Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
FISH OIL: REFINING, STABILITY AND ITS USE IN CANNED FISH FOR THE INDONESIAN MARKET

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Process and Product Development at Massey University, New Zealand

HARI EKO IRIANTO

1992
Massey University Library
Thesis Copyright Form

Title of thesis: FISH OIL: REFINING, STABILITY AND ITS USE IN CANNED FISH FOR THE INDONESIAN MARKET

(1) ✓ I give permission for my thesis to be made available to readers in Massey University Library under conditions determined by the Librarian.
 (b) I do not wish my thesis to be made available to readers without my written consent for ... months.

(2) ✓ I agree that my thesis, or a copy, may be sent to another institution under conditions determined by the Librarian.
 (b) I do not wish my thesis, or a copy, to be sent to another institution without my written consent for ... months.

(3) ✓ I agree that my thesis may be copied for Library use.
 (b) I do not wish my thesis to be copied for Library use for ... months.

Signed

Date 10 August 1992

The copyright of this thesis belongs to the author. Readers must sign their name in the space below to show that they recognise this. They are asked to add their permanent address.

NAME AND ADDRESS

DATE
ABSTRACT

Fish oil has been proved to have health benefits for humans, but the utilization of fish oil for human consumption is very limited.

A survey of 19 Indonesian fish oil producers showed that fish oil was produced from fish meal processing and fish canning. Most Indonesian fish oils, especially fish meal oil, were chemically, physically and organoleptically unacceptable. But, as they contain high levels of omega-3 fatty acids, a refining process was required to improve the quality making the oil acceptable for human consumption.

The resin refining process, a no heat process, was used to refine the crude oil. Fish oil-resin volume ratio affected the refined fish oil quality and ratio 1:1 was recommended. The refined oil quality could be further improved by multiple refinings, and this method was successfully applied to Indonesian fish meal oil having a strong undesirable odour. The refining rate could be accelerated by application of vacuum pressure to the column. The height of the column showed a significant effect on the refined fish oil quality, but the column diameter had no effect. Resin refining reduced the quantity of natural antioxidants and changed the proportion of volatile flavour compounds. Most Indonesian fish oil producers intend to adopt the resin refining process.

Storage tests indicated that the refined oil deteriorated faster than unrefined oil. This trend was shown by both Indonesian and New Zealand oils. Ter-butylhydroquinone (TBHQ) proved as the most effective antioxidant for fish oil, but this antioxidant is not listed as a permitted antioxidant for use in Indonesian foods. Butylated hydroxyanisole (BHA), as the best alternative, is recommended. 0.01% BHA was sufficient to recover the loss of natural antioxidant during resin refining. Vacuum package was very effective in reducing the deterioration rate due to autoxidation.

Canned fish was used as a mean of delivering fish oil to Indonesian consumer. The proposed product type was generated through supermarket, consumer and canned fish processor surveys. The survey results suggested that the fish oil to be disguised in a canned fish product using sardine as raw material, tomato sauce as medium and 155g tall tube-can as the container.

The most acceptable tomato sauce formula developed using mixture design is 18.6% tomato paste, 28.0% fish oil, 46.6% water, 3.7% salt and 3.1% sugar. The canned fish should be sterilized using
vacuum head space-can at 121.1°C to obtain optimum protection of omega-3 fatty acids.

The experiment using the Plackett and Burman design showed that the canned fish product should involve pre-cooking, vacuum head space, garlic, shallots and vinegar additions. Sterilization time needed to be optimized. The optimization experiment indicated that 50 minutes was recommended to sterilize the canned fish with disguised fish oil. Sterility and incubation tests showed that sterilization at 121.1°C for 50 minutes was sufficient to produce safe product.

Consumer testing in five cities of Indonesia showed that only a minority of consumers did not like the developed product. Most of the consumers intend to buy the product, if the product is released to the market. A survey of medical doctors supported the proposed product, as over 90% of them were willing to suggest patients consume the product for nutritional purposes.
And if all the trees on earth were pens and the ocean (were ink), with seven oceans behind it to add to its (supply), yet would not the words of Allah be exhausted (in the writing): for Allah is Exalted in power, full of Wisdom.

(The Holly Qur'an 31: 27)

To my wife, Giyatmi, and my daughter,

Husna Izzahnisia Omegita
ACKNOWLEDGEMENTS

In the name of Allah, Most Gracious, Most Merciful.

I would like to express my immense gratitude to Dr. Carmen C. Fernandez, my chief Supervisor, for her guidance, encouragement and patience during all stages of my Ph.D program. I would like also to thank for her efforts in upgrading my program from Master toPhD. Also my thank to Dr. G.J. Shaw, my co-supervisor, for his guidance, supports and patience throughout my program.

I would like also to express sincerely appreciation to the following:

Prof. P.A. Munro, head of Food Technology Department, Massey University, for his full support in upgrading my study program from M.Tech. to PhD.

Dr. Suparno, director of the Research Institute of Fish Technology, Jakarta, for his supports throughout my study in New Zealand.

Dr. Cecil Johnson, Crown Research Institute, for his private training in fatty acid esterification and introduction to gas chromatography.

Mr. John M. Allen, Crown Research Institute, for his help in fatty acid profiles and volatile flavour compounds analysis.

Mrs. M. Bewley, for her help in providing all equipments and reagents for chemical works.

Mr. Hank van Til, for his help on computer works and canning experiment.

Mr. Garry Redford, for his help during Hunter lab colour analysis and canning experiment.

Research staffs at the Research Institute of Fish Technology, Jakarta, especially Ir. Ijah Muljanah MS, Drs. Tazwir, Ir. Jamal Basmal, Ir. Mei Dwi Erlina and Ir. Murdinah MS, for their help during fish meal and cannery survey.

All Indonesian post graduate students at Massey University and families, for their participation during sensory evaluation throughout my experiments.

All people in Jakarta, Tangerang, Semarang, Sragen, and Lumajang who have participated in consumer survey and product testing.

All fish meal and canned fish factories in Muncar and Bali which have been willing to be surveyed.

Sealord Product Ltd., Nelson, for fish oil; J Watties Foods Ltd, Hastings, for tomato paste; Dow Chemicals, USA, for resin; Roche, New Zealand, for Dl-α-tocopherol; and Bronson and Jacobs, New Zealand, for Grindox 117.

My parents (Siswanto and Kasmiyati) and my brothers and sister (Heru, Henny, Basuki and Hudha), and also Bapak and Simbok Mintopawiro for their prayers.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxi</td>
</tr>
<tr>
<td>Chapter 1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 2. GENERAL LITERATURE REVIEW</td>
<td>3</td>
</tr>
<tr>
<td>2.1. CHEMICAL PROPERTIES OF FISH OIL</td>
<td>3</td>
</tr>
<tr>
<td>2.1.1. Triglycerides and fatty acids</td>
<td>3</td>
</tr>
<tr>
<td>2.1.2. Wax esters</td>
<td>5</td>
</tr>
<tr>
<td>2.1.3. Phospholipids</td>
<td>5</td>
</tr>
<tr>
<td>2.1.4. Free fatty acids (FFAs)</td>
<td>5</td>
</tr>
<tr>
<td>2.1.5. Ether groups</td>
<td>6</td>
</tr>
<tr>
<td>2.1.7. Sterols</td>
<td>6</td>
</tr>
<tr>
<td>2.1.8. Heavy metals</td>
<td>7</td>
</tr>
<tr>
<td>2.1.9. Pigments</td>
<td>7</td>
</tr>
<tr>
<td>2.2. NUTRITIONAL PROPERTIES</td>
<td>8</td>
</tr>
<tr>
<td>2.2.1. Essential fatty acids</td>
<td>8</td>
</tr>
<tr>
<td>2.2.2. Vitamins</td>
<td>9</td>
</tr>
<tr>
<td>2.3. FISH OIL AND DISEASES</td>
<td>9</td>
</tr>
<tr>
<td>2.4. FISH OIL PRODUCTION</td>
<td>10</td>
</tr>
<tr>
<td>2.4.1. Extraction technology</td>
<td>11</td>
</tr>
<tr>
<td>2.4.2. Processing of fish oil</td>
<td>14</td>
</tr>
<tr>
<td>2.5. INDUSTRIAL APPLICATION OF FISH OIL</td>
<td>17</td>
</tr>
<tr>
<td>2.5.1. Fish oil application in foods</td>
<td>17</td>
</tr>
<tr>
<td>2.5.2. Fish oil application in pharmaceuticals</td>
<td>18</td>
</tr>
<tr>
<td>2.5.3. Fish oil application in animal and fish feeds</td>
<td>20</td>
</tr>
<tr>
<td>2.5.4. Fish oil application in non-edible uses</td>
<td>20</td>
</tr>
<tr>
<td>Chapter 3. MATERIAL AND ANALYSIS METHODS</td>
<td>22</td>
</tr>
<tr>
<td>3.1. MATERIALS</td>
<td></td>
</tr>
</tbody>
</table>
3.1.1. Fish oils 22
3.1.2. Resin 22
3.1.3. Fish 22
3.1.4. Can 23
3.3. METHODS OF ANALYSIS 24
 3.3.1. Chemical analysis 24
 3.3.2. Physical analysis 31
 3.3.3. Sensory analysis 32
 3.3.4. Canned fish analysis 35
3.4. DATA ANALYSIS 36

<table>
<thead>
<tr>
<th>Chapter 4</th>
<th>FISH OIL PRODUCTION IN INDONESIA</th>
<th>37</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1. BACKGROUND</td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>4.2. OBJECTIVES</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>4.3. METHODOLOGY</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>4.4. RESULTS</td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>4.4.1. Position of fish meal in Indonesian fishery industry</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>4.4.2. Raw fish used for fish meal/oil production in Indonesia</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>4.4.3. Fish meal and fish oil processing in Indonesia</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>4.4.4. Prices and buyers of fish oil</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>4.4.5. Chemical, physical and sensory analysis of Indonesian fish oil</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>4.4.6. Fatty acid profiles of fish oil</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>4.4.7. New Zealand fish oil used as comparison with Indonesian fish oil</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>4.5. DISCUSSIONS</td>
<td></td>
<td>48</td>
</tr>
<tr>
<td>4.5.1. Fish oil production</td>
<td></td>
<td>48</td>
</tr>
<tr>
<td>4.5.2. Fish oil quality</td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>4.6. CONCLUSIONS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 5</th>
<th>OPTIMIZATION OF THE RESIN REFINING PROCESS OF FISH OIL</th>
<th>53</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1. BACKGROUND</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>5.2. OBJECTIVES</td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>5.3. METHODOLOGY</td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>5.3.1. Materials</td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>5.3.2. Experimental methods</td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>5.4. RESULTS</td>
<td></td>
<td>58</td>
</tr>
<tr>
<td>5.4.1. Effects of fish oil-resin volume ratio on fish oil quality</td>
<td>58</td>
<td></td>
</tr>
</tbody>
</table>
5.4.2. Effects of multiple refining on fish oil quality 66
5.4.3. Effects of vacuum pressure application on fish oil quality 72
5.4.4. Effects of column size on fish oil quality 78
5.4.5. Effects of resin refining on natural antioxidant contents of fish oil 88
5.4.6. Effects of resin refining on volatile flavour compounds of fish oil 88

5.5. DISCUSSION

5.5.1. Effects of resin refining on chemical properties of fish oil 93
5.5.2. Effects of resin refining on physical properties of fish oil 95
5.5.3. Effects of resin refining process on volatile flavour compounds 96
5.5.4. Effects of resin refining on sensory properties of fish oil 98

5.6. CONCLUSIONS

Chapter 6. STORAGE TEST OF REFINED AND UNREFINED FISH OIL 101

6.1. BACKGROUND 101
6.2. OBJECTIVES 102
6.3. METHODOLOGY 102

6.3.1. Materials 102
6.3.2. Methods 102
6.3.3. Determination of the deterioration rate of fish oil during storage 103

6.4. RESULTS

6.4.1. Effects of storage on peroxide value (PV) of fish oil 103
6.4.2. Effects of storage on refractive index value of fish oil 104
6.4.3. Effects of storage on colour of fish oil 106
6.4.4. Effects of storage on sensory properties of fish oil 107

6.5. DETERMINATION OF RATE CONSTANTS AND ORDER REACTION MODEL 110

6.6. ESTIMATION OF SHELF LIFE OF FISH OIL 112

6.7. CORRELATION BETWEEN SENSORY RESULTS AND OTHER PARAMETERS 116

6.8. DISCUSSION

6.8.1. Chemical and physical changes in fish oil during storage 117
6.8.2. Sensory changes in fish oil during storage 119
6.8.3. Shelf life of fish oil 120

6.9. CONCLUSIONS 121
Chapter 7. STABILITY IMPROVEMENT OF RESIN REFINED FISH OIL

7.1. BACKGROUND

7.1.1. Antioxidant and oxidation
7.1.2. Oxygen removal and oxidation

7.2. OBJECTIVES

7.3. METHODOLOGY

7.3.1. Materials
7.3.2. Methods

7.4. RESULTS

7.4.1. Selection of antioxidant
7.4.2. Optimisation of antioxidant level
7.4.3. Use of vacuum package for fish oil stability improvement

7.5. DISCUSSION

7.5.1. Use of antioxidant for fish oil stability improvement
7.5.2. Use of vacuum package for fish oil stability improvement

7.6. CONCLUSIONS

Chapter 8. APPLICATION OF RESIN REFINING TO INDONESIAN FISH OIL

8.1. BACKGROUND

8.2. OBJECTIVES

8.3. METHODOLOGY

8.3.1. Materials
8.3.2. Methods

8.4. RESULTS

8.4.1. Effects of resin refining process on Indonesian fish oil
8.4.2. Stability of refined Indonesian fish oil
8.4.3. Response of Indonesian fish oil producers to resin refining process

8.5. DISCUSSION

8.5.1. Effects of resin refining on chemical, physical and organoleptic properties of Indonesian fish oil
8.5.2. Stability of refined Indonesian fish oil
8.5.3. Prospect of introduction of the resin refining process for Indonesian fish oil

8.6. CONCLUSIONS
Chapter 9. DETERMINATION OF CANNED FISH PRODUCT TYPE CONTAINING REFINING FISH OIL AS A MAJOR INGREDIENT

9.1. BACKGROUND 171
9.2. OBJECTIVES 172
9.3. METHODOLOGY 172
 9.3.1. Supermarket survey 172
 9.3.2. Cannery survey 173
 9.3.3. Consumer survey 173
9.4. RESULTS 173
 9.4.1. Existing canned fish product in the market 173
 9.4.2. Production information for canned fish 178
 9.5.3. Consumer behaviour towards canned fish product 183
9.6. DISCUSSION 190
 9.6.1. Product type to be developed 190
 9.6.2. Prospects for proposed canned sardine with fish oil addition 191
9.7. CONCLUSIONS

Chapter 10. TOMATO SAUCE FORMULATION AND STERILIZATION CONDITION SELECTION FOR FISH CANNING

10.1. BACKGROUND 193
 10.1.1. Tomato sauce formulation 193
 10.1.2. Sterilization 194
10.2. OBJECTIVES 195
10.3. METHODOLOGY 196
 10.3.1. Experiment 1: Tomato sauce formulation 196
 10.3.2. Experiment 2: Simulation study on the selection of sterilization condition for canned fish with disguised fish oil 197
10.4. RESULTS 198
 10.4.1. Tomato sauce formulation 198
 10.4.2. Stability of fish oil during sterilization 205
10.5. DISCUSSION 216
 10.5.1. Tomato sauce formulation 216
 10.5.2. Fish oil stability during sterilization 217
10.6. CONCLUSIONS 219
Chapter 11. DETERMINATION OF IMPORTANT FACTORS IN FISH CANNING AND CANNING PROCESS OPTIMIZATION

11.1. BACKGROUND

11.1. Canned fish

11.1.2. Screening experimental design: Plackett and Burman

11.2. OBJECTIVES

11.3. METHODOLOGY

11.3.1. Materials

11.3.2. Methods

11.4. RESULTS

11.4.1. Determination of important factors in canned fish processing

11.4.2. Optimization of canning process

11.5. DISCUSSION

11.5.1. Changes in canned fish during processing

11.5.2. Canning process optimization

11.6. CONCLUSIONS

Chapter 12. PROSPECTS OF CANNED FISH PRODUCT WITH FISH OIL ADDITION IN INDONESIAN MARKET

12.1. BACKGROUND

12.2. OBJECTIVES

12.3. METHODOLOGY

12.3.1. Materials

12.3.2. Methods

12.4. RESULTS

12.4.1. Changes during production trial

12.4.2. Safety assessment of developed canned fish

12.4.3. Product acceptability during consumer testing

12.4.4. Opinions of Indonesian medical doctors to the product

12.5. DISCUSSION

12.5.1. Chemical and physical changes in canned fish during production trial

12.5.2. Product safety and shelf life

12.5.3. Prospect of developed canned fish in Indonesian market

12.6. CONCLUSIONS
Chapter 13. GENERAL DISCUSSION AND CONCLUSION 268
13.1. INTRODUCTION 268
13.2. FISH OIL REFINING 268
13.3. FISH OIL STABILITY 269
13.4. DEVELOPMENT OF CANNED FISH ENRICHED WITH FISH OIL 273
13.5. PROSPECT OF DEVELOPED CANNED FISH IN INDONESIAN MARKET 277
13.6. ROLE OF SENSORY EVALUATION IN PROCESS AND PRODUCT DEVELOPMENT 278
13.7. ROLE OF THE CONSUMER IN PRODUCT DEVELOPMENT 280
13.8. RECOMMENDED FUTURE STUDIES 281
13.8. GENERAL CONCLUSIONS 281

REFERENCES 283
APPENDICES 307
LIST OF TABLES

Table 4.1. Raw fish used for fish meal production (as number of factories)
Table 4.2. Fish oil production information obtained during survey
Table 4.3. Price and buyers of fish oil (by number of factories)
Table 4.4. Chemical, physical and sensory analysis of Indonesian fish oil
Table 4.5. Fatty acid profiles of Indonesian fish oil (% fatty acid)
Table 4.6. Chemical, physical, sensory and fatty acid profiles of New Zealand oils
Table 4.7. Classification of Indonesian fish oil quality in terms of FFA value
Table 4.8. Effects of fish oil - resin volume ratio on fatty acid profile of crude fish oil (% fatty acid)
Table 5.1. Effect of fish oil - resin volume ratio on fatty acid profile of orange roughy oil (% fatty acid)
Table 5.2. Effect of multiple refining on fatty acid profile of crude fish oil (% fatty acid)
Table 5.3. Effect of multiple refining on fatty acid profile of orange roughy oil (% fatty acid)
Table 5.4. Effect of vacuum pressure during resin refining on fatty acid profile of crude fish oil (% fatty acid)
Table 5.5. Effect of vacuum pressure during resin refining on fatty acid profile of orange roughy oil (% fatty acid)
Table 5.6. Effect of vacuum pressure during resin refining on fatty acid profile of orange roughy oil (% fatty acid)
Table 5.7. Effect of height size of resin packed column on fatty acid profile of crude fish oil (% fatty acid)
Table 5.8. Changes of natural antioxidant content of fish oil during refining process (ppm)
Table 5.9. Relative amounts of volatile flavour compounds of crude oil during refining
Table 5.10. Relative amounts of volatile flavour compounds of orange roughy oil during refining
Table 6.1. Rate constant of zero- and first-order reactions of each parameter during storage of fish oil at various storage temperatures
Table 6.2. Calculated shelf life of refined and unrefined fish oil based on the odour and taste parameters from various storage temperatures (weeks)
Table 6.3. Estimated shelf life of fish oil at various temperatures (weeks)
Table 6.4. Regression analysis between odour score and other parameters (peroxide value colour absorbance value and refractive index value)
Table 8.1. Fatty acid profile changes in fish meal and canning waste oils during resin refining process 157
Table 8.2. Tocopherol content of fish meal and canning waste oils during refining process (ppm) 158
Table 8.3. Results of fish meal factory survey about the response to resin refining process (number of factories) 166
Table 9.1. Percentage of canned fish product type on the Indonesian market according to fish species 174
Table 9.2. Distribution of canned fish product in the market according to medium used 175
Table 9.3. Distribution of canned fish product in the market according to can type used 176
Table 9.4. Distribution of canned fish product based on the relation between fish species and can type 177
Table 9.6. Fish species used for canned fish production 179
Table 9.7. Medium used for canned fish production 180
Table 9.8. Fish species used for canned fish production for local market 181
Table 9.9. Response of canneries to the idea "canned fish with disguised fish oil" 182
Table 9.10. Demographic characteristics of respondents 183
Table 9.11. Consumption frequency of fish and fish product 184
Table 9.12. Preference of respondents to consume refined fish oil 185
Table 9.13. Fish oil consumption suggested by respondent 186
Table 9.14. Respondent preference for a certain fish species and medium in buying canned fish 187
Table 9.15. Fish species and medium chosen by respondents in buying canned fish 187
Table 9.16. Respondent attitude to the idea of canned fish with disguised fish oil 188
Table 9.17. Respondent preference to medium type, can size and price for proposed canned fish product 189
Table 10.1. Total organoleptic score of the tomato sauce products of the first formulation 200
Table 10.2. Effects of main ingredients on sensory properties of tomato sauce 201
Table 10.3. Total organoleptic score of tomato sauce products of the optimisation experiment 204
Table 10.4. Fatty acid profiles changes of fish oil during sterilization 212
Table 11.1. Design matrix for screening important factors in fish canning 223
Table 11.2. Variables and limits for Plackett and Burman design of canned fish 226
Table 11.3. Results of chemical analysis of fish and tomato sauce 228
Table 11.4. Results of colour analysis of fish flesh 229
Table 11.5. Results of sensory evaluation for fish 229
Table 11.6. Results of sensory evaluation for tomato sauce and overall acceptability for canned fish product

Table 11.7. The main effects and significance levels of process variables on the characteristic of canned fish

Table 11.8. The main effects and significance levels of seasoning on the characteristic of canned fish

Table 11.9. Chemical and physical changes in fish and tomato sauce during optimization experiment

Table 11.10. Sensory changes in fish during optimization experiment

Table 11.11. Sensory changes in tomato sauce and overall acceptability of the product during optimization experiment

Table 12.1. Fish and canned fish product weight changes during production trial

Table 12.2. Hunter-1, -a and -b values changes in both fish flesh and tomato sauce medium during production trial

Table 12.3. Proximate composition changes in the canned fish during production trial (%)

Table 12.4. Results of stability study on the oil in tomato sauce medium due to treatment during production trial

Table 12.5. Fatty acid profile changes in canned fish due to sterilization treatment during production trial

Table 12.6. Canned fish characteristics and acceptability in consumer testing

Table 12.7. Acceptability of developed canned fish product in consumer test by demographic characteristics

Table 12.8. Buying trend of developed canned fish in consumer testing by demographic characteristic

Table 12.9. Buying trend of developed canned fish according to consumer testing acceptability and consumer experience in buying canned fish product

Table 12.10. Buying criterion, retain outlet, label information and price of product suggested by consumer testing

Table 12.11. Medical doctors advising the patients to consume fish and fish oil

Table 12.12. The ways advised by Indonesian medical doctors to deliver fish oil to consumer

Table 12.13. Comments of medical doctors on the product idea and the prospect of the product in the market

Table 13.1. Experimental design used for each experimental stage
LIST OF FIGURES

Figure 5.1. Effects of fish oil-resin volume ratio on free fatty acid value of fish oil 59
Figure 5.2. Effects of fish oil-resin volume ratio on refractive index value of fish oil 60
Figure 5.3. Effects of fish oil-resin volume ratio of colour absorbance value of fish oil 61
Figure 5.4. Effects of fish oil-resin volume ratio on odour score of fish oil 64
Figure 5.5. Effects of fish oil-resin volume ratio on taste score of fish oil 65
Figure 5.6. Effects of multiple refining on free fatty acid value of fish oil 66
Figure 5.7. Effects of multiple refining on refractive index of fish oil 67
Figure 5.8. Effects of multiple refining on colour absorbance value of fish oil 68
Figure 5.9. Effects of multiple refining on odour score of fish oil 71
Figure 5.10. Effects of multiple refining on taste score of fish oil 72
Figure 5.11. Effects of vacuum pressure during refining on free fatty acid value of fish oil 73
Figure 5.12. Effects of vacuum pressure during refining on refractive index value of fish oil 74
Figure 5.13. Effects of vacuum pressure during refining on colour absorbance value of fish oil 75
Figure 5.14. Effects of vacuum pressure during refining on odour score of fish oil 77
Figure 5.15. Effects of vacuum pressure during refining on taste score of fish oil 78
Figure 5.16. Effects of various height-diameter ratios of column on fatty acid value of fish oil 79
Figure 5.17. Effects of various height-diameter ratios of column on refractive index value of fish oil 80
Figure 5.18. Effects of various height-diameter ratios of column on colour absorbance value of fish oil 81
Figure 5.19. Effects of various height-diameter ratios of column on odour score of fish oil 82
Figure 5.20. Effects of various height-diameter ratios of column on taste score of fish oil 83
Figure 5.21. Effects of various diameter sizes of column on free fatty acid value of fish oil 84
Figure 5.22. Effects of various diameter sizes of column on refractive index value of fish oil 85
Figure 5.23. Effects of various diameter sizes of column on colour absorbance value of fish oil 86
Figure 5.24. Effects of various diameter sizes of column on odour score of fish oil 87
Figure 5.25. Effects of various diameter sizes of column on taste score of fish oil 87
Figure 5.26. Traces of volatile flavour compounds of unrefined crude oil 89
Figure 5.27. Traces of volatile flavour compounds of refined crude oil 89
Figure 5.28. Traces of volatile flavour compounds of unrefined orange roughy oil 91
Figure 5.29. Traces of volatile flavour compounds of refined orange roughy oil

Figure 6.1. Peroxide value changes in fish oil during storage at various temperatures
Figure 6.2. Refractive index changes in fish oil during storage at various temperatures
Figure 6.3. Colour absorbance value changes in fish oil during storage at various temperatures
Figure 6.4. Odour score changes in fish oil during storage at various temperatures
Figure 6.5. Taste score changes in fish oil during storage at various temperatures
Figure 6.6. Linear relationship between the natural logarithm of rate constant of fish oil and the reciprocal of absolute temperature

Figure 6.7. Linear relationship between the natural logarithm of estimated shelf life and the reciprocal of absolute temperature

Figure 7.1. Effects of various antioxidants on peroxide value changes in fish oil during storage at 63±2°C
Figure 7.2. Effects of various antioxidants on TBA value changes in fish oil during storage at 63±2°C
Figure 7.3. Effect of various antioxidants on anisidine value changes in fish oil during storage at 63±2°C
Figure 7.4. Effects of various antioxidants on totox value in fish oil during storage at 63±2°C
Figure 7.5. Effects of various antioxidants on colour absorbance value changes in fish oil during storage at 63±2°C
Figure 7.6. Effects of various antioxidants on refractive index changes in fish oil during storage at 63±2°C
Figure 7.7. Effects of various BHA levels on peroxide value changes in fish oil during storage at 63±2°C
Figure 7.8. Effects of various BHA levels on TBA value changes in fish oil during storage at 63±2°C
Figure 7.9. Effects of various BHA levels on anisidine value changes in fish oil during storage at 63±2°C
Figure 7.10. Effects of various BHA levels on totox value changes in fish oil during storage at 63±2°C
Figure 7.11. Effects of various BHA levels on colour absorbance value changes in fish oil during storage at 63±2°C

Figure 7.12. Effects of various BHA levels on refractive index changes in fish oil during storage at 63±2°C
Figure 7.13. Effects of vacuum package on peroxide value changes in fish oil during storage at 63±2°C and 30±2°C

Figure 7.14. Effects of vacuum package on TBA value changes in fish oil during storage at 63±2°C and 30±2°C

Figure 7.15. Effects of vacuum package on anisidine value changes in fish oil during storage at 63±2°C and 30±2°C

Figure 7.16. Effects of vacuum package on totox value changes in fish oil during storage at 63±2°C and 30±2°C

Figure 7.17. Effects of vacuum package on colour absorbance value changes in fish oil during storage at 63±2°C and 30±2°C

Figure 7.18. Effects of vacuum package on refractive index value changes in fish oil during storage at 63±2°C and 30±2°C

Figure 7.19. Effects of vacuum package on odour changes in fish oil during storage at 30±2°C

Figure 8.1. Free fatty acid value changes in fish meal and canning waste oils during resin refining process

Figure 8.2. Refractive index value changes in fish meal and canning waste oils during resin refining process

Figure 8.3. Colour absorbance value changes in fish meal and canning waste oils during resin refining process

Figure 8.4. Odour score changes in fish meal and canning waste oils during resin refining process

Figure 8.5. Peroxide value changes in both refined and unrefined fish meal and canning waste oils during storage at 63±2°C

Figure 8.6. TBA value changes in both refined and unrefined fish meal and canning waste oils during storage at 63±2°C

Figure 8.7. Anisidine value changes in both refined and unrefined fish meal and canning waste oils during storage at 63±2°C

Figure 8.8. Totox value changes in both refined and unrefined fish meal and canning waste oil during storage at 63±2°C

Figure 8.9. Colour absorbance value changes in fish meal and canning waste oil during storage at 63±2°C

Figure 8.10. Refractive index value changes in fish meal and canning waste oils during storage at 63±2°C

Figure 10.1. Mixture space showing areas of experiment

Figure 10.2. Mixture space showing new areas of experiment
Figure 10.3. Peroxide value changes in fish oil during sterilization at various temperatures and times

Figure 10.4. Anisidine value changes in fish oil during sterilization at various temperatures and times

Figure 10.5. TBA value changes in fish oil during sterilization at various temperatures and times

Figure 10.6. Totox value changes in fish oil during sterilization at various temperatures and times

Figure 10.7. Free fatty acid value changes in fish oil during sterilization at various temperatures and times

Figure 10.8. Colour absorbance changes in fish oil during storage at various temperatures and times

Figure 10.9. Fishy odour score changes in fish oil during sterilization at various temperatures and times

Figure 10.10. Rancid odour score changes in fish oil during sterilization at various temperatures and times

Figure 10.11. Fishy taste score changes in fish oil during sterilization at various temperatures and times

Figure 10.12. Rancid taste score changes in fish oil during sterilization at various temperatures and times

Figure 13.1. Oxidation of glyceride leading to rancidity of oil (Sherwin, 1990)
LIST OF APPENDICES

Appendix 3.1. Purging system for collection of volatile flavour compounds of fish oil 307
Appendix 3.2. Container used for colour analysis of fish flesh and tomato sauce 308
Appendix 4.1. Questionnaire used for fish meal factory survey 309
Appendix 4.2. Sensory evaluation sheet for Indonesian fish oil 311
Appendix 4.3. Factories participating in the survey 312
Appendix 4.4. Fatty acid profiles of Indonesian fish oils 313
Appendix 5.1. Results of chemical, physical and organoleptical analysis of fish oil as the
effects of fish oil and resin ratio 326
Appendix 5.2. Results of chemical, physical and organoleptical analysis of fish oil as the
effects of multiple refining using resin packed column 321
Appendix 5.3. Results of chemical, physical and organoleptical analysis of fish oil as the
effects of vacuum pressure application during resin refining process 326
Appendix 5.4. Results of chemical, physical and organoleptical analysis of fish oil as the
effects of various height sizes of resin packed column 329
Appendix 5.4. Results of chemical, physical and organoleptical analysis of fish oil as the
effects of various diameter sizes of resin packed column 332
Appendix 6.1. Score sheet used for sensory evaluation during fish oil storage experiment 334
Appendix 6.3. Linear relationship between the natural logarithm of rate constant and the
reciprocal of absolute temperature for each parameter 335
Appendix 6.4. Linear relationship between the natural logarithm of shelf life (θ) versus
the reciprocal of absolute temperature (°K) 336
Appendix 6.5. Results of chemical, physical and organoleptical analysis of refined and
unrefined fish oil during storage at various temperatures 337
Appendix 7.1. Relationship between degree of vacuum and residual oxygen content
(CIG Ltd, 1989) 341
Appendix 7.2. Permitted antioxidants to be used in Indonesian foods and drinks according
to Health Ministry Regulation No.10178/A/SK74 342
Appendix 7.3. Results of chemical and physical analysis of fish oil as the effects of various
antioxidant addition during storage at 63±2°C 343
Appendix 7.4. Results of chemical and physical analysis of fish oil as the effects of various
levels of BHA addition during storage at 63±2°C 346
Appendix 7.5. Results of chemical and physical analysis of fish oil during storage in
vacuum package at 63±2°C and 30±2°C 349
Appendix 8.1	Questionnaire used for fish meal factory survey	356
Appendix 8.2	Results of chemical, physical and sensory analysis of Indonesian fish oil	357
Appendix 8.3	Results of chemical and physical analysis of fish oil during storage at 63±2°C	359
Appendix 9.1	Questionnaire used for supermarket survey	361
Appendix 9.2	Questionnaire for cannery survey	362
Appendix 9.3	Questionnaire used for consumer survey	356
Appendix 9.4	Canned fish product being available in Indonesian market	359
Appendix 9.5	Dimensions of can found in the market	373
Appendix 9.6	Chi-square, degree of freedom and Cramer’s V of Crosstab analysis results for consumer survey	374
Appendix 10.1	Sensory form used for evaluating tomato sauce acceptability	375
Appendix 10.2	Sensory form used for evaluating sterilized fish oil	376
Appendix 10.3	The example of the calculation of ingredient effects	377
Appendix 10.4	Results of chemical, physical and sensory analysis of fish oil as the effect of sterilization treatment	378
Appendix 11.1	Sensory sheet for Plackett and Burman experiment of canned fish	383
Appendix 11.2	Sensory sheet for experiment on canning process optimization	385
Appendix 12.1	Questionnaire form used for consumer product testing	387
Appendix 12.2	Questionnaire form for medical doctor survey	395
Appendix 12.3	Information on the label of the developed canned fish product distributed during consumer testing	397
Appendix 12.4	Medical doctor’s comments on developed canned fish	398
Appendix 12.5	Fatty acid profile changes in fish oil and canned fish product during production trial	399
Appendix 12.6	Chi-square, degree of freedom and Cramer’s V of crosstab analysis results from consumer product testing	400
Appendix 12.7	Chi-square, degree of freedom and Cramer’s V of crosstab analysis results from medical doctor survey	402