A STUDY OF NITROGEN FIXATION, NITROGEN DISTRIBUTION AND SEED YIELD OF SELECTED LEGUMES WITH TWO DIFFERENT GROWTH TYPES.

A thesis
Presented in partial fulfilment of the requirements for the degree of
Doctor of Philosophy
at
Massey University
Palmerston North
New Zealand.

SUWIT LAOHASIRIWONG
1986
Title of thesis: A study of nitrogen fixation, nitrogen distribution and seed yield of selected legumes with two different growth types.

(1) (a) I give permission for my thesis to be made available to readers in the Massey University Library under conditions determined by the Librarian.

(b) I do not wish my thesis to be made available to readers without my written consent for ______ months.

(2) (a) I agree that my thesis, or a copy, may be sent to another institution under conditions determined by the Librarian.

(b) I do not wish my thesis, or a copy, to be sent to another institution without my written consent for ______ months.

(3) (a) I agree that my thesis may be copied for Library use.

(b) I do not wish my thesis to be copied for Library use for ______ months.

Signed: Suati Ladoasiviwong
Date: 20/10/86

The copyright of this thesis belongs to the author. Readers must sign their name in the space below to show that they recognise this. They are asked to add their permanent address.

NAME AND ADDRESS

__ DATE

__

__
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgement</td>
<td>i</td>
</tr>
<tr>
<td>List of Figures</td>
<td>iii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>vii</td>
</tr>
<tr>
<td>List of Appendices</td>
<td>xii</td>
</tr>
<tr>
<td>Abstract</td>
<td></td>
</tr>
<tr>
<td>Chapter 1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 The importance of nitrogen in tropical agriculture</td>
<td>4</td>
</tr>
<tr>
<td>1.2 The importance of legumes in tropical agriculture</td>
<td>5</td>
</tr>
<tr>
<td>Chapter 2 Review of Literature</td>
<td>8</td>
</tr>
<tr>
<td>2.1 Nitrogen fixation</td>
<td>8</td>
</tr>
<tr>
<td>2.1.1 Nodulation in legumes</td>
<td>8</td>
</tr>
<tr>
<td>2.1.2 Nitrogen fixation in legumes</td>
<td>11</td>
</tr>
<tr>
<td>2.1.3 Factors influencing nodulation and nitrogen fixation</td>
<td>14</td>
</tr>
<tr>
<td>2.1.3.1 Environmental factors</td>
<td>15</td>
</tr>
<tr>
<td>2.1.3.1.1 Temperature</td>
<td>15</td>
</tr>
<tr>
<td>2.1.3.1.2 Light</td>
<td>16</td>
</tr>
<tr>
<td>2.1.3.1.3 Moisture stress</td>
<td>17</td>
</tr>
<tr>
<td>2.1.3.2 Nutritional factors</td>
<td>18</td>
</tr>
<tr>
<td>2.1.3.2.1 Combined nitrogen</td>
<td>19</td>
</tr>
<tr>
<td>2.1.3.2.2 Mineral nutrition of rhizobia</td>
<td>20</td>
</tr>
<tr>
<td>2.1.3.2.3 Effects of mineral nutrients on nodule function</td>
<td>21</td>
</tr>
<tr>
<td>2.1.3.3 Biological factors</td>
<td>22</td>
</tr>
<tr>
<td>2.1.3.3.1 Photosynthate supply</td>
<td>23</td>
</tr>
<tr>
<td>2.1.3.3.2 Symbiotic compatibility between rhizobium and host</td>
<td>26</td>
</tr>
<tr>
<td>2.1.3.3.3 Pest and disease effects</td>
<td>27</td>
</tr>
<tr>
<td>2.1.4 Methodology of nitrogen fixation measurements</td>
<td>28</td>
</tr>
<tr>
<td>2.1.4.1 Nitrogen accumulation</td>
<td>28</td>
</tr>
<tr>
<td>2.1.4.2 Isotopic methods</td>
<td>29</td>
</tr>
<tr>
<td>2.1.4.3 Acetylene reduction method</td>
<td>29</td>
</tr>
<tr>
<td>2.2 Nitrogen distribution in grain legumes</td>
<td>30</td>
</tr>
<tr>
<td>2.2.1 Nitrogen assimilation</td>
<td>30</td>
</tr>
<tr>
<td>2.2.2 Nitrogen distribution</td>
<td>32</td>
</tr>
</tbody>
</table>
2.2.2.1 Effects on source-sink manipulation on nitrogen distribution 33
2.2.3 Nitrogen re-distribution 33
2.2.4 Carbon: nitrogen relationships 35

2.3 Growth and development of determinate and indeterminate legumes 38
2.3.1 Growth types of grain legumes 38
2.3.2 Soybean growth and development 39
 2.3.2.1 Root growth 39
 2.3.2.2 Vegetative growth 40
 2.3.2.3 Reproductive growth 41
 2.3.2.4 The different growth types of soybeans 42
 2.3.2.4.1 Vegetative growth 42
 2.3.2.4.2 Reproductive growth 43
 2.3.2.4.3 Nitrogen fixation 44
 2.3.2.4.4 Response to less favourable environments 44

Chapter 3 A study of nitrogen fixation, nitrogen distribution and yield in selected bean and soybean cultivar with either determinate or indeterminate growth 46

Abstract 46

3.1 Introduction 47
3.2 Materials and methods 48
3.3 Results 50
 3.3.1 Plant growth 50
 3.3.2 Nitrogen fixation and plant nitrogen 59
 3.3.3 Yield and yield components 66
 3.4 Discussion 75
 3.4.1 Plant growth 75
 3.4.2 Nitrogen fixation and nitrogen distribution 79
 3.4.3 Yield and yield components 81

Chapter 4 A comparative study of nitrogen fixation, nitrogen distribution and yield of two soybean cultivars with determinate and indeterminate growth types 83
Abstract

4.1 Introduction 83
4.2 Materials and methods 84
4.3 Results 86
4.3.1 Plant growth 90
4.3.2 Yield and yield components 98
4.3.3 Nitrogen fixation 103
4.3.3.1 The movement of 14C 105
4.3.4 Nitrogen distribution 110
4.3.4.1 Nitrogen re-distribution 112
4.3.5 Relative importance of plant characters in determining the difference between the two growth types 118

4.4 Discussion 119
4.4.1 Plant growth 119
4.4.2 Yield and yield components 123
4.4.3 Nitrogen fixation 126
4.4.4 Nitrogen distribution 129
4.4.4.1 Nitrogen distribution 129
4.4.4.2 Nitrogen re-distribution 131
4.4.5 Relationships of nitrogen fixation and plant parameters 133

Chapter 5 The effects of leaf area manipulation of an indeterminate soybean cultivar compared with the leaf area of a determinate soybean cultivar

Abstract 140

5.1 Introduction 141
5.2 Materials and methods 143
5.3 Results 145
5.3.1 Plant growth and yield 145
5.3.1.1 Plant growth 145
5.3.1.2 Yield and yield components 162
5.3.2 Nitrogen fixation 167
5.3.3 Nitrogen distribution 167
5.3.4 The relative sensitivity of plant characters to defoliation 175

5.4 Discussion 180
5.4.1 Plant growth 180
5.4.2 Yield and yield components 182
5.4.3 Nitrogen fixation 184
5.4.4 Nitrogen distribution and re-
distribution

5.4.5 Relative sensitivity of plant
characters to defoliation

Chapter 6 General discussion

6.1 Difference between determinate and indeterminate
growth types

6.1.1 Plant growth
A] Vegetative growth
B] Reproductive growth
C] Seed yield

6.1.2 Nitrogen fixation

6.1.3 Nitrogen distribution

6.1.3.1 Nitrogen accumulation

6.1.3.2 Nitrogen re-distribution

6.2 The key factor determining the difference
between the two growth types

Chapter 7 Conclusions and implication for future
research

7.1 Conclusions

7.2 Possible implication to tropical Agriculture

7.2.1 Possible role of leaf area as a
selection criteria for cultivars
superior in nitrogen-fixing character

7.2.2 Future research

Appendices

References
ACKNOWLEDGEMENTS

I am most grateful to Dr A.C.P. Chu my chief supervisor for his sincere and invaluable guidance throughout this study. I would also like to thank my co-supervisors Dr N.J. Withers of the Agronomy Department, Massey University and Mr I.J. Warrington of the Plant Physiology Division (PPD), Department of Scientific and Industrial Research (DSIR) for their helpful advice, discussion and comments.

I sincerely acknowledge the helpful support from Professor B.R. Watkin (former Head, Agronomy Department, Massey University), Dr Terd Charoenwatana and Dr Kavi Chutikul (Khon Kaen University, Thailand).

I would also like to acknowledge the assistance given to me by the following:

-Khon Kaen University, Thailand for giving me this study leave.
-Plant Physiology Division, DSIR, Palmerston North for permission to use the glasshouse and controlled environment rooms and other facilities.
-Mr J.A.D. Anderson of the Crop Research Division, DSIR, Pukekohe for supplying seeds.
-Dr I.L. Gordon of the Agronomy Department, Massey University for his advise in statistical analysis and permission to use some of his excellent computer programmes.
-Dr J. Crush of the Grasslands Division, DSIR, Palmerston North for permission to use gas chromatography and some assistance provided.
-Mr R. Tillman of the Soil Science Department, Massey University for his advice in Kjeldahl nitrogen content determination.
- Mr A.G. Robertson of the Agronomy Department, Massey University for providing *Rhizobium* cultures.

- Dr W.A. Laing of the Plant physiology Division, DSIR, Palmerston North for his advice in 14C analysis.

- Mrs. C. Hedley for her illustrations.

- Mrs. M. Hunt for typing this thesis.

I would also like to thank the following groups of people for their prompt and efficient service.

- The secretaries and the technicians of the Agronomy Department, Massey University.

- The staff of the Massey University Computer Centre.

- The staff of the Massey University library and DSIR library.

- The staff of the Plant Physiology Division, DSIR Climate Laboratory.

Financial assistance from the following are gratefully acknowledged.

- New Zealand Government ODA Scholarship.

- John Alexander Hurley Scholarship.

- Farmer Union Scholarship.

Finally, a big thank you to my two great women Suwanna and Supawan for their encouragement and support throughout this study.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>A scheme for the action of nitrogenase.</td>
<td>12</td>
</tr>
<tr>
<td>3.1</td>
<td>Time course of total plant dry weight and vegetative dry weight (leaf and stem of the determinate and indeterminate cultivars of bean and soybean).</td>
<td>51</td>
</tr>
<tr>
<td>3.2</td>
<td>Time course of relative growth rate of the determinate and indeterminate cultivars of bean and soybean.</td>
<td>55</td>
</tr>
<tr>
<td>3.3</td>
<td>Time course of leaf area per plant of the determinate and indeterminate cultivar of bean and soybean.</td>
<td>56</td>
</tr>
<tr>
<td>3.4</td>
<td>Time course of net assimilation rate of the determinate and indeterminate cultivars of bean and soybean.</td>
<td>58</td>
</tr>
<tr>
<td>3.5</td>
<td>Time course of root dry weight of the determinate and indeterminate cultivars of bean and soybean.</td>
<td>60</td>
</tr>
<tr>
<td>3.6</td>
<td>Time course of acetylene reduction activity of the determinate and indeterminate cultivar of bean and soybean.</td>
<td>62</td>
</tr>
<tr>
<td>3.7</td>
<td>Time course of nodule dry weight of the determinate and indeterminate cultivars of bean and soybean.</td>
<td>64</td>
</tr>
<tr>
<td>3.8</td>
<td>Time course of total plant nitrogen of the</td>
<td></td>
</tr>
<tr>
<td>Figure</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>3.9</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>4.5a</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>4.5b</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

determine and indeterminate cultivar of bean and soybean.
Regression lines of total plant nitrogen (log scale) and nodule dry weight of the determine and indeterminate cultivars of bean and soybean.
Time course of total dry weight, pod dry weight, leaf dry weight and root dry weight of the determine and indeterminate soybean cultivars.
Time course of leaf area per plant of the determine and indeterminate soybean cultivars.
Time course of net assimilation rate and relative leaf expansion rate of the determine and indeterminate soybean cultivars.
RLER and NAR of the determine and indeterminate soybean cultivars compared on physiological basis.
Time course of shoot:root ratio of the determine and indeterminate soybean cultivars.
Shoot:root ratio on physiological age basis.
Ratio of dry weight of different plant components to total plant dry weight of the determine and indeterminate soybean cultivars.
Time course of nodule dry weight in the determine and indeterminate soybean cultivars.
Acetylene reduction activity and specific acetylene reduction activity of the determine and
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9a</td>
<td>Integrated acetylene reduction curves of the determinate and indeterminate soybean cultivars.</td>
<td>104</td>
</tr>
<tr>
<td>4.9b</td>
<td>Linear regression lines of total plant nitrogen (dependent variable) regressed against integrated acetylene reduction activity (independent variable).</td>
<td>106</td>
</tr>
<tr>
<td>4.10</td>
<td>Regression lines of total plant nitrogen (log scale) as the dependent variable regressed against nodule dry weight (independent variable) of the determinate and indeterminate soybean cultivars.</td>
<td>108</td>
</tr>
<tr>
<td>4.11</td>
<td>Nitrogen concentration of different plant part of the determinate and indeterminate soybean cultivars.</td>
<td>111</td>
</tr>
<tr>
<td>4.12</td>
<td>Time course of nitrogen accumulation of stem, leaf pod and total plant nitrogen of the determinate and indeterminate soybean cultivars.</td>
<td>113</td>
</tr>
<tr>
<td>4.13</td>
<td>Relative accumulation rate of nitrogen (RRNA) calculated from total plant nitrogen curves of the determinate and indeterminate soybean cultivars.</td>
<td>116</td>
</tr>
<tr>
<td>4.14</td>
<td>Ratio of nitrogen content of different plant parts of total plant nitrogen of the determinate and indeterminate soybean cultivars.</td>
<td>117</td>
</tr>
<tr>
<td>4.15</td>
<td>Path diagrams of the relationships of acetylene reduction activity and total plant nitrogen with some plant characters.</td>
<td>135</td>
</tr>
<tr>
<td>4.16</td>
<td>Path diagrams of the relationships of integrated acetylene reduction activity with some plant</td>
<td></td>
</tr>
</tbody>
</table>
Figure 5.1: Time course of total plant dry weight and leaf area per plant of different treatments of soybean.

Figure 5.2: Time course of stem dry weight of different treatments of soybean.

Figure 5.3: Root dry weight of different treatments of soybean from flowering to grain filling stage.

Figure 5.4: Regression lines of shoot:root ratio of different treatments of soybean.

Figure 5.5: Time course of nodule dry weight of different treatments of soybean.

Figure 5.6: Comparison of nodule:root ratio among different treatments of soybean at three growth stages.

Figure 5.7: Regression lines of total plant nitrogen (log scale) and nodule dry weight of different treatments of soybean.

Figure 5.8: Nitrogen concentration of plant components for different treatments of soybean.

Figure 5.9: Time course of total plant nitrogen of different treatments of soybean.

Figure 5.10: Time course of leaf and stem nitrogen of different treatments of soybean.

Figure 5.11: Time course of pod nitrogen of different treatments of soybean.

Figure 6.1: Relationship of total dry-matter (dependent variable) of partial defoliated indeterminate cultivar and undefoliated determinate cultivar regressed against leaf area per plant (independent variable).
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Comparison of total plant dry weight between the determinate and indeterminate cultivars of bean and soybean, estimated from growth curves, at different growth stages.</td>
<td>53</td>
</tr>
<tr>
<td>3.2</td>
<td>Comparison of leaf & stem dry weight between the determinate and indeterminate cultivars of bean and soybean, estimated from growth curves, at different growth stages.</td>
<td>54</td>
</tr>
<tr>
<td>3.3</td>
<td>Comparison of leaf area per plant between the determinate and indeterminate cultivars of bean and soybean, estimated from growth curves, at different growth stages.</td>
<td>57</td>
</tr>
<tr>
<td>3.4</td>
<td>Comparison of root dry weight between the determinate and indeterminate cultivars of bean and soybean, estimated from growth curves, at different growth stages.</td>
<td>61</td>
</tr>
<tr>
<td>3.5</td>
<td>Comparison of acetylene reduction activity between the determinate and indeterminate cultivars of bean and soybean, estimated from growth curves, at different growth stages.</td>
<td>63</td>
</tr>
<tr>
<td>3.6</td>
<td>Comparison of nodule dry weight between the determinate and indeterminate cultivars of bean and soybean, estimated from growth curves, at different growth stages.</td>
<td>65</td>
</tr>
</tbody>
</table>
Table 3.7 Comparison of total plant nitrogen between the determinate and indeterminate cultivars of bean and soybean, estimated from growth curves, at different growth stages. 68

3.8 Mean pod weight (g plant\(^{-1}\)) of bean and soybean with different growth types. 70

3.9 Mean seed weight (g plant\(^{-1}\)) of bean and soybean with different growth types. 71

3.10 Mean number of pods per plant of bean and soybean with different growth types. 72

3.11 Mean weight of 20 seeds (g) of bean and soybean with different growth types. 73

3.12 Mean number of seeds per pod of bean and soybean with different growth types. 74

3.13 Harvest indices of bean and soybean with different growth types. 76

3.14 Nitrogen harvest indices of bean and soybean with different growth types. 77

4.1 Comparison of plant dry weight components at different growth stages between the determinate and indeterminate soybean cultivars. 92

4.2 Yield, yield components, harvest index and nitrogen harvest index of the determinate and indeterminate soybean cultivars 101

4.3 Yield and yield components from main stem and branches of the determinate and indeterminate soybean cultivars. 102
Table 4.4 Comparison of integrated acetylene reduction activity (m mol plant\(^{-1}\)) at two growth stages of the determinate and indeterminate soybean cultivars. 107

4.5 Recovery of \(^{14}\)C in different plant parts of the determinate and indeterminate soybean cultivars. 109

4.6 Comparison of nitrogen from different plant parts at different growth stages between the determinate and indeterminate soybean cultivars. 114

4.7 Total plant nitrogen, total re-distributed nitrogen and proportion of re-distributed nitrogen from different plant parts in the determinate and indeterminate soybean cultivars. 115

4.8 Information from multiple discriminant analysis and structure matrix. 120

5.1 Comparison of leaf area per plant (Cm\(^2\)) among different treatments of soybean at three growth stages. 147

5.2 Comparison of total plant dry weight (g) among different treatments of soybean at three growth stages. 148

5.3 Comparison of net assimilation rate (NAR) calculated from Figure 5.1 (a,b) among different treatments of at three growth stages. 150

5.4 Comparison of total plant stem dry weight (g) among different treatments of soybean at three growth stages. 152

5.5 Comparison of branch number among different
<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6</td>
<td>154</td>
</tr>
<tr>
<td>5.7</td>
<td>158</td>
</tr>
<tr>
<td>5.8</td>
<td>160</td>
</tr>
<tr>
<td>5.9</td>
<td>163</td>
</tr>
<tr>
<td>5.10</td>
<td>164</td>
</tr>
<tr>
<td>5.11</td>
<td>165</td>
</tr>
<tr>
<td>5.12</td>
<td>166</td>
</tr>
<tr>
<td>5.13</td>
<td>168</td>
</tr>
<tr>
<td>5.14</td>
<td>169</td>
</tr>
<tr>
<td>5.15</td>
<td>174</td>
</tr>
</tbody>
</table>

Comparison of shoot:root ratio (g g\(^{-1}\) plant\(^{-1}\)) among different treatments of soybean at three growth stages.

Comparison of nodule dry weight (g) among different treatments of soybean at three growth stages.

Comparison of total yield and yield components among different treatments of soybean at three growth stages.

Yield and yield components of different treatments of soybean analysed separately for branches and main stem.

Comparison of seed yield and number of pods per branch among different treatments of soybean.

Comparison of harvest index (grain yield: total above-ground biomass and nitrogen harvest index (grain nitrogen:total above-ground nitrogen) among different treatments of soybeans.

Comparison of acetylene reduction activity (\(\mu\)mol h\(^{-1}\) plant\(^{-1}\)) among different treatments of soybean.

Comparison of specific acetylene reduction activity (\(\mu\)mol h\(^{-1}\) g\(^{-1}\) nodule dry weight) among different treatments of soybean.

Comparison of total plant nitrogen (mg) among different treatments of soybean.

Information from multiple discriminant analysis.
Table 6.1 and structure matrix for the four treatments of the indeterminate soybean cultivar.

6.1 Partition coefficient of bean and soybean from different environmental conditions at two growth stages.
LIST OF APPENDICES

Appendix	Page
A. Statistical symbols. | 215
B. Acetylene reduction technique. | 216
C. Kjeldahl nitrogen content determination. | 218
D. Controlled environment room environmental conditions. | 220
3.1 Information from growth curves of total plant dry weight (dependent variable), of determinate and indeterminate beans and soybeans, regressed against time (independent variable) using quadratic equation form \(\ln(Y) = B_0 + B_1X + B_2X^2 \) | 221
3.2 Information from growth curves of leaf and stem dry weight (dependent variable), of determinate and indeterminate beans and soybeans, regressed against time (independent variable) using quadratic equation form \(\ln(Y) = B_0 + B_1X + B_2X^2 \) | 222
3.3 Information from growth curves of leaf area per plant (dependent variable), of determinate and indeterminate beans and soybeans, regressed against time (independent variable) using quadratic equation form \(\ln(Y) = B_0 + B_1X + B_2X^2 \) | 223
3.4 Information from growth curves of root dry weight (dependent variable), of determinate
and indeterminate beans and soybeans, regressed against time (independent variable) using quadratic equation form \((\ln(Y) = B_0 + B_1X + B_2X^2)\) 224

3.5 Information from growth curves of nodule dry weight (dependent variable), of determinate and indeterminate beans and soybeans, regressed against time (independent variable) using quadratic equation form \((\ln(Y) = B_0 + B_1X + B_2X^2)\) 225

3.6 Information from curves of acetylene reduction activity (dependent variable), of determinate and indeterminate beans and soybeans, regressed against time (independent variable) using quadratic equation form \((\ln(Y) = B_0 + B_1X + B_2X^2)\) 226

3.7 Information from growth curves of total plant nitrogen (dependent variable), of determinate and indeterminate beans and soybeans, regressed against time (independent variable) using quadratic equation form \((\ln(Y) = B_0 + B_1X + B_2X^2)\) .227

3.8 Information from linear regression of total plant nitrogen (dependent variable) regressed against nodule dry weight (independent variable) with the equation form \(\ln(Y) = B_0 + B_1X\) 228

4.1 Information from growth curves of plant dry weight (dependent variable), of determinate and indeterminate soybeans, regressed against time (independent variable) using quadratic equation form \((\ln(Y) = B_0 + B_1X + B_2X^2)\) or linear equation form \((Y = B_0 + B_1X)\). 229

4.2 Information from growth curves of leaf area per plant (dependent variable), of determinate and indeterminate soybeans, regressed against
Appendix

4.3 Information from growth curves of nodule dry weight (dependent variable), of determinate and indeterminate soybeans, regressed against time (independent variable) using quadratic equation form (\(\ln(Y) = B_0 + B_1X + B_2X^2 \)).

4.4 Information from curves of integrated acetylene reduction activity (dependent variable), of determinate and indeterminate soybeans, regressed against time (independent variable) using quadratic equation form (\(\ln(Y) = B_0 + B_1X + B_2X^2 \)).

4.5 Information from linear regression of total plant nitrogen (dependent variable) regressed against integrated acetylene reduction activity (independent variable) with equation form \(Y = B_0 + B_1X \).

4.6 Information from linear regression of total plant nitrogen (dependent variable) regressed against nodule dry weight (independent variable) with equation form \(\ln(Y) = B_0 + B_1X \).

4.7 Information from growth curves of plant nitrogen (dependent variable), of determinate and indeterminate soybeans, regressed against time (independent variable) using quadratic equation form (\(\ln(Y) = B_0 + B_1X + B_2X^2 \)) or linear equation form (\(Y = B_0 + B_1X \)).

5.1 Information from growth curves of total plant dry
Information from growth curves of leaf area per plant (dependent variable), of determinate and four treatments of indeterminate soybeans regressed against time (independent variable) using quadratic equation form \(\ln(Y) = B_0 + B_1X + B_2X^2 \).

Information from growth curves of stem dry weight (dependent variable), of determinate and four treatments of indeterminate soybeans regressed against time (independent variable) using quadratic equation form \(\ln(Y) = B_0 + B_1X + B_2X^2 \).

Information from growth curves of root dry weight (dependent variable), of determinate and four treatments of indeterminate soybeans regressed against time (independent variable) using quadratic equation form \(\ln(Y) = B_0 + B_1X + B_2X^2 \).

Information from linear regression of shoot:root ratio (dependent variable) of determinate and four treatments of indeterminate soybeans regressed against time (independent variable) using linear regression form \(Y = B_0 + B_1X \).

Information from growth curves of nodule dry weight (dependent variable), of determinate and four treatments of indeterminate soybeans regressed against time (independent variable) using quadratic equation form \(\ln(Y) = B_0 + B_1X + B_2X^2 \).
5.7 Information from linear regression of total plant nitrogen (dependent variable) of determinate and four treatments of indeterminate soybeans regressed against nodule dry weight (independent variable) using linear regression form
\[\ln(Y) = B_0 + B_1X. \]

5.8 Information from growth curves of total plant nitrogen (dependent variable), of determinate and four treatments of indeterminate soybeans regressed against time (independent variable) using quadratic equation form \(\ln(Y) = B_0 + B_1X + B_2X^2 \).

5.9 Information from growth curves of leaf + stem nitrogen (dependent variable), of determinate and four treatments of indeterminate soybeans regressed against time (independent variable) using quadratic equation form \(\ln(Y) = B_0 + B_1X + B_2X^2 \).

5.10 Information from growth curves of pod nitrogen (dependent variable), of determinate and four treatments of indeterminate soybeans regressed against time (independent variable) using linear equation form \(Y = B_0 + B_1X. \)
ABSTRACT

Plant growth types of the determinate and indeterminate growth forms are commonly distinguished in many legume species. However, there do not appear to be many studies where direct comparisons have been made of the two growth types in relation to nitrogen fixation and nitrogen distribution. Furthermore, there are disagreements in the literature about the yield advantage of these two growth types.

This study was initiated to identify the influence of different growth types of selected grain legumes on seed yield, nitrogen fixation, and nitrogen distribution. In addition, the emphasis was also put on finding amongst the measured parameters, one that had the greatest influence on the differences observed.

Initially determinate and indeterminate growth types of bean (Phaseolus vulgaris) and soybean (Glycine max), were studied in glasshouse conditions. The indeterminate cultivar of both species had higher leaf area and nodule dry weight, more root growth, accumulated more total dry weight and had higher yield than that of the determinate cultivar. In both species, the indeterminate cultivar accumulated more total plant nitrogen than the determinate cultivar. However, only the indeterminate soybean cultivar showed significantly more nitrogen fixation (Acetylene reduction) than that of the determinate cultivar.

Subsequently the same soybean cultivars ('Matara' =determinate and 'Amsoy' =indeterminate) were studied in controlled
environment conditions. The indeterminate cultivar produced higher vegetative dry-matter and seed yield than that of the determinate cultivar. The higher acetylene reduction activity of the indeterminate cultivar came primarily from a greater nodule mass. About 30-40% of seed nitrogen of both cultivar came from re-distribution from vegetative parts, but the stem of the indeterminate cultivar re-distributed a higher proportion of nitrogen to the seed than that of the determinate cultivar. Among several plant characters measured (viz. the dry-weights of the roots, nodules, stems, leaves, and pods, the leaf area, acetylene reduction activity and the total plant nitrogen) leaf area was identified as the key factor in determining the difference between the two growth types.

In order to determine the relative importance of leaf area as a factor influencing seed yield, nitrogen fixation and nitrogen distribution the leaf area of the indeterminate cultivar 'Amsoy' was manipulated by imposing different levels of partial leaf removal starting at the flowering stage. For one treatment, partial pod removal was also applied to induce a reduced demand of assimilate. Partial defoliation of the indeterminate cultivar reduced markedly the root growth and the number of branches, but nodule growth, acetylene reduction activity and nitrogen distribution was reduced to a lesser extent. Partial pod removal did not change the overall pattern of response. When about 60% of the leaves of the indeterminate cultivar were removed, seed yield was reduced by about 17% and it was still significantly higher than the undefoliated determinate cultivar. There was no significant difference between the rates of nitrogen accumulation in the pods under each treatment. The final seed
nitrogen concentration was not affected by defoliation treatments nor was the partitioning of nitrogen to seed.

It was concluded that there were differences between the two growth types of soybean for seed yield, nitrogen fixation, and nitrogen distribution. Leaf area was the most important parameter in determining these differences. The greater overlapping of vegetative and reproductive growth in the indeterminate cultivar seemed to be advantageous rather than disadvantageous. This longer period of vegetative growth enabled the indeterminate cultivar to produce a bigger source capacity which consequently supported more nitrogen fixation activity and produced higher seed yield.

The possible implications to tropical agriculture were discussed and some future research topics were also suggested.