THE RHEOLOGY OF BUTTER

A thesis presented
in partial fulfillment of the
requirements for the degree
of Doctor of Philosophy
in Food Technology
at
Massey University.

Michelle Harnett
1989.
Abstract.

A parallel plate viscoelastometer was built to perform creep compliance tests on butter and related fats. Creep movement was measured with a linear displacement transducer and recorded by a data logger designed and built for creep compliance experimentation.

A temperature of 10°C was maintained by placing the parallel plate viscoelastometer in a refrigerated incubator.

A series of preliminary experiments established the creep response was linear and that the direction in which some samples were sheared was critical. The duration of creep compliance testing was also found to affect results.

Creep behaviour of butter was assumed to be viscoelastic (based on previous studies) and was modelled with a generalized Kelvin model. Elastic and viscous parameters were fitted to the data by a Marquadt non-linear least squares curve algorithm. Continuous retardation spectra were found by plotting $L(t)$ against ln time. Data which had been both smoothed and differentiated by the methods of Savitzky and Golay (1964) showed evidence of the existence of three or four main groups of retardation mechanisms.

On removal of stress after creep compliance testing a partial recovery of strain was observed, however, samples failed to recover as much as predicted by viscoelastic theory. A second creep/recovery cycle resulted in a responses similar in magnitude to the first recovery. All fat products tested showed the same pattern of response on repeated creep/recovery cycling.

An explanation, based on the behavior of polymers, was put forward to explain the observed pattern of response. The
A number of samples were reworked. The creep curve seen on creep/recovery cycling of reworked samples was similar in shape to that seen for the original samples. However, the curves were three to four times greater than those seen for the original samples. In general, creep response was found to be inversely proportional to hardness.

The retardation spectra of reworked samples differed from those seen for the original samples in several ways. The spectra were smoother, the bulk of the spectra had moved to shorter times and they were larger than those seen for the original samples.

A survey of seasonal butter samples was also undertaken. Creep compliance parameters were found to correlate well with sectility hardness and solid. fat content.
Aim of Study.

The aims of this work are:

a) To study the rheological properties of butter and related fat products by a creep compliance method.

b) To gain a clearer understanding of the relationship between rheological properties, composition and structure of butter and related products.

c) To use this knowledge to improve the rheological properties of butter.
Acknowledgments.

I am indebted to my supervisors Dr. M. W. Taylor, Dr. J. LeLievre, Dr. R. Lambert and Dr. R. Norris, whose advice and support was gratefully received. I am also indebted to the New Zealand Dairy Research Institute who funded the project in the form of a research contract. In addition I would like to thank Alastair MacGibbon, Trevor Bissell and other members of the Milkfat Section, New Zealand Dairy Research Institute for their ideas and discussion. Invaluable technical assistance was rendered by the technical staff of the Food Technology Department, Massey University and by the Dairy Products Development Centre staff, New Zealand Dairy Research Institute. Finally, thanks to TD for moving to Palmerston North.
List of Contents.

ABSTRACT. ii

AIM. iv

ACKNOWLEDGEMENTS. v

CHAPTER ONE: AN INTRODUCTION IN THREE PARTS. 1
Part A: Rheology. 1
1A.1. Introduction. 1
1A.2. Stress and strain. 1
1A.3. Solids, liquids, plastics. 2
1A.4. Viscoelastics. 7
1A.5. Mechanical modelling. 7
1A.6. Fundamental testing. 10
 1A.6.1. Static testing. 10
 1A.6.2. Dynamic testing: 19
1A.7. Empirical testing. 22
Part B: Measurement of the rheological parameters of butter and margarine. 23
1B.1. Introduction. 23
1B.2. Fundamental techniques. 23
 1B.2.1. Creep compliance. 23
 1B.2.2. Continuous shear. 34
 1B.2.3. Dynamic testing. 37
1B.3. Empirical and imitative testing. 41
 1B.3.1. Sectility hardness. 41
 1B.3.2. Extrusion. 43
 1B.3.3. Compression. 45
 1B.3.4. Penetrometry. 47
 1B.3.5. Spreadability simulation. 50
Part C: Butter and margarine. 51
1C.1. Introduction. 51
1C.2. Butter 51
4.6.1. Creep curves. 103
4.6.2. Recovery. 114
4.6.3. Presentation of results. 114
4.6.4. Retardation spectra. 117
4.7. Preliminary experiments. 129
4.7.1. Linearity. 129
4.7.2. Orientation. 123
4.7.3. Repeatability. 141

CHAPTER FIVE: LARGE DEFORMATION TESTING. 149
5.1. Introduction. 149
5.2. Experimental method. 152
5.3. Experimental and results. 153
5.4. Discussion. 163
5.5. Conclusion. 172
5.6. Traditional sectility hardness testing vs. large deformation testing. 172

CHAPTER SIX: AN INTRODUCTION TO CREEP COMPLIANCE EXPERIMENTATION. 174
Part A 174
6A.1. Experimental. 174
6A.2. Results. 174
6A.3. Discussion. 176
Part B: Butters manufactured using different cream cooling techniques. 178
6B.1. Experimental. 178
6B.2. Results. 178
6B.3. Discussion. 179

CHAPTER SEVEN: THEORY. 181
7.1. Introduction. 181
7.2. Load cycling. 181
7.2.1. Experimental. 181
7.2.2. Results. 181
7.2.3. Discussion. 191
7.3. Reworking. 194
Chapter Eight: Butter and Anhydrous Products made from the
Same Fat.
8.1. Introduction. 213
8.2. Experimental. 213
8.3. Results.
 8.3.1. Sectility hardness and solid fat content. 214
 8.3.2. Creep compliance. 229
8.4. Discussion.
 8.4.1. Composition 235
 8.4.2. Reworking. 242

CHAPTER NINE: SEASONAL TRENDS IN FRITZ AND AMMIX BUTTER. 245
Part A: Established methods.
9A.1. Introduction. 245
9A.2. Experimental. 245
9A.3. Results and discussion.
 9A.3.1. Sectility hardness. 246
 9A.3.2. Solid fat content. 246
 9A.3.3. Comparison between sectility hardness and solid fat content. 251
 9A.3.4. Differential scanning calorimetry. 255
 9A.3.5. Fatty acid composition. 256
 9A.3.6. Triglyceride composition. 261
9A.4. Conclusion. 264
Part B: Creep compliance.
9B.1. Experimental. 265
9B.2. Results. 265
9B.3. Discussion. 271
9B.4. Conclusion. 272
CHAPTER TEN: GENERAL DISCUSSION.

 10.1.1. Equipment.
 10.1.2. Data Collection.
 10.1.3. Temperature Control.
 10.1.4. Accuracy.

10.2. Data analysis.
 10.2.1. The Viscoelastic Model.
 10.2.2 Data Analysis.
 10.2.3. Retardation Spectra.
 10.2.4. Appropriateness of the Model.

10.3. Preliminary Experiments.
 10.3.1. Linearity.
 10.3.2. Duration of Experiment.
 10.3.3. Orientation of Sample.

10.4. Load Cycling.

10.5. Products made from the same fat.

10.6 Reworked products.

10.7. Seasonal survey.

10.8. Conclusion and future work.

APPENDIX 1: Computer Programs.

APPENDIX 2: Non-linear Least Squares Curve Fitting Results.

REFERENCES.
List of Tables.

Table 1.1: Creep results reported by various workers. 26

Table 1.2: Results reported by Davis (1973) using a variety of rheological methods. 29

Table 1.3: Comparison of the results reported by Shama and Sherman (1970) and Gupta and DeMan (1985). 31

Table 2.1: Production conditions used in the manufacture of butter and anhydrous products from the same milkfat. 82

Table 2.2: Product temperatures recorded during production of butter and anhydrous products from the same milkfat. 82

Table 3.1: Composition of standard anhydrous milkfat. 87

Table 3.2: Normalizing factors for fatty acid weight percentages, relative to C\(_{16}:0\). 87

Table 4.1: The effect of varying the number of exponential terms used in fitting data to the prefined model. (Sample TUI August '86, 10\(^{\circ}\)C.) 110

Table 4.2: Parameters fitted to creep compliance data by two methods, exponential peeling and non-linear curve fitting. 113

Table 4.3: A comparison of retardation times calculated by a least squares curve fitting program (NONLIN) and taken from continuous retardation spectra, Figures 4.20 and 4.22. 128

Table 4.4: Strain responses observed on the application of stress. 131

Table 4.5: Creep compliance parameters found for one sample on the application of different stresses. 131

Table 4.6: Creep compliance parameters obtained from patted Fritz butters sheared in the three possible directions. 134

Table 4.7: Recovery data for the butter TUI April '87. 136

Table 4.8: Creep compliance parameters obtained from patted Fritz butters sheared in two directions. 136

Table 4.9: Creep compliance parameters obtained from unpatted Fritz butters sheared in two directions. 138

Table 4.10: Creep compliance parameters fitted to creep curves observed for the butter TT January, 1986. 144

Table 4.11: Creep compliance parameters fitted to creep curves observed for the butter TT April, 1986. 147

Table 5.1: Percentage solid fat determined by NMR and traditional sectility hardness values at 10\(^{\circ}\)C for butters used in large deformation testing. 154
Table 5.2: An example of data recorded by the Perkin Elmer data station during large deformation testing.

Table 5.3: Comparison of sectility hardness testing (traditional) with shear testing.

Table 5.4: Sectility hardness results (C R Analyser).

Table 5.5: The fit of various models to shear speed vs. force data found at 5, 10 and 15°C for four samples expressed as correlation coefficients.

Table 6.1: Rheological parameters found for creep and recovery experiments of differing length.

Table 6.2: Sectility hardness values at 10°C found for butters manufactured from cream subjected to different cream cooling techniques.

Table 6.3: Creep compliance parameters fitted to the creep response of butters manufactured from cream subjected to different cream cooling techniques.

Table 7.1: Sectility hardnesses and solid fat contents of selected determined at 10°C.

Table 7.2: Creep compliance parameters for samples collected throughout the year.

Table 7.3: Overall creep response displayed by samples collected throughout the year.

Table 7.4: Correlation coefficients found between various creep compliance parameters and sectility hardness for samples of butter collected throughout the year.

Table 7.5: Creep compliance parameters fitted to original and reworked butter pairs.

Table 7.6: Percentage changes seen in creep response on the reworking of butter samples.

Table 7.7: Percentage change found in selected parameters on comparing first and second creep responses.

Table 7.8: Retardation times found for original and reworked butters.

Table 8.1: Sectility hardness results, 10°C.

Table 8.2: Solid fat contents as determined by NMR.

Table 8.3 Creep compliance parameters for original and reworked samples of butter, plasticized milkfat and a milkfat/oil blend manufactured from the same fat source.

Table 8.4: Correlation coefficients found between various creep compliance parameters and sectility hardness for original and reworked butters.
plasticized milkfat and milkfat/oil blend manufactured from the same fat.

Table 8.5: Percentage changes seen in various parameters going from original to reworked.

Table 8.6: Comparison of second creep response with the first creep response.

Table 9.1: The sectility hardness of samples of patted butter determined at 10°C.

Table 9.2: Percentage solid fat as determined by NMR for samples of milkfat extracted from Fritz butter.

Table 9.3: Percentage solid fat as determined by NMR for samples of milkfat extracted from Ammix butter.

Table 9.4: Fatty acid composition of Fritz butters collected during the 1985 - 1986 season.

Table 9.5: Fatty acid composition of Ammix butters collected during the 1985 - 1986 season.

Table 9.6: Triglyceride composition of Fritz butters collected during the 1985 - 1986 season.

Table 9.7: Triglyceride composition of Ammix butters collected during the 1985 - 1986 season.

Table 9.8: Creep compliance parameters fitted to butters.

Table 9.9: Correlation coefficients found between sectility hardness and solid fat content and creep compliance parameters for a number of butters.

Table 9.10: Creep compliance parameters for samples collected throughout the year.
List of Figures.

Figure 1.1: Rate of shear vs. shear for a Bingham plastic. 6

Figure 1.2: Standard rheological models: a) Hookean spring, b) Newtonian dashpot, c) St Venant slider. 8

Figure 1.3: Rheological models: a) Bingham plastic, b) Maxwell unit, c) Kelvin unit and d), Burgers model. 9

Figure 1.4: Typical creep and recovery curve for a plastic fat. 13

Figure 1.5: A model creep curve. 14

Figure 1.6: The generalized Kelvin model. 16

Figure 1.7: Stress response to sinusoidal strain. 21

Figure 1.8: Creep parameters reported by Gupta and DeMan (1985) plotted against force used. 33

Figure 1.9: The modified Bingham body. 36

Figure 1.10: a) The Viscous-Maxwell-Bingham model (Deiner and Heldman, 1986), b) stuctural application of the model. 39

Figure 1.11: The Pasilac HCT 2 continuous buttermaker. 53

Figure 1.12: Differential scanning calorimetry melting thermogram of a Fritz butter. 57

Figure 1.13: Diagram of a section through a scraped surface heat exchanger. 64

Figure 1.14: Continuous soft margarine production (Erikson, 1985). 65

Figure 1.15: Differential scanning calorimetry melting thermogram of a table margarine. 69

Figure 1.16: The Ammix process. 74

Figure 1.17: Differential scanning calorimetry melting thermogram of an Ammix butter. 77

Figure 2.1: Plant configuration used in the manufacture of butter and anhydrous products from the same fat. 81

Figure 4.1: The parallel plate viscoelastometer. 93

Figure 4.2: Differential scanning calorimetry melting thermogram illustrating the changes in solid fat content with temperature at 10 and 150C. 95

Figure 4.3: Fluctuation in temperature observed over a forty hour period. 97
Figure 4.4: Data collection system.

Figure 4.5: Chart recorder trace seen on performing a creep compliance experiment.

Figure 4.6: Plan and side views of the sample cutter.

Figure 4.7: A creep and recovery curve.

Figure 4.8: A creep compliance curve showing extrapolation back to 0 time.

Figure 4.9: Ln Q plotted against time showing the straight line portion of the graph extrapolated to 0.

Figure 4.10: Creep and recovery curves showing instantaneous compliance, the sum of compliances recovered and the unrecovered strain.

Figure 4.11: Result presentation by the curve fitting program NONLIN.

Figure 4.12: An ideal continuous retardation spectrum calculated for the sample MAN May 1987.

Figure 4.13: Retardation spectrum found for the sample MAN May 1987 using raw data.

Figure 4.14: Continuous retardation spectrum found for MAN May 1987 after smoothing raw data.

Figure 4.15: The ideal continuous retardation spectrum found for MAN May 1987 after smoothing.

Figure 4.16: The continuous retardation spectrum found for MAN May 1987 after differentiating the raw data.

Figure 4.17: The ideal continuous retardation spectrum found for MAN May 1987 after differentiating according to the method of Savitzky and Golay (1964).

Figure 4.18: The ideal continuous retardation spectrum found for MAN May 1987 after a 13 point cubic differentiation.

Figure 4.19: The ideal continuous retardation spectrum found for MAN May 1987 after a 7 point quartic differentiation.

Figure 4.20: The continuous retardation spectrum found for MAN May 1987 after smoothing and differentiating according to the method of Savitzky and Golay (1964).

Figure 4.21: The ideal continuous retardation spectrum found for MAN May 1987 after smoothing and differentiating according to the method of Savitzky and Golay (1964).

Figure 4.22: The continuous retardation spectrum found for MAN April 1987 after smoothing and differentiating according to the method of Savitzky and Golay.
Figure 4.23: The ideal continuous retardation spectrum found for MAN April 1987 after smoothing and differentiating according to the method of Savitzky and Golay (1964).

Figure 4.24: Three dimensional axes imposed on a pat of butter.

Figure 4.25: Operating principles of the Sig FD140 patter.

Figure 4.26: Creep compliance curves found for the sample TT January '86.

Figure 4.27: Creep compliance curves found for the sample TT April '86.

Figure 5.1: Front and side views of the apparatus attached to the C R Analyser used for shear testing.

Figure 5.2: Force vs. shear speed for the sample TUI February 1987.

Figure 5.3: Force vs. shear speed for the sample MAN May 1987.

Figure 5.4: Force vs. shear speed for the sample TT February 1987.

Figure 5.5: Force vs. shear speed for the sample TT March 1987.

Figure 5.6: Shear failure stress plotted against temperature.

Figure 5.7: Stress vs. distance moved by the probe.

Figure 5.8: Force vs. shear speed for both shear testing and secility hardness testing, sample MAN May 1987.

Figure 5.9: Force vs. shear speed for both shear testing and secility hardness testing, sample TT March 1987.

Figure 7.1: Typical creep compliance curve seen on repeatedly applying and removing stress.

Figure 7.2: Continuous retardation spectra found for the butter TUI April 1987, a) first creep response, b), second creep response.

Figure 7.3: Continuous retardation spectra found for the butter TT March 1987, a) first creep response, b), second creep response.

Figure 7.4: First and second creep curves observed for the buter TUI March 1987.

Figure 7.5: Continuous retardation spectra found for the butter TUI March 1987, a) first creep response, b), second creep response.

Figure 7.6: Continuous retardation spectra found for the butter TT Feb. 1987, a) first creep response, b), second creep response.

Figure 7.7: Continuous retardation spectra found for the reworked butter TUI March 1987, a) first creep response, b), second creep response.
Figure 7.8: Continuous retardation spectra found for the reworked butter TT Feb. 1987, a) first creep response, b) second creep response.

Figure 8.1a: Differential scanning calorimetry melting thermogram found for original plasticized milkfat.

Figure 8.1a: Differential scanning calorimetry melting thermogram found for reworked plasticized milkfat.

Figure 8.2a: Differential scanning calorimetry melting thermogram found for original milkfat/oil blend.

Figure 8.2b: Differential scanning calorimetry melting thermogram found for reworked milkfat/oil blend.

Figure 8.3: Continuous retardation spectra found for plasticized milkfat: a) initial creep response, b) second creep response.

Figure 8.4: Continuous retardation spectra found for butter: a) initial creep response, b) second creep response.

Figure 8.5: Continuous retardation spectra found for milkfat/oil blend: a) initial creep response, b) second creep response.

Figure 8.6: Continuous retardation spectra found for reworked plasticized milkfat: a) initial creep response, b) second creep response.

Figure 8.7: Continuous retardation spectra found for reworked butter: a) initial creep response, b) second creep response.

Figure 8.8: Continuous retardation spectra found for reworked milkfat/oil blend: a) initial creep response, b) second creep response.

Figure 9.1: The variation of sectility hardness with season.

Figure 9.2: The variation of percentage solid fat with season.

Figure 9.3: Solid fat content plotted against sectility hardness showing lines of best fit for all samples and Fritz and Ammix butters separately.

Figure 9.4: Differential scanning calorimetry melting thermograms found for October and December Ammix butters.

Figure 9.5: Weight percentages of C_{16:0} and C_{18:1} for Fritz and Ammix butters collected over the '85 - '86 season.

Figure 10.1: A creep and recovery curve.

Figure 10.2: Typical creep compliance curve seen on repeatedly applying and removing stress.

Figure 10.3: Proposed rheological models to represent the creep compliance behaviour of butter.