Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
An investigation into the nutritional and physicochemical properties of extruded products containing tomatoes

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy

in

Food Technology

at Massey University, Palmerston North, New Zealand

Zeinab Dehghan-Shoar

2012
Abstract

Extruded expanded products are becoming an important part of the diet in today's fast-paced life, however due to the presence of high amounts of fully gelatinised starch and low amounts of other nutrients, regular consumption of these products can result in health issues such as obesity and cardiovascular disease. Limited information is available on the addition of tomato derivatives that contain fibre and lycopene, the red pigment of tomatoes, to extruded products. Furthermore, the effect of extrusion processing on lycopene, especially how this process may affect lycopene bioavailability is not known. The aim of the present study was to evaluate the possibility of adding tomato derivatives, mainly tomato waste skin, to improve the nutritional value of extruded snacks without detracting from their organoleptic properties.

Varying the formulation of the extruded products showed that ingredients that have higher starch contents such as corn and rice as compared with wheat, and also lycopene sources that are resistant to shear such as tomato skin as compared with tomato paste, result in higher lycopene retention values in the final products. Although, the utilization of tomato skin alone resulted in hard and dense products, the addition of limited amounts of tomato paste to the tomato skin resulted in consumer acceptable products.

In-vitro digestion of the extruded products containing tomato derivatives showed that a large portion of the lycopene in the extruded products was released into micelles, thus it was potentially bioavailable. The uptake rate by Caco-2 cells (a human carcinoma cell line) from the extruded product was similar to the unextruded control. The utilization of tomato paste powder in the extruded snacks significantly reduced the starch digestibility, while tomato skin was less effective.
Finally, the majority of lycopene present in the extruded products containing tomatoes was shown to be inaccessible to solvent extraction and only after digestion was it able to be extracted. Enzymatic hydrolysis of the extruded product confirmed that lycopene was associated with the starch component of the food matrix and an amylolytic digestion procedure was required to break the bonds with starch and release the lycopene.

The findings from the present study confirm that it is possible to produce consumer acceptable extruded tomato products that contain bioavailable lycopene and fibre. The results obtained improve our understanding on the fate of heat-labile molecules such as lycopene during extrusion cooking and can have potential applications for the industry.
Acknowledgements

Although the course of doctoral studies has been a long, sometimes tiresome journey, at the same time it has been rewarding and progressive. The thesis could not have been completed without the assistance of my supervisors. Thus, I would like to express my deepest gratitude to Dr. Gordon Reynolds for his continuous support and guidance at each step of the thesis, his enthusiasm and dedication to my project. I am deeply grateful to him for accepting to be my supervisor; it has been a great privilege and honour for me.

I am also sincerely grateful to Mr. Allan Hardacre, acting as my co-supervisor, for his immense patience, scientific insight and constructive criticisms throughout my doctoral studies. His critical way of thinking to satisfy both scientific and commercial point of views for my project has been a learning experience.

I would also like to thank my co-supervisor, Professor Charles Brennan, for starting me off with the doctoral studies, his interest and scientific input towards the project. His assistance in receiving financial support during the course of my doctoral studies is deeply appreciated. Also, I am greatly thankful to Professor Gerrit Meerdink for his encouragements, support and intriguing discussions.

I am truly grateful to the New Zealand International Doctoral Research Scholarship (Education New Zealand) and Massey University Doctoral Scholarship for financial support through the course of my studies.

My deepest gratitude goes to Professor Steve Flint and Professor Ravindran Ravindran for their kindness, encouragements and support throughout my study especially in difficult
times. I would also like to gratefully thank Professor Richard Archer for his time and supportive comments on my project.

I am thankful to the staff of Institute of Food, Nutrition and Human Health especially Mr. Garry Radford, Mr. Steve Glasgow, Ms. Michelle Tamehana and Mr. Warwick Johnson for their assistance in the lab and providing me with the equipment and material that I needed in the least amount of time. I am also extremely grateful to Dr. Brian Wilkinson and Associate Professor Matt Golding for their comments and advice on my project in several occasions. I am also truly thankful to Ms. Eteta Trueman, Ms. Yvonne Parkes, Ms. Denise Mist and Ms. Christine Ramsey for their assistance in so many different ways throughout the years.

I would like to thank the staff of Plant and Food Institute, especially Dr. Juliet Ansell for her assistance in the cell culture trials, Dr. John Monro for his support, guidance and advice on the in-vitro digestion models and Dr. Suman Mishra for her kindness to show me the starch digestion procedure carried out in that respected Institute. I am also grateful to David Lewis for his kind gesture to assist me for the HPLC analysis of my samples, also my dear colleague and friend, Tafadzwa Mandimika, for her assistance for the cell culture trial and her sympathetic comments throughout my study.

I am especially thankful to Mr. Willem Van De Veen (Heinz Watties) and Dr. Collin Brown for supplying me with the tomato derivatives. My sincere appreciation goes to Dr. Jhavier Parada and Mr. Bob Stewart for showing me their technique for in-vitro digestion. I am gratefully thankful to Mr. Palash Biswas for providing me with his lovely tomatoes and Professor Julian Heyes for his thoughtful comments and advice.
I have been privileged to have found great friends and office mates who have listened and supported me throughout the doctoral study. I will always remember the fun-filled lunches and gatherings we had together. I would like to especially thank my friends; Ms. Norfeza Md. Nor, Ms. Oni Yularti, Ms. Elham Khanipour, Ms. Sandra Kim, Dr. Anwesha Sarkar and Ms. Lakshmi Chaitanya Madinani, who have inspired and motivated me with their advice and suggestions.

Finally, I cannot thank my family enough for their love, kindness and support throughout my life especially my study. I am more than grateful to my father, Mr. Majid Dehghan-Shoar, for always being there, providing me with a safe, relaxed environment and constant motivation and support. I am thankful to my mother, Ms. Tahereh Goodarzi, who I miss dearly but her thoughts and memories have constantly inspired me and pushed me forwards during my study. I am sincerely grateful to my dear brother, Mr. Mohammad-Hossein Dehghan-Shoar, for his patience and providing thoughtful solutions to my problems every time. I am thankful to my husband, Mr. Abbas Khodamoradi-Dashtaki, for beautifying my life, for his love, patience, support and thoughtfulness through my doctoral studies and for helping me deliver the best I can for my PhD project.
Table of Content

ABSTRACT ... I

ACKNOWLEDGEMENTS ... III

TABLE OF CONTENT ... VI

LIST OF FIGURES.. XII

LIST OF TABLES ... XVII

LIST OF EQUATIONS .. XX

LIST OF PEER-REVIEWED PUBLICATIONS AND CONFERENCE PROCEEDINGS.......................... XXI

CHAPTER ONE INTRODUCTION.. 1

CHAPTER TWO REVIEW OF LITERATURE .. 7

2.1. EXTRUSION COOKING... 7

2.1.1. Introduction ... 7

2.1.2. Extrusion process ... 8

2.1.3. Physical characteristics of extruded products.. 9

2.2. CHEMICAL CHANGES DURING EXTRUSION.. 11

2.2.1. Carbohydrates and starch ... 11

2.2.2. Carotenoids and lycopene .. 14

2.3. EFFECT OF EXTRUSION ON STARCH DIGESTIBILITY AND LYCOPENE BIOACCESSIBILITY 19

2.3.1. Introduction ... 19
2.3.2. Effect of extrusion cooking on starch digestibility ... 19

2.3.3. The effect of extrusion cooking on carotenoid bioavailability ... 21

2.4. Production of extruded products derived from tomatoes .. 24

2.5. Concluding remarks ... 26

CHAPTER THREE MATERIALS AND METHODS .. 30

3.1. Introduction... 30

3.2. General materials and methods .. 30

3.2.1. Materials.. 30

3.2.2. General methods... 31

3.3. Analytical methods developed .. 40

3.3.1. Lycopene extraction and quantification from extruded snacks containing tomato skin ... 40

3.3.2. Optimization of in-vitro digestion procedure to simultaneously measure lycopene and starch bioavailability 58

CHAPTER FOUR EFFECT OF RAW INGREDIENTS ON THE PHYSICOCHEMICAL CHARACTERISTICS OF EXTRUDED CORN-TOMATO PRODUCTS .. 74

4.1. Effect of starch and tomato source on physicochemical characteristics of extruded products .. 75

4.1.1. Abstract.. 75

4.1.2. Introduction... 75

4.1.3. Methods and material... 77

4.1.4. Results and Discussion... 80

4.1.5. Conclusion.. 90
4.2. EFFECT OF VARIOUS RATIOS OF TOMATO SKIN AND TOMATO PASTE ON PHYSICOCHEMICAL
CHARACTERISTICS OF CORN-BASED EXTRUDED PRODUCTS .. 91

4.2.1. Abstract .. 91

4.2.2. Introduction ... 92

4.2.3. Methods and material .. 93

4.2.4. Results and discussion .. 96

4.2.5. Conclusion ... 108

CHAPTER FIVE EFFECT OF RAW INGREDIENTS ON THE NUTRITIONAL CHARACTERISTICS
OF EXTRUDED CORN-TOMATO PRODUCTS .. 109

5.1. ABSTRACT .. 109

5.2. INTRODUCTION .. 110

5.3. MATERIALS AND METHODS .. 112

5.3.1. Ingredients ... 112

5.3.2. Proximate composition .. 112

5.3.3. Extrusion processing .. 113

5.3.4. Simulated digestion ... 113

5.3.5. Cell culture .. 113

5.3.6. Lycopene extraction and analysis of samples ... 115

5.3.7. Glucose analysis .. 116

5.3.8. Statistical design .. 116

5.4. RESULTS AND DISCUSSION .. 117

5.4.1. Lycopene bioaccessibility ... 117
5.4.2. Starch digestibility... 123

5.5. Conclusion.. 125

CHAPTER SIX EFFECT OF EXTRUSION COOKING ON THE PHYSICOCHEMICAL
CHARACTERISTICS OF EXTRUDED CORN-TOMATO PRODUCTS .. 127

6.1. AN INVESTIGATION ON THE EFFECT OF FEED MOISTURE CONTENT AND SCREW SPEED ON
PHYSICOCHEMICAL CHARACTERISTICS OF EXTRUDED CORN-TOMATO PRODUCTS 128

6.1.1. Abstract.. 128

6.1.2. Introduction... 129

6.1.3. Materials and methods ... 129

6.1.4. Results and Discussion ... 131

6.1.5. Conclusion... 135

6.2. EFFECT OF EXTRUSION COOKING ON LYCOPENE CONTENT AND SOME PHYSICOCHEMICAL PARAMETERS OF
EXTRUDED CORN-TOMATO PRODUCTS .. 136

6.2.1. Abstract.. 136

6.2.2. Introduction... 136

6.2.3. Materials and methods ... 137

6.2.4. Results and discussion.. 142

6.2.5. Conclusion... 156

CHAPTER SEVEN EXTRUSION COOKING AFFECTS LYCOPENE BIOACCESSIBILITY AND
STARCH DIGESTIBILITY IN EXTRUDED CORN-TOMATO PRODUCTS .. 158

7.1. Abstract... 158

7.2. Introduction.. 159
CHAPTER EIGHT ENZYMATIC HYDROLYSIS OF EXTRUDED CORN-TOMATO PRODUCTS 169

8.1. ABSTRACT ... 169

8.2. INTRODUCTION .. 170

8.3. MATERIALS AND METHODS ... 171

8.3.1. Methods.. 171

8.3.2. Experimental design .. 172

8.4. RESULTS AND DISCUSSION .. 173

8.4.1. Determining the optimum concentration of enzymes to release lycopene 173

8.4.2. Determining the most efficient enzyme to release lycopene .. 174

8.5. CONCLUSION ... 175

CHAPTER NINE GENERAL DISCUSSION AND CONCLUSIONS .. 176

9.1. INTRODUCTION .. 176

9.2. EFFECT OF RAW INGREDIENTS AND EXTRUSION PROCESSING ON THE ORGANOLEPTIC CHARACTERISTICS ... 177
9.3. Effect of raw ingredients and extrusion processing on lycopene content and bioavailability ... 178

9.4. Effect of raw ingredients and extrusion cooking on starch digestibility .. 179

9.5. Optimum conditions to produce well expanded functional extruded corn-tomato products 180

9.6. Further notes .. 181

9.7. Recommended future research .. 182

APPENDIX I STATEMENT OF CONTRIBUTION TO DOCTORAL THESIS CONTAINING PUBLICATIONS .. 185

BIBLIOGRAPHY ... 190
List of Figures

FIGURE 2-1 SCHEMATIC DESIGN OF THE EXTRUDER ... 8

FIGURE 2-2 CHEMICAL STRUCTURE OF AMYLOPECTIN ADAPTED FROM THOMAS AND ATWELL (1999) ..12

FIGURE 2-3 ISOPRENE, THE BUILDING BLOCK FOR CAROTENOID .. 15

FIGURE 2-4 CHEMICAL STRUCTURE OF B-carotene WITH TWO B-IONONE RINGS ...15

FIGURE 2-5 CHEMICAL STRUCTURE OF LYCOPENE ... 15

FIGURE 2-6 SCHEMATIC OUTLINE FOR THE DETERMINATION OF THE IN-VITRO BIOAVAILABILITY OF STARCH [ADAPTED FROM
MISHRA ET AL.(2008)] .. 21

FIGURE 2-7 EFFECT OF THERMAL AND MECHANICAL PROCESSING ON PLANT CELLS (SOUTHON AND FAULKS, 2003)22

FIGURE 2-8 SCHEMATIC OUTLINE OF THE DETERMINATION OF THE IN-VITRO BIOAVAILABILITY OF CAROTENOID [ADAPTED FROM
FAILLA ET AL. (2008A)] .. 24

FIGURE 3-1 CLEXTRAL BC 21 TWIN-SCREW EXTRUDER ... 32

FIGURE 3-2 INSTRON UNIVERSAL TESTING MACHINE 4502 ... 39

FIGURE 3-3 PREDICTED EFFECT OF NUMBER AND TIME OF EXTRACTION ON LYCOPENE EXTRACTION YIELD FROM AN EXTRUDED
RICE PRODUCT CONTAINING 10% TOMATO SKIN POWDER USING A SOLVENT TO MEAL RATIO OF 30:1 V/W AT 35 °C 51

FIGURE 3-4 PREDICTED EFFECT OF TEMPERATURE AND TIME OF EXTRACTION ON LYCOPENE EXTRACTION YIELD FROM AN
EXTRUDED RICE PRODUCT CONTAINING 10% TOMATO SKIN POWDER USING A SOLVENT TO MEAL RATIO OF 30:1 V/W
AFTER 2 EXTRACTION RUNS .. 51

FIGURE 3-5 PREDICTED EFFECT OF SOLVENT TO MEAL RATIO AND NUMBER OF EXTRACTIONS ON LYCOPENE EXTRACTION YIELD
FROM AN EXTRUDED RICE PRODUCT CONTAINING 10% TOMATO SKIN POWDER AFTER 10 MINUTES EXTRACTION AT 35 °C. 52

FIGURE 3-6 EFFECT OF PANCREATIN CONCENTRATION AND INCUBATION TIME ON LYCOPENE EXTRACTION YIELD FROM
EXTRUDED RICE PRODUCT CONTAINING 10% TOMATO SKIN POWDER. ERROR BARS REPRESENT STANDARD DEVIATIONS
FROM THE MEANS. DIFFERENT LETTERS ABOVE BARS (A-G) INDICATE SIGNIFICANT DIFFERENCES (P < 0.05) BETWEEN SAMPLES, N = 3 ..54

FIGURE 3-7 THE EFFECT OF BILE CONCENTRATION IN THE ABSENCE OF AND AT PANCREATIN CONCENTRATION OF 2.4 MG/ML ON GLUCOSE RELEASED DUE TO THE DIGESTION OF STARCH FOLLOWING 120 MINUTES OF SIMULATED DIGESTION. ERROR BARS REPRESENT STANDARD DEVIATIONS FROM THE MEANS. DIFFERENT LETTERS ABOVE BARS (A-C) INDICATE SIGNIFICANT DIFFERENCES (P < 0.05) BETWEEN SAMPLES, N = 3 ..66

FIGURE 3-8 THE EFFECT OF BILE CONCENTRATION IN THE ABSENCE OF AND AT PANCREATIN CONCENTRATION OF 2.4 MG/ML ON IN-VITRO BIOAVAILABILITY OF LYCOPENE FOLLOWING 120 MINUTES OF SIMULATED DIGESTION. ERROR BARS REPRESENT STANDARD DEVIATIONS FROM THE MEANS. DIFFERENT LETTERS ABOVE BARS (A-G) INDICATE SIGNIFICANT DIFFERENCES (P < 0.05) BETWEEN SAMPLES, N = 3 ...69

FIGURE 3-9 THE EFFECT OF PANCREATIN AND BILE CONCENTRATIONS ON THE IN-VITRO BIOAVAILABILITY OF LYCOPENE FOLLOWING 120 MINUTES OF SIMULATED DIGESTION. ERROR BARS REPRESENT THE STANDARD DEVIATIONS FROM THE MEANS. DIFFERENT LETTERS ABOVE BARS (A-E) INDICATE SIGNIFICANT DIFFERENCES (P < 0.05) BETWEEN SAMPLES, N=3 ..70

FIGURE 3-10 THE EFFECT OF BILE CONCENTRATIONS IN THE ABSENCE OF AND AT PANCREATIN CONCENTRATION OF 2.4 MG/ML ON THE PERCENTAGE OF UNDIGESTED SOLIDS FOLLOWING 120 MINUTES OF SIMULATED DIGESTION. ERROR BARS REPRESENT THE STANDARD DEVIATIONS FROM THE MEANS. DIFFERENT LETTERS ABOVE BARS (A-F) INDICATE SIGNIFICANT DIFFERENCES (P < 0.05) BETWEEN SAMPLES, N=3 ...72

FIGURE 3-11 THE EFFECT OF PANCREATIN AND BILE EXTRACT CONCENTRATIONS ON THE PERCENTAGE OF UNDIGESTED SOLIDS FOLLOWING 120 MINUTES OF SIMULATED DIGESTION. ERROR BARS REPRESENT THE STANDARD DEVIATIONS FROM THE MEANS. DIFFERENT LETTERS ABOVE BARS (A-G) INDICATE SIGNIFICANT DIFFERENCES (P < 0.05) BETWEEN SAMPLES, N=372

FIGURE 4-1 EFFECT OF STARCH AND LYCOPENE SOURCE ON PERCENTAGE OF MOISTURE LOSS FROM THE EXTRUDED PRODUCTS. ERROR BARS REPRESENT STANDARD DEVIATIONS FROM THE MEANS. DIFFERENT LETTERS ABOVE BARS (A-D) INDICATE SIGNIFICANT (P < 0.05) DIFFERENCES BETWEEN SAMPLES, N = 3 ...88
FIGURE 4-2 Effect of Starch and Lycopene Source on Lycopene Content of Extruded Products. Error bars represent standard deviations from the means. Different letters above bars (A-D) indicate significant ($p < 0.05$) differences between samples, $N = 3$.. 90

FIGURE 4-3 Variation in Colour of the Extruded Products with/without Tomato Paste or Skin Powder. 104

FIGURE 5-1 Relative Uptake of Micellae Lycopene by Caco-2 Cultures during 8 Hours of Incubation. Different letters above the error bars indicate significant differences between the values at each incubation time ($p < 0.05$). Data normalised to proportion of lycopene at time zero. The values for extruded corn grits were used to remove the effect of other carotenoids present in the corn grits, $N = 5$... 121

FIGURE 5-2 The Amount of Glucose Released by the Digestion of Starch after 20 Minutes Incubation. The control is extruded corn snack, while the treated extruded products contained various concentrations of tomato paste and tomato skin at three different inclusion levels. Error bars represent standard deviations from the means. Different letters above bars (A-E) indicate the significant ($p < 0.05$) differences between the samples, $N=3$.. 123

FIGURE 5-3 The Amount of Glucose Released by the Digestion of Starch after 120 Minutes Incubation. The control is extruded corn snacks while the treated extruded products contained various concentrations of tomato paste and tomato skin at three different inclusion levels. Error bars represent standard deviations from the means. Different letters above bars (A-C) indicate the significant ($p < 0.05$) differences between the samples, $N=3$.. 124

FIGURE 6-1 Effect of Feed Moisture and Screw Speed on the Specific Mechanical Energy Used to Process the Extruded Products Containing 10% Tomato Skin Powder. Different letters above bars (A-F) indicate the significant ($p < 0.05$) differences between the samples, $N=3$.. 131

FIGURE 6-2 Effect of Feed Moisture and Screw Speed on Expansion of the Extruded Products Containing 10% Tomato Skin Powder. Different letters above bars (A-E) indicate the significant ($p < 0.05$) differences between the samples, $N=3$.. 133
FIGURE 6-3 Effect of feed moisture and screw speed on the A-values of the extruded products containing 10% tomato skin powder. Different letters above bars (A-E) indicate the significant (p < 0.05) differences between the samples, N=3 ...134

FIGURE 6-4 Effect of feed moisture and screw speed on lycopene contents of the extruded products containing 10% tomato skin powder. Different letters above bars (A-E) indicate the significant (p < 0.05) differences between the samples, N=3 ...134

FIGURE 6-5 Predicted effect of screw speed and feed moisture content on SME of extruded corn products containing 10% w/w tomato derivatives extruded at constant temperature of 150 °C146

FIGURE 6-6 Predicted effect of moisture content and screw speed on power consumption of extruded corn products containing 10% (w/w) tomato derivatives extruded at constant temperature of 150 °C147

FIGURE 6-7 Predicted effect of temperature and screw speed on the expansion of extruded corn products containing 10%(w/w) tomato derivatives with an initial feed moisture content of 13%149

FIGURE 6-8 Predicted effect of feed moisture content and temperature on the density of extruded corn products containing 10% (w/w) tomato derivatives extruded at 300 RPM ..150

FIGURE 6-9 Predictive effect of feed moisture content and temperature of extrusion on the hardness of extruded corn products containing 10% (w/w) tomato derivatives extruded at 300 RPM151

FIGURE 6-10 Predicted effect of extrusion temperature and screw speed on the L-value of extruded corn products containing 10% (w/w) tomato derivatives extruded with an initial feed moisture content of 13% ...153

FIGURE 6-11 Predicted effect of extrusion moisture content and screw speed on the A-value of extruded corn products containing 10% (w/w) tomato derivatives extruded tomato enriched snacks extruded at constant temperature of 150 °C ...153

FIGURE 6-12 Predicted effect of temperature and feed moisture content on percentage of lycopene retention of extruded corn products containing 10% (w/w) tomato derivatives extruded at 300 RPM155
FIGURE 7-1 Predicted effect of feed moisture content and temperature of extrusion on lycopene concentration in the digesta of extruded corn products containing 10% tomato derivatives extruded at 300 RPM ... 162

FIGURE 7-2 Predicted effect of temperature and screw speed on micellar lycopene of extruded corn products containing 10% tomato derivatives extruded with an initial moisture content of 13% 164

FIGURE 7-3 Predicted effect of screw speed and temperature on the amount of glucose released after 20 minutes of digestion of extruded corn products containing 10% tomato derivatives extruded at constant temperature of 150 °C .. 165

FIGURE 7-4 Predicted effect of screw speed and feed moisture content on the amount of glucose released after 120 minutes of digestion of extruded corn products containing tomato derivatives extruded at constant temperature of 150 °C .. 167

FIGURE 8-1 Effect of different concentrations of protease, amylase and amyloglucosidase on the amount of lycopene released from the extruded corn-tomato products. Different letters above bars (A-E) indicate the significant (p < 0.05) differences between the samples, N= 3 ... 173

FIGURE 8-2 Effect of various enzymes on the maximal amount of lycopene released from an extruded corn products containing 10% tomato derivatives. Error bars represent the significant (p < 0.05) differences of the means. Different letters above bars (A-B) indicate significant differences between samples, N= 3 174
List of Tables

TABLE 2-1 STABILITY STUDIES ON CAROTENOIDS DURING EXTRUSION COOKING ... 18

TABLE 2-2 STUDIES ON THE UTILIZATION OF FRUIT AND VEGETABLE BY-PRODUCTS IN EXTRUDED PRODUCTS 26

TABLE 3-1 INDEPENDENT VARIABLES AND THEIR LEVELS USED FOR CENTRAL COMPOSITE DESIGN 45

TABLE 3-2 CENTRAL COMPOSITE DESIGN FOR TIME, TEMPERATURE AND NUMBER OF EXTRACTIONS AND SOLVENT/MEAL RATIO ON THE Lycopene EXTRACTION YIELD FROM AN EXTRUDED SNACK CONTAINING 10% TOMATO SKIN POWDER* .. 46

TABLE 3-3 EFFECT OF THE EXTRACTION METHODS ON THE EXTRACTED LYCOPEGNE CONTENT AND THE A- VALUE OBTAINED FROM EXTRUDED RICE SNACKS CONTAINING 10% TOMATO SKIN POWDER (FEED RATE, 6.5 KG/H; DIE TEMPERATURE, 140 °C) † . 56

TABLE 3-4 THE EFFECT OF PANCREATIN AND BILE CONCENTRATION ON GLUCOSE RELEASED DUE TO THE DIGESTION OF STARCH FOLLOWING 20, 60 AND 120 MINUTES OF SIMULATED DIGESTION .. 67

TABLE 4-1 PROXIMATE COMPOSITION OF THE INGREDIENTS (DWB) † ... 81

TABLE 4-2 EXTRUSION PARAMETERS FOR PRODUCTS MANUFACTURED FROM RICE FLOUR, CORN GRIT OR WHEAT SEMOLINA WITH OR WITHOUT THE ADDITION OF TOMATO PASTE OR TOMATO SKIN POWDER (AT THE 20% LEVEL) EXTRUDED AT A FEED RATE OF 11.5 KG/H, SCREW SPEED OF 350 RPM AND WATER FEED RATE OF 0.5 L/H .. 83

TABLE 4-3 SIGNIFICANT MAIN EFFECTS OF TREATMENTS (LYCOPEGNE SOURCE, STARCH SOURCE AND TEMPERATURE) ON DEPENDANT VARIABLES (MEAN VALUES REPORTED) .. 85

TABLE 4-4 PROXIMATE COMPOSITION OF THE FORMULATIONS † .. 97

TABLE 4-5 EXTRUSION PARAMETERS THE EXTRUDED CORN PRODUCTS CONTAINING DIFFERENT CONCENTRATIONS OF TOMATO DERIVATIVES* .. 98

TABLE 4-6 CORRELATION COEFFICIENT (R²) BETWEEN THE VARIABLES FOR EXTRUDED CORN PRODUCTS CONTAINING DIFFERENT CONCENTRATIONS OF TOMATO DERIVATIVES .. 101

TABLE 4-7 EFFECT OF VARYING TOMATO SKIN AND PASTE CONCENTRATION ON THE PHYSICOCHEMICAL PROPERTIES OF THE EXTRUDED CORN PRODUCTS CONTAINING TOMATO DERIVATIVES ... 102
TABLE 4-8 Sensory evaluation scores for ratings for colour, flavour, after taste and texture for the extruded products * ... 107

TABLE 4-9 Sensory evaluation scores for the acceptability of the extruded products * ... 107

TABLE 5-1 Lycopene concentration in the extruded products, digesta and proportion of lycopene transferred from the extruded product to the digesta .. 120

TABLE 5-2 Correlation coefficients (R^2) between the extrusion parameters with the amount of glucose released from the starch after 20 and 120 minutes of digestion (G20 and G120) and lycopene content of the extruded products, in the digesta and the proportion of lycopene transferred to the micellar phase of the digesta ... 121

TABLE 5-3 Extrusion conditions for the extruded corn products containing different concentrations of tomato derivatives .. 122

TABLE 6-1 The correlation coefficient (R^2) between lycopene content of the extruded corn products containing 10% tomato skin powder and the extrusion parameters, A-value and expansion values 135

TABLE 6-2 Proximate composition of corn grit, 7.5% tomato skin and 2.5% tomato paste mixture 139

TABLE 6-3 Independent variables and their levels used for the central composite rotatable design for the extrusion conditions of extruded corn products containing 7.5% tomato skin powder and 2.5% tomato paste ... 140

TABLE 6-4 Experimental design for the extrusion conditions for the production of extruded corn products containing 7.5% tomato skin powder and 2.5% tomato paste powder ... 141

TABLE 6-5 The regression equations for the dependent variables using independent variables temperature (X_1), screw speed (X_2) and feed moisture content (X_3) of extruded corn products containing 7.5% tomato skin powder and 2.5% tomato paste powder produced using different extrusion conditions based on coded factors .. 143
TABLE 6-6 ANOVA RESULTS FOR THE FITTED MODELS OF DEPENDANT VARIABLES FOR EXTRUDED CORN PRODUCT CONTAINING 7.5% TOMATO SKIN POWDER AND 2.5% TOMATO PASTE POWDER PRODUCED USING DIFFERENT EXTRUSION CONDITIONS

144

TABLE 6-7 CORRELATION COEFFICIENT (R^2) BETWEEN DEPENDANT VARIABLES FOR EXTRUDED CORN PRODUCT CONTAINING 7.5% TOMATO SKIN POWDER AND 2.5% TOMATO PASTE POWDER PRODUCED USING DIFFERENT EXTRUSION CONDITIONS

148

TABLE 7-1 PEARSON’S CORRELATION COEFFICIENTS (R^2) BETWEEN THE EXTRUDER PARAMETERS AND LYCOPENE TRANSFER TO THE DIGESTA AND MICELLARISATION IN EXTRUDED CORN PRODUCT CONTAINING 7.5% TOMATO SKIN POWDER AND 2.5% TOMATO PASTE POWDER PRODUCED USING DIFFERENT EXTRUSION CONDITIONS

164

TABLE 7-2 PEARSON’S CORRELATION COEFFICIENTS (R^2) BETWEEN THE EXTRUSION PARAMETERS AND G20 AND G120 IN EXTRUDED CORN PRODUCT CONTAINING 7.5% TOMATO SKIN POWDER AND 2.5% TOMATO PASTE POWDER PRODUCED UNDER DIFFERENT EXTRUSION CONDITIONS

167
List of Equations

EQUATION 3-1 CALCULATION OF SPECIFIC MECHANICAL ENERGY (SME) ... 33

EQUATION 3-2 CALCULATION FOR PERCENTAGE OF MOISTURE .. 34

EQUATION 3-3 CALCULATION FOR PERCENTAGE OF ASH .. 35

EQUATION 3-4 CALCULATION FOR PERCENTAGE OF FAT .. 35

EQUATION 3-5 CALCULATION FOR EXPANSION RATIO ... 37

EQUATION 3-6 CALCULATION FOR DENSITY ... 38

EQUATION 3-7 CALCULATION FOR CHANGE IN COLOUR .. 39

EQUATION 3-8 LINEAR REGRESSION EFFECT FOR LYCOPENE EXTRACTION CONDITIONS FROM AN EXTRUDED RICE PRODUCT CONTAINING 10% TOMATO SKIN .. 49

EQUATION 7-1 LINEAR REGRESSION OF THE EFFECT OF EXTRUSION PARAMETERS ON LYCOPENE RELEASE FROM EXTRUDED CORN PRODUCTS CONTAINING 7.5% TOMATO SKIN POWDER AND 2.5% TOMATO PASTE POWDER .. 161

EQUATION 7-2 LINEAR REGRESSION OF THE EFFECT OF THE EXTRUSION PARAMETERS ON PROPORTION OF LYCOPENE MICELLARISATION FROM EXTRUDED CORN PRODUCT CONTAINING 7.5% TOMATO SKIN POWDER AND 2.5% TOMATO PASTE POWDER .. 163

EQUATION 7-3 QUADRATIC REGRESSION EFFECT OF EXTRUSION PARAMETERS ON G20 IN EXTRUDED CORN PRODUCT CONTAINING 7.5% TOMATO SKIN POWDER AND 2.5% TOMATO PASTE POWDER .. 166

EQUATION 7-4 QUADRATIC REGRESSION EFFECT OF EXTRUSION PARAMETERS ON G120 IN EXTRUDED CORN PRODUCT CONTAINING 7.5% TOMATO SKIN POWDER AND 2.5% TOMATO PASTE POWDER .. 166
List of Peer-reviewed Publications and Conference Proceedings

List of Publications

List of Proceedings

