Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.
The synthesis and spectroscopy of dipyrrins and their metal complexes

A thesis submitted in the partial fulfilment of the requirements for the degree of

Doctor of Philosophy
in Chemistry

MASSEY UNIVERSITY

Tracey Maree McLean

2012
For Mum and Dad
Abstract

Dipyrin ligands can be considered as ‘half-porphyrins’. They absorb light in the visible region due to a strongly allowed \(\pi-\pi^*\) transition. With the energy crisis being one of the most important issues of our time, the strong absorption in the visible region endows dipyrinato complexes with promise in solar energy conversion applications. The focus of this project was to undertake some fundamental synthesis and spectroscopy of dipyrin ligands and dipyrinato complexes for their applications in photochemical devices.

The well-known characteristics of Ru(II)-bipyridine chemistry were combined with the light absorbing properties and synthetic versatility of dipyrin ligands to prepare and test a range of Ru(II)-dipyrinato-bipyridine complexes as dyes for applications in dye-sensitised solar cells. The preliminary results of the solar cell measurements show evidence that the Ru(II)-dipyrinato-bipyridine complexes show promise as light harvesters in solar energy conversion applications. A series of Re(I)-dipyrinato complexes has also been designed and prepared for potential applications as catalysts in carbon dioxide reduction.

Metallodipyrin complexes also exhibit strong exciton coupling. A library of transition metal dipyrinato complexes has been prepared to investigate the exciton interactions in dipyrin systems. Understanding the exciton interactions in dipyrin systems and the ability to control the exciton interactions are desirable for improving the solar energy conversion efficiency of dye-sensitised solar cells containing Ru(II)-dipyrinato-bipyridine complexes as the dye.

Raman spectroscopy and more specifically resonance Raman, as a technique for probing the excited state of dipyrinato complexes, has largely been overlooked in the literature. Therefore the spectroscopy aspect of this thesis has a central focus on the Raman spectroscopy of dipyrins, including the first full characterisation of dipyrin ligands by Raman spectroscopy at a variety of wavelengths (visible and near infrared). Strong resonance enhancement was observed for the dipyrin ligands, which lays the foundation for fundamental single-molecule SERS studies but also for a broad range of bioanalytical applications.
Acknowledgements

I would like to take the opportunity to thank the large number of people who have contributed to my PhD research and thesis. Firstly, I would like to thank my supervisors Associate Professor Shane Telfer and Dr Mark Waterland for their enthusiasm, encouragement, and patience throughout my research years. Thanks for challenging me when I needed it but most importantly always being there when I needed help or advice. Thanks also for the time and energy you have put into my project.

Thanks also to all past and present members of the Telfer/Waterland research empire and other lab colleagues. Many interesting discussions were had over the past few years, some even related to chemistry. Specifically I must thank Dr Carl Otter for the helpful chemistry discussions relating to my project and Dave Lun for being the all-round go to guy for assistance with lab equipment, mass spectrometry, and many other chemistry problems.

A special mention must also go to Dr Pat Edwards for assistance with specialised NMR experiments, Dr Wayne Campbell and Dr Vyacheslav Filichev for their assistance with establishing the new fluorimeter protocol, Nessha Wise for her assistance with undertaking electrochemistry experiments and Professor Simon Hall for answering many electrochemistry related questions. I must also thank Jamie Withers for assisting me with preparing some of the figures presented in this thesis.

I must also acknowledge Dr Matthias Lein (Victoria University of Wellington) for always being available for assisting with the DFT calculations and Professor Keith Gordon (University of Otago) for allowing laboratory visits for data collection, Dr Attila Mozer and his students (Intelligent Polymer Research Unit, University of Wollongong) and Professor Yong Soo Kang and his students (Energy Materials Lab, Hanyang University) for solar cell measurements.

I would like to acknowledge the financial support from Massey University for a Doctoral scholarship and the MacDiarmid Institute to allow me to undertake this project; and the Institute of Fundamental Sciences Postgraduate travel fund, Royal Society of
New Zealand travel grants and Claude McCarthy Fellowship for travel awards to conferences in Dunedin and Japan, and a research visit to the University of Hong Kong.

I have utilised the expertise of many past and present technical and departmental staff from the Institute of Fundamental Sciences and I would like to thank them for their assistance during my research and thesis writing.

Finally, I must thank my family and partner (Kyle) for their support and encouragement over the last few years, and particularly thanks to Mum for flying me home for long weekends on the farm. As many of my friends will know writing a thesis is exceptionally difficult and stressful so thanks for the support when I needed it and the distraction when I needed a break.

Fear is temporary, achievement is permanent
Table of Contents

Page

Abstract...1
Acknowledgements ..ii
Table of Contents ...iv
Abbreviations ...x
Disclaimer ..xi
Publications by Tracey McLean ...xiv

Chapter 1: Introduction ..1

1.1 Perspective ...1
1.2 Dipyrrins and their complexes ...3
 1.2.1 General background and structure of dipyrrins ...3
 1.2.2 Synthesis of dipyrrins ...4
 1.2.3 Dipyrrinato complexes ..6
 1.2.4 Complexation geometries of dipyrrinato complexes ...6
 1.2.5 BF$_2$-dipyrrinato complexes ...8
 1.2.6 Azadipyrrins and azadipyrrinato complexes ...9
 1.2.7 Chemical manipulations of dipyrrinato complexes ..10
 1.2.8 Electronic properties of dipyrrins ..12
 1.2.9 Electronic properties of dipyrrinato complexes ...13
 1.2.10 Recent advances in dipyrrin chemistry ...15
1.3 Raman spectroscopy ..18
 1.3.1 Historical background and theory of Raman spectroscopy ..18
 1.3.2 Basic theory and principles of Raman spectroscopy ..19
 1.3.3 Magnitude of Raman scattering ..21
 1.3.4 Resonance Raman spectroscopy and surface-enhanced Raman spectroscopy22
 1.3.4.1 Introduction to resonance Raman spectroscopy (RR) ..23
 1.3.4.2 Introduction to surface-enhanced Raman spectroscopy (SERS)24
1.4 Electronic absorption spectroscopy ..26
1.5 Fluorescence spectroscopy ..27
Chapter 2: Raman spectroscopy of dipyrrins: non-resonant, resonant, and surface-enhanced cross-sections and enhancement factors

2.1 Introduction ..31
2.2 Objectives of this work ..32
2.3 Background to Raman cross-sections................................32
2.4 Experimental details ...34
 2.4.1 Computational procedures ..34
 2.4.2 Experimental procedures ..35
 2.4.2.1 Synthesis of dipyrrin ligands 34 and 3535
 2.4.3 General procedures ..35
 2.4.3.1 Preparation of samples for non-resonance Raman and resonance Raman spectroscopy35
 2.4.3.2 Preparation of silver nanoparticles35
 2.4.3.3 Preparation of samples for SERS35
 2.4.3.4 Raman cross-sections36
2.5 Results and discussion ..36
 2.5.1 Synthesis of dipyrrin ligands36
 2.5.2 Absorption spectrum and TD-DFT calculations37
 2.5.3 Non-resonance Raman spectroscopy41
 2.5.4 Resonance Raman spectroscopy, resonance cross-sections and enhancement factors45
 2.5.5 Surface-enhanced Raman spectroscopy, surface-enhanced cross-sections and enhancement factors49
2.6 Summary ..55
2.7 Future work ..56
Acknowledgements ...56

Chapter 3: Exciton interactions in metallodipyrrins

3.1 Introduction ..57
3.2 Background to exciton coupling59
3.3 Exciton coupling in dipyrrinato complexes63
3.4 Objectives of this work and target complexes65
3.5 Experimental procedures ... 66
 3.5.1 Computational procedures ... 66
 3.5.2 Experimental procedures ... 67
 3.5.2.1 Synthesis of dipyrrinato complexes 36-42 and 12 67
 3.5.2.2 Synthesis of azadipyrrinato complex 43 71
3.6 Results and Discussion .. 71
 3.6.1 Synthesis ... 71
 3.6.2 Complexation geometries and the orientation of the transition dipole moments .. 74
 3.6.3 Exciton effects in the absorption spectra of dipyrrinato complexes. 80
 3.6.4 Exciton effects in azadipyrrinato complexes 84
 3.6.5 DFT investigations of the exciton effects of 43 85
3.7 Summary .. 91
3.8 Future work ... 92
 3.8.1 Exciton coupling in Ru(II)-dipyrrinato complexes 92
 3.8.2 Further investigations into the exciton effects of 43 and other azadipyrrinato complexes .. 92
Acknowledgements .. 93

Chapter 4: Ru(II)-dipyrrinato complexes and their applications 94

 4.1 Introduction .. 94
 4.2 Ru(II) complexes as dyes in DSSCs and as water splitting photocatalysts 95
 4.2.1 Dye-sensitised solar cells (DSSCs) ... 95
 4.2.2 Ruthenium based DSSCs ... 96
 4.2.3 Water splitting devices ... 98
 4.2.4 Essential dye characteristics and previous Ru(II)-dipyrrinato complexes ... 100
 4.3 Objectives of this work and target complexes 104
 4.3.1 Target DSSC complexes ... 104
 4.3.2 Other targets ... 107
 4.4 Experimental details .. 108
 4.4.1 Computational procedures ... 108
 4.4.2 Experimental procedures ... 108
 4.4.2.1 Synthesis of dipyrrin ligands 52 and 56 108
4.4.2.2 Synthesis of complexes 49-51 and 53-55 109
4.4.3 General procedures .. 114
 4.4.3.1 Resonance Raman solutions 114
 4.4.3.2 Electrochemistry .. 114
 4.4.3.3 Solid state UV-Vis, device fabrication and solar cell
testing ... 115
4.5 Results and Discussion ... 115
 4.5.1 Synthesis ... 115
 4.5.2 Characterisation ... 120
 4.5.3 Analysis of the electronic structure of 46 122
 4.5.4 Time-Dependent DFT (TD-DFT) calculations of 46 and 46-H 123
 4.5.5 Absorption spectroscopy and TD-DFT calculations 124
 4.5.6 Resonance Raman spectroscopy 133
 4.5.7 Resonance Raman intensity analysis (RRIA) 136
 4.5.8 Excited state dynamics in other dipyrrinato complexes 140
 4.5.9 Application of Ru(II)-dipyrrinato complexes in solar energy
conversion ... 142
 4.5.10 Solid state absorption spectroscopy 143
 4.5.11 Electrochemistry ... 145
 4.5.12 Solar cell testing ... 150
4.6 Summary .. 153
4.7 Future work ... 154
Acknowledgements .. 156

Chapter 5: Luminescent Re(I)-dipyrrinato complexes and their applications 157
 5.1 Background to Re(I)-polypyridine complexes 157
 5.1.1 Applications of Re(I)-polypyridyl complexes 157
 5.1.1.1 Catalytic reduction of CO₂ 157
 5.1.1.2 Photochemical ligand substitution (PLS) reactions 158
 5.1.1.3 Solar cells .. 159
 5.2 Objectives of this work and target complexes 159
 5.3 Experimental details .. 161
 5.3.1 Computational procedures 161
 5.3.2 Experimental procedures .. 162
5.3.2.1 Synthesis of dipyrrin ligands .. 162
5.3.2.2 Synthesis of fac-[ReL(CO)3Cl][NEt3H], 59 and
fac-[ReL(CO)3PR3] 60 and 62-66 .. 162
5.3.2.3 Synthesis of [ReL(CO)2(PR3)(PR’3)], 67-73 167
5.3.2.4 Photochemical synthesis of
[ReL(CO)2(PPh3)(CD3CN)], 74 .. 171
5.3.3 General procedures .. 172
5.3.3.1 Resonance Raman solutions ... 172
5.3.3.2 Fluorescence protocol ... 172
5.3.3.3 Relative quantum yield measurements 172
5.3.3.4 Quenching studies ... 173
5.3.3.5 Photochemical ligand substitution (PLS) reactions 174
5.4 Results and Discussion .. 174
5.4.1 Synthesis .. 174
5.4.2 NMR spectroscopy .. 176
5.4.3 Electronic and vibrational spectroscopy and TD-DFT
calculations ... 178
5.4.4 Photochemical ligand substitution (PLS) reactions 192
5.5 Summary ... 196
5.6 Future work .. 197
Acknowledgements ... 197

References .. 198

Appendix A .. 218
A1 Resonance Raman theory .. 218
A1.1 Albrecht theory of resonance Raman 218
A1.2 Resonance Raman Intensity Analysis (RRIA) 220
A2 Albrecht theory applied to SERS ... 221

Appendix B .. 223
B1 Basis sets and frequency calculations 223
B2 Conversion of molar absorptivity (ε) to oscillator strength(f) 225
B3 TD-DFT studies of 34 .. 226
Appendix C .. 234
 C1 Resonance Raman of 43 ... 234

Appendix D .. 235
 D1 Electrochemistry methods .. 235
 D2 Cyclic voltammetry .. 236
 D2.1 Cyclic voltammograms of Ru(II)-dipyrrinato and Rh(III)-dipyrrinato complexes 236
 D2.2 Cyclic voltammograms of dipyrrin ligands .. 239
 D3 Solid state absorption spectroscopy ... 240
 D4 Solar cell device fabrication .. 240
 D5 Current-voltage curves ... 243
 D5.1 Current-voltage curves on TiO$_2$.. 243
 D5.2 Current-voltage curves on NiO ... 246
 D6 Structure of the reference dyes ... 249

Appendix E ... 250
 E1 1H NMR spectra ... 250
 E2 Absorption spectra .. 251
 E3 Resonance Raman spectroscopy ... 253
 E4 Time-dependent DFT studies .. 259
 E5 Excitation and emission spectra ... 262
 E6 Photochemical ligand substitution of 60 ... 269

Appendix F (General Experimental Details) ... 274
 F1 NMR spectroscopy .. 274
 F2 Mass spectrometry ... 274
 F3 Microanalysis .. 274
 F4 UV-Vis absorption spectroscopy .. 274
 F5 Fluorescence spectroscopy .. 275
 F6 Infrared spectroscopy (IR) .. 275
 F7 Electrochemistry ... 275
 F8 Raman spectroscopy ... 275
 F9 Solvents and reagents ... 276
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>acac</td>
<td>acetylacetonato</td>
</tr>
<tr>
<td>aq</td>
<td>aqueous</td>
</tr>
<tr>
<td>Ar</td>
<td>aromatic</td>
</tr>
<tr>
<td>ATR</td>
<td>attenuated total reflection</td>
</tr>
<tr>
<td>bipy</td>
<td>2,2'-bipyridine</td>
</tr>
<tr>
<td>BODIPY</td>
<td>boron difluoride complex of dipyrrin</td>
</tr>
<tr>
<td>Calcd</td>
<td>calculated</td>
</tr>
<tr>
<td>CD</td>
<td>circular dichroism spectroscopy</td>
</tr>
<tr>
<td>CDCl₃</td>
<td>deuterated chloroform</td>
</tr>
<tr>
<td>conc.</td>
<td>concentrated</td>
</tr>
<tr>
<td>COSY</td>
<td>correlation spectroscopy</td>
</tr>
<tr>
<td>dcb</td>
<td>4,4'-dicarboxy-2,2'-bipyridine</td>
</tr>
<tr>
<td>DDQ</td>
<td>2,3-dichloro-5,6-dicyanobenzoquinone</td>
</tr>
<tr>
<td>DFT</td>
<td>density functional theory</td>
</tr>
<tr>
<td>DIPEA</td>
<td>N,N-diisopropylethylamine</td>
</tr>
<tr>
<td>dmcb</td>
<td>4,4'-dimethoxycarbonyl-2,2'-bipyridine</td>
</tr>
<tr>
<td>DMF</td>
<td>N,N-dimethylformamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>DSSC</td>
<td>dye-sensitised solar cell</td>
</tr>
<tr>
<td>EDD</td>
<td>electron density difference</td>
</tr>
<tr>
<td>EF</td>
<td>enhancement factor</td>
</tr>
<tr>
<td>en</td>
<td>1,2-diaminoethane</td>
</tr>
<tr>
<td>equiv.</td>
<td>equivalent</td>
</tr>
<tr>
<td>ESI</td>
<td>electrospray ionisation</td>
</tr>
<tr>
<td>EtOH</td>
<td>ethanol</td>
</tr>
<tr>
<td>FF</td>
<td>fill factor</td>
</tr>
<tr>
<td>FT</td>
<td>fourier transform</td>
</tr>
<tr>
<td>FWHM</td>
<td>full-width half maximum</td>
</tr>
<tr>
<td>hfacac</td>
<td>hexafluoroacetylacetonato</td>
</tr>
<tr>
<td>HOMO</td>
<td>highest occupied molecular orbital</td>
</tr>
</tbody>
</table>
HPLC high performance liquid chromatography
IC internal conversion
IR infra-red spectroscopy
ISC intersystem crossing
ITO indium tin oxide
J_{sc} short circuit current
LUMO lowest unoccupied molecular orbital
MAD mean average deviation
MALDI matrix assisted laser desorption ionisation
MeCN acetonitrile
MeOH methanol
MLCT metal-to-ligand charge transfer
NEt$_3$ triethylamine
NMR nuclear magnetic resonance
PDT photodynamic therapy
Ph phenyl
ppm parts per million
RR resonance Raman spectroscopy
RRIA resonance Raman intensity analysis
RT room temperature
S singlet state
SERS surface-enhanced Raman spectroscopy
SE(R)RS surface-enhanced (resonance) Raman spectroscopy
SM-SERS single molecule surface-enhanced Raman spectroscopy
T triplet state
TD-DFT time-dependent density functional theory
TFA trifluoroacetic acid
THF tetrahydrofuran
TLC thin layer chromatography
TPP tetraphenyl porphyrin
UV-Vis ultraviolet-visible spectroscopy
V_{oc} open circuit voltage
μ transition dipole moment
$\pi-\pi^*$ pi-to-pi star
All the work in this thesis was completed by Tracey M. McLean except

Chapter 2
- Solid and solution state non-resonance Raman data of 34 were collected by Dr Cushla McGoverin at the University of Otago.
- Time-dependent DFT calculations of 34 were undertaken with the assistance of Dr Mark Waterland.
- TEM images of silver nanoparticles were collected at the Manawatu Microscopy and Imaging Centre with the assistance of Mr Doug Hopcroft.

Chapter 3
- After initial attempts of optimising the geometry of 43, Dr Matthias Lein (Victoria University of Wellington) was contacted for assistance. He subsequently undertook all DFT and time-dependent DFT calculations of 43.
- Mr Graham Freeman synthesised the azadipyrrin ligand 44.
- With the exception of 38 and 44 all the crystal structures presented were determined by Associate Professor Shane Telfer.

Chapter 4
- Serena Smalley established the general synthetic protocol for Ru(II)-dipyrrinato complexes including the synthesis of 46 and 47.
- Associate Professor Shane Telfer synthesised Ru(II)-dipyrrinato complex 46
- All DFT calculations of 46-H including the Mulliken analysis were undertaken by Dr Mark Waterland.
- All DFT calculations of 46 were undertaken by Sam Lind (University of Otago).
- Resonance Raman data at excitation wavelengths 413 nm, 444 nm and 532 nm were collected by Sam Lind and Deirdre Cleland (University of Otago).
- Solid state absorption spectroscopy on TiO2 or NiO, device fabrication and solar cell testing were undertaken by members of Dr Attila Mozer’s research group (Intelligent Polymer Research Institute, University of Wollongong) and
Professor Yong Soo Kang’s research group (Energy Materials Lab, Hanyang University).

Chapter 5
- Janice Moody established the general synthetic protocol for Re(I)-dipyrrinato complexes including the synthesis and characterisation of 59, 60, 64, and 70.
- Serena Smalley developed the synthesis of dipyrrin ligand 61.
Publications by Tracey M. McLean related to this PhD thesis:

