phi = 25$ execution runtime comparison. 129
(d) Cascaded.DP $\Phi = 50$ execution runtime comparison. 129
7.10 The total numbers of weak classifiers per classifier across all datasets. 130
(a) Datasets: Letter - Iris. 130
(b) Datasets: Factors - Shuttle. 130
8.1 Results of training runtimes for all classifiers. 142
8.2 Classifier accuracy results on datasets with uniform class distributions. 145
8.3 Statistical analysis of the Friedman, Iman-Davenport and Nemenyi tests 146
8.4 Wilcoxon signed-ranks test for results on datasets with balanced class-
distributions .. 147
8.5 Classifier accuracy on datasets with biased class-distributions. 148
8.6 F-Values for the Yeast dataset .. 149
8.7 F-Values for the Satimage dataset .. 149
8.8 Statistical results of the Friedman and Iman-Davenport and Nemenyi tests 149
8.9 Wilcoxon signed-ranks test for results from datasets with biased class-
distributions .. 150
8.10 Classifier detection runtime results on all datasets 151

B.1 The configuration of the Φ value per layer of the cascade for the BPSL.r
classifier .. 163
B.2 Detection runtime comparison between flexible and fixed Φ BPSL.r classifiers 164

C.1 F-value accuracy results for the shuttle dataset. 172
C.2 F-value accuracy results for the robot navigation dataset. 172
C.3 F-value accuracy results for the satimage dataset. 172

D.1 F-Values for the Page Blocks dataset for cascaded classifiers 177
D.2 F-Values for the Shuttle dataset for cascaded classifiers 177
D.3 F-Values for the Glass dataset for cascaded classifiers 177
D.4 F-Values for the Robot Navigation dataset for cascaded classifiers 178
List of Algorithms

<table>
<thead>
<tr>
<th>No.</th>
<th>Algorithm</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AdaBoost</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>AdaBoost.M2</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>AdaBoost.OC</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>AdaBoost.ECC</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>Viola-Jones Cascade</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>PSL Algorithm</td>
<td>44</td>
</tr>
<tr>
<td>7</td>
<td>BPSL</td>
<td>59</td>
</tr>
<tr>
<td>8</td>
<td>BPSL with Re-sampling (BPSL.r)</td>
<td>74</td>
</tr>
<tr>
<td>9</td>
<td>Concept Drift Learning</td>
<td>87</td>
</tr>
<tr>
<td>10</td>
<td>PSL Multiclass Cascade</td>
<td>105</td>
</tr>
<tr>
<td>11</td>
<td>Domain-partitioning Weak Learner</td>
<td>108</td>
</tr>
</tbody>
</table>
List of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPSL</td>
<td>Bootstrapped PSL</td>
</tr>
<tr>
<td>BPSL.r</td>
<td>Bootstrapped PSL with re-sampling</td>
</tr>
<tr>
<td>CMU MIT</td>
<td>Carnegie Mellon University - Massachusetts Institute of Technology (Face detection dataset)</td>
</tr>
<tr>
<td>CTF</td>
<td>Coarse-To-Fine learning</td>
</tr>
<tr>
<td>DP</td>
<td>Domain Partitioning (Multiclass weak learner)</td>
</tr>
<tr>
<td>ECC</td>
<td>AdaBoost.ECC using Error Correcting Codes</td>
</tr>
<tr>
<td>ECOC</td>
<td>Error Correcting Output Codes</td>
</tr>
<tr>
<td>M2</td>
<td>Adaboost.M2</td>
</tr>
<tr>
<td>MCS</td>
<td>Multiple Classifier Systems</td>
</tr>
<tr>
<td>OAA</td>
<td>One-Against-All</td>
</tr>
<tr>
<td>OAO</td>
<td>One-Against-One</td>
</tr>
<tr>
<td>OC</td>
<td>AdaBoost.OC using Output Coding</td>
</tr>
<tr>
<td>PSL</td>
<td>Parallel Strong classifier within the same Layer algorithm</td>
</tr>
<tr>
<td>RIPPER</td>
<td>Repeated Incremental Pruning to Produce Error Reduction algorithm</td>
</tr>
<tr>
<td>ROC</td>
<td>Receiver Operating Curve</td>
</tr>
<tr>
<td>UCI</td>
<td>University of California Irvine (Machine learning dataset repository)</td>
</tr>
<tr>
<td>VJ</td>
<td>Viola-Jones (Ensemble-cascade algorithm)</td>
</tr>
</tbody>
</table>