Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
COMPUTATIONAL COMPLEXITY OF ELITIST POPULATION-BASED EVOLUTIONARY ALGORITHMS

A thesis presented in partial fulfilment of the requirements for
the degree of
Doctor of Philosophy
in
Computer Science
at Massey University, Palmerston North,
New Zealand.

Aram Ter-Sarkisov

2012
Contents

Acknowledgements xi

Abstract xii

List of Publications xiv

Notation xvi

1 Introduction 1

1.1 Introduction to Evolutionary Computation 1
1.2 Motivation 3
1.3 Main results 3
1.4 Outline of the thesis 5

2 Related Work 7

2.1 Schemata Theorem 7
2.1.1 Criticism of Schemata Theorem 9
2.1.2 Alternative explanation of EA efficiency .. 9
2.2 Convergence Analysis 10
2.3 Runtime Analysis 12
2.3.1 Runtime analysis of \((\mu + 1)\) and \((1 + \lambda)\) EAs 14
2.3.2 Runtime analysis of \((\mu + \lambda)\) EAs 15
2.4 Review of tools used for analyzing EAs 16
2.4.1 Fitness-Based Partition and Artificial Fitness Levels 17
2.4.2 Gambler’s Ruin and Coupon Collector’s Problem 17
2.4.3 Potential/Auxiliary Functions 19
2.4.4 Analysis of Typical runs ... 20
2.4.5 Structure of individuals in the population 20
2.5 Asymptotic notation .. 21
2.6 The No Free Lunch theorem and Analysis of computer algorithms . 22
2.7 Parallel computers .. 23

3 The K-Bit-Swap Genetic Operator ... 24
3.1 Explanation of the K-Bit-Swap Genetic Operator 24
3.2 Algorithms and Experimental setup 26
3.2.1 Problems selected for testing 27
3.3 Setup and Analysis of Statistical Tests 33
3.3.1 Statistical Analysis .. 37
3.4 Conclusions ... 38

4 Lower Bounds on the Runtime .. 40
4.1 Main results .. 40
4.2 Structure of the population and the recombination pool 41
4.3 Algorithms ... 43
4.4 Problems ... 44
4.4.1 OneMax ... 45
4.4.2 Royal Roads .. 45
4.5 Population-Based Evolutionary Algorithms and Distribution of Species 47
4.6 Runtime analysis of $(1 + 2)EA_{1BS}$ solving OneMax Problem 49
4.7 Main model of the $(\mu + \lambda)$ Algorithm on the OneMax Test Function 51
4.7.1 Runtime analysis of $(\mu + \lambda)EA_{1BS}$ on the OneMax problem 52
4.7.2 Asymptotic runtime of $(\mu + \lambda)EA_{1BS}$ on the OneMax Test function ... 56
4.7.3 Runtime analysis of $(\mu + \lambda)RLS$ on the OneMax Test Function 57
4.7.4 Asymptotic runtime of $(\mu + \lambda)RLS$ on the OneMax Test function ... 58
4.8 Main model of the $(\mu + \lambda)$ Algorithm on the Royal Roads Test Function ... 59
4.8.1 Runtime analysis of $(\mu + \lambda)EA_{1BS}$ on the RR Test Function 60
4.8.2 Asymptotic runtime of \((\mu + \lambda)EA_{1BS}\) on the RR Test Function 62
4.8.3 Runtime analysis of \((\mu + \lambda)RLS\) on the RR Test Function 64
4.8.4 Asymptotic runtime of \((\mu + \lambda)RLS\) on the RR Test Function 65
4.9 Numerical results ... 66
4.10 Conclusions .. 84

5 Upper Bounds on the Runtime 86
5.1 Main results ... 87
5.2 The Elitism Levels Traverse Mechanism 88
5.3 Upper bounds on the OneMax test function 91
 5.3.1 Simple upper bound on OneMax 92
 5.3.2 Refined upper bounds on OneMax 96
 5.3.3 Use of \(<\alpha,\alpha>\) pair 101
 5.3.4 Generations vs Function evaluations 101
 5.3.5 Comparison to earlier results 102
5.4 Upper Bounds on the Royal Roads test function 102
 5.4.1 The birth-and-death Markov Chain for Royal Roads 104
 5.4.2 Upper bounds on the Royal Roads problem 106
 5.4.3 Proof of the lower bound on the probability of advancing to
 the next artificial auxiliary level 116
 5.4.4 Lower bounds on the probabilities involving \(\eta\) species in
 Phase 2 .. 119
5.5 Approximation of the quasi-stationary distribution of super-elite
 species in Phase 1 .. 121
 5.5.1 Slow progress rate (Poisson approximation) 123
 5.5.2 Fast progress rate (Normal approximation) 123
5.6 Conclusions .. 125

6 Summary, Conclusions and Future Work 128
A Results of Numerical Experiments 133
B Concepts from Probability Theory 147
List of Tables

1.1 Canonical Genetic Algorithm ... 2
3.1 The K-Bit-Swap Genetic Operator ... 25
3.2 Pseudocode of EAs in Chapter 3 .. 27
3.3 Parameter settings for the problem set .. 32
3.4 Benchmark settings ... 32
3.5 Estimate of the probability of failure, Equation 3.3 36
3.6 Estimate of the conditional probability of success, Equation 3.4 36
3.7 Estimate of the conditional expectation, Equation 3.5 37
4.1 $(\mu + \lambda)E_{A_{BS}}$.. 44
4.2 $(\mu + \lambda)RLS$... 44
4.3 Selection Function .. 45
4.4 Set of parameters used for OneMax test function 66
4.5 Set of parameters used for the RR test function 67
List of Figures

3.1 Comparison of K-Bit-Swap to simple (segment) crossover, 2-point simple (segment) crossover and Uniform crossover 25
3.2 The global solution for the trivial k-means problem. Darker points are data, lighter are centroids 33

4.1 Distribution of the elite species in the population of $(\mu + \lambda) \text{EA}_{1BS}$ solving OneMax Test Function for $\mu = \lambda = 500$ and stopped at the achievement of the global optimum 67
4.2 Distribution of the elite species in the population of $(\mu + \lambda)\text{RLS}$ solving OneMax Test Function for $\mu = \lambda = 500$ and stopped at the achievement of the global optimum 68
4.3 Probability of success of $(\mu + \lambda)\text{RLS}$ solving OneMax Test Function. 69
4.4 Numerical runtime estimate for $(\mu + \lambda)\text{EA}_{1BS}$ solving OneMax Test Function for different population sizes. 70
4.5 Numerical runtime estimate for $(\mu + \lambda)\text{RLS}$ solving OneMax Test Function for different population sizes. 71
4.6 Theoretical and numerical estimate for $(\mu + \lambda)\text{EA}_{1BS}$ solving OneMax Test Function 72
4.7 Theoretical and numerical estimate for $(\mu + \lambda)\text{RLS}$ solving OneMax Test Function 73
4.8 Distribution of the elite species in the population of $(\mu + \lambda) \text{EA}_{1BS}$ solving Royal Roads Test Function for $\mu = \lambda = 500$ and stopped at the achievement of the global optimum 74
4.9 Distribution of the elite species in the population of $(\mu + \lambda)\text{RLS}$ solving Royal Roads Test Function for $\mu = \lambda = 500$ and stopped at the achievement of the global optimum ... 75

4.10 Probability of success of $(\mu + \lambda) \text{EA}_{1BS}$ solving Royal Roads Test Function. For $n = 32, 64$ it is always almost 1 76

4.11 Probability of success of $(\mu+\lambda)\text{RLS}$ solving Royal Roads Test Function. For $n = 32, 64$ it is always almost 1 77

4.12 Numerical runtime estimate for $(\mu + \lambda)\text{EA}_{1BS}$ solving Royal Roads Test Function for different population sizes. The positive effect of the population size measured in the number of generations is obvious. 78

4.13 Numerical runtime estimate for $(\mu + \lambda)\text{RLS}$ solving Royal Roads Test Function for different population sizes. The positive effect of the population size measured in the number of generations is obvious. 79

4.14 Theoretical and numerical bounds for $(\mu + \lambda)\text{EA}_{1BS}$ solving Royal Roads Test Function .. 80

4.15 Theoretical and numerical bounds for $(\mu + \lambda)\text{RLS}$ solving Royal Roads Test Function .. 81

A.1 Conditional probability of success and runtime of $(\mu + \lambda)\text{EA}_{KBS}$ vs $(\mu + \lambda)\text{EA}_{-KBS}$ on the Rosenbrock test function 133

A.2 Conditional probability of success and runtime of $(\mu + \lambda)\text{EA}_{KBS}$ vs $(\mu + \lambda)\text{EA}_{-KBS}$ on the Rastrigin test function 134

A.3 Conditional probability of success and runtime of $(\mu + \lambda)\text{EA}_{KBS}$ vs $(\mu + \lambda)\text{EA}_{-KBS}$ on the Ackley test function 134

A.4 Conditional probability of success and runtime $(\mu + \lambda)\text{EA}_{KBS}$ on the Royal Roads test function. Algorithms with other parameter settings do not solve the problem in the set number of generations. 135

A.5 Conditional probability of success and runtime of $(\mu + \lambda)\text{EA}_{KBS}$ vs $(\mu + \lambda)\text{EA}_{-KBS}$ on the Four Peaks test function 135

A.6 Conditional probability of success and runtime of $(\mu + \lambda)\text{EA}_{KBS}$ vs $(\mu + \lambda)\text{EA}_{-KBS}$ on the trivial TSP .. 136
A.7 Conditional probability of success and runtime of \((\mu + \lambda)EA_{KBS}\) on the TSP on US Capital Cities. Algorithms with KBS do not solve the problem in the set number of generations 136

A.8 Probability of success \((\mu + \lambda)EA_{KBS} vs (\mu + \lambda)EA_{KBS}\) on the trivial k-means clustering problem 137

A.9 Probability of success \((\mu + \lambda)EA_{KBS} vs (\mu + \lambda)EA_{KBS}\) on the random k-means clustering problem 137

A.10 Histograms of bootstrap estimate of the difference in means for the Rosenbrock function: probability of failure, conditional probability of success, runtime ... 138

A.11 Histograms of bootstrap estimate of the difference in means for the Rastrigin function: probability of failure, conditional probability of success, runtime ... 139

A.12 Histograms of bootstrap estimate of the difference in means for the Ackley function: probability of failure, conditional probability of success, runtime ... 140

A.13 Histograms of bootstrap estimate of the difference in means for the Royal Roads function: probability of failure, and conditional probability of success ... 141

A.14 Histograms of bootstrap estimate of the difference in means for the Four Peaks function: probability of failure, conditional probability of success, runtime ... 142

A.15 Histograms of bootstrap estimate of the difference in means for the TSP on a circle: probability of failure, conditional probability of success, runtime ... 143

A.16 Histograms of bootstrap estimate of the difference in means for the TSP on US Cities: probability of failure and conditional probability of success ... 144

A.17 Histograms of bootstrap estimate of the difference in means for the trivial k-means clustering problem: probability of failure, conditional probability of success, runtime ... 145
A.18 Histograms of bootstrap estimate of the difference in means for the
random k-means clustering problem: probability of failure, condi-
tional probability of success, runtime 146
Für meine Großeltern, Bertha und Edward
Acknowledgements

I would like to thank first of all my supervisors, Associate Professor Stephen Marsland, Professor Chin-Diew Lai and Doctor Barbara Holland. Without their guidance and support this thesis would never be possible. I would like to thank everyone who was helping me in many ways throughout more than three past years, especially my parents, my girlfriend, my girlfriend’s parents and grandparents.
Abstract

Evolutionary Algorithms (EAs) are a modern heuristic algorithm that have proven efficiency on a large number of real-life problems. Despite the rich history of applications understanding of both how and why EAs work is lagging far behind. This is especially true for one of the main components of EAs, that is hypothesized by many to underlie their efficiency: population.

The first problem considered in this thesis is the introduction of a recombination operator, K-Bit-Swap (KBS) and its comparison to mainstream operators, such as mutation and different types of crossover. A vast amount of statistical evidence is presented that shows that EAs using KBS outperform other algorithms on a whole range of problems. Two problems are selected for a deep theoretical analysis: OneMax and Royal Roads.

The main problem of modeling EAs that use both population and a pool of parents is the complexity of the structures that arise from the process of evolution. In most cases either one type of species is considered or certain simple assumptions are made about fitness of the species.

The main contribution of this thesis is the development of a new approach to modeling of EAs that is based on approximating the structure of the population and the evolution of subsets thereof. This approach lies at the core of the new tool presented here, the Elitism Levels Traverse Mechanism that was used to derive upper bounds on the runtime of EAs. In addition, lower bounds were found using simpler assumptions of the underlying distribution of species in the population.
The second important result of the approach is the derivation of limiting distributions of a subset of the population, a problem well-known in areas such as epidemiology. To the best of the author’s knowledge, no such findings have been published in the EA community so far.
List of Publications

Notation

The notation for species, $\alpha^* \ldots \eta$ is used to denote both the type and the size of the type, i.e. instead of $|\alpha^*| \ldots |\eta|$.

- α Elite species
- α^* Super-elite species
- β Non-elite species with the next-best fitness to α
- β^* Elite species with the next-best auxiliary value to α^*
- γ Non-elite species other than β
- γ^* Elite species other than α^* and β^*
- δ Proportion of elite species in the population
- δ^* Proportion of super-elite species in the population
- η All non-elite species in the population (both β and γ)
- φ Probability to swap bits between two parents in the recombination pool
λ Size of the recombination pool

μ Size of the population

K Number of bins (plateaus of fitness) in a string

M Size of the bin (length of the plateau of fitness)

M Total number of types of infections in the population (only in Section 5.2)

m_j Number of species with infection type j (only in Section 5.2)

m_{1,\delta^*\alpha} Mean first hitting time of the absorbing state $\delta^*\alpha$
in a Markov Chain

n Length of the string (total number of bits in the string)

N Population size (only in Section 2.3.2)

(μ, λ) Evolutionary Algorithm with population size μ and recombination pool
 size λ, no elitism

$(\mu + \lambda)$ Evolutionary Algorithm with population size μ and recombination pool
 size λ using some form of elitism

$P(H_j)$ Probability to select j pairs of elite parents (1BS) or j elite parents (RLS)
 into the recombination pool

$P(G_k)$ Probability to evolve at least one higher-ranked offspring given k
improvements so far

$P(G_{0k})$ Probability to fail to evolve a higher-ranked offspring given k
improvements so far
$P(\alpha)$ Probability to observe α elite parents in the population (Uniform)

$P_{\text{sel},\alpha}$ Probability to select an elite pair (1BS) or species (RLS) into the recombination pool given α elite species in the population

P_{swap} Probability to swap bits between parents using the KBS operator

P_{flip} Probability to flip bits in a parent using RLS

rv Random variable

S_{11} The first expression in Phase 1

$S_{11}(\alpha^*)$ The summand in the first expression in Phase 1

S_{12} The second expression in Phase 1

S_{21} The first expression in Phase 2

S_{22} The second expression in Phase 2

$E\tau$ Mean first hitting time in a Markov Chain

s_k k^{th} bin in the string

s whole string

$V(s_k)$ Auxiliary value of k^{th} bin in the string (also V_k)

$V(s)$ Auxiliary value of the whole string (also V_s)