Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
PHYSICOCHEMICAL AND STRUCTURAL STUDIES
ON TWO TRIDENTATE ANTITUMOUR LIGAND SYSTEMS

A thesis presented in partial fulfilment of the requirements for the degree of
Doctor of Philosophy in Chemistry at Massey University.

JOHN DAVID RANFORD
1988
Title of thesis: Physicochemical and Structural Studies on two Triterpene Antitumour Ligand Systems

(1) (a) I give permission for my thesis to be made available to readers in the Massey University Library under conditions determined by the Librarian.

I do not wish my thesis to be made available to readers without my written consent for ______ months.

(2) (a) I agree that my thesis, or a copy, may be sent to another institution under conditions determined by the Librarian.

I do not wish my thesis, or a copy, to be sent to another institution without my written consent for ______ months.

(3) (a) I agree that my thesis may be copied for Library use.

I do not wish my thesis to be copied for Library use for ______ months.

Signed ____________________________

Date 18/10/88

The copyright of this thesis belongs to the author. Readers must sign their name in the space below to show that they recognise this. They are asked to add their permanent address.

NAME AND ADDRESS

27 Epsom Road

Palmerston North

DATE

18/10/88
DEDICATION

To all the people, especially Mona and Alan Wong, who constantly remind me how silly I must be to have to stay at school for SO long.
ABSTRACT

This work is an investigation into the physicochemical and structural properties of two tridentate, antitumour ligand systems and is divided into two sections. In the first (Chapters 1 to 4), the ligand 2-formylpyridine thiosemicarbazone (LH - containing an NNS donor set), several of its congeners and a range of complexes (predominantly Cu(II)) were prepared. The second section (Chapters 5 and 6) deals with a range of ligands based on salicylaldehyde benzoylhydrazone (sbH2 - containing an ONO donor set), their complexes (predominantly Cu(II)) and the cytotoxicity data for all of this work.

In Chapter 1, complexes of the general formulation [CuLX]2 for the deprotonated and [Cu(LH)X]2X2 for the neutral, protonated ligand were prepared (where X = e.g. halide, pseudohalide, NO3, ClO4, CH3COO-, CF3COO-). The complexes formed are very stable in strong, non-oxidising acid solutions and with mildly reducing anions, but are susceptible to oxidising acids and anions. The crystal structures of the neutral ligand, dimeric, one-atom anion bridged complex [Cu(LH)(CF3COO)]2(CF3COO)2 and the monomeric complex [Cu(LH)(ClO4)2H2O]2H2O with axially coordinated perchlorato groups were determined.

In Chapter 2, the possibility that \textit{in vivo} S and N donor atom adducts of CuL+ may form was investigated \textit{in vitro}. Stable complexes containing a copper(II)-thiolato bond were isolated at ambient temperatures, under aerobic conditions. The e.s.r. parameters for these were very similar to a species formed from the interaction of CuL+ with human blood components. Ternary, Lewis-base adducts of nitrogen donor atoms were also isolated, and the crystal structures for two of these, [CuL(2,2'-bipyridyl)]ClO4 and [CuL(saccharinato)H2O]·\textg H2O, were solved.

The possibility of CuL+ interacting with O donor groups (in particular phosphates) \textit{in vivo} was investigated \textit{in vitro} in Chapter 3. The ternary complexes isolated contain the anions mono-
and dihydrogenphosphate, pyrophosphate, phenolate and molybdate. The crystal structure of [Cu(LH)(H$_2$PO$_4$)$_2$]$_2$(H$_2$PO$_4$)$_2$(H$_3$PO$_4$)$_2$·2H$_2$O showed the complex is dimeric, having a unique one-atom dihydrogenphosphate bridge, three inequivalent phosphates and a very strong interphosphate hydrogen-bond. In contrast, the ternary, pyrophosphate complex [(CuL)$_4$P$_2$O$_7$]·12H$_2$O is a tetramer, with each Cu(II) centre having a one-atom S, a three-atom pyrophosphate and two five-atom pyrophosphate bridges.

The low temperature magnetic properties of [CuL(CH$_3$COO)]$_2$ fit the Bleany-Bowers expression well, whereas for [(CuL)$_4$P$_2$O$_7$]·12H$_2$O a very weak interaction through the five-atom pyrophosphate bridge may account for the non-dimeric behaviour observed. Both complexes are weakly antiferromagnetic (-2J ~6 cm$^{-1}$).

In Chapter 4, four variations on the ligand LH and a representative series of their Cu(II) complexes were synthesised. Reduction potentials for a Cu(II) complex of each ligand, as well as for two thiolato and a Lewis-base adduct of CuL$^+$, were measured. N.m.r. spectroscopy was used to characterise the ligands and pKa values for both the ligands and their Cu(II) complexes were determined. No correlation between any of these values and the cytotoxicities was found.

In Chapter 5, Section 2, a range of ligands based on sbH$_2$ (salicylaldehyde benzoylhydrazone) and their transition metal complexes (predominantly Cu(II)) were synthesised for cytotoxicity trials (on the cell line HCT-8). A number of the Cu(II) complexes had depressed room temperature magnetic moments and displayed e.s.r. spectral features which were attributed to magnetic interactions in the solid state. The crystal structure of [Cu(sbH)ClO$_4$(EtOH)]$_2$ revealed it to be a planar, side-by-side dimer with Cu(sbH)$^+$ moieties bridged via the phenolato-oxygens.

Depending upon the pH, sbH$_2$ can coordinate as either a neutral, monoanionic or dianionic moiety to transition metals. The interaction of CuF$_2$·2H$_2$O in HF with sbH$_2$ resulted in the in
situ formation of H$_2$SiF$_6$. The crystal structure of the resulting complex, [(Cu(sbH)H$_2$O)$_2$SiF$_6$]$_2$H$_2$O, showed it to be a dimer, with the Cu(II) centres linked by the coordinated SiF$_6^{2-}$ anion. The crystal structure of a cytotoxicity inactive Cu(sbH)$^+$ analogue, [Cu(saH)Cl(H$_2$O)]H$_2$O was also solved.

In the final chapter, the cytotoxicity data for all compounds tested are presented. The copper(II) complexes generally showed activities different to the metal free ligands. For LH congeners the complexes were no better than the ligands; in contrast to the sbH$_2$ analogues where the Cu(II) chelates were statistically more cytotoxic. Transition metals other than Cu(II) either did not improve the activity or resulted in a reduction or loss of cytotoxicity.

For LH congeners, changes in cytotoxicity could be related to altered electronic and steric properties, whereas for the sbH$_2$ series of compounds, statistical analysis showed the lipophilicity conferred by a substituent to be the dominant factor. Comparisons with proven anticancer drugs are made and possible future studies to maximise the biological activity are suggested. All of the compounds tested for their antiviral activity were either cytotoxic or inactive at the concentrations used.
ACKNOWLEDGEMENTS

Much of this work would not have been possible without the gratefully acknowledged contributions from the following people:

Drs E W Ainscough and A M Brodie for their supervision and contagious enthusiasm.
Dr J M Waters for her guidance and expertise with the X-ray crystallography.
Drs W A Denny and G J Finlay, Cancer Research Laboratory, Auckland Medical School, for very generously determining the cytotoxicity data.
Dr G E Norris for solving one of the X-ray crystallographic structures and for proof reading this work.
Dr K W Jolley and Mr M H Smith for running n.m.r. spectra.
Professor R Hodges, Massey University, and Dr G J Shaw and Mr J M Allen, DSIR, Palmerston North, for running mass spectra.
Dr W T Robinson, Canterbury University, for collecting three X-ray diffraction data sets.
Dr K S Murray and Mr C Delfs, Monash University, for low temperature magnetic data.
Dr J W Blunt, Canterbury University, for kindly carrying out the antiviral assays.
Dr G A Bowmaker, Auckland University, for guidance and the use of electrochemical apparatus.
Professor A D Campbell, Otago University, for microanalytical data.
Diane Reay for typing this tome.

I would also like to sincerely thank everyone else who contributed with helpful discussions and I am also indebted to Massey University for the position of Graduate Assistant during my studies.
TABLE OF CONTENTS

Dedication ii
Abstract iii
Acknowledgements vi
Contents vii
Abbreviations x
Index of Figures xiii
Index of Tables xviii

General Introduction 1

Introduction to Section 1 20

Section 1: Studies on the 2-Formylpyridine Thiosemicarbazone (LH) Ligand System

Chapter 1: Halide and Pseudohalide Copper Complexes of LH/L- 34
 1.1.1 Introduction 34
 1.1.2 Crystal Structure of \([\text{Cu}(\text{LH})(\text{CF}_3\text{COO})_2](\text{CF}_3\text{COO})_2\)
 (Di-\(\mu\)-trifluoroacetato-bis(2-formylpyridine thiosemicarbazone)copper(II))
 Bistrifluoroacetate 37
 1.1.3 Crystal structure of \([\text{Cu}(\text{LH})(\text{ClO}_4)_2\text{H}_2\text{O}]_2\text{H}_2\text{O}\)
 (Aqua(2-formylpyridine thiosemicarbazone diperchlorato)copper(II) Dihydrate) 49
 1.1.4 Results and Discussion 56
 1.1.5 Experimental 72
Chapter 2: Ternary S and N Donor Atom Copper Complexes of L⁻

1.2.1 Introduction 88

1.2.2 Crystal Structure of [CuL(sacc)H₂O]·½H₂O
(Aqua(2-formylpyridine thiosemicarbazonato)(saccharinato-N)copper(II) Hemihydrate) 91

1.2.3 Crystal Structure of [CuL(bipy)]ClO₄
(2, 2'-bipyridyl(2-formylpyridine thiosemicarbazonato)copper(II) Perchlorate) 100

1.2.4 Results and Discussion 108

1.2.5 Experimental 128

Chapter 3: Ternary O Donor Atom Copper Complexes of LH/L⁻

1.3.1 Introduction 141

1.3.2 Crystal Structure of [(CuL)₄P₂O₇]·12H₂O
(μ₄-Pyrophosphato-tetrakis[2-formylpyridine thiosemicarbazonato)copper(II)] Dodecahydrate 143

1.3.3 Crystal Structure of [Cu(LH)(H₂PO₄)]₂(H₂PO₄)₂(H₃PO₄)₂·2H₂O
(Di-μ-dihydrogenphosphato-bis[2-formylpyridine thiosemicarbazone)copper(II) Bis(dihydrogenphosphate) Bis(trihydrogenphosphate) Dihydrate) 158

1.3.4 Results and Discussion 168

1.3.5 Experimental 183

Chapter 4: Variations on the Cu/LH System 194

1.4.1 Introduction 194

1.4.2 Results and Discussion 195

1.4.3 Experimental 221

1.4.4 Section 1 Summary 226
Introduction to Section 2

Section 2: Studies on the Salicylaldehyde Benzoylhydrazone (sbH₂) System

Chapter 5: Studies on sbH₂ Congeners and their Complexes

2.5.1 Introduction 236
2.5.2 Crystal Structure of [(Cu(sbH)H₂O)₂SiF₆]·2H₂O (µ-Hexafluorosilicato-bis[aqua(salicylaldehyde benzoylhydrazonato(1-)copper(II))] Dihydrate 240
2.5.3 Crystal Structure of Bisethanoldiperchloratobis-(µ-[salicylaldehyde benzoylhydrazonato(1-)]-µ-O, O\'dicopper(II)) 253
2.5.4 Crystal Structure of Aquachloro (salicylaldehyde acetylhydrazonato(1-))copper(II) Hydrate 259
2.5.4 Results and Discussion 266
2.5.5 Experimental 297

Chapter 6: Cytotoxicity Results

2.6.1 Introduction 316
2.6.2 Results and Discussion 319

Appendix 1 General Techniques 341
Appendix 2 Reagents 343
Appendix 3 Molar Conductivities 345
Appendix 4 Miscellaneous Reactions for Section 1 346
References 348
ABBREVIATIONS

a.a. atomic absorption
a.m.u. atomic mass units
bipya 2, 2'-bipyridyl
cisplatinb cis-diaminedichloroplatinum(II)
c.t. charge transfer
dips diisopropylsalicylic acid
dmap 4-N,N-dimethylaminopyridine
dmf dimethylformamide
dmso dimethylsulphoxide
DNA deoxyribonucleic acid
edta ethylenediaminetetraacetic acid
en ethylenediamine
e.s.d. estimated standard deviation
e.s.r. electron spin resonance
H in a ligand or complex refers to an ionisable proton
Hb haemoglobin
IC\textsubscript{50} inhibitory concentration to 50%; the concentration required to inhibit cell growth to 50% compared with that of a control
ir infrared
LD\textsubscript{50} lethal dose to 50%; the single injected dose that kills 50% of the animals
LHa,c 2-formylpyridine thiosemicarbazone
2'Lc 2-formylpyridine 2'-methylthiosemicarbazone
4'LHc 2-formylpyridine 4'-methylthiosemicarbazone
6LHF 6-methyl-2-formylpyridine thiosemicarbazone
mbtHa 2-mercaptobenzothiazole
miHa 2-mercaptoimidazole
mmiHa 2-mercpto-1-methylimidazole
mpH$_2^a$ 2-mercapto-3-pyridinol
m.t. mull transmittance
mttH$_2^a$ 4-methyl4H-1,2,4-triazole-3-thiol
n.m.r. nuclear magnetic resonance
ntpH 4-nitrothiophenol
pbH$_2^a$ 2-formylpyridine benzoylhydrazone
pctpH pentachlorothiophenol
pfptH pentafluorothiophenol
phen$_a$ 1,10-phenanthroline
ptpH$_2^a$ paratrylphenol
py pyridine
rdr$_c$ ribonucleoside diphosphate reductase (ribonucleotide reductase)
RNA ribonucleic acid
saH$_2^{a,d}$ salicylaldehyde acetylhydrazone
sbH$_2^{a,d}$ salicylaldehyde benzoylhydrazone
spy square-pyramidal
tipH 2,4,6-triiodophenol
tby trigonal-bipyramidal
TMS tetramethylsilane
uv/vis ultraviolet/visible

a structure abbreviated on following page
b see Figure 1.1
c see Figure 4.1 in Chapter 4 introduction
d see Figure 2.5.11 for this and all other structurally related ligands for Section 2
e see Figure 1.4
Figures for the abbreviations.
INDEX OF FIGURES

General Introduction

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The structures of some platinum anticancer drugs</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Profile of copper levels at onset of neoplasis through therapy induced or spontaneous remission</td>
<td>8</td>
</tr>
<tr>
<td>1.3</td>
<td>Examples of three ligands which require copper for biological activity</td>
<td>9</td>
</tr>
<tr>
<td>1.4</td>
<td>Schematic diagram of ribonucleoside diphosphate reductase (rdr)</td>
<td>12</td>
</tr>
<tr>
<td>1.5</td>
<td>The two basic ligand systems used in this study</td>
<td>15</td>
</tr>
<tr>
<td>1.6</td>
<td>Some structural examples of tridentate ligands</td>
<td>16</td>
</tr>
</tbody>
</table>

Section 1

Introduction to Section 1

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.7</td>
<td>Conformations of thiosemicarbazide: bidentate (cis) and monodentate (trans)</td>
<td>21</td>
</tr>
<tr>
<td>1.8</td>
<td>Reaction scheme for the formation of thiosemicarbazones</td>
<td>22</td>
</tr>
<tr>
<td>1.9</td>
<td>Coordination modes of bidentate thiosemicarbazones</td>
<td>23</td>
</tr>
<tr>
<td>1.10</td>
<td>An example of a tridentate thiosemicarbazone: 2-formylpyridine thiosemicarbazone (LH)</td>
<td>23</td>
</tr>
<tr>
<td>1.11</td>
<td>An example of a tetradentate thiosemicarbazone</td>
<td>24</td>
</tr>
<tr>
<td>1.12</td>
<td>Resonance forms for 2-formylpyridine thiosemicarbazone</td>
<td>28</td>
</tr>
<tr>
<td>1.13</td>
<td>Schematic diagrams for the coordination modes of NNS tridentate thiosemicarbazones</td>
<td>29</td>
</tr>
</tbody>
</table>
Chapter 1

Figure 1.1.1 The dimeric cation for \([\text{Cu(LH)(CF}_3\text{COO)}]_2(\text{CF}_3\text{COO)}_2\) and a non-coordinated \(\text{CF}_3\text{COO}^-\) anion (arbitrary positioning) showing the atom numbering scheme 38

Figure 1.1.2 Stereo-view of the unit-cell packing diagram for \([\text{Cu(LH)(CF}_3\text{COO)}]_2(\text{CF}_3\text{COO)}_2\) showing the hydrogen-bonding scheme 47

Figure 1.1.3 The monomer [Cu(LH)(ClO_4)]_2H_2O·2H_2O showing the atom numbering scheme 50

Figure 1.1.4 Stereo-view of the unit-cell packing diagram for [Cu(LH)(ClO_4)]_2H_2O·2H_2O 54

Figure 1.1.5 Powder e.s.r. spectra for [Cu(LH)(ClO_4)]_2H_2O·2H_2O at 110 K showing the g = 2 (\(\Delta\text{Ms} = 1\)) and g = 4 (\(\Delta\text{Ms} = 2\)) regions 68

Chapter 2

Figure 1.2.1 The monomer [CuL(sacc)H_2O]·\(\times\)H_2O showing the atom numbering scheme 92

Figure 1.2.2 Stereo-view of the unit-cell packing diagram for [CuL(sacc)H_2O]·\(\times\)H_2O showing the hydrogen-bonding scheme 98

Figure 1.2.3 The monomeric cation for [CuL(bipy)]ClO_4 showing the atom numbering scheme 101

Figure 1.2.4 The copper coordination environment for [CuL(bipy)]ClO_4 viewed from (a) trigonal-bipyramidal and (b) square-pyramidal geometries 103

Figure 1.2.5 Stereo-view of the unit-cell packing diagram for [CuL(bipy)]ClO_4 106

Figure 1.2.6 Plot of \(10^4 |A_4|\) (cm\(^{-1}\)) vs. \(g_\nu\) for various in-plane donor atom sets 113

Figure 1.2.7 Some typical e.s.r spectra at 110 K
(a) [CuL(CH_3COO)]_2 in 90% EtOH/10% dmso
(b) [CuL(pctp)]_2 in 90% EtOH/10% dmso
(c) [CuL(pctp)]_2 powder
(d) [CuL(bipy)]ClO_4 powder 115

Figure 1.2.8 E.s.r. spectrum for [Cu(mpH)]_2 in dmso at 110 K 117

Figure 1.2.9 E.s.r. spectrum for [CuL(CH_3COO)]_2 in human red cells with 5% dmso at 110 K 121
Chapter 3

Figure 1.3.1 The tetramer \([\text{CuL}]_4\text{P}_2\text{O}_7\cdot\text{H}_2\text{O}\) showing the atom numbering scheme

Figure 1.3.2 The tetramer \([\text{CuL}]_4\text{P}_2\text{O}_7\cdot\text{H}_2\text{O}\) showing the long, apical Cu-S bonds

Figure 1.3.3 The \(\text{P}_2\text{O}_4^{2-}\) moiety for \([\text{CuL}]_4\text{P}_2\text{O}_7\cdot\text{H}_2\text{O}\) showing the staggered arrangement

Figure 1.3.4 Unit-cell packing diagram for \([\text{CuL}]_4\text{P}_2\text{O}_7\cdot\text{H}_2\text{O}\)

Figure 1.3.5 View of two \([\text{CuL}]_4\text{P}_2\text{O}_7\cdot\text{H}_2\text{O}\) tetramers with selected water molecules and hydrogen-bonds

Figure 1.3.6 View showing the stacking for \([\text{CuL}]_4\text{P}_2\text{O}_7\cdot\text{H}_2\text{O}\) tetramers with the same hydrogen-bonds as Figure 1.3.5

Figure 1.3.7 View of symmetry related CuL\(^+\) moieties for \([\text{CuL}]_4\text{P}_2\text{O}_7\cdot\text{H}_2\text{O}\) showing the stacking and partial pyridine ring overlap

Figure 1.3.8 The dimeric cation for \([\text{Cu(LH)}(\text{H}_2\text{PO}_4)]_2(\text{H}_2\text{PO}_4)_2(\text{H}_3\text{PO}_4)_2\cdot\text{H}_2\text{O}\) showing the atom numbering scheme

Figure 1.3.9 Stereo-view of the unit-cell packing diagram for \([\text{Cu(LH)}(\text{H}_2\text{PO}_4)]_2(\text{H}_2\text{PO}_4)_2(\text{H}_3\text{PO}_4)_2\cdot\text{H}_2\text{O}\)

Figure 1.3.10 The hydrogen-bonding schemes around each of the three phosphate species for \([\text{Cu(LH)}(\text{H}_2\text{PO}_4)]_2(\text{H}_2\text{PO}_4)_2(\text{H}_3\text{PO}_4)_2\cdot\text{H}_2\text{O}\)

(a) the coordinated bridging H\(_2\)PO\(_4\) anion
(b) the non-coordinated 'H\(_2\)PO\(_4\)'
(c) the non-coordinated 'H\(_3\)PO\(_4\)'

Figure 1.3.11 Temperature dependence of \([\text{CuL(CH}_3\text{COO}])_2\) for

(a) the molecular susceptibilities, and
(b) the magnetic moments

Figure 1.3.12 Temperature dependence of \([\text{CuL}]_4\text{P}_2\text{O}_7\cdot\text{H}_2\text{O}\) for

(a) the molecular susceptibilities, and
(b) the magnetic moments

Chapter 4

Figure 4.1 Ligands used in this chapter

Figure 1.4.1 Spectral forms for Cu(4\(^{+}\)L\(^+\)) as a function of pH

Figure 1.4.2 \(^1\text{H}^\rightarrow^1\text{H}\) shift correlation (cosy) spectrum for LH
Section 2

Introduction to Section 2

Figure 2.1 The structures of selected compounds related to salicylic acid 228
Figure 2.2 The structures of (a) salicylaldehyde benzoylhydrazone (sbH2) and (b) 2-formylpyridine-2'-pyridylhydrazone (papH) 231

Chapter 5

Figure 2.5.1 The dimer [(Cu(sbH)H2O)2SiF6]2H2O showing the atom numbering scheme 241
Figure 2.5.2 Some canonical forms of salicylaldehyde benzoylhydrazone (sbH2) 247
Figure 2.5.3 The dimer [(Cu(sbH)H2O)2SiF6]2H2O showing the atom numbering scheme and the hydrogen-bonding scheme 248
Figure 2.5.4 (a) side-view of three [(Cu(sbH)H2O)2SiF6]2H2O molecules (b) plan-view of the top two stacked molecules from (a) (c) plan-view of the bottom two stacked molecules from (a) (d) stereo-view of the unit-cell packing diagram 249
Figure 2.5.5 The dimer [Cu(sbH)ClO4(EtOH)]2 showing the atom numbering scheme 254
Figure 2.5.6 The dimer [Cu(sbH)ClO4(EtOH)]2 showing the atom numbering scheme and planar side-by-side structure 255
Figure 2.5.7 Cut-away view of the dimer [Cu(sbH)ClO4(EtOH)]2 showing the hydrogen-bonding scheme 255
Figure 2.5.8 Stereo-view of the unit-cell packing diagram for [Cu(sbH)ClO4(EtOH)]2 257
Figure 2.5.9 The monomer [Cu(saH)Cl(H2O)]H2O showing the atom numbering scheme 260
Figure 2.5.10 Stereo-view of the unit-cell packing diagram for [Cu(saH)Cl(H2O)]H2O showing the hydrogen-bonding 264
Figure 2.5.1 Abbreviations used for ligands in chapters 5 and 6

Figure 2.5.12 Schematic diagrams for the structures of
(a) acetylacetone-mono(o-hydroxyanil)copper(II)
(b) copper(II) carboxylates
(c) (pyridine N-oxide)copper(II) chloride

Figure 2.5.13 Powder e.s.r. spectra for [Cu(sbH)ClO4(H2O)]2 at 110 K
(a) \(g = 2 \) (\(\Delta M_s = 1 \)) and (b) \(g = 4 \) (\(\Delta M_s = 2 \)) regions

Figure 2.5.14 \(^{1}\text{H}^{-13}\text{C}\) shift correlation (hetcor) spectrum for sbH₂

Figure 2.5.15 (a) \(^{1}\text{H}\) J-resolved spectrum for sbH₂ with the decoupled \(^{1}\text{H}\) spectrum, and (b) slices through the J-resolved peaks for sbH₂

Figure 2.5.16 Possible conformers for hydrazones

Figure 2.5.17 (a) \(^{1}\text{H}^{-13}\text{C}\) shift correlation (hetcor) spectrum and
(b) \(^{1}\text{H}^{-1}\text{H}\) shift correlation (cosy) spectrum for saH₂

Figure 2.5.18 The two \(E \)-form conformers for saH₂

Chapter 6

Figure 2.6.1 The monomeric cation for [Cu(6L)(bipy)]Cl showing selected atom numbering and the difference in selected bond angles and distances between this structure and [CuL(bipy)]ClO₄

Figure 2.6.2 Plot of log \(1/(IC_{50}) \) vs. lipophilicity for sbH₂ congeners substituted into the benzoyl ring and their corresponding copper(II) complexes

Figure 2.6.3 Plot of log \(1/(IC_{50}) \) vs. lipophilicity for all sbH₂ congeners and their corresponding copper(II) complexes
INDEX OF TABLES

General Introduction

Table 1.1 Recognized copper-dependent enzymes and their biochemical function 7

Section 1

Introduction to Section 1

Table 1.2 Some examples of thiosemicarbazones 26

Chapter 1

Table 1.1.1 Analytical and magnetic data for chapter 1 36

Table 1.1.2 Bond lengths (Å) with estimated standard deviations in parentheses for the complexes [Cu(LH)(ClO₄)₂H₂O]·2H₂O 39

Table 1.1.3 Bond angles (°) with estimated standard deviations in parentheses for the complexes [Cu(LH)(ClO₄)₂H₂O]·2H₂O and [Cu(LH)(CF₃COO)]₂(CF₃COO)₂ 40

Table 1.1.4 Bond distances (Å) for in-plane coordinating atoms of Cu and LH/L⁻ 42

Table 1.1.5 Comparison of thiosemicarbazone bond lengths (Å) 42

Table 1.1.6 Bond lengths (Å) and angles (°) about C(7) in thiosemicarbazide and thiosemicarbazone compounds 44

Table 1.1.7 Hydrogen-bonding distances (Å) and angles (°) for [Cu(LH(CF₃COO))₂(CF₃COO)] 46

Table 1.1.8 Selected data for some copper(II) diperchlorate complexes 53

Table 1.1.9 Hydrogen-bonding distances (Å) and angles (°) for [Cu(LH)(ClO₄)₂H₂O]·2H₂O 55

Table 1.1.10 Absorption maxima and conductance data for chapter 1 57

Table 1.1.11 Selected ir spectral bands (cm⁻¹) for representative chapter 1 compounds 63
Table 1.1.12 Anion infrared bands for chapter 1
Table 1.1.13 E.s.r. results for selected chapter 1 complexes
Table 1.1.14 Crystal data for \([\text{Cu(LH)}(\text{CF}_3\text{COO})_2(\text{CF}_3\text{COO})_2] \)
Table 1.1.15 Parameters associated with data collection for \([\text{Cu(LH)}(\text{CF}_3\text{COO})_2(\text{CF}_3\text{COO})_2] \)
Table 1.1.16 Crystal data for \([\text{Cu(LH)}(\text{ClO}_4)_2\text{H}_2\text{O}]\cdot2\text{H}_2\text{O} \)
Table 1.1.17 Parameters associated with data collection for \([\text{Cu(LH)}(\text{ClO}_4)_2\text{H}_2\text{O}]\cdot2\text{H}_2\text{O} \)

Chapter 2

Table 1.2.1 Analytical and magnetic data for chapter 2
Table 1.2.2 Bond lengths (Å) with estimated standard deviations in parentheses for the complexes \([\text{CuL(sacc)}\text{H}_2\text{O}]\cdot\text{H}_2\text{O} \) and \([\text{CuL(bipy)}]\text{ClO}_4 \)
Table 1.2.3 Bond angles (°) with estimated standard deviations in parentheses for the complexes \([\text{CuL(sacc)}\text{H}_2\text{O}]\cdot\text{H}_2\text{O} \) and \([\text{CuL(bipy)}]\text{ClO}_4 \)
Table 1.2.4 Selected bond lengths (Å) and angles (°) for saccharin compounds
Table 1.2.5 Hydrogen-bonding distances (Å) and angles (°) for \([\text{CuL(sacc)}\text{H}_2\text{O}]\cdot\text{H}_2\text{O} \)
Table 1.2.6 Hydrogen-bonding distances (Å) and angles (°) for \([\text{CuL(bipy)}]\text{ClO}_4 \)
Table 1.2.7 Absorption maxima and conductance data for chapter 2
Table 1.2.8 E.s.r. results for selected chapter 2 complexes
Table 1.2.9 E.s.r. results for \(\text{CuL}^+ \) with human blood components
Table 1.2.10 Crystal data for \([\text{CuL(sacc)}\text{H}_2\text{O}]\cdot\text{H}_2\text{O} \)
Table 1.2.11 Parameters associated with data collection for \([\text{CuL(sacc)}\text{H}_2\text{O}]\cdot\text{H}_2\text{O} \)
Table 1.2.12 Crystal data for \([\text{CuL(bipy)}]\text{ClO}_4 \)
Table 1.2.13 Parameters associated with data collection for \([\text{CuL(bipy)}]\text{ClO}_4 \)
Chapter 3

Table 1.3.1	Analytical and magnetic data for chapter 3	142
Table 1.3.2	Bond lengths (Å) with estimated standard deviations in parentheses for the complex \([\text{CuL}_{4}P_{2}O_{7}]\cdot12\text{H}_{2}\text{O}\)	146
Table 1.3.3	Bond angles (°) with estimated standard deviations in parentheses for the complex \([\text{CuL}_{4}P_{2}O_{7}]\cdot12\text{H}_{2}\text{O}\)	147
Table 1.3.4	Hydrogen-bonding distances (Å) for \([\text{CuL}_{4}P_{2}O_{7}]\cdot12\text{H}_{2}\text{O}\)	154
Table 1.3.5	Bond lengths (Å) with estimated standard deviations in parentheses for the complex \([\text{Cu(LH)}(\text{H}_{2}\text{PO}_{4})_{2}\text{H}_{2}\text{PO}_{4})_{2}\text{H}_{2}\text{O}\)	160
Table 1.3.6	Bond angles (°) with estimated standard deviations in parentheses for the complex \([\text{Cu(LH)}(\text{H}_{2}\text{PO}_{4})_{2}\text{H}_{2}\text{PO}_{4})_{2}\text{H}_{2}\text{O}\)	160
Table 1.3.7	Selected bond distance (Å) and angle (°) data for centrosymmetric anion bridged complexes of copper(II) with \(\text{LH/L}^{-}\)	162
Table 1.3.8	Hydrogen-bonding distances (Å) and angles (°) for \([\text{Cu(LH)}(\text{H}_{2}\text{PO}_{4})_{2}\text{H}_{2}\text{PO}_{4})_{2}\text{H}_{2}\text{O}\)	162
Table 1.3.9	Absorption maxima and conductance data for chapter 3	169
Table 1.3.10	Selected anion infrared bands for chapter 3	171
Table 1.3.11	Theoretical values of 2\(J\) from \(\mu_{\text{eff}}\) and \(g_{i}\)	171
Table 1.3.12	Selected e.s.r. results for chapter 3 complexes	178
Table 1.3.13	Crystal data for \([\text{CuL}_{4}P_{2}O_{7}]\cdot12\text{H}_{2}\text{O}\)	188
Table 1.3.14	Parameters associated with data collection for \([\text{CuL}_{4}P_{2}O_{7}]\cdot12\text{H}_{2}\text{O}\)	189
Table 1.3.15	Crystal data for \([\text{Cu(LH)}(\text{H}_{2}\text{PO}_{4})_{2}\text{H}_{2}\text{PO}_{4})_{2}\text{H}_{2}\text{O}\)	192
Table 1.3.16	Parameters associated with data collection for \([\text{Cu(LH)}(\text{H}_{2}\text{PO}_{4})_{2}\text{H}_{2}\text{PO}_{4})_{2}\text{H}_{2}\text{O}\)	193

Chapter 4

Table 1.4.1	Analytical and magnetic data for chapter 4	196
Table 1.4.2	Absorption maxima and conductance data for chapter 4	198
Table 1.4.3	Selected e.s.r. results for chapter 4 complexes	201
Table 1.4.4 E.s.r. results for Cu(2'L)²⁺ and Cu(pb)⁺ with human blood components
201

Table 1.4.5 Protonation constants and reduction potentials for selected section 1 compounds
205

Table 1.4.6 Selected nuclear magnetic resonance data for LH type compounds
215

Table 1.4.7 ¹H n.m.r. data for LH type compounds
216

Section 2

Chapter 5

Table 2.5.1 Analytical and physical data for chapter 5 ligands
238

Table 2.5.2 Analytical and magnetic data for chapter 5 complexes
239

Table 2.5.3 Bond lengths (Å) with estimated standard deviations in parentheses for the complexes [(Cu(sbH)H₂O)₂SiF₆]·2H₂O and [Cu(sbH)ClO₄(EtOH)]₂
242

Table 2.5.4 Bond angles (°) with estimated standard deviations in parentheses for the complexes [(Cu(sbH)H₂O)₂SiF₆]·2H₂O and [Cu(sbH)ClO₄(EtOH)]₂
243

Table 2.5.5 Copper bond lengths in Cu(sbH)⁺ and some related complexes
245

Table 2.5.6 Comparison of salicylaldehyde benzoylhydrazonato and salicylaldehyde acetylhydrazonato bond lengths (Å)
245

Table 2.5.7 Hydrogen-bonding distances (Å) and angles (°) for [(Cu(sbH)H₂O)₂SiF₆]·2H₂O
250

Table 2.5.8 Bond lengths (Å) with estimated standard deviations in parentheses for the complex [Cu(saH)Cl(H₂O)]H₂O
261

Table 2.5.9 Bond angles (°) with estimated standard deviations in parentheses for the complex [Cu(saH)Cl(H₂O)]H₂O
261

Table 2.5.10 Hydrogen-bonding distances (Å) and angles (°) for [Cu(saH)Cl(H₂O)]H₂O
265

Table 2.5.11 Absorption maxima and conductance data for chapter 5
269

Table 2.5.12 Selected infrared absorption bands for chapter 5
275

Table 2.5.13 Selected e.s.r. results for chapter 5 complexes
279

Table 2.5.14 ¹³C n.m.r. data for chapter 5
290
Table 2.5.15 Selected 1H n.m.r. data for chapter 5
Table 2.5.16 Crystal data for [(Cu(sbH)H$_2$O)$_2$SiF$_6$]\cdot2H$_2$O
Table 2.5.17 Parameters associated with data collection for
[(Cu(sbH)H$_2$O)$_2$SiF$_6$]\cdot2H$_2$O
Table 2.5.18 Crystal data for [Cu(sbH)ClO$_4$(EtOH)]$_2$
Table 2.5.19 Parameters associated with data collection for
[Cu(sbH)ClO$_4$(EtOH)]$_2$
Table 2.5.20 Crystal data for [Cu(saH)Cl(H$_2$O)]H$_2$O
Table 2.5.21 Parameters associated with data collection for
[Cu(saH)Cl(H$_2$O)]H$_2$O

Chapter 6
Table 2.6.1 Cytotoxicity data for section 1 compounds
Table 2.6.2 Cytotoxicity data for section 2 compounds