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Summary 

The shelf life of lipid based foods is often determined by the development of rancid 

flavours attributed to lipid oxidation reactions.  These reactions are highly complicated 

and readily change when the reaction system is altered. As a result, researchers have 

struggled to make significant advances in their understanding of the mechanisms and 

rates of lipid oxidation. 

This thesis focuses on the generalised three step mechanism of lipid oxidation and 

develops understanding, through mathematical modelling exercises, about the factors 

that influence the rates of lipid oxidation.  More specifically, this thesis focuses on 

bulk oils, bulk oils with added antioxidants, oil-in-water emulsions and the effects of 

oxygen supply and consumption rates in real food systems. 

For this thesis, methods were developed to identify and validate findings that suggest 

that lipid hydroperoxides are the rate defining reactant in lipid oxidation reactions.  

These methods were then used to measure the solubility of oxygen in oil and to define 

the role oxygen plays in determining the rates of lipid oxidation in a range of systems. 

The use of a newly developed batch oxidation apparatus led to the development and 

validation of models to predict the rates of oxygen consumption during oxidation.  The 

model showed that the rates of oxygen consumption were half order with respect to the 

lipid hydroperoxide concentration.  Through further validation experiments, it was 

shown that, during the initial stages of lipid oxidation before rancidity, each mole of 

lipid hydroperoxides formed required 5.04 moles of oxygen to be consumed when 

there was oxygen present. 

The same model and methods were then used to predict the changes in rates of lipid 

oxidation triggered by changes in reaction temperature.  From this work, it was found 

that the Arrhenius law was capable of predicting the rates of oxygen consumption. 

The addition of butylated hydroxyanisole (BHA) to mixed fish oil samples brought 

with it a reduction in the rates of lipid oxidation, the magnitude of which was 

proportional to the concentration of BHA added.  It was found that the inclusion of a 

modifier into the half order model was capable of predicting the rates of lipid oxidation 

when antioxidants were added.  Methods to quantify the modifier were supplied for 

future use. 

The dilution of bulk oils by the formation of oil-in-water emulsions was also studied. It 

was found that the rates of lipid oxidation were proportional to the concentration of 
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lipids in the emulsion. It was shown that the extent of oxidation during a batch 

oxidation was inversely proportional to the concentration of lipids in the emulsions as 

the aqueous phase acted as sump of oxygen for reaction in the oil droplets. 

Through modelling and short validation exercises, it was shown that changes to the 

surface area to volume ratio of oil droplets in emulsions had no effect on the rates of 

oxygen supply/lipid oxidation and that any effects noted in literature are likely to be 

the result of other surface active compounds. 

Finally, a modelling exercise showed that the rates of oxygen consumption via reaction 

were likely to be significantly faster than the rates of oxygen supply in unmixed 

systems in polymer packaging and, to some extent, open to the atmosphere.  The 

diffusion of lipid hydroperoxides was shown to be important in bulk oils stored in 

polymer packaging as it allowed for a greater proportion of the oil to react with the 

oxygen transferred, thus reducing the potential for the oxygen supplied to take part in 

secondary and tertiary product formation. It was suggested that it is better, for a given 

quantity of oxygen supplied, for the entire oil product to react as it would result in 

fewer tertiary products being formed than if the oxygen were to be consumed at the 

surface of the oil only.  Following this, it was suggested that an oil-in-water emulsion 

should be less stable than a bulk oil. 

Short experimental work showed that storing bulk oils in the absence of oxygen brings 

with it a decrease in the rates of lipid oxidation caused by a decrease in the 

concentration of lipid hydroperoxides.  This decrease, coupled with anecdotal evidence 

that products do become rancid over long periods of time, suggests that the radicals 

formed during lipid hydroperoxide breakdown can be used in two different sets of 

reactions.  That is, the relative rates of reformation of lipid hydroperoxide via reaction 

with lipids and the formation of tertiary oxidation products will likely determine the 

rates of lipid hydroperoxide breakdown and rancidity in real food systems. 

An indepth analysis of lipid hydroperoxide breakdown rates in the absence of oxygen 

as well as a set of validation experiments for the storage of bulk oils and oil-in-water 

emulsions in polymer films was suggested as being the final piece of information 

needed to complete a comprehensive model capable of quantitatively predicting the 

rates of lipid oxidation reactions and the shelf life of lipid oxidation prone foods. 
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Unfortunately I am all out of profound. Instead I feel that one more plot in my 

thesis is needed. 
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