Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
APPLICATIONS OF LINEAR MODELLING
IN ENERGY ANALYSIS

A thesis presented in partial fulfilment
of the requirements for
the Degree of Doctor of Philosophy
in Technology at
Massey University

MURRAY GRAHAM PATTERSON

1984
Massey University Library. Thesis Copyright Form

Title of thesis: **Applications of Linear Modelling in**

(1) (a) I give permission for my thesis to be made available to readers in the Massey University Library under conditions determined by the Librarian.

(b) I do not wish my thesis to be made available to readers without my written consent for [24] months.

(2) (a) I agree that my thesis, or a copy, may be sent to another institution under conditions determined by the Librarian.

(b) I do not wish my thesis, or a copy, to be sent to another institution without my written consent for [24] months.

(3) (a) I agree that my thesis may be copied for library use.

(b) I do not wish my thesis to be copied for Library use for [24] months.

Signed [Signature]

Date 2/8/85

The copyright of this thesis belongs to the author. Readers must sign their name in the space below to show that they recognise this. They are asked to add their permanent address.

NAME AND ADDRESS

DATE

The copyright of this thesis belongs to the author. Readers must sign their name in the space below to show that they recognise this. They are asked to add their permanent address.

Name and Address

Date
ABSTRACT

The primary objective of this study was to explore the use of classical linear models in Energy Analysis; so as to resolve some of the methodological problems associated with Energy Analysis, and to extend the scope and potential of Energy Analysis as a scientific discipline. This was undertaken in the form of two separate yet related discourses.

The first discourse provided a basis for resolving the energy quality problem encountered in Energy Analysis. A general equation was hypothesized and tested:

\[m_1 \sum_{j=1}^{i=j} (Y_1)_i + m_2 \sum_{j=1}^{i=j} (Y_2)_i + ... + m_n \sum_{j=1}^{i=j} (Y_n)_i \]

\[= n_1 \sum_{i=1}^{j=i} (X_1)_i + n_2 \sum_{i=1}^{j=i} (X_2)_i + ... + n_n \sum_{i=1}^{j=i} (X_n)_i \]

where: \(y \) = effective energy output of an end-use class (\(\Delta H \) output), known
\(x \) = primary energy input (\(\Delta H \) input), known
\(m \) = quality coefficient for an effective energy output (quality equivalents/ \(\Delta H \) output), unknown
\(n \) = quality coefficient for a primary energy input (quality equivalents/ \(\Delta H \) input), unknown
\(i \) = energy supply use pathways, \(j \) = number of pathways.

The matrix of simultaneous linear equations represented by this equation is usually overdetermined. Therefore, an appropriate solution method is a fitting procedure, such as regression. Further, in order to solve this general equation, one coefficient must arbitrarily be given a value equal to unity. Hence, all estimated coefficients are expressed in terms of multiples of that coefficient (termed quality equivalents).

The general equation was first tested for the 1976 New Zealand economy, so as to estimate 'actual' quality coefficients. Subsequently, the general equation was tested for a notional 'energy efficient' New Zealand economy, so as to estimate 'long run' quality coefficients, which reflected thermodynamic limits. Generally very accurate estimates of the coefficients were obtained. The solutions to the equations indicated that hydroelectricity was the highest quality
primary energy source, followed by natural gas, oil, coal and then wood.

The second discourse examined the 'optimal' use of primary energy resources in the New Zealand food system, using the formalism of Linear Programming. A preliminary discussion concluded that the concept of 'optimality' had greater potency than the concept of 'efficiency' in evaluating the use of energy resources, particularly in food systems. For each food sector (Production, Processing, Export-Import, Distribution, Catering and Household), coefficient matrices were assembled, drawing on literature data. Various combinations of constraints and objective functions were applied, in different Runs. The main objective functions used were minimising energy inputs for providing a nutritionally adequate diet, or maximising net energy gain from exporting agro-food products. The most critical constraints were found to be land area and market demand constraints.

Detailed results of the Linear Programming runs are presented and discussed. An energetically 'optimal' diet was found to consist of large amounts of cereals, significant amounts of fresh fruit and vegetables and dairy products, and a very small amount of meat. Such a diet provided the Recommended Daily Allowances, for all nutritional elements, for the New Zealand population. Meat, Fish and Dairy products were found to have a particularly important function as commodities to be traded for imports of oil and energy intensive goods.

A final discussion reviewed the use of Linear Models in Energy Analysis, and future directions for growth and development in Energy Analysis.
This thesis is part of two research programmes being undertaken in the Food Technology Research Centre. The first research programme began in the early 1970's, and has attempted to introduce quantitative techniques (principally Linear Programming and Extensions) to product development and diet planning. This has resulted in a number of PhD dissertations (Edwardson, 1974; Anderson, 1975; Chittaporn, 1977; Ngarmsak, 1983). The second research programme was initiated in 1977, and has attempted to quantify energy use in the food system, and to identify energy conservation measures particularly applicable to the food processing sector. This research has been funded by the New Zealand Energy Research and Development Committee. The material for this thesis has been drawn from the findings of Contract 3123 "Energy Requirements for Food Supply in New Zealand".

Much of the details of surveys undertaken for Contract 3123 and used in this thesis have been published by the N.Z.E.R.D.C., under the author's name. Readers are recommended to refer to these reports for further details:

Another paper that summarises much of Part A of this thesis, has also been published: Patterson, M.G. 1983. Estimation of the Quality of Energy Sources and Uses. Energy Policy 11:4 346-359 (this paper appears in Appendix A).
ACKNOWLEDGEMENTS

I wish to acknowledge that a thesis of this scale and scope could not be undertaken without the help, assistance and influence of a great number of people. Although it is impossible to specifically mention all of these people and the nature of their assistance, I do wish to sincerely thank them.

I am especially indebted to Dr Mary Earle (Food Technology Department, Massey University), for acting as my chief supervisor. Without her untiring enthusiasm and personal energy, this thesis would not have been possible. A special thanks is also due to Dr John Peet (Chemical Engineering Department, University of Canterbury), for acting as my co-supervisor. His willingness to review material at long distance, with efficiency and perception, is much appreciated. I also wish to especially thank Dr Andrew Cleland (Biotechnology Department, Massey University), particularly for his encouragement and advice when I was somewhat tentatively developing the ideas and methodologies presented in Part A. I am also grateful for the advice and assistance given by Dr Sue Byrne (Mathematics Department, Massey University), concerning the computing problems encountered in Part B. A special thanks is also due to Dr Louis Arnoux (New Zealand Energy Research and Development Committee) for his general assistance and encouragement throughout this project.

An acknowledgement and a thank you, is also due to all of the people who provided technical assistance in the staffs of the Computer Centre, Food Technology Research Centre and the Library at Massey University. Vivienne Mair's and Trish Blandford's assistance in competently typing and word processing this difficult manuscript is especially appreciated.

I also wish to acknowledge that my ability to present this thesis for examination, depended on funding provided by the New Zealand Energy Research and Development Committee to Massey University under contract 3123. Much of the data and information gained from work on this
contract, formed the basis of this thesis. I therefore wish to thank
the NZERDC for providing me with the opportunity to undertake this
research, and subsequently use it as the basis for this thesis.

I am also grateful for the information and assistance, given to me
by literally hundreds of people in government agencies, and in various
business establishments. The data provided by these people, during
several surveys, were particularly valuable.

Finally, my sincere thanks and indebtedness is given to my family
and my wife Ann, for their continual encouragement and support.
Without this, this thesis would have never reached fruition.
TABLE OF CONTENTS

ABSTRACT i

PREFACE ii

ACKNOWLEDGEMENTS iv

1. INTRODUCTION
 1.1 Objectives and Approach 1
 1.2 Background 1
 1.2.1 Energy Analysis and its Development 1
 1.2.1.1 Definition 1
 1.2.1.2 History and Origins of Energy Analysis 2
 1.2.1.3 Methodological Approaches 4
 1.2.1.4 Methodological Problems 5
 1.2.1.5 Uses and Applications 8
 1.2.2 Linear Modelling in Energy Analysis and Economics 9
 1.2.2.1 Definition of Linear Models 9
 1.2.2.2 Typology of Linear Models in Economics 10
 1.2.2.3 Uses and Applications of Linear Models in Energy Analysis 13

PART A: A LINEAR REGRESSION APPROACH TO ENERGY QUALITY

2. METHODOLOGY 15
 2.1 Introduction 15
 2.1.1 Problem of Energy Quality in Energy Analysis 15
2.1.2 Previous Approaches to Energy Quality in Energy Analysis

2.1.3 Reiteration and Statement of Objective for Part A

2.2 Proposed Methodology to Solve the Energy Quality Problem

2.2.1 Definitions

2.2.2 Energy Accounting Procedures

2.2.3 Regression Equations and Solutions

2.2.4 Statistical Analysis of Solutions

2.2.5 Recommended Methods of Model Selection and Improvement

2.2.6 Central Hypothesis and Model Building

2.2.7 Post Regression Analysis of Pathways

2.3 Conclusion

3. AN APPLICATION TO THE NEW ZEALAND ECONOMY, 1976

3.1 Data Sources

3.2 Inputs and Outputs Considered

3.3 Pathways Considered

3.4 Data Set and Regression Equations

3.5 Computer Analysis of Data Set

3.6 Statistical Analysis of Solutions to the Regression Equations

3.6.1 Detailed Results

3.6.2 An Example of Computer Print Out for Model $n_1 = 1$

3.6.3 Interpretation of Results

3.6.3.1 t Ratios

3.6.3.2 F Ratios

3.6.4 Model Selection and Improvement

3.7 Post Regression Analysis of Pathways, for m_0 Model

3.7.1 Residuals of Pathways (Relative Net Energy Yields)

3.7.2 Relative Efficiency of Pathways

3.8 Central Hypothesis: Relationship Between Quality of Inputs, Quality of Outputs and Enthalpic Efficiency

3.9 Discussion

3.9.1 Adequateness of the Models and Modelling
3.9.2 Energy Efficiency and Technological Development

3.9.2.1 Evidence
3.9.2.2 Interpretation

3.9.3 Conclusion

4. AN APPLICATION TO AN ENERGY EFFICIENT ECONOMY

4.1 Introduction
4.2 Data Sources
4.3 Inputs and Outputs Considered
4.4 Pathways Considered
4.5 Data Set and Regression Equations
4.6 Statistical Analysis of Solutions to the Regression Equations
4.6.1 Detailed Results (Unweighted Models)
4.6.2 Interpretation of Results (Unweighted Models)
4.6.2.1 Estimates of Coefficients and t Ratios
4.6.2.2 F Ratios
4.6.3 Detailed Results (Weighted Models)
4.6.4 Interpretation of Results (Weighted Models)
4.6.4.1 Estimates of Coefficients and t Ratios
4.6.4.2 F Ratios
4.6.5 Model Selection and Improvement
4.7 Post Regression Analysis of Pathways, for \(m_2 \) Model
4.7.1 Residuals of Pathways (Relative Net Energy Yields)
4.7.2 Relative Efficiency of Pathways
4.8 Central Hypothesis: Relationship Between Quality of Inputs, Quality of Outputs and Enthalpic Efficiency
4.9 Linear Programming Extensions
4.9.1 Introduction
4.9.2 Formulation of the Model
4.9.2.1 Notations
4.9.2.2 Objective function(s)
4.9.2.3 Constraints
4.9.3 Some Preliminary Runs
4.9.3.1 Run 1 (Minimisation of IQ)
4.9.3.2 Run 2 (Minimisation of IQ non-renewable)
4.9.4 Some Improvements and Extensions
4.9.4.1 Objective(s) 85
4.9.4.2 Constraints 86
4.9.4.3 Substitution Possibilities and Interdependence Equations 87
4.9.4.4 Inclusion of Future Supply and Use Options 81
4.9.4.5 Post-Optimal Sensitivity Analysis 87

5. DISCUSSION 88
5.1 Uses and Applications of Data Derived from the Modelling Procedure 88
5.1.1 Net Energy Analysis 88
5.1.2 Technology and Process Assessment, and End-Use Matching 89
5.1.3 Policy Making and Formulation 90
5.1.4 Energy Statistics 91
5.2 Possible Extentions of Modelling Procedure Relevant to Energy Analysis and Theories of Production 91
5.3 Evaluation of the Modelling Procedure for Solving the Energy Quality Problem 94
5.4 Further Uses of Regression Analysis in Energy Analysis 96
5.5 Conclusions 98

PART B: LINEAR PROGRAMMING MODELLING OF ENERGY USE IN THE NEW ZEALAND FOOD SYSTEM

6. INTRODUCTION AND METHODOLOGY 99
6.1 Introduction and Literature Review 99
6.1.1 Previous Energy Analyses of Food Supply 99
6.1.2 Previous Optimisation Models of Food Supply-Use Studies 102
6.1.3 Critical Review of Previous Studies 103
6.1.3.1 Concepts of Energy Efficiency 103
6.1.3.2 Concepts of Optimality

6.1.3.3 Numeraire and Energy Analysis

6.1.4 Net Energy Concept

6.1.5 Reiteration and Statement of Objective for Part

6.2 Methodology: Data Collection and Analysis

6.2.1 Classification of Sectors

6.2.2 Classification of Inputs and Outputs

- 6.2.2.1 Exogenous Inputs
- 6.2.2.2 Exogenous Outputs
- 6.2.2.3 Endogenous Inputs and Outputs

6.2.3 Estimation of Energy Inputs

- 6.2.3.1 Primary Energy Inputs Considered
- 6.2.3.2 Production Sector
- 6.2.3.3 Processing Sector
- 6.2.3.4 Export-Import Sector
- 6.2.3.5 Wholesale Distribution Sector
- 6.2.3.6 Retail Storage
- 6.2.3.7 Shopping
- 6.2.3.8 Household Preparation and Storage
- 6.2.3.9 Household Production
- 6.2.3.10 Catering
- 6.2.3.11 Hotels

6.2.4 Estimation of Other Inputs and Outputs

- 6.2.4.1 Direct Land Inputs
- 6.2.4.2 Direct Labour Inputs
- 6.2.4.3 Food Imports and Exports
- 6.2.4.4 Nutritional Outputs
- 6.2.4.5 Endogenous Inputs and Outputs

6.3 Methodology: Linear Programming

6.3.1 Introduction

- 6.3.1.1 Linearity Assumption
- 6.3.1.2 Interdependencies Between Sectors, and Input-Output Analysis
- 6.3.1.3 Solution of Linear Programming Models and Other Sets of Linear Equations

6.3.2 Coefficient Matrix

- 6.3.2.1 Formulation
- 6.3.2.2 MPS Format
- 6.3.2.3 Units of Coefficient
- 6.3.2.4 Scaling of Coefficients
and Horticultural Production

7.2.3.4 Matrix Formulation

7.2.4 Labour Inputs

7.2.5 Endogenous Inputs and Outputs

7.2.6 Linking Equations

7.2.7 Other Equations and Constraints

7.2.8 Summary Matrix

7.3 Processing Sector Matrix

7.3.1 Introduction

7.3.2 Energy Inputs

7.3.2.1 Previous Studies

7.3.2.2 Patterson and Earle (1984) Study

7.3.3 Labour Inputs

7.3.4 Endogenous Inputs and Outputs

7.3.5 Summary Matrix

7.4 Export-Import Sector Matrix

7.4.1 Coding System

7.4.2 Energy Inputs

7.4.3 Market Levels and Prices

7.4.4 Matrix Formulation

8. DISTRIBUTION - TRANSPORT, HOUSEHOLD AND CATERING-HOTEL MATRICES

8.1 Distribution and Transport Matrix

8.1.1 Introduction

8.1.2 Energy Inputs

8.1.2.1 Wholesale Distribution

8.1.2.2 Retail Storage

8.1.2.3 Shopping

8.1.3 Endogenous Inputs and Outputs

8.1.4 Matrix Formulation

8.2 Household Sector Matrix

8.2.1 Introduction

8.2.2 Energy Inputs

8.2.2.1 Total Energy Requirements (TJ/yr)

8.2.2.2 Total Energy Intensities (MJ/kg)

8.2.3 Endogenous Inputs and Outputs

8.2.4 Nutritional Outputs and Requirements

8.2.4.1 Nutritional Outputs Considered and
Table of Contents

1. **Introduction**

2. **Material and Methods**
 - 2.1 **Sample Description**
 - 2.2 **Data Collection**
 - 2.3 **Data Analysis**

3. **Results**
 - 3.1 **Descriptive Statistics**
 - 3.2 **Comparative Analysis**
 - 3.3 **Discussion**

4. **Conclusion**

8.2.4.2 Allowances for Wastes and Loss of Nutrients

8.2.4.3 Nutritional Requirements of the New Zealand Population

8.2.5 Matrix Formulation

8.3 Catering-Hotel Sector Matrix
 - 8.3.1 Introduction
 - 8.3.2 Energy Inputs
 - 8.3.2.1 Catering Industry
 - 8.3.2.2 Hotel Industry
 - 8.3.3 Labour Inputs
 - 8.3.4 Endogenous Inputs and Outputs
 - 8.3.4.1 Catering Industry
 - 8.3.4.2 Hotel Industry
 - 8.3.5 Nutritional Outputs
 - 8.3.6 Matrix Formulation

9. PRELIMINARY RESULTS AND DISCUSSION

9.2 Run 1: Standard Run
 - 9.2.1 Introduction
 - 9.2.2 Objective Function
 - 9.2.3 Constraints
 - 9.2.4 Results
 - 9.2.4.1 Objective Function and Total Energy Requirements
 - 9.2.4.2 Export Earnings
 - 9.2.4.3 Direct Labour Requirements
 - 9.2.4.4 Direct Land Requirements
 - 9.2.4.5 Product Mixes and Structure of the Food System
 - 9.2.4.6 Nutritional Outputs

9.3 Run 2: Minimisation of Q
 - 9.3.1 Introduction
 - 9.3.2 Objective Function
 - 9.3.3 Constraints
 - 9.3.3.1 Nutritional Requirements
 - 9.3.3.2 Land Constraints
9.3.3.3 Export-Import Constraints
9.3.3.4 Other Constraints

9.3.4 Results

9.3.4.1 Objective Function and Total Energy Requirements
9.3.4.2 Optimal Diet
9.3.4.3 Nutritional Outputs
9.3.4.4 Exports-Imports
9.3.4.5 Direct Labour Requirements
9.3.4.6 Direct Land Requirements
9.3.4.7 Structure of the Food System

9.4 Run 3: Maximisation of Q (Net Energy Yield)

9.4.1 Introduction
9.4.2 Objective Function
9.4.3 Constraints
 9.4.3.1 Domestic Food Consumption Constraints
 9.4.3.2 Land Constraints
 9.4.3.3 Export-Import Constraints
 9.4.3.4 Other Constraints

9.4.4 Results
 9.4.4.1 Objective Functions and Total Energy Requirements
 9.4.4.2 Export Earnings
 9.4.4.3 Direct Labour Requirements
 9.4.4.4 Direct Land Requirements
 9.4.4.5 Structure of Food System
 9.4.4.6 Household Sector
 9.4.4.7 Nutritional Outputs

9.5 Run 4: Maximisation of Net Export Earnings

9.5.1 Introduction
9.5.2 Objective Function
9.5.3 Constraints
 9.5.3.1 Nutritional Requirements
 9.5.3.2 Land Constraints
 9.5.3.3 Export-Input Constraints
 9.5.3.4 Other Constraints

9.5.4 Results
 9.5.4.1 Objective Function and Export Earnings
 9.5.4.2 Total Energy Requirement and Net
9.5.4.3 Direct Labour Requirements
9.5.4.4 Direct Land Requirements
9.5.4.5 Structure of Food System
9.5.4.6 Nutritional Outputs

9.6 Discussion

9.6.1 Review of the Main Empirical Results and Implications
9.6.2 Efficiency and Optimality
9.6.3 Limitations and Problems
 9.6.3.1 Practical Computational Problems
 9.6.3.2 Fixed Proportionality Assumption
 9.6.3.3 Changes of Physical Coefficients Over Time, with Improved Technology
 9.6.3.4 Changes in Economic Coefficients and Constraints, Over Time
 9.6.3.5 Conclusion

9.6.4 Extensions and Improvements of Coefficient Matrices

9.6.5 Uses of the Linear Programming Model of the New Zealand Food System
 9.6.5.1 Long Term Planning Model
 9.6.5.2 Other Uses and Short Term Planning

9.6.6 Final Evaluation of the Linear Programming Model of the New Zealand Food System

10. FINAL REVIEW AND DISCUSSION

10.1 Mathematical and Linear Modelling in Energy Analysis
 10.1.1 Nature of Mathematical Models
 10.1.2 Linear Modelling in Energy Analysis
 10.1.3 Review of Linear Modelling Applications in this Study
 10.1.4 Further Applications of Mathematical and Linear Modelling in Energy Analysis

10.2 Further Developments of Energy Analysis
 10.2.1 Resolution of Methodological Problems
 10.2.2 Resolution of Methodological Problems Associated with Energy Coefficients
 10.2.2.1 Assumptions Underpinning Energy
APPENDICES

A. Estimations of the Quality of Energy Sources and Uses (Copy of a paper published in the journal Energy Policy 11:4 346-359).

C. Energy Use Pathways for the Energy Efficient New Zealand Economy: Data Sources and Calculations. (Microfiche).

D. MPS Format Input for the General and Distribution Models, of the Linear Programming Model of Energy Use in the New Zealand Food System. (Microfiche).

E. Codes Used for the MPS Input for the General and Distribution Models, of the Linear Programming Model of Energy Use in the New Zealand Food System. (Microfiche).

F. Energy Use in the Catering Industry (Copy of New Zealand Energy Research and Development Committee Report P66) (Microfiche).

G. Total Energy Requirements of Shopping for Food (Copy of New Zealand Energy Research and Development Committee Report P67) (Microfiche).

H. Total Energy Requirements of the Wholesale Distribution Foods...
I. Total Energy Requirements of the Household Preparation and Storage of Foods (Copy of New Zealand Energy Research and Development Committee Report P69) (Microfiche).

J. Total Energy Requirements of Food Retailing (Copy of New Zealand Energy Research and Development Committee Report P70) (Microfiche).
<table>
<thead>
<tr>
<th>LIST OF TABLES</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Actual New Zealand Energy Economy: Technologies and Operational Efficiencies</td>
<td>28</td>
</tr>
<tr>
<td>3.3 Analysis of Residuals, for Cooking Equivalents (m₆) for the New Zealand Economy, 1976</td>
<td>41</td>
</tr>
<tr>
<td>3.4 Numerical Calculations for Pathways of the n₁(m₆) Model of the New Zealand Economy, 1976</td>
<td>42</td>
</tr>
<tr>
<td>4.1 An Energy Efficient New Zealand Economy: Assumed Technologies and Operational Efficiencies</td>
<td>54</td>
</tr>
<tr>
<td>4.2 Data Set: Gross Energy Requirements of Energy Supply-Use Pathways in an Energy Efficient New Zealand Economy</td>
<td>55</td>
</tr>
<tr>
<td>4.3 Comparison of F Ratios for Weighted and Unweighted Models of an Energy Efficient Economy</td>
<td>69</td>
</tr>
<tr>
<td>4.4 Comparison of Estimates of Coefficients Standardised so n₁=1, and F Ratios for Models (n₁-n₇, m₁-m₇) of an Energy Efficient Economy (Unweighted)</td>
<td>70</td>
</tr>
<tr>
<td>4.5 Analysis of Residuals for High Grade Transport Equivalents (m₂=1) for an Energy Efficient Economy</td>
<td>72</td>
</tr>
<tr>
<td>4.6 Numerical Calculations for Pathways of the n₁(m₂) Model of an Energy Efficient Economy</td>
<td>73</td>
</tr>
<tr>
<td>4.7 Solution of Linear Programming Run 1 (Minimisation of IQ)</td>
<td>83</td>
</tr>
<tr>
<td>4.8 Solution of Linear Programming Run 2 (Minimisation of IQ-non-renewable)</td>
<td>84</td>
</tr>
</tbody>
</table>
LIST OF TABLES - continued

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Comparison of Energy Consumption Statistics for New Zealand (1981), Expressed in Enthalpy and Quality Equivalent Terms</td>
<td>92</td>
</tr>
<tr>
<td>6.1</td>
<td>Energy Requirements of Selected National Food Systems</td>
<td>101</td>
</tr>
<tr>
<td>6.2</td>
<td>Survey Classification and the New Zealand Standard Industrial Classification</td>
<td>109</td>
</tr>
<tr>
<td>7.1</td>
<td>Calculation of a Hydro-Electricity Equivalent ((n_1(m_2))): Primary Energy Input ((\Delta H)) Ratio, for the New Zealand Economy</td>
<td>142</td>
</tr>
<tr>
<td>7.2</td>
<td>Energy Transformation Matrix, for the New Zealand Food System Model (1978-79)</td>
<td>145</td>
</tr>
<tr>
<td>7.3</td>
<td>Total Energy Requirements (TJ/yr) of the Production Sector of the Food System in New Zealand</td>
<td>149</td>
</tr>
<tr>
<td>7.4</td>
<td>Land Requirements (000ha) and Energy Intensities (GJ/yr/ha) for the Production Sectors of the New Zealand Food System</td>
<td>151</td>
</tr>
<tr>
<td>7.5</td>
<td>Definition of Land Use Capability Classes</td>
<td>153</td>
</tr>
<tr>
<td>7.6</td>
<td>Assumed Classes of Land Suitable for Various Production Sectors</td>
<td>155</td>
</tr>
<tr>
<td>7.7</td>
<td>Land Class Availability for Agricultural and Horticultural Production</td>
<td>157</td>
</tr>
<tr>
<td>7.8</td>
<td>Matrix for Land Inputs into the Production Sectors for the New Zealand Food System Model (1978-79)</td>
<td>158</td>
</tr>
<tr>
<td>7.9</td>
<td>Direct Labour Requirements (Full-time Equivalent man-years/yr) and Labour Intensity (Full-time Equivalent man-years/yr/(000ha)) for Production Sectors in the New Zealand Food System</td>
<td>160</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>7.10</td>
<td>Production Sector Matrix, for New Zealand Food System Model (1978-79)</td>
<td>164</td>
</tr>
<tr>
<td>7.11</td>
<td>Codings and New Zealand Standard Industrial Classifications for Processing Sectors</td>
<td>165</td>
</tr>
<tr>
<td>7.12</td>
<td>Total Energy Requirements (TJ/yr) of the Processing Sectors of the Food System in New Zealand</td>
<td>168</td>
</tr>
<tr>
<td>7.13</td>
<td>Direct Labour Requirements (Full-time Person Equivalent/yr) for the Food Processing Sector of the New Zealand Food System, 1978-79</td>
<td>169</td>
</tr>
<tr>
<td>7.14</td>
<td>Processing Sector Matrix, for New Zealand Food System Model (1978-79)</td>
<td>171</td>
</tr>
<tr>
<td>7.15</td>
<td>Export-Import Sector Matrix for the New Zealand Food System Model (1978-79)</td>
<td>177</td>
</tr>
<tr>
<td>8.1</td>
<td>Total Energy Requirements (TJ/yr) of the Wholesale Distribution Sector of the Food System, in New Zealand</td>
<td>180</td>
</tr>
<tr>
<td>8.2</td>
<td>Total Energy Intensities (MJ/kg) for Storage Steps in the Wholesale Distribution of Foods, in New Zealand</td>
<td>182</td>
</tr>
<tr>
<td>8.3</td>
<td>Total Energy Intensities (MJ/kg) for Transport Steps in the Wholesale Distribution of Food in New Zealand</td>
<td>183</td>
</tr>
<tr>
<td>8.4</td>
<td>Total Energy Requirements (TJ/yr) of the Retail Storage Steps in the N.Z. Food System, 1981-82</td>
<td>185</td>
</tr>
<tr>
<td>8.5</td>
<td>Total Energy Intensities (MJ/kg) of the Retail Storage Steps in the New Zealand Food System, 1981-82</td>
<td>186</td>
</tr>
<tr>
<td>8.6</td>
<td>Total Energy Requirements (TJ/yr) of the Shopping for Food in New Zealand, 1981-82</td>
<td>189</td>
</tr>
<tr>
<td>8.7</td>
<td>Total Energy Intensities (MJ/kg) for the Shopping Steps in the New Zealand Food System, 1981-82</td>
<td>189</td>
</tr>
<tr>
<td>LIST OF TABLES - continued</td>
<td>PAGE</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>8.8 Distribution-Transport Sector Matrix for the New Zealand Food System Model (1978-79)</td>
<td>191</td>
<td></td>
</tr>
<tr>
<td>8.9 Total Energy Requirements (TJ/yr) of the Household Preparation and Storage Sector of the Food System</td>
<td>194</td>
<td></td>
</tr>
<tr>
<td>8.10 Total Energy Intensities (MJ/kg) for the Household Preparation, Storage and Production of Foods, 1980-81</td>
<td>196</td>
<td></td>
</tr>
<tr>
<td>8.11 Total Household Food Production (Tonnes/yr)</td>
<td>196</td>
<td></td>
</tr>
<tr>
<td>8.12 Vitamin Losses During Household Cooking</td>
<td>199</td>
<td></td>
</tr>
<tr>
<td>8.13 Minimum Nutritional Requirements of the New Zealand Population (1978-79)</td>
<td>201</td>
<td></td>
</tr>
<tr>
<td>8.14 Household Sector Matrix for the New Zealand Food System Model (1978-79)</td>
<td>203</td>
<td></td>
</tr>
<tr>
<td>8.15 Direct Energy Intensities (MJ/kg) for 33 Catering Establishments in Palmerston North, Estimated by Multiple Linear Regression</td>
<td>207</td>
<td></td>
</tr>
<tr>
<td>8.16 Total Energy Requirements (TJ/yr) of the Catering Industry 1980-82</td>
<td>208</td>
<td></td>
</tr>
<tr>
<td>8.18 Foodstuffs Used by 33 Catering Establishments in Palmerston North (kg/weeks)</td>
<td>212</td>
<td></td>
</tr>
<tr>
<td>8.19 Catering - Hotels Sector Matrix for the New Zealand Food System Model (1978-79)</td>
<td>215</td>
<td></td>
</tr>
<tr>
<td>9.1 Primary Energy Requirements of Run 1 - General Model</td>
<td>218</td>
<td></td>
</tr>
<tr>
<td>9.2 Primary Energy Requirements of Run1 and 3 - Distribution Model</td>
<td>218</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES - continued</td>
<td>PAGE</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>9.4 Primary Energy Requirements of Run 2 - General Model</td>
<td>226</td>
<td></td>
</tr>
<tr>
<td>9.5 Primary Energy Requirements of Run 2 - Distribution Model</td>
<td>226</td>
<td></td>
</tr>
<tr>
<td>9.6 Optimal Diet Solution for Run 2 - General Model</td>
<td>228</td>
<td></td>
</tr>
<tr>
<td>9.7 Nutritional Outputs for Run 2 - General Model</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>9.8 Sources of Nutritional Output for Run 2 - General Model</td>
<td>231</td>
<td></td>
</tr>
<tr>
<td>9.9 Direct Land Requirements (000ha) for Run 2 - General Model</td>
<td>234</td>
<td></td>
</tr>
<tr>
<td>9.10 Food System Structure for Run 2 - General Model</td>
<td>234</td>
<td></td>
</tr>
<tr>
<td>9.11 Primary Energy Requirements of Run 3 - General Model</td>
<td>239</td>
<td></td>
</tr>
<tr>
<td>9.12 Exports for Run 3 - General Model</td>
<td>241</td>
<td></td>
</tr>
<tr>
<td>9.13 Direct Land Requirements (000ha) of Run 3 - General Model</td>
<td>241</td>
<td></td>
</tr>
<tr>
<td>9.14 Household Cooking, Food Preparation and Storage Modes for Run 3 - General Model</td>
<td>243</td>
<td></td>
</tr>
<tr>
<td>9.15 Exports for Run 4 - General Model</td>
<td>246</td>
<td></td>
</tr>
<tr>
<td>9.16 Primary Energy Requirements of Run 4 - General Model</td>
<td>248</td>
<td></td>
</tr>
<tr>
<td>9.17 Primary Energy Requirements of Run 4 - Distribution Model</td>
<td>248</td>
<td></td>
</tr>
<tr>
<td>9.18 Direct Land Requirements for Run 4 - General Model</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>9.19 Nutritional Outputs for Run 4 - General Model</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>9.20 Energy Ratios for Various Runs of the New Zealand Food System Model</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>PAGE</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>3.1</td>
<td>Residual Plot: Standardised Residual vs Pathways for m_6 Model of New Zealand Economy, 1976</td>
<td>40</td>
</tr>
<tr>
<td>3.2</td>
<td>Quality of Inputs vs Enthalpic Efficiency for Pathways 1-4, n_1 Model of New Zealand Economy, 1976</td>
<td>45</td>
</tr>
<tr>
<td>3.3</td>
<td>Quality of Inputs vs Enthalpic Efficiency for Pathway 5, n_1 Model of New Zealand Economy, 1976</td>
<td>45</td>
</tr>
<tr>
<td>3.4</td>
<td>Quality of Inputs vs Enthalpic Efficiency for Pathways 6-13, n_1 Model of New Zealand Economy, 1976</td>
<td>45</td>
</tr>
<tr>
<td>3.5</td>
<td>Quality of Inputs vs Enthalpic Efficiency for Pathways 14-17, n_1 Model of New Zealand Economy, 1976</td>
<td>45</td>
</tr>
<tr>
<td>3.6</td>
<td>Quality of Inputs vs Enthalpic Efficiency for Pathways 18-26, n_1 Model of New Zealand Economy, 1976</td>
<td>46</td>
</tr>
<tr>
<td>3.7</td>
<td>Quality of Inputs vs Enthalpic Efficiency for Pathways 27-31, n_1 Model of New Zealand Economy, 1976</td>
<td>46</td>
</tr>
<tr>
<td>3.8</td>
<td>Energy Requirements for the Production of Ammonia</td>
<td>48</td>
</tr>
<tr>
<td>3.9</td>
<td>Process Energy Requirement for the Production of Pig Iron</td>
<td>48</td>
</tr>
<tr>
<td>3.10</td>
<td>Process Energy Requirements vs Technological Development Through time: A Generalised Model</td>
<td>48</td>
</tr>
<tr>
<td>4.1</td>
<td>Residual Plot: Standardised Residual vs Pathways for m_2 Model of an Energy Efficient Economy</td>
<td>74</td>
</tr>
<tr>
<td>4.2</td>
<td>Quality of Inputs vs Enthalpic Efficiency of Pathways 1-5, $n_1(m_2)$ Model of an Energy Efficient N.Z. Economy</td>
<td>77</td>
</tr>
<tr>
<td>FIGURE</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Quality of Inputs vs Enthalpic Efficiency of Pathways 6-10, n₁(m₂) Model of an Energy Efficient N.Z. Economy</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Quality of Inputs vs Enthalpic Efficiency of Pathways 14-18, n₁(m₂) Model of an Energy Efficient N.Z. Economy</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Quality of Inputs vs Enthalpic Efficiency of Pathways 11-13, n₁(m₂) Model of an Energy Efficient N.Z. Economy</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>Quality of Inputs vs Enthalpic Efficiency of Pathways 19-23, n₁(m₂) Model of an Energy Efficient N.Z. Economy</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>Quality of Inputs vs Enthalpic Efficiency of Pathways 24-28, n₁(m₂) Model of an Energy Efficient N.Z. Economy</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>Quality of Inputs vs Enthalpic Efficiency of Pathways 29-33, n₁(m₂) Model of an Energy Efficient N.Z. Economy</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Schematic Relationship Between Energy Requirements (MJ/kg) of Materials and Ore Grade</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Land Use Suitability of Class I-VII Land</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>Schematic Isoquant Curves for Energy-Labour Inputs with Improved Technology-Management, where T₁, T₂, T₃ represent Time Periods approaching Tₙ.</td>
<td></td>
</tr>
<tr>
<td>10.1</td>
<td>Schematic Isoquant for the Labour-Land Trade-Off</td>
<td></td>
</tr>
<tr>
<td>10.2</td>
<td>Schematic Isoquant for the Labour-Energy Trade-Off</td>
<td></td>
</tr>
<tr>
<td>10.3</td>
<td>Schematic Isoquant for the Land-Energy Trade-Off</td>
<td></td>
</tr>
<tr>
<td>10.4</td>
<td>Schematic Isoquant for the Labour-Time Trade-Off</td>
<td></td>
</tr>
<tr>
<td>10.5</td>
<td>Schematic Isoquant for the Energy-Time Trade-Off</td>
<td></td>
</tr>
<tr>
<td>10.6</td>
<td>Schematic Isoquant for the Land-Time Trade-Off</td>
<td></td>
</tr>
</tbody>
</table>