Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Phase change, flowering and postharvest characteristics of *Metrosideros excelsa* (Myrtaceae)

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in

Plant Biology

at the

Institute of Molecular BioSciences
Massey University, Palmerston North,
New Zealand

Robert E. Henriod
2001
Abstract

The development of *Metrosideros excelsa* (pohutukawa) as an ornamental crop has been limited by a lack of knowledge on the cultural requirements and underlying physiological processes associated with: (a) vegetative phase change (maturation) following micropropagation, (b) the environmental control of flowering, and (c) the postharvest characteristics of the cut-flower. These three concerns were addressed in this thesis.

First, plantlets of *M. excelsa* that had undergone rejuvenation following micropropagation, were subjected to shoot and root restriction treatments to accelerate vegetative phase change. Leaves of shoot-restricted, single-stemmed plants became progressively more adult with increasing node position, whereas root restriction reduced root growth but did not accelerate vegetative phase change. In single-stemmed plants, light saturated maximum rate of photosynthesis and leaf carbon isotope discrimination decreased within increasing node position. However, carbon isotope composition in leaves of these plants diverged away from those exhibited by leaves of adult plants, possibly reflecting physiological changes resulting from altered source/sink relations.

Second, the effects of photoperiod, temperature and irradiance on floral initiation and development were examined in *M. excelsa* by manipulating these parameters in controlled and greenhouse environments. *M. excelsa* responded as a facultative short-day plant with maximum flowering occurring following a 15 weeks cool (mean 15°C) short-day (10 h) inductive treatment. An irradiance of 567 μmol m⁻² s⁻¹ during induction provided the optimal conditions for floral primordial growth and subsequent flower development. Buds initially 2.0-3.0 mm in diameter had the highest probability of becoming floral, whilst those less than 2.0 mm in diameter were more likely to remain vegetative or to not break.

Finally, the postharvest characteristics of *M. excelsa* as a cut flower were assessed. Generally, holding solution treatments containing sucrose extended vase life, whereas those containing HQC (applied alone or as a pulse) were detrimental. Cut flowers were sensitive to exogenous ethylene and pre-treatment with inhibitors of ethylene action (STS and 1-MCP) conferred significant protection.
This thesis has contributed significantly to furthering our understanding and knowledge of cultural and physiological factors that underlie vegetative phase change, flowering and vase life characteristics in flowers of *M. excelsa*.
Acknowledgements

My sincerest gratitude goes to my supervisors for providing not only the opportunity to undertake this project but also for the guidance provided throughout. Specifically, I would like to thank my main supervisor Dr. John Clemens for the countless discussions, encouragement, expertise and most of all his friendship. I am also especially thankful to my co-supervisor Professor Paula Jameson whose advice, encouragement and expertise throughout my thesis has been extremely appreciated. A special thanks also goes to my co-supervisor Mr. Garry Burge (The Crop and Food Research Institute) for providing a friendly and supportive role, including access to laboratory space and equipment.

Thank you to Dr. Dennis Greer (The Food and Horticultural Research Institute) for providing technical support with the use of photosynthetic equipment, laboratory space and interesting discussions.

Thank you to members of the Institute of Molecular BioSciences who have contributed to this project. This includes those who have provided technical support, helpful advice and assistance. Thank you to my lab colleagues Lehka, Suzanne, Ivan, Greg (and many others) who have provided wonderful company over the years.

I would also like to thank the expert statistical advice provided by Duncan Hedderley and Dr. Steve Haslett from Institute of Social Sciences, and to Ray Johnstone and assistants, Lindsey and Lesley, at the Plant Growth Unit, Massey University.

I am extremely appreciative of the moral and loving support provided by my parents, Ernesto and Jill. Thank you to all my friends including lab colleagues, Atawhai flatmates and close friends away from home for providing the support and confidence.

Last but not least, I gratefully acknowledge funding provided by the Public Good Science Fund, the Institute of Molecular BioSciences, the New Zealand Society of Horticultural Science and the Royal Society of New Zealand for contributing financially to either the research, conference travels or living expenses incurred throughout my studies.
Table of Contents

Abstract
Acknowledgements
Table of Contents
List of Figures
List of Tables
List of Plates
List of Abbreviations

Chapter 1. Introduction

1.1 Vegetative Phase Change in Woody Plants
 1.1.1 Introduction
 1.1.2 Applications
 1.1.3 Ontogenetic development and terminology
 1.1.4 Models of phase change
 1.1.5 Apical Meristems: Location of Phase-related Expression
 1.1.5.1 Role of apical meristem
 1.1.5.2 Apical meristem: time keeper for phase change?
 1.1.6 Timing of phase change
 1.1.7 Morphological and anatomical features
 1.1.8 Plant size in relation to phase change
 1.1.9 Environmental factors
 1.1.9.1 Light and temperature
 1.1.9.2 Water stress
 1.1.10 Carbon isotope discrimination studies
 1.1.11 Photosynthetic characteristics and chlorophyll concentration
 1.1.12 Role of carbohydrates
 1.1.13 Plant hormones
 1.1.13.1 Gibberellins and abscissic acid
 1.1.13.2 Cytokinins
 1.1.14 Acceleration of phase change
 1.1.15 Markers of phase change

1.2 Floral Induction and Development in Ornamental Woody Plants
 1.2.1 Introduction
 1.2.2 Terminology
 1.2.3 Flower induction models
 1.2.4 The molecular frontier
 1.2.5 Floral and vegetative growth relationships
 1.2.6 Environmental factors
 1.2.6.1 Light: duration
 1.2.6.2 Light: spectral quality
 1.2.6.3 Light: intensity
 1.2.6.4 Temperature

v
1.2.7 Carbohydrates 45
1.2.8 Hormonal regulation 48
 1.2.8.1 Gibberellins 48
 1.2.8.2 Cytokinins 50
1.2.9 Effect of cultural factors 51
1.3 Postharvest Physiology of Cut Flowers 52
 1.3.1 Introduction 52
 1.3.2 Flower senescence 53
 1.3.2.1 Petals 53
 1.3.2.2 Sepals 54
 1.3.2.3 Stamens 54
 1.3.2.4 Style 55
 1.3.3 Water relations 55
 1.3.4 Water uptake 56
 1.3.5 Transpiration 56
 1.3.6 Water temperature 57
 1.3.7 Vascular occlusions 58
 1.3.8 Biocides 59
 1.3.9 pH of vase solution 59
 1.3.10 Carbohydrates 60
 1.3.11 Ethylene 60
 1.3.12 Background on ethylene 61
 1.3.13 Ethylene biosynthetic pathway 61
 1.3.14 Signal transduction 63
 1.3.15 Physiology of abscission zones and ethylene 63
 1.3.16 Ethylene and flower abscission 64
 1.3.17 Ethylene production 65
 1.3.18 Ethylene sensitivity 66
 1.3.19 Inhibitors of ethylene biosynthesis 69
 1.3.20 Ethylene inhibitors 69
 1.3.21 Silver thiosulfate (STS) 70
 1.3.22 1-Methylcyclopene (1-MCP) 72
1.4 Summary and Thesis Objectives 73

Chapter 2. Effect of shoot and root restriction on phase change in *Metrosideros excelsa* 77
 2.1 Introduction 77
 2.2 Materials and Methods 79
 2.2.1 Plant material 79
 2.2.2 Experimental layout 80
 2.2.3 Growth measurements 80
 2.2.4 Image analysis 81
 2.2.5 Image analysis protocol 81
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.6 Plant biomass and leaf mineral determination</td>
<td>82</td>
</tr>
<tr>
<td>2.2.7 Carbon isotope analysis</td>
<td>82</td>
</tr>
<tr>
<td>2.2.8 Statistical analyses</td>
<td>83</td>
</tr>
<tr>
<td>2.3 Results</td>
<td>83</td>
</tr>
<tr>
<td>2.3.1 Growth parameters</td>
<td>83</td>
</tr>
<tr>
<td>2.3.2 Image analysis: optical parameters</td>
<td>83</td>
</tr>
<tr>
<td>2.3.3 Image analysis: dimensional parameters</td>
<td>88</td>
</tr>
<tr>
<td>2.3.4 Dry weight accumulation</td>
<td>91</td>
</tr>
<tr>
<td>2.3.5 Leaf mineral concentrations</td>
<td>93</td>
</tr>
<tr>
<td>2.3.6 Carbon isotope discrimination</td>
<td>93</td>
</tr>
<tr>
<td>2.4 Discussion</td>
<td>96</td>
</tr>
</tbody>
</table>

Chapter 3. Gas exchange and carbon isotope discrimination characteristics during phase change in Metrosideros excelsa.

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction</td>
<td>100</td>
</tr>
<tr>
<td>3.2 Materials and Methods</td>
<td>103</td>
</tr>
<tr>
<td>3.2.1 Plant materials</td>
<td>103</td>
</tr>
<tr>
<td>3.2.2 Greenhouse environment</td>
<td>103</td>
</tr>
<tr>
<td>3.2.3 Shoot treatments applied to greenhouse-grown plantlets</td>
<td>104</td>
</tr>
<tr>
<td>3.2.4 Measurements made on greenhouse plants</td>
<td>104</td>
</tr>
<tr>
<td>3.2.5 Controlled environment</td>
<td>105</td>
</tr>
<tr>
<td>3.2.6 Gas exchange measurements in the controlled environment</td>
<td>106</td>
</tr>
<tr>
<td>3.2.6.1 Light response curves</td>
<td>106</td>
</tr>
<tr>
<td>3.2.6.2 CO2 assimilation / intercellular CO2 (A/Ci) curves</td>
<td>107</td>
</tr>
<tr>
<td>3.2.7 Leaf image analysis</td>
<td>107</td>
</tr>
<tr>
<td>3.2.8 Carbon isotope discrimination</td>
<td>108</td>
</tr>
<tr>
<td>3.2.9 Gas exchange measurements under greenhouse conditions</td>
<td>109</td>
</tr>
<tr>
<td>3.2.10 Leaf carbohydrate analyses</td>
<td>109</td>
</tr>
<tr>
<td>3.2.10.1 Soluble sugars extraction and determination</td>
<td>109</td>
</tr>
<tr>
<td>3.2.10.2 Starch extraction and determination</td>
<td>111</td>
</tr>
<tr>
<td>3.2.11 Statistical analyses</td>
<td>111</td>
</tr>
<tr>
<td>3.3 Results</td>
<td>112</td>
</tr>
<tr>
<td>3.3.1 Characterisation of shoot growth</td>
<td>112</td>
</tr>
<tr>
<td>3.3.2 Leaf development in adult plants</td>
<td>114</td>
</tr>
<tr>
<td>3.3.3 Image analysis of leaf dimensional and optical properties</td>
<td>117</td>
</tr>
<tr>
<td>3.3.4 Leaf morphological attributes</td>
<td>120</td>
</tr>
<tr>
<td>3.3.5 Carbon isotope discrimination</td>
<td>120</td>
</tr>
<tr>
<td>3.3.6 Relationship of carbon isotope discrimination and leaf characters</td>
<td>123</td>
</tr>
<tr>
<td>3.3.7 Photosynthetic response and relationship to carbon isotope discrimination in plants grown under controlled conditions</td>
<td>125</td>
</tr>
<tr>
<td>3.3.8 Photosynthetic response of plants under greenhouse conditions</td>
<td>129</td>
</tr>
<tr>
<td>3.3.9 Carbohydrate analyses</td>
<td>133</td>
</tr>
<tr>
<td>3.4 Discussion</td>
<td>134</td>
</tr>
</tbody>
</table>
Chapter 4. Effects of temperature, photoperiod and bud size on flowering in *Metrosideros excelsa.*

4.1 Introduction
4.2 Materials and Methods
 4.2.1 Plant materials
 4.2.2 Controlled environment experiment
 4.2.3 Greenhouse experiment
 4.2.4 Statistical analyses
4.3 Results
 4.3.1 Controlled environment experiment
 4.3.2 Greenhouse experiment
4.4 Discussion

Chapter 5. Effect of irradiance on floral induction and development in *Metrosideros excelsa.*

5.1 Introduction
5.2 Materials and Methods
 5.2.1 Plant material
 5.2.2 Experimental environments
 5.2.3 Bud measurements
 5.2.4 Bud histology
 5.2.5 Inflorescence measurements
 5.2.6 Vegetative measurements
 5.2.7 Chlorophyll determination
 5.2.8 Carbohydrate extraction and determination
 5.2.9 Statistical analyses
5.3 Results
 5.3.1 Histological examination of the buds
 5.3.2 Proportion of plants flowering
 5.3.3. Flowering time
 5.3.4 Inflorescence morphology
 5.3.5 Leaf chlorophyll concentrations
 5.3.6 Leaf carbohydrate concentrations
 5.3.7 Vegetative growth
5.4 Discussion

Chapter 6. The Postharvest Characteristics of *Metrosideros excelsa* as a cut flower

6.1 Introduction
6.2 Materials and Methods
 6.2.1 Plant material
 6.2.2 Harvest and experimental preparations
 6.2.3 Vase life room
 6.2.4 Scoring flower condition
 6.2.5 Experiments 1 A-C: Holding solutions: effects on flower quality
6.2.6 Experiment 2: Effect of humidity on flower quality and endogenous ethylene production.

6.2.7 Experiment 3: Effect of applied exogenous ethylene on flower quality and endogenous ethylene production.

6.2.8 Experiment 4: Efficacy of 1-methylcyclopropene (1-MCP) and silver thiosulfate (STS) on ethylene-induced responses

6.2.8.1 Protection treatment

6.2.8.2 Ethylene treatment

6.2.9 Statistical analyses

6.3 Results

6.3.1 Experiment 1 A: Holding solutions: effects on flower quality in 'Lighthouse'.

6.3.1.1 Floral development

6.3.1.2 Water relations

6.3.1.3 Stamen wilting

6.3.1.4 Floral Abscission

6.3.2 Experiment 1 B: Holding solutions: effects on flower quality in 'Vibrance'

6.3.2.1 Floral development

6.3.2.2 Water relations

6.3.2.3 Stamen wilting

6.3.2.4 Floral Abscission

6.3.3 Experiment 1 C: Holding solutions: effect of HQC and pH on flower quality in 'Lighthouse'.

6.3.4 Experiment 2: Effect of humidity on flower quality and endogenous ethylene production.

6.3.4.1 Floral development and abscissions

6.3.4.2 Water relations

6.3.4.3 Endogenous ethylene production

6.3.5 Experiment 3: Effect of exogenous ethylene on flower quality and endogenous ethylene production.

6.3.5.1 Floral development

6.3.5.2 Abscission

6.3.5.3 Wilting

6.3.5.4 Endogenous production of ethylene after exposure to exogenous ethylene

6.3.6 Experiment 4: Effect of 1-MCP and STS on ethylene-induced responses

6.3.6.1 Water relations

6.3.6.2 Stamen wilting

6.3.6.3 Stamen abscission

6.3.6.4 Flower and petal abscission

6.4 Discussion

Chapter 7. General Discussion

References 225

Appendix I Wax infiltration procedure 255

Appendix II Staining schedule: safranin / fast green 256
List of Figures

Figure 1.1 Figure 1.1. Models of phase change described by Poethig and Kester. 8

Figure 1.2 Alternate models of phase change or maturation. 9

Figure 1.3 General models of the multiple flowering pathways in Arabidopsis thaliana. 32

Figure 1.4 Schematic diagram model illustrating the regulatory loop involvement of sucrose and cytokinins in the flowering process in Sinapis Alba. 46

Figure 1.5 Models of ethylene biosynthesis and ethylene signal transduction pathway. 62

Figure 2.1 Increase in mean plant height and mean total number of nodes in single-stemmed plants of Metrosideros excelsa ‘Scarlet Pimpernel’ over the experimental period. 84

Figure 2.2 Changes in optical properties with increasing node position for the abaxial leaf surface in single-stemmed plants and branched plants of Metrosideros excelsa. 86

Figure 2.3 Dimensional changes with increasing node position for the abaxial leaf surface in single-stemmed plants and branched plants of Metrosideros excelsa. 90

Figure 2.4 Effects of container size on growth in single-stemmed and branched plants of Metrosideros excelsa ‘Scarlet Pimpernel’. 92

Figure 2.5 Mean carbon isotope discrimination values for leaves collected at different nodes for single-stemmed, branched and adult plants of Metrosideros excelsa ‘Scarlet Pimpernel’. 95

Figure 3.1 Changes in mean plant height, node number and internode length of single-stemmed, branched and adult plants of Metrosideros excelsa ‘Vibrance’ over the experimental period. 113

Figure 3.2 Difference in carbon isotope discrimination levels from bud and leaf tissue in mature plants of Metrosideros excelsa ‘Vibrance’ collected in July - August 2000. 116

Figure 3.3 Changes in dimensional properties during successive sampling dates for leaf abaxial surfaces in single-stemmed, branched and adult plants of Metrosideros excelsa ‘Vibrance’. 118

Figure 3.4 Changes in optical properties between successive sampling dates for leaf abaxial surfaces in single-stemmed, branched and mature plants of Metrosideros excelsa ‘Vibrance’. 119
Figure 3.5 Comparison of leaf carbon isotope composition in single-stemmed, branched and adult plants of *Metrosideros excelsa* 'Vibrance'.

Figure 3.6 Comparison of carbon isotope composition from leaves harvested at different node positions for single-stemmed and branched plants with the mean value for adult plants of *Metrosideros excelsa* 'Vibrance' collected at the end of the experimental period.

Figure 3.7 Comparison of variables from light response and CO₂ assimilation curves for leaves in single-stemmed, branched and adult plants of *Metrosideros excelsa* 'Vibrance'.

Figure 3.8 Mean photosynthetic light response curves for branched, single-stemmed and mature plants of *Metrosideros excelsa* collected in a controlled environment.

Figure 3.9 Representational CO₂ assimilation to intercellular CO₂ response curves for a leaf measured on single-stemmed, branched and adult plants of *Metrosideros excelsa*.

Figure 3.10 Correlation of water use efficiency with carbon isotope discrimination for leaves from single-stemmed, branched and adult plants of *Metrosideros excelsa*.

Figure 3.11 Diurnal comparison of leaf gas exchange parameters in single-stemmed, branched and adult plants of *Metrosideros excelsa* 'Vibrance'.

Figure 4.1 Effects of temperature and photoperiod on flowering in plants of *Metrosideros excelsa* 'Scarlet Pimpernel' and 'Vibrance'.

Figure 4.2 Rate of floral development in plants of *Metrosideros excelsa* 'Scarlet Pimpernel' treated for 10 or 15 weeks in controlled environments before being transferred to a forcing greenhouse.

Figure 4.3 Percentage of *Metrosideros excelsa* 'Scarlet Pimpernel' buds in each of seven bud size classes that were floral, remained vegetative, or did not break in plants transferred to the forcing greenhouse after 15 weeks treatment with cool (15°C), short days (10h).

Figure 4.4 Rate of floral development in plants of *Metrosideros excelsa* 'Scarlet Pimpernel' and 'Vibrance' grown continuously in greenhouses maintained at either ambient temperature with either ambient daylengths or a photoperiod of 16 h, and at a day/night temperature of 24/17°C with ambient daylength.

Figure 5.1 Effect of irradiance and ambient conditions on the cumulative proportion of floral meristems per plant at 20 and 23 weeks from the start of the experiment in three bud size classes of *Metrosideros excelsa* 'Lighthouse'.

xi
Figure 5.2 Correlations between bud size at time of harvest with maximum length and width of floral meristems in *Metrosideros excelsa* 'Lighthouse'.

Figure 5.3 Effect of irradiance treatments and ambient conditions during floral induction on the size of floral meristems at 23 weeks after the start of the experiment.

Figure 5.4 Effect of inductive irradiance and ambient conditions on the mean number of inflorescences per plant in *Metrosideros excelsa* 'Lighthouse' and 'Scarlet Pimpernel'.

Figure 5.5 Effect of irradiance and ambient conditions on the cumulative proportion of inflorescences per three bud size classes per plant of *Metrosideros excelsa* 'Scarlet Pimpernel' at 11 weeks after transference to the forcing greenhouse conditions.

Figure 5.6 Effect of inductive environment on the percentage of terminal buds of inflorescences that had broken and from which vegetative shoots were elongating, that had aborted, or that had not broken in *Metrosideros excelsa* 'Lighthouse' and 'Scarlet Pimpernel assessed at Stage 1 of inflorescence development.

Figure 5.7 Effect of irradiance and ambient conditions during floral induction on vegetative shoot length in two cultivars of *Metrosideros excelsa* determined 11 weeks after transference to forcing conditions.

Figure 5.8 Relationship between vegetative shoot length and leaf total chlorophyll concentration in *Metrosideros excelsa* 'Lighthouse' grown under different irradiance treatments.

Figure 6.1 Effect of holding solution on the stage of floral development in cut cymules of *Metrosideros excelsa* 'Lighthouse'.

Figure 6.2 Changes in mean water flux (uptake and transpiration) pooled for all holding solution treatments and mean cymule mass for individual treatments in cut cymules of *Metrosideros excelsa* 'Lighthouse'.

Figure 6.3 Effect of holding solution on stamen wilting and abscission in cut cymules of *Metrosideros excelsa* 'Lighthouse'.

Figure 6.4 Changes in mean water flux (uptake and transpiration) pooled for all holding solution treatments and mean cymule mass for individual treatments in cut cymules of *Metrosideros excelsa* 'Vibrance'.

Figure 6.5 Effect of holding solution on stamen wilting and abscission in cut cymules of *Metrosideros excelsa* 'Vibrance'.

xii
Figure 6.6 Effect of HQC and pH holding solutions on stamen abscission and wilting in cut cymules of *Metrosideros excelsa* ‘Lighthouse’.

Figure 6.7 Effect of relative humidity on stage of floral development in cut cymules of *Metrosideros excelsa* ‘Lighthouse’.

Figure 6.8 Effect of relative humidity on water flux (water uptake and transpiration) and cymule mass in cut cymules of *Metrosideros excelsa* ‘Lighthouse’.

Figure 6.9 Headspace ethylene concentration above cut cymules of *Metrosideros excelsa* ‘Lighthouse’ at 24 and 48 h after incubation per enclosure day.

Figure 6.10 Effect of preventative treatment on water flux (water uptake and transpiration) for cut cymules treated with either 0 or 5 μl l⁻¹ exogenous ethylene.

Figure 6.11 Change in cymule mass following exposure to a preventative treatment and exogenous ethylene (0 and 5 μl l⁻¹ ethylene data pooled).

Figure 6.12 Effect of preventative treatment on stamen wilting.

Figure 6.13 Change in stamen abscission in cut cymules after a preventative pre-treatment of 1-MCP and STS before application of either 0 and 5 μl l⁻¹ of exogenous ethylene.

Figure 6.14 Change in flower abscission with time following exposure to 5 μl l⁻¹ exogenous ethylene in pre-treated cymules of *Metrosideros excelsa* ‘Lighthouse’ with 1-MCP and STS.

Figure 6.15 Effect of petal in-rolling on Day 9 following exposure to 5 μl l⁻¹ exogenous ethylene in pre-treated cymules of *Metrosideros excelsa* ‘Lighthouse’ with 1-MCP and STS.
List of Tables

Table 1.1 Features that distinguish juvenile and adult phases of English ivy (*Hedera helix*) and maize (*Zea mays*).

Table 2.1 Comparison of single-stemmed and branched plants of *Metrosideros excelsa* ‘Scarlet Pimpernel’ with respect to leaf optical (abaxial and adaxial surfaces) and dimensional (adaxial surface) parameters at node positions 16-17 and 26-27.

Table 2.2 Effect of node position within single-stemmed plants of *Metrosideros excelsa* ‘Scarlet Pimpernel’ on optical (abaxial and adaxial) and dimensional (adaxial) leaf parameters, and means for corresponding parameters in mature leaves.

Table 2.3 Mineral nutrient concentrations in the leaves of single-stemmed and branched plants of *Metrosideros excelsa* ‘Scarlet Pimpernel’ grown in 0.82 and 7.21 containers.

Table 2.4 Comparison of leaf characteristics in single-stemmed, branched and adult plants of *Metrosideros excelsa* ‘Vibrance’.

Table 2.5 Correlation of leaf dimension, colour, mass and water content variables with leaf carbon isotope discrimination values in single-stemmed, branched and adult plants of *Metrosideros excelsa* ‘Vibrance’.

Table 2.6 Comparison of leaf gas-exchange parameters in single-stemmed, branched and adult plants of *Metrosideros excelsa* ‘Vibrance’.

Table 2.7 Comparison of carbohydrate concentrations in fully expanded leaves collected from nodes 10 and 40 in single-stemmed plants, node 30 in branched plants and from the canopy top in adult plants of *Metrosideros excelsa* ‘Vibrance’ on 25 June 2001, between 0600-0630 h.

Table 6.1 Classification of stages of floral development in *Metrosideros excelsa*.

Table 6.2 Effect of inductive environment and cultivar on inflorescence morphological characteristics.

Table 6.3 Effect of irradiance and ambient conditions during floral induction on leaf chlorophyll and carbohydrate concentrations in *Metrosideros excelsa* ‘Lighthouse’ after 20 weeks in induction treatments.

Table 6.4 Effect of holding solution on mean water uptake and transpiration in cut cymules of *Metrosideros excelsa* ‘Lighthouse’ over the experimental period.
Table 6.2 Correlation of mean stamen wilting and cymule fresh weight between Days 8-12 for each holding solution treatment for cut cymules of *Metrosideros excelsa* ‘Lighthouse’.

Table 6.3 Correlation of mean stamen wilting and cymule fresh weight between Days 4-16 for each holding solution treatment for cut cymules of *Metrosideros excelsa* ‘Vibrance’.

Table 6.4 Effect on humidity on percentage of stamen and petal abscission in cut cymules of *Metrosideros excelsa* ‘Lighthouse’.

Table 6.5 Effect of exogenously applied ethylene on percentage of abscised flowers.

Table 6.6 Effect of exogenously applied ethylene on percentage of mean stamen wilting.

Table 6.7 Correlation of stamen wilting and cymule fresh weight of cut cymules of *Metrosideros excelsa* pre-treated with preventative treatments of either 1-MCP or STS before application of exogenous ethylene (data pooled for 0 and 5 μl l⁻¹ ethylene).
List of Plates

<table>
<thead>
<tr>
<th>Face plate</th>
<th>Metrosideros excelsa ‘Vibrance’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate 3.1</td>
<td>Cross-section of vegetative bud illustrating the continuous formation of new leaf primordia.</td>
</tr>
<tr>
<td>Plate 5.1</td>
<td>Microscopic study of vegetative and floral initiation and development in buds collected after the start of the experiment with 20 weeks treatment to different inductive irradiances.</td>
</tr>
</tbody>
</table>
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABA</td>
<td>abscisic acid</td>
</tr>
<tr>
<td>ACC</td>
<td>1-aminocyclopropane-1-carboxylic acid</td>
</tr>
<tr>
<td>A/Ci</td>
<td>CO₂ assimilation over intercellular CO₂ concentration</td>
</tr>
<tr>
<td>AOA</td>
<td>aminooxyacetic acid</td>
</tr>
<tr>
<td>AVG</td>
<td>aminoethoxyvinylgycine</td>
</tr>
<tr>
<td>Φ<sub>app</sub></td>
<td>apparent (CO₂-limited) photon yield</td>
</tr>
<tr>
<td>Δ</td>
<td>carbon isotope discrimination</td>
</tr>
<tr>
<td>CK</td>
<td>cytokinin</td>
</tr>
<tr>
<td>DL</td>
<td>daylength</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DMF</td>
<td>dimethylformamide</td>
</tr>
<tr>
<td>GA</td>
<td>gibberellin</td>
</tr>
<tr>
<td>IAA</td>
<td>indole-3-acetic acid</td>
</tr>
<tr>
<td>FAA</td>
<td>90% formalin, 5% acidic acid and 5% alcohol fixative solution</td>
</tr>
<tr>
<td>GENMOD</td>
<td>generalised linear model using maximised likelihood estimations</td>
</tr>
<tr>
<td>HQC</td>
<td>8-hydroxyquinoline citrate</td>
</tr>
<tr>
<td>HQS</td>
<td>8-hydroxyquinoline sulfate</td>
</tr>
<tr>
<td>J<sub>max</sub></td>
<td>maximum electron transport rate</td>
</tr>
<tr>
<td>LD</td>
<td>long-day</td>
</tr>
<tr>
<td>1-MCP</td>
<td>1-methylcyclopropene</td>
</tr>
<tr>
<td>NBD</td>
<td>2,5-norbornadiene</td>
</tr>
<tr>
<td>PPF</td>
<td>photosynthetic photon flux</td>
</tr>
<tr>
<td>P<sub>max</sub></td>
<td>maximum photosynthetic photon flux at 99% light saturation</td>
</tr>
<tr>
<td>PPF<sub>sat</sub></td>
<td>light saturated maximum rate of photosynthesis</td>
</tr>
<tr>
<td>PP333</td>
<td>paclobutrazol</td>
</tr>
<tr>
<td>RH</td>
<td>relative humidity</td>
</tr>
<tr>
<td>Rubisco</td>
<td>ribulose-1,5-bisphosphate carboxylase/oxygenase</td>
</tr>
<tr>
<td>SD</td>
<td>short-day</td>
</tr>
<tr>
<td>STS</td>
<td>silver thiosulfate</td>
</tr>
<tr>
<td>V<sub>cmax</sub></td>
<td>maximum rubisco carboxylation rate</td>
</tr>
<tr>
<td>WUE</td>
<td>water-use efficiency</td>
</tr>
</tbody>
</table>
Metrosideros excelsa 'Vibrance'