GENERALISED KNOT GROUPS OF CONNECT SUMS OF TORUS KNOTS

A thesis presented in partial fulfilment of the requirements for the Degree of Master of Science in Mathematics at Massey University, Manawatu, New Zealand

Howida AL Fran
2012
Abstract

Kelly (1990) and Wada (1992) independently identified and defined the generalised knot groups \((G_n)\). The square \((SK)\) and granny \((GK)\) knots are two of the most well-known distinct knots with isomorphic knot groups. Tuffley (2007) confirmed Lin and Nelson’s (2006) conjecture that \(G_n(SK)\) and \(G_n(GK)\) were non-isomorphic by showing that they have different numbers of homomorphisms to suitably chosen finite groups. He concluded that more information about \(K\) is carried by generalised knot groups than by fundamental knot groups. Soon after, Nelson and Neumann (2008) showed that the 2-generalised knot group distinguishes knots up to reflection. The goal of this study is to show that for certain square and granny knot analogues, the difference can be detected by counting homomorphisms into a suitable finite groups. This study extends Tuffley’s work to analogues \(SK_{a,b}\) and \(GK_{a,b}\) of the square and granny knots formed from connect sums of \((a, b)\)-torus knots. It gives further information about the generalised knot groups of the connect sum of two torus knots, which differ only in their orientation.
Acknowledgments

First of all, I would like to thank my god, Allah, who gave me the strength and power to accomplish this thesis.
I begin by expressing my humble gratitude and sincere thanks to my thesis supervisor, Dr Christopher Tuffley, for his encouragement, guidance and his assistance in the improvement of this thesis. No amount of thanks can repay him for his efforts. Your advice, availability to discuss challenges, and endless encouragement has been invaluable. I hope that one day I will be a role-model to future mathematicians just as you have been to me.
I also would like to thank all the professors and doctors in the mathematics department at Massey University for all the knowledge they gave me.

On a personal level, I would like to acknowledge the on-going support and sacrifice of my children throughout this research process. Your curiosity about my work and your independence have greatly helped me be successful. Thank you for being proud of me, as I too, am so proud of you.
To my husband, your support has been essential in helping me achieve my goals. You have encouraged me not to give up and have been by my side in this and all things.
To my family, especially my mother, thank you for your continuing support and belief in me as I studied so far away. You are always in my thoughts.

I also acknowledge the financial support from the Saudi government, which has allowed me to undertake this research in New Zealand. New Zealand has opened my eyes to the person I can be, and I look forward to advancing my studies further here in the future.
Contents

Abstract

Acknowledgments

1 Introduction

1.1 Previous work ... 7
1.2 Goals of this study 8

2 Fundamental Concepts of Knot Theory

2.1 Knots .. 10
2.2 Knot diagrams ... 11
2.3 The Reidemeister moves 13
2.4 Oriented knots and mirror images 13
2.5 Links .. 15
2.6 Torus knots .. 16
2.7 The connect sum .. 17

3 Knot Groups

3.1 The fundamental group 19
3.2 Knot groups ... 21
3.2.1 The presentation of knot groups 21
3.3 Torus knots and the van Kampen theorem 24
3.4 Expressing the van Kampen generators in terms of the Wirtinger generators . 26
3.5 The meridian and the longitude 28
3.5.1 The effect of reflection on the meridian and the longitude 31
3.5.2 The meridian and the longitude of a connect sum 31

4 Generalised Knot Groups

4.1 The group G_n ... 33
4.2 The granny and square knots 35
4.2.1 The granny and square knot analogues 36

5 Group Theory

5.1 Dihedral groups ... 37
5.2 Semidirect products 39
5.3 The construction of $D_{p,q;θ}$ 40
5.3.1 Properties of $D_{p,q;θ}$ 41
5.4 Wreath products ... 43
5.5 The construction of $\mathcal{W}_{s,t;\varrho}^{h,k;\tau}$.. 44

6 The Main Result ... 47
 6.1 Strategy .. 47
 6.2 The cycle product and applications 48
 6.3 Images .. 49
 6.3.1 The meridian ... 49
 6.3.2 The longitude ... 50
 6.4 The proof of the main theorem 53
 6.4.1 Case 1: Trivial induced maps 53
 6.4.2 Case 2: Nontrivial induced maps 53
 6.4.3 Realisation .. 54

7 Summary ... 58
List of Figures

2.1 Examples of knots .. 10
2.2 The 5_1 and 5_2 knots ... 11
2.3 Triple points and tangencies 12
2.4 A knot diagram of 5_1 .. 12
2.5 Multiple diagrams for the trivial and the figure eight knots 12
2.6 The Reidemeister moves .. 13
2.7 An oriented trefoil knot. 14
2.8 Positive and negative crossings. They are also known as right- and left- handed crossing respectively. 14
2.9 A crossing change ... 14
2.10 An example of a chiral knot 15
2.11 An example of an achiral knot 15
2.12 Examples of links ... 16
2.13 A torus. ... 16
2.14 The construction of a torus 17
2.15 A (2, 3)-torus knot ... 17
2.16 The connect sum of two (2, 5)-torus knots 18

3.1 A homotopy from f to f' 20
3.2 The product f · g of two paths f and g. 20
3.3 Multiplication in the knot group 22
3.4 The Wirtinger relations .. 22
3.5 Generator for the knot group of K_0. 23
3.6 Generators for the knot group of a (2, 5)-torus knot 23
3.7 The union of two paths-connected spaces with path-connected intersection 25
3.8 A (2,3)-torus knot on the surface of a torus 26
3.9 Generators for the knot group of a (3, 5)-torus knot 27
3.10 The meridian and longitude of a solid torus. 28
3.11 The meridian and longitude of a trefoil knot. 29
3.12 The longitude of a (2,2k + 1)-torus knot 29
3.13 The figure eight knot and its mirror image 31
3.14 The meridian and the longitude of a connect sum 32

4.1 A G_n relation at a crossing of a diagram 34
4.2 The figure eight knot, with labelled generators and relations. 34
4.3 The granny and square knots 35

5.1 The elements of D_3 ... 38
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td>A pentagon with labelled vertices realises D_5 as a subgroup of S_5</td>
<td>39</td>
</tr>
<tr>
<td>5.3</td>
<td>Cycle structure of element of order $t = 5$</td>
<td>44</td>
</tr>
<tr>
<td>5.4</td>
<td>Visualising elements and group operations in the wreath product $G \wr D_5$</td>
<td>46</td>
</tr>
<tr>
<td>6.1</td>
<td>Diagram of the cycle of ψ containing f in the case where $t = 5$</td>
<td>57</td>
</tr>
</tbody>
</table>