Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
FACTORS INFLUENCING THE TRANSFORMATION AND FATE OF SULPHUR AND NITROGEN IN GRAZED HILL COUNTRY PASTURES

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Soil Science at Massey University

KARUPPAN SAKADEVAN
1991
Massey University Library
Thesis Copyright Form

Title of thesis: **Factors influencing the transformation and fate of sulphur and nitrogen in grazed hill country pastures.**

(1) (a) I give permission for my thesis to be made available to readers in Massey University Library under conditions determined by the Librarian.

(b) I do not wish my thesis to be made available to readers without my written consent for _____ months.

(2) (a) I agree that my thesis, or a copy, may be sent to another institution under conditions determined by the Librarian.

(b) I do not wish my thesis, or a copy, to be sent to another institution without my written consent for _____ months.

(3) (a) I agree that my thesis may be copied for Library use.

(b) I do not wish my thesis to be copied for Library use for _____ months.

Signed ____________________________

Date 14-6-1991

The copyright of this thesis belongs to the author. Readers must sign their name in the space below to show that they recognise this. They are asked to add their permanent address.

NAME AND ADDRESS
K. SAKADEVAN
DEPT. OF SOIL SCIENCE
MASSEY UNIVERSITY
PALMERSTON NORTH

DATE 14-6-1991
ABSTRACT

The increasing cost of agricultural grade sulphur and the high leaching losses of sulphate sulphur (S) from superphosphate fertilized pastures in New Zealand create a need to develop more efficient S fertilization techniques. The objective of the present study was to identify the main origins of the sulphate being leached from superphosphate fertilized hill country pastures with soils (Typic Dystrachrepts) developed from underlying sedimentary parent materials.

Origins of leached sulphate were categorized as S leached directly from fertilizer, from zones enriched in animal excreta and from the mineralization of soil organic matter. Mineralization studies, both in laboratory and in field were conducted to establish the extent of and the relationship between sulphur and nitrogen mineralization and the fate of mineralized nutrients in pasture soils that contrasted in their superphosphate fertilizer history.

In the preliminary laboratory study in which an open incubation technique was used to measure potential net mineralization, top soils (0-7.5cm) taken from sites that had received higher rates of superphosphate in the past, mineralized more soil organic sulphur and nitrogen than soils taken from sites that had received smaller amounts of superphosphate in the past. In addition top soils collected from low slope (0-12°) sites where a greater proportion of animal excreta is returned, mineralized more S and N than the soils from medium slope (13-25°) sites. The ratio of N to S mineralized was narrower (2.0 to 3.6) than the N to S ratio of the whole soil (7.1 to 8.9) suggesting that in these soils relatively more S remains in a mineral form in the soil and is more susceptible to leaching than N which is conserved in the soil.

Cylindrical, mini-lysimeters with ion exchange resin traps for collecting solutes from drainage water were developed to measure the net mineralization of soil organic S and N under field conditions. Leaching losses of S and N, pasture uptake of S and N and changes in mineral S and N pools in the soil at the same site were measured simultaneously and the rate of mineralization calculated. A laboratory evaluation of the lysimeter showed that the resin trap was capable of removing all the sulphate from
drainage water at several different flow rates. The main advantage of these lysimeters over the conventional methods of measuring the leaching losses of anions and cations in the field is that regular drainage collection was not necessary. By introducing mixtures of both anion and cation exchange resins in the trap in the lysimeter it was possible to monitor the amount of anions and cations in field drainage over long periods of time before it was necessary to change the resin mixtures.

In the initial field lysimeter study the net mineralization and pasture uptake of N (119 to 251 kg N ha⁻¹) was 10 times more than that of S (12 to 27.5 kg S ha⁻¹), yet approximately 10 times more sulphate S (2.0 to 17.3 kg S ha⁻¹) than mineral N (0.19 to 1.3 kg N ha⁻¹) was lost by leaching. Previous fertilizer history had a marked effect on the leaching losses of sulphate with seven times more S lost (2.1 vs 15.3 kg S ha⁻¹) from sites which received greater rates of superphosphate and had higher stocking rates. During the initial seven month period S leaching losses on the low and high fertility sites were equivalent to 15% and 33% of the annual fertilizer application. More sulphate was leached from areas identified as animal camping areas. The lack of any change in sulphate below the 150mm soil depth during a period of active plant growth and no leaching suggested that any sulphate that moved below 150mm of the soil could be considered to be effectively lost from the system. Increased leaching losses of calcium and magnesium were associated with increased sulphate losses. The amount of calcium lost by leaching (4.75 to 12.5 kg Ca ha⁻¹) was far greater than potassium (0.8 to 3.6 kg K ha⁻¹), although twice the amount of potassium (240 kg K ha⁻¹ vs 120 kg Ca ha⁻¹) was cycled through the plant-animal system. The amount of magnesium lost by leaching was greater than the amount of potassium lost by leaching.

In a second lysimeter study the direct effects of freshly applied fertilizer on the mineralization of S and N from soil organic matter, their plant availability and losses by leaching were studied under field conditions using 35S labelled superphosphate. Fertilizer application significantly increased the mineralization of both organic S and N. The recovery and measurement of 35S activity over a nine month period showed that major proportions of pasture S (85 and 86% of the pasture S for low and high fertility farmlets, respectively) and leached S (75 and 87% of the leached S for low
the mineralization of soil organic matter and not recently applied fertilizer. The amounts of both S and N mineralized from soil organic matter depends upon the past fertilizer history of the site and the present fertilizer application rate (22 and 40 kg S ha\(^{-1}\) and 125 and 204 kg N ha\(^{-1}\) for low and high fertility farmlets, respectively). Further, when the net mineralization of S was greater a greater proportion (59%) of mineralized S was lost by leaching than removed by pasture (39%). Irrespective of the amount N mineralized virtually all was removed by pasture. The results suggested that low N availability was a major factor limiting carbon fixation and the formation of organic S in these pasture soils.

In a third lysimeter study, field simulated sheep dung and urine events boosted pasture growth and S and N uptake by approximately (50%), whereas the leaching losses of S and N were not influenced by their application.

A preliminary computer simulation model describing the mineralization of soil organic S, pasture S uptake and leaching losses in grazed pasture was developed. The preliminary model gave reasonable predictions of the changes in soil sulphate concentrations in the soil up to a depth of 25cm, pasture uptake of S and leaching losses of S at four pasture sites varying in their fertilizer history. Further refinement of the model is necessary before it can provide the basis for predicting fertilizer S requirement for hill country pastures.

The experimental results and model output confirm balance study predictions that large leaching losses of S occur and these are derived mainly from the mineralization of soil organic matter which accumulates in well fertilized soils. The extent of S losses appear to be a function of the general levels of soil productivity and the data suggested that only a small, probably less than 20% reduction in this loss could be achieved by changing to slow release S fertilizers.
ACKNOWLEDGEMENTS

I would like to express my sincere thanks to the following people for their contribution towards the completion of this thesis.

Dr M.J. Hedley for his supervision, encouragement, patience, guidance and friendship during my study.

Dr A.D. Mackay for his supervision, encouragement, patience, guidance and friendship during my study.

Other members of the Soil Science Department, particularly Dr D.R. Scotter for valuable discussions.

The DSIR Grasslands for providing the experimental site.

Members of the DSIR Grasslands' hill country research group, particularly Roanne Poi, Venessa Pokiya, Des Costall, Phil Budding, Nick Dimmock and Brian Devantier for their help in conducting the field experiment.

Mr Donald Tambunan, Ms Sylvia Weil and Sathien Phimsarn for their help with proof reading part of the thesis.

Messrs G.N. Magesan, S. Mahimairaja and S. Baskaran for their help and friendship during my study.

The University Grants Committee for providing Post Graduate Fellowship.

Lastly, but most important, to my family.
CHAPTER-1

1 INTRODUCTION ... 1

CHAPTER-2

REVIEW OF LITERATURE

2.1 INTRODUCTION TO SULPHUR IN THE BIOSPHERE 4
2.2 AMOUNT AND FORMS OF SULPHUR IN THE SOIL 4
2.3 NATURE OF SOIL SULPHUR 6
 2.3.1 Soil Organic Sulphur 7
 2.3.1.1 Chemical Nature of Organic Sulphur 7
 2.3.1.2 Hydriodic Acid Reducible Sulphur 9
 2.3.1.3 Carbon Bonded Sulphur 10
 2.3.2 Soil Inorganic Sulphur 11
 2.3.2.1 Soil Inorganic Sulphate 11
 2.3.2.2 Water Soluble Sulphates 12
 2.3.2.3 Adsorbed Sulphate 12
 2.3.2.4 Insoluble Sulphate 13
 2.3.3 Plant Available Sulphur in the Soil 14
2.4 TRANSFORMATION OF SULPHUR IN SOILS 17
 2.4.1 Microbial Biomass Sulphur 19
 2.4.1.1 Factors Affecting Microbial Sulphur 19
 2.4.2 Mineralization by Microorganisms 21
 2.4.2.1 Mechanism of S Mineralization 21
2.4.2.2 Factors Affecting Mineralization 23
 2.4.2.2.1 Temperature 23
 2.4.2.2.2 Moisture 23
 2.4.2.2.3 pH .. 24
 2.4.2.2.4 Availability of Substrate and other Nutrients 24
2.4.2.3 Relationship Between Sulphur and Nitrogen
 Mineralization ... 25
2.4.3 Immobilization 26
 2.4.3.1 Biochemistry of Immobilization 29
2.4.4 Leaching of Sulphate 29
 2.4.4.1 The Influence of Soil Texture 31
 2.4.4.2 Factors Affecting the Accumulation of Soluble S-pool 31
2.5 SULPHUR CYCLING IN GRAZED PASTURE SYSTEM 34
 2.5.1 Fertilizer Sulphur Inputs 34
 2.5.2 Sulphur Returned in Plant Litter 35
 2.5.3 Sulphur Return in Animal Excreta 36
 2.5.3.1 Dung and Urine Sulphur Content 37
 2.5.3.2 Dung and Urine Distribution by Grazing
 Stock .. 37
 2.5.3.3 Decomposition of Dung Sulphur 38
 2.5.3.4 Urine in the Sulphur Cycle 39
 2.5.4 Losses Through Animal 39
 2.5.4.1 Losses in Animal Products 39
 2.5.4.2 Losses by Transfer 40
 2.5.4.3 Losses of Sulphur from Dung and Urine
 Patches ... 40
2.6 SUMMARY AND CONCLUSION 40
CHAPTER 3
LABORATORY INCUBATIONS TO DETERMINE THE POTENTIAL OF SOILS TO MINERALIZE SULPHUR AND NITROGEN

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>INTRODUCTION</td>
<td>43</td>
</tr>
<tr>
<td>3.2</td>
<td>MATERIALS AND METHODS</td>
<td>44</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Description of Soils</td>
<td>44</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Incubation Techniques</td>
<td>46</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Leaching Procedures</td>
<td>46</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Analytical Measurements</td>
<td>49</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Presentation of Results</td>
<td>50</td>
</tr>
<tr>
<td>3.3</td>
<td>RESULTS AND DISCUSSION</td>
<td>50</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Characteristics of the Soils Prior to Incubation</td>
<td>50</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Effect of Incubation System on Organic Matter Mineralization</td>
<td>53</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Mineralization Measured Using the Open Incubation System</td>
<td>55</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Fertilizer History</td>
<td>57</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Topography</td>
<td>59</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Relationships between C, N and S mineralized</td>
<td>61</td>
</tr>
<tr>
<td>3.4</td>
<td>GENERAL DISCUSSION AND CONCLUSION</td>
<td>67</td>
</tr>
</tbody>
</table>

CHAPTER 4
DEVELOPMENT OF AN ION EXCHANGE RESIN TRAP LYSIMETER SYSTEM FOR MONITORING SULPHATE SULPHUR LOSSES BY LEACHING IN GRAZED HILL COUNTRY PASTURES.

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>INTRODUCTION</td>
<td>69</td>
</tr>
<tr>
<td>4.2</td>
<td>MATERIALS AND METHODS</td>
<td>70</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Construction of Lysimeters</td>
<td>70</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Preparation of Anion Exchange Resin</td>
<td>72</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Leaching</td>
<td>74</td>
</tr>
</tbody>
</table>
CHAPTER-5

FIELD INVESTIGATION OF THE NET MINERALIZATION OF SULPHUR AND NITROGEN, THEIR RELATIVE PLANT UPTAKE AND LEACHING LOSSES IN GRAZED HILL COUNTRY PASTURES

5.1 INTRODUCTION ... 81

5.2 MATERIALS AND METHODS 82
 5.2.1 Field Site ... 82
 5.2.2 Lysimeter Installation 82
 5.2.3 Measurements .. 84
 5.2.3.1 Drainage ... 84
 5.2.3.2 Pasture Production 85
 5.2.3.3 Ion Exchange Resin and Resin Care 85
 5.2.3.4 Soil Sampling 87
 5.2.4 Analytical Measurements 87
 5.2.5 Statistical Analysis 88

5.3 RESULTS AND DISCUSSION 88
 5.3.1 Rainfall and Drainage 88
 5.3.2 Soil Sulphate 90
 5.3.3 Mineral Nitrogen 93
 5.3.4 Leaching Losses of S and N 96
 5.3.5 Leaching Losses of Cations 99
 5.3.6 Pasture Production 102
 5.3.7 Pasture S and N Concentration 102
5.3.8 Sulphur and N Removed in Pasture 105
5.3.9 Net Mineralization of S and N 108
 5.3.9.1 Quantitative Estimation of Excreta Return 108
 5.3.9.2 Net mineralization of S and N 111
5.4 GENERAL DISCUSSION AND CONCLUSION 120

CHAPTER-6

FATE OF FERTILIZER SULPHUR APPLIED TO GRAZED HILL COUNTRY PASTURES

6.1 INTRODUCTION .. 122
6.2 MATERIALS AND METHODS 123
 6.2.1 Preparation of Radioactively Labelled 35S Superphosphate 124
 6.2.2 Application of Fertilizer 125
 6.2.3 Rainfall, Drainage and Pasture Measurements 125
 6.2.4 Analytical Measurements 127
 6.2.5 Preparation of Scintillation Cocktail 127
6.3 RESULTS AND DISCUSSION 128
 6.3.1 Rainfall and Drainage 128
 6.3.2 Pasture Production 128
 6.3.3 Herbage Sulphur and Nitrogen Concentrations 134
 6.3.4 Sulphur and N Removed by Pasture 139
 6.3.4.1 Contribution of Soil and Fertilizer S to S Removed by Pasture 139
 6.3.5 Sulphur Lost by Leaching 143
 6.3.5.1 Contribution of Soil and Fertilizer S to S Leaching Losses 145
 6.3.6 Soil Sulphate and Mineral Nitrogen 151
 6.3.7 Net Mineralization of S and N 154
6.4 GENERAL DISCUSSION AND CONCLUSION 157
CHAPTER-7

THE INFLUENCE OF SHEEP EXCRETA ON THE PASTURE UPTAKE AND LEACHING LOSSES OF SULPHUR IN GRAZED HILL COUNTRY PASTURES.

7.1 INTRODUCTION .. 160
7.2 MATERIALS AND METHODS ... 162
 7.2.1 Application of Dung and Urine 162
 7.2.2 Measurements .. 163
 7.2.2.1 Rainfall and Drainage 163
 7.2.2.2 Pasture Production .. 163
 7.2.2.3 Resin Replacement ... 165
 7.2.3 Analytical Measurements .. 165
 7.2.4 Statistical Analysis .. 165
7.3 RESULTS AND DISCUSSION .. 166
 7.3.1 Pasture Production ... 166
 7.3.2 Sulphur, N and K concentrations in pasture 168
 7.3.3 Sulphur, N and K Removed in Pasture 170
 7.3.4 Leaching Losses of S, N and K 173
 7.3.5 Leaching losses of Calcium and Magnesium 175
7.4 GENERAL DISCUSSION AND CONCLUSION 177

CHAPTER-8

MODELLING THE FATE OF SULPHUR IN THE SOIL-PLANT SYSTEM IN GRAZED PASTURE

8.1 INTRODUCTION .. 179
8.2 MATERIALS AND METHODS ... 180
 8.2.1 Determination of the relationship between extractable
 and solution sulphate ... 182
8.3 MODEL DEVELOPMENT .. 182
 8.3.1 Water balance .. 182
 8.3.1.1 Calculating drainage volumes 182
 8.3.1.2 Estimating actual daily evapotranspiration 183
 8.3.2 Testing the concept of single sulphate pool for plant
 and leached sulphate 186
 8.3.3 Modelling the fluxes of S between various pools 195
 8.3.3.1 Predicting the soil solution sulphate
 concentration ... 196
 8.3.3.2 Accounting for Leaching of Sulphate 202
 8.3.3.2.1 A layered drainage model with mobile and
 immobile water phases 202
 8.3.3.2.2 Estimating the mobile volume (α) 205
 8.3.3.3 Plant Uptake of Sulphur 205
 8.3.3.4 Accounting for mineralization of soil organic
 Sulphur ... 207
 8.3.3.5 Executing the Model 207

8.4 RESULTS AND DISCUSSION 208
 8.4.1 Comparison of model output with field measurements ... 208
 8.4.2 Sensitivity analysis of Kd and α values 214

8.5 CONCLUSION ... 221

CHAPTER-9

SUMMARY

9.1 REVIEW OF LITERATURE 223
9.2 LABORATORY MINERALIZATION STUDIES 223
9.3 DEVELOPMENT OF A TECHNIQUE TO MEASURE
 MINERALIZATION RATES IN FIELD SOILS 224
9.4 MEASURING MINERALIZATION RATES IN FIELD SOILS 225
9.5 THE FATE OF FRESHLY APPLIED SUPERPHOSPHATE
 SULPHUR .. 227
9.6 THE FATE AND INFLUENCE OF DUNG AND URINE 227
9.7 MODELLING THE FATE OF SULPHUR IN GRAZED PASTURES .. 228
9.10 APPLICATION OF CONCLUSIONS TO FUTURE RESEARCH ... 229

REFERENCES .. 230
List of figures

Fig.2.1 The S Cycle .. 18
Fig.3.1 Incubation system used in the experiment. 47
Fig.3.2 Effect of incubation system on the net mineralization of
S, N and C, change in the amounts of HI-reducible S
and change in pH during 140 days of incubation in soils
from all four farmlets (see Table 3.1 for full description
of symbols). .. 54
Fig.3.3 Effect of fertilizer application on the net mineralization
of S, N and C and the decrease in HI-reducible S in
soils from all four farmlets during 140 days of
incubation in open system (see Table 3.2 for full
description of symbols). .. 58
Fig.3.4 Effect of land slope on the net mineralization of S, N
and C and the decrease in HI-reducible S in soils from
all four farmlets during 140 days of incubation in open
system (see Table 3.2 for full description of symbols) 60
Fig.3.5a Relationship between nitrogen mineralized and the total
soil nitrogen during 140 days of incubation in open
system for soils from all four farmlets. 62
Fig.3.5b Relationship between sulphur mineralized and the total
soil sulphur during 140 days incubation in open system
for soils from all four farmlets 63
Fig.3.5c Relationship between nitrogen mineralized and the soil
N:C ratio during 140 days of incubation in open systems
all four farmlets ... 64
Fig.3.5d Relationship between sulphur mineralized and the C:S
ratio during 140 days of incubation in open systems for
soils from all four farmlets .. 65
Fig.4.1 The mini lysimeter with ion exchange resin trap used in
the experiment. .. 71
Fig.5.1 Exclusion cage and lysimeter installation in the field (A, Exchange resin above ground access tube; B, Soil suction cup sampler). .. 86

Fig.5.2 Rainfall and predicted net drainage for the period from Jun. 1989 to Jan. 1990 and the long term (1979-1988) average rainfall for the same period. 89

Fig.5.3 Soil sulphate present for the depths 0-75 mm (——), 75-150 mm (—+—) and 150-250 mm (—*—) at all sites from Jun. 1989 to Jan. 1990. Soil samplings were done on 31/5/89, 4/7, 24/8, 5/9, 6/10, 30/11 and 8/1/1990. The L.S.D values are given in Appendix-5.3. 91

Fig.5.4 Soil mineral nitrogen present for the depths 0-75 mm (——), 75-150 mm (—+—) and 150-250 mm (—*—) at all sites from Jun. 1989 to Jan. 1990. Soil samplings were done on 31/5/89, 4/7, 24/8, 5/9, 6/10, 30/11 and 8/1/1990. The L.S.D values are given in Appendix-5.4 94

Fig.5.5 Cumulative amounts of sulphur removed by pasture from Jun. 1989 to Jan. 1990 at all four sites. Harvests were made on 5/9/89, 6/10, 6/11, 30/11 and 8/1/90 (Vertical bars=LSD,p<0.01) 106

Fig.5.6 Cumulative amounts of nitrogen removed by pasture from Jun. 1989 to Jan. 1990 at all four sites. Harvests were made on 5/9/89, 6/10, 6/11, 30/11 and 8/1/90 (Vertical bars=LSD,p<0.01) 107

Fig.5.7 Net mineralization of S and N from Jun. 1989 to Jan. 1990 at all four sites (Vertical bars=LSD,p<0.01). 113

Fig.5.8 Relationship between nitrogen net mineralized and pasture dry matter production from Jun. 1989 to Jan. 1990 at all four sites. Values for 40 individual lysimeters. 117

Fig.5.9 Relationship between nitrogen net mineralized and pasture dry matter other than legumes produced from Jun. 1989 to Jan. 1990 at all four sites. Values for 40 individual lysimeters. 118
Fig. 5.10 Relationship between sulphur net mineralized and pasture dry matter production from Jun. 1989 to Jan. 1990 at all four sites. Values for 40 individual lysimeters...

Fig. 6.1 Rainfall and predicted drainage from Jan. to Sep. 1990, rainfall for the year 1989 and the long term average rainfall (1979-1989) for the same period.

Fig. 6.2 Predicted and measured drainage for the experimental period across all four sites. Symbols refered to four different sites.

Fig. 6.3 Pasture production for fertilized and unfertilized plots at all sites during the period from Jan to Oct. 1990 (Vertical bars= LSD,p<0.01).

Fig. 6.4 Amounts of S removed by pasture in fertilized and unfertilized plots at all four sites during the period from Jan. to Oct. 1990 (Vertical bars= LSD,p<0.01).

Fig. 6.5 Amounts of N removed by pasture from fertilized and unfertilized plots at all four sites during Jan. to Oct. 1990 (Vertical bars= LSD,p<0.01).

Fig. 6.6 Changes in specific activity of 35S in pasture with time at all sites from Jan. to Oct. 1990.

Fig. 6.7 Amounts of S lost by leaching from fertilized and unfertilized plots at all four sites during the period from Jan. to Oct. 1990 (Vertical bars= LSD,p<0.01).

Fig. 6.8 Changes in specific activity of 35S in leachate with time at all four sites during the period from Jan. to Oct. 1990 (Vertical bars= LSD,p<0.01).

Fig. 6.9 Amounts of N lost by leaching from fertilized and unfertilized plots at all four sites during the period from Jan. to Oct. 1990 (Vertical bars= LSD,p<0.01).

Fig. 6.10 Amounts of fertilizer(P) and soil(S) sulphur removed by pasture and lost by leaching between Jan. to Oct. 1990 in LF-LS, LF-MS, HF-LS and HF-MS sites.
Soil sulphate present for the depths 0-75 mm (---), 75-150 mm (-----) and 150-250 mm (-----*) at all sites from Jan. to Oct. 1990. Soil samplings were done on 8/1, 15/2, 26/3, 30/4, 11/6, 14/7, 23/8 and 10/10.

The L.S.D values are given in Appendix-6.1.

Soil mineral nitrogen present for the depths 0-75 mm (---), 75-150 mm (-----) and 150-250 mm (-----*) at all sites from Jan. to Oct. 1990. Soil samplings were done on 8/1, 15/2, 26/3, 30/4, 11/6, 14/7, 23/8 and 10/10.

The L.S.D values are given in Appendix-6.2.

A simple conceptual dynamic sulphur model for grazed pastures.

Effect of increasing soil water deficit on the amount of evapotranspiration for 0-75mm soil depth from LF-LS site.

Cumulative amounts of 35S activity removed by pasture with time at all four sites from Jan. to Oct. 1990.

Cumulative amounts of S removed by pasture with time at all four sites from Jan. to Oct. 1990.

Relationship between predicted and measured specific activity of S in pasture for the period from Jan. to Oct. 1990 at all four sites.

Relationship between predicted (from plant S specific activities) and observed specific activity of the leached S at all four sites from Jan. to Oct. 1990.

Hierarchical order of the processes in the S-cycle.

Relationship between the soil solution sulphate measured in the laboratory (- - -) or in the field (____) and 0.04M calcium phosphate extractable sulphate for the 150-250mm soil layer.
Fig. 8.8 Relationship between extractable sulphate and solution sulphate measured in the laboratory for the soils from 0-75, 75-150 and 150-250mm depths for LF and HF farmlets. .. 201

Fig. 8.9 Predicted (--+-) and measured (---) cumulative amounts of sulphur removed by pasture at LF-LS and LF-MS sites. .. 209

Fig. 8.10 Predicted (--+-) and measured (---) cumulative amounts of sulphur removed by pasture at HF-LS and HF-MS sites. .. 210

Fig. 8.11 Predicted (--+-) and measured (---) extractable soil sulphate present in the profile (0-25cm) at LF-LS and LF-MS sites. .. 212

Fig. 8.12 Predicted (--+-) and measured (---) extractable soil sulphate present in the profile (0-25cm) at HF-LS and HF-MS sites. .. 213

Fig. 8.13 Effect of changing the value of α (by 10%) on the cumulative amount of sulphate leached at HF-LS site during the period from Jun. 1989 to Oct. 1990 (No leaching occurred from Oct. 1989 to Jan. 1990) ... 215

Fig. 8.14 Effect of changing the values of K_d (by 10%) for each soil layer on the cumulative amount of sulphate leached at HF-LS site during the period from Jun. 1989 to Oct. 1990 (No leaching occurred from Oct. 1989 to Jan. 1990) .. 216

Fig. 8.15 Effect of changing the value of α (by 10%) on the cumulative amount of sulphur removed by pasture at HF-LS site during the period from Jun. 1989 to Jan. 1990. .. 217

Fig. 8.16 Effect of changing the values of K_d (by 10%) for each soil layer on the cumulative amount sulphur removed by pasture at HF-LS site during the period from Jun. 1989 to Jan. 1990. .. 218
LIST OF TABLES

Table 2.1	Empirical methods for extracting sulphur containing organic compounds from soils and their likely origin (Freney, 1961).	8
Table 2.2	Effect of incubation systems and period of incubation on the ratio of N to S mineralized and the ratio of N to S present in the soil from different regions of the world.	27
Table 2.3	Experimental techniques used to evaluate sulphate leaching losses under glasshouse and field conditions.	30
Table 3.1	Amounts of P (kg ha⁻¹) and S (kg ha⁻¹) applied as single superphosphate to each farmlet from 1975-1988.	45
Table 3.2	Physical and chemical characteristics of surface soils taken from low (LS) and medium (MS) slopes in each of the four farmlets before incubation.	48
Table 3.3	Amounts of HI-reducible and C-bonded S before and after the incubation in open system for soils taken from four farmlets.	52
Table 3.4	Net mineralization of carbon, nitrogen and sulphur and the change in pH for 140 days of incubation for the soils taken from four farmlets (mg kg⁻¹ soil).	56
Table 4.1	Net drainage collected and the amount of sulphate leached for soil cores collected from LF and HF sites (Leaching volume 4.2 ml/min, duration 7 hours/event, total applied 99 mm/event and for five events 495mm.	77
Table 4.2 Initial and final sulphate present in the soil for three depths, S lost by leaching, S removed by plant and the net mineralization of S for the soils from HF and LF sites. .. 78

Table 5.1 The fertility, land slope and percentage occurrence of each slope class in each of the two farmlets. ... 83

Table 5.2 Amounts of Nitrate (N) and Ammonium (A) present at three depths in the soil for all the four sites during the experiment. No nitrate was observed in some of the samplings. 95

Table 5.3 Predicted net drainage and the amounts of sulphate and mineral N lost by leaching in winter and spring at all four sites. 97

Table 5.4 Amounts of cations leached for all the four sites between Jun. 1989 and Jan. 1990. 100

Table 5.5 Pasture production from Jun. 1989 to Jan. 1990 at all four sites. .. 103

Table 5.6 Effect of fertilizer history and land slope on pasture S and N concentrations and N/S ratios. 104

Table 5.7 Amounts of dry matter and S and N consumed and the amounts of readily available S and N returned in excreta in whole farmlets and the calculated amounts of excretal S and N taken up by pasture. ... 110

Table 5.8 Calculation of the net mineralization of S and N during the periods of early winter and late spring for LF-LS and HF-LF sites (the symbols are described in text). ... 112

Table 5.9 Amounts of S and N net mineralized* during the experiment (31/5/1989 to 8/1/1990) for all four sites. ... 115
Table 6.1 Initial sulphate and mineral N present in the soil, fertilizer sulphate and 35S activity applied to each core and the specific activity of fertilizer S for all four sites. 126

Table 6.2 Amounts of pasture produced in fertilized and unfertilized plots at each site from Jan. to Oct. 1990. 132

Table 6.3 Pasture S concentrations for fertilized and unfertilized plots for all four sites from Jan. to Oct. 1990. 135

Table 6.4 Pasture N concentrations for fertilized and unfertilized plots for all four sites from Jan. to Oct. 1990. 136

Table 6.5 Amounts of 35S activity, % fertilizer S removed, amounts of fertilizer and soil S removed by pasture and the percentage contribution of fertilizer and soil S to pasture at all sites from Jan. to Oct. 1990. 141

Table 6.6 Amounts of 35S activity, % of applied fertilizer S leached, amounts of soil and fertilizer S lost by leaching and the % contribution of fertilizer and soil S to leaching losses at all sites from Jan. to Oct. 1990. 147

Table 6.7 Net mineralization of S and N from soil organic matter and the percentage of mineralized S and N removed by pasture and lost by leaching at all four SSP fertilized sites from Jan. to Oct. 1990. 156

Table 7.1 Chemical composition of major plant nutrients in dung and urine and the amounts of nutrients applied to both dung and urine treatments. 164
Table 7.2	Pasture dry matter response to fertilizer plus dung or urine application for a period of 150 days.	167
Table 7.3	Effect of fertilizer and fertilizer plus dung or urine on pasture S, N and K concentrations for all treatments in three harvests.	169
Table 7.4	Effect of fertilizer and fertilizer plus dung or urine on the amounts of S, N and K removed in pasture during 150 days.	171
Table 7.5	Effect of fertilizer and fertilizer plus dung or urine on the amounts of S, N and K lost by leaching during 150 days.	174
Table 7.6	Effect of fertilizer and fertilizer plus dung or urine on the amounts of Ca and Mg lost by leaching during 150 days.	176
Table 8.1a	Regressions for the cumulative uptake of 35S activity (cpm/core) with time for all four sites.	190
Table 8.1b	Regressions for the cumulative uptake of S (mg S/core) with time for all the four sites.	190
Table 8.2	Soil solution sulphate concentrations sampled by suction cup and amounts of 0.04M Ca(H$_2$PO$_4$)$_2$ extractable sulphate present in the soil from the 15-25cm depth for LF-LS and HF-LS sites for seven sampling events.	199
Table 8.3	Measured and predicted leaching losses of sulphate during the experimental period at all four sites.	211
LIST OF APPENDICES

Appendix-5.1 Soil moisture content for the period from
Jun. 1989 to Jan. 1990 (seven sampling occasions)
for three depths at all four sites 254

Appendix-5.2 Soil bulk densities for the depths 0-7.5, 7.5-15 and
15-25cm at all four sites measured during July 1989 255

Appendix-5.3 Sulphate (kg/ha) present in the soil for three depths
during the experimental period 256

Appendix-5.4 Mineral nitrogen (kg/ha) present in the soil for
three depths during the experimental period 257

Appendix-5.5 Sulphur and nitrogen returned in excreta 258

Appendix-6.1 Sulphate (kg/ha) present in the soil for three
depths during the experimental period 261

Appendix-6.2 Mineral nitrogen (kg/ha) present in the soil for
three depths during the experimental period 262

Appendix-7.1 Distribution of excreta in grazed hill country
pastures 263

Appendix-8.1 Change in specific activity of plant and leached
S-35 with time and the days on which major
drainage (vertical bars) occurred for all four
sites from Jan. 1990 to Oct. 1990 264

Appendix-8.2 Ratio of shoot and root for the months from
Jun. to Jan 265

Appendix-8.3a Rainfall during the experimental period
(Jun. 1989 to Jan. 1990) 266

Appendix-8.3b Evapotranspiration (E_t) during the experimental
period (Jun. 1989 to Jan. 1990) 267

Appendix-8.4 Predicted and measured extractable soil sulphate
present in the soil for three depths at all four sites 268