STRUCTURAL AND MECHANISTIC STUDIES OF SHEEP LIVER
ALDEHYDE DEHYDROGENASE

A thesis presented in partial
fulfilment of the requirements
for the degree of

Doctor of Philosophy
in Chemistry

at

Massey University
New Zealand

Rosemary Lynne MOTION
1986
MASSEY UNIVERSITY

1. (a) I give permission for my thesis, entitled

STRUCTURAL AND MECHANISTIC STUDIES OF ALCEH

SHEP. LNER. PARDONINE, DENDROGENALE

... to be made available to readers in the Library under the conditions determined by the Librarian.

(b) I agree to my thesis, if asked for by another institution, being sent away on temporary loan under conditions determined by the Librarian.

(c) I also agree that my thesis may be copied for Library use.

2. I do not wish my thesis, entitled

... to be made available to readers or to be sent to other institutions without my written consent within two years.

Signed

Date 30/1/84

Strike out the sentence or phrase which does not apply.

The Library,
Massey University,
Palmerston North, N.Z.

The copyright of this thesis belongs to the author. Readers must sign their name in the space below to show that they recognise this. They are asked to add their permanent address.
ABSTRACT

Studies of NADH displacement in the presence of excess aldehyde dehydrogenase confirmed that a conformational change of the enzyme. NADH binary complex occurs as an essential step in the reaction mechanism.

Modification of sulphydryl groups on the enzyme by the thiol reagent p-(chloromercuri)benzoate (PCMB) produced either activation or inhibition of the enzyme activity, depending upon the relative concentrations of PCMB and aldehyde dehydrogenase, the mixing conditions, and on the concentration of the aldehyde substrate. There was no direct evidence to support the widely held view that a sulphhydryl group is catalytically essential.

Studies of the pH dependence of the steady state and presteady state phases of the reaction indicated that there was a change in the rate limiting step as the pH was increased from acyl-enzyme hydrolysis at low pH to release of NADH from the enzyme at high pH. At low pH the release of NADH may occur before acyl-enzyme hydrolysis. Activation by high concentrations of proprionaldehyde was shown to occur over the entire pH range (5 to 10).

The reaction could be reversed when acid anhydrides were used to acylate the enzyme. NADH complex but the binding of the substrates for the reverse reaction did not appear to be ordered. Under these conditions other groups on the enzyme were acylated with resultant inhibition or activation of the dehydrogenase activity of the enzyme depending on the relative concentrations of the substrates and reactants, and on the mixing conditions.

The enzyme catalysed the hydrolysis of p-nitrophenylacetate in the presence of NADH but with no significant production of acetaldehyde. It was concluded that ester hydrolysis does not occur at the site of aldehyde oxidation.

Preliminary studies on the reaction of the enzyme with diethylpyrocarbonate indicated that the enzyme may contain a catalytically essential histidine residue.
ACKNOWLEDGEMENTS

I wish to thank my supervisors, Dr. Len F. Blackwell and Dr. Paul D. Buckley for their invaluable advice and their enthusiasm and encouragement throughout this study.

I should also like to thank all the members of the Chemistry & Biochemistry Department and the Physics & Biophysics Department for their help, in particular to Dr Alastair MacGibbon, Mr Adrian Bennett, Drs. Bryan Andersen, Graeme Midwinter, Kathy Crow, Mike Hardman, Trevor Kitson, Neil Pinder and Bob O'Driscoll for their helpful advice.

Thanks are also extended to Dr Mike Hardman for helpful modifications to the computer programmes, Ms. Kathryn Newland for her assistance with the acetaldehyde assays, Mr. Peter MacDonald for technical assistance with the amino acid analysis and to Messrs. Conway Bishop, Jim Napier, Julian Reid and Dick Poll for isolating aldehyde dehydrogenase.

I should also like to thank Prof. G.N. Malcolm, Prof. D.F. Bacon and the members of the University Committee on Research for their assistance.

Particular personal thanks are extended to both my supervisors, and to Pam Blackwell, and to Paul and Emily Motion, for all their support and encouragement.

Finally I would like to thank Mr. Walt Abell, Mrs Bev Williams and Mrs. Heather Conaghan of the Computer Centre and Dr. Lawrie Creamer and Dr. Claire Couldwell of the New Zealand Dairy Research Institute for their assistance in the production of this thesis.

I also wish to thank Dr. Les Deady for allowing the use of some of his experimental results.
# Table of Contents

## INTRODUCTION

1

## CHAPTER 1

### PURIFICATION OF CYTOPLASMIC ALDEHYDE DEHYDROGENASE FROM SHEEP S LIVER

#### 1.1 INTRODUCTION

4

#### 1.2 METHODS

5

1.2.1 Buffers

5

1.2.2 Enzyme Assays

6

1.2.3 Enzyme Purification Procedure: Method 1

7

1.2.4 Enzyme Purification Procedure: Method 2

9

1.2.4.1 Homogenisation Procedure

9

1.2.4.2 Centrifugation

9

1.2.4.3 Precipitation of Enzyme using Polyethylene

9

1.2.4.4 Gel Filtration using a Sephacryl S-200 or

10

1.2.4.5 pH-Gradient Ion Exchange Chromatography

10

1.2.4.6 Affinity Chromatography

11

1.2.5 SDS Gel Electrophoresis

11

1.2.6 Protein Determinations

12

#### 1.3 RESULTS

12

1.3.1 Homogenisation and Centrifugation

12

1.3.2 Precipitation using Polyethylene Glycol (PEG)

12

1.3.3 DEAE Cellulose Column

13

1.3.4 Gel Filtration

16

1.3.5 DE Sephacel Column

20

1.3.6 AMP Sepharose Column

20

1.3.7 Purity of Enzyme Preparation

20

1.3.7.1 Contamination by other Proteins

20

1.3.7.2 Contamination by Mitochondrial Aldehyde

22

1.3.8 Enzyme Yields

22

#### 1.4 DISCUSSION

23
CHAPTER 2
GENERAL KINETIC METHODS AND STRUCTURAL STUDIES
OF ALDEHYDE DEHYDROGENASE

2.1 INTRODUCTION ...................................................... 26

2.1.1 Enzyme Kinetics ................................................. 26

2.1.2 Two Substrate Reactions ........................................ 28

2.1.3 Kinetics of Sheep Liver Aldehyde Dehydrogenase ............ 32
  2.1.3.1 Steady State Kinetics .................................... 32
  2.1.3.2 Presteady State Kinetics ................................ 34
  2.1.3.3 NADH Dissociation ...................................... 36
  2.1.3.4 Protein Fluorescence .................................... 37
  2.1.3.5 Reaction Mechanism ..................................... 37

2.1.4 Consecutive Reactions ........................................ 38

2.1.5 Structural Studies of the Enzyme ............................. 43

2.2 METHODS ............................................................. 44

2.2.1 Spectrophotometric Assays .................................... 44

2.2.2 NADH Titrations ................................................. 46

2.2.3 Amino Acid Analysis ........................................... 46

2.2.4 Metal Ion Analysis ............................................. 47
  2.2.4.1 Emission Spectrometry .................................. 47
  2.2.4.2 Absorption Spectroscopy ............................... 48

2.2.5 Spectral Changes on NADH Binding ........................... 48

2.2.6 Chromatofocusing .............................................. 48

2.2.7 Isoelectric Focusing ........................................... 49

2.3 Stopped Flow Studies .............................................. 49

2.3.1 Apparatus .......................................................... 49

2.3.2 Observation and Recording of Data ........................... 51

2.3.3 Preparation of Solutions ....................................... 53

2.3.4 NADH Burst Experiments ..................................... 53

2.3.5 NADH Displacement Experiments ............................. 53

2.4 TREATMENT OF DATA ............................................... 54

2.4.1 Calculation of Active Site Concentration by
  Spectrophotometric Assay ....................................... 54

2.4.2 NADH Titrations ................................................ 56

2.4.3 Amino Acid Analysis .......................................... 58

2.4.4 Processing of Burst Data ..................................... 60
2.4.5 NADH Displacement Experiments.................................60

2.5 RESULTS.................................................................65
  2.5.1 Amino Acid Analysis........................................65
  2.5.2 Metal Ion Analysis.............................................66
  2.5.3 Spectral Changes on NADH Binding..............................66
  2.5.4 Chromatofocusing..............................................66
  2.5.5 Enzyme Active Site Determinations............................71
  2.5.6 NADH Burst Experiments....................................72
  2.5.7 NADH Displacement Experiments..............................72

2.6 DISCUSSION..............................................................73

CHAPTER 3
THE EFFECT OF p-MERCURIBENZOATE ON ALDEHYDE DEHYDROGENASE

3.1 INTRODUCTION............................................................79

3.2 METHODS.................................................................80
  3.2.1 Enzyme Assays....................................................80
  3.2.2 Titration of Thiol Groups with PCMB..........................81
  3.2.3 Determination of Total Thiol Content.........................81
  3.2.4 PCMB Binding to Enzyme.........................................81
  3.2.5 NADH Titration..................................................81
  3.2.6 Esterase Assays................................................82
  3.2.7 Stopped Flow Experiments.....................................82
    3.2.7.1 NADH Burst Experiments................................82
    3.2.7.2 Proton Burst Experiments................................82
    3.2.7.3 NADH Displacement Experiments.........................83
    3.2.7.4 NADH Binding Experiments...............................83

3.3 Treatment of Data.....................................................83
  3.3.1 Spectrophotometric Assays...................................83
  3.3.2 NADH Titrations................................................83
  3.3.3 Binding Studies................................................84
  3.3.4 Burst Experiments.............................................84

3.4 RESULTS.................................................................84
  3.4.1 Titration of Thiol Groups...................................84
  3.4.2 Determination of Total Thiol Content.........................86
  3.4.3 PCMB Binding Studies.........................................86
3.4.4 The Effect of PCMB on Dehydrogenase Activity at Low Propionaldehyde Levels...90
3.4.4.1 Order of Mixing Effects...93
3.4.4.2 The Effect of 2-Mercaptoethanol on Activation...94
3.4.4.3 Time Dependent Changes in Steady State...94
3.4.4.4 The Effect of Disulphiram on Activation by...96
3.4.4.5 The Effect of PCMB on the Steady State Rate...97
3.4.4.6 Acetaldehyde as Substrate...97
3.4.5 The Effect of PCMB at High Propionaldehyde Concentrations...98
3.4.6 The Effect of PCMB on the Esterase Activity of the Enzyme...100
3.4.7 Effect of Activating Levels of PCMB on the NADH Titration...100
3.4.8 The Effect of PCMB on the NADH and Proton Bursts...101
3.4.9 NADH Burst Experiments at High Concentrations of PCMB...103
3.4.10 Burst Experiments at High Propionaldehyde Concentrations...104
3.4.11 Effect of PCMB on NADH Displacement and Binding...108
3.5 DISCUSSION...109
3.6 CONCLUSION...120

CHAPTER 4
THE EFFECT OF pH ON ALDEHYDE DEHYDROGENASE
4.1 INTRODUCTION...122
4.2 METHODS...123
4.2.1 Buffer Solutions...123
4.2.2 NAD+ Solutions...124
4.2.3 Enzyme Assays...124
4.2.4 The Effect of pH on Activation and Inhibition by PCMB...125
4.2.5 NADH Burst Experiments...125
4.2.6 NADH Displacement...126
4.3 RESULTS...126
4.3.1 (Steady State Studies)...126
4.3.1.1 Buffer and Ionic Strength Effects...126
4.3.1.2 Constant Ionic Strength Buffers...130
4.3.1.3 Pyrophosphate Buffers...132
4.3.1.4 The Effect of pH on Modification by PCMB...132
4.3.2 The Effect of pH on the NADH Burst...135
4.3.2.1 Constant Ionic Strength Buffers...135
4.3.2.2 Pyrophosphate Buffers...138
4.3.3 The Effect of pH on Displacement of NADH by NAD⁺........138
4.3.3.1 Constant Ionic Strength Buffers......................138
4.3.3.2 Pyrophosphate Buffers...............................139
4.4 DISCUSSION......................................................142

CHAPTER 5
A PRELIMINARY STUDY OF REVERSE REACTIONS OF ALDEHYDE
DEHYROGENASE
5.1 INTRODUCTION..................................................161
5.2 METHODS..........................................................162
  5.2.1 Reverse Reactions..............................................162
  5.2.2 Determination of Acetaldehyde Concentration.............162
  5.2.3 The Hydrolysis of Propionic Anhydride...................163
5.3 RESULTS..........................................................164
  5.3.1 Reverse Reactions..............................................164
  5.3.2 Anhydride Hydrolysis.........................................174
  5.3.3 Production of Acetaldehyde from p-Nitrophenylacetate...176
5.4 DISCUSSION........................................................177

CHAPTER 6
FURTHER STUDIES OF THE REVERSE REACTIONS OF ALDEHYDE
DEHYROGENASE
6.1 INTRODUCTION..................................................183
6.2 METHODS..........................................................184
  6.2.1 Reverse Reaction Studies using Propionic Anhydride......184
    6.2.1.1 The Effect of Modifier Reagents on the.................186
    6.2.1.2 pH Profile of the Reverse Reaction......................186
  6.2.2 Reverse Reactions involving Other Anhydrides.............186
  6.2.3 Presteady State and Stopped Flow Studies of the
       Reverse Reaction................................................188
    6.2.3.1 Nucleotide Fluorescence................................189
    6.2.3.2 The pH Dependence of the PreSteady-State..............190
    6.2.3.3 Protein Fluorescence....................................190
    6.2.3.4 Absorbance...............................................190
  6.2.4 The Effect of Anhydrides on the Binding of NADH to
       the Enzyme....................................................190
6.3 RESULTS..........................................................191
  6.3.1 The Effect of NADH Concentration on the Reverse
       Reaction.........................................................191
    6.3.1.1 The Effect of NADH at Lower Propionic.................195
6.3.2 The Effect of Propionic Anhydride Concentration on the Reverse Reaction........................................200
6.3.3 The Effect of Enzyme Concentration on the Reverse Reaction...........................................................202
6.3.4 The Effect of pH on the Reverse Reaction with Propionic Anhydride..................................................204
6.3.5 Lag Phases...........................................................................................................................................206
6.3.6 Inhibition Studies of the Reverse Reaction.................................................................................................209
   6.3.6.1 The Effect of Added NAD⁺ or Propionaldehyde..................................................................................209
   6.3.6.2 PCMB, Disulphiram, Chloral Hydrate, and.........................................................................................212
6.3.7 Dehydrogenase Activity Following the Reverse Reaction............................................................................215
6.3.8 Reverse Reactions with Other Anhydrides.................................................................................................217
6.4 PreSteady State Results..................................................................................................................................221
   6.4.1 Nucleotide Fluorescence.........................................................................................................................221
      6.4.1.1 Other Anhydrides..............................................................................................................................226
   6.4.2 Absorbance................................................................................................................................................228
   6.4.3 Protein Fluorescence...............................................................................................................................229
   6.4.4 Binding Studies in Nucleotide Fluorescence..............................................................................................231
      6.4.4.1 The Effect of Diethylpyrocarbonate on the.........................................................................................234
   6.4.5 Lag Phases................................................................................................................................................238
6.5 DISCUSSION..................................................................................................................................................244
6.6 CONCLUSION..................................................................................................................................................252
CHAPTER 7
THE EFFECTS OF ANHYDRIDES ON ALDEHYDE DEHYDROGENASE

7.1 INTRODUCTION...........................................................................253
7.2 METHODS..................................................................................254
7.2.1 Steady State Experiments.......................................................254
  7.2.1.1 The Effect of Propionic Anhydride on the.......................254
  7.2.1.2 The Effect of Maleic Anhydride on the Enzyme.................255
  7.2.1.3 The Effect of Diethylpyrocarbonate on the....................255
7.2.2 Pre-Steady-State Experiments..............................................256
7.3 RESULTS....................................................................................256
  7.3.1 The Effect of Propionic Anhydride on the Enzyme Activity......256
    7.3.1.1 Low Propionaldehyde Levels........................................256
    7.3.1.2 High Propionaldehyde Levels........................................260
    7.3.1.3 Non-Saturating Substrate Levels....................................260
  7.3.2 Diethylpyrocarbonate..........................................................265
  7.3.3 Maleic Anhydride.................................................................271
7.4 Pre-Steady State Results..........................................................271
  7.4.1 The Effect of Propionic Anhydride on the NADH Fluorescence Burst.......................................................271
    7.4.1.1 NADH Burst at Low Propionaldehyde Levels................271
    7.4.1.2 NADH Burst at High Propionaldehyde...........................274
  7.4.2 Other Anhydrides.................................................................277
7.5 DISCUSSION..............................................................................278

APPENDIX I.....................................................................................291
APPENDIX II....................................................................................292
APPENDIX III..................................................................................294
REFERENCES.................................................................................295
<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Elution profiles for aldehyde dehydrogenase on the DEAE Cellulose column</td>
<td>14</td>
</tr>
<tr>
<td>1.2</td>
<td>Elution profiles for aldehyde dehydrogenase on the Biogel column</td>
<td>17</td>
</tr>
<tr>
<td>1.3</td>
<td>Elution profile for aldehyde dehydrogenase on the Sephacryl S-200 column</td>
<td>18</td>
</tr>
<tr>
<td>1.4</td>
<td>Elution profiles for aldehyde dehydrogenase on the Sephacryl S-300 column</td>
<td>19</td>
</tr>
<tr>
<td>1.5</td>
<td>Elution profile for aldehyde dehydrogenase on the DE-Sephacel column</td>
<td>21</td>
</tr>
<tr>
<td>2.1</td>
<td>Effect of inhibition on the double reciprocal plot</td>
<td>30</td>
</tr>
<tr>
<td>2.2</td>
<td>Schematic diagram of Stopped Flow Apparatus</td>
<td>50</td>
</tr>
<tr>
<td>2.3</td>
<td>Block diagram of Stopped Flow Apparatus and associated equipment</td>
<td>52</td>
</tr>
<tr>
<td>2.4</td>
<td>Computer fitting of burst data</td>
<td>61</td>
</tr>
<tr>
<td>2.5</td>
<td>Graphical derivation of the rate constants for a process involving two first order exponentials</td>
<td>62</td>
</tr>
<tr>
<td>2.6</td>
<td>Analysis of a biphasic transient by computer</td>
<td>64</td>
</tr>
<tr>
<td>2.7</td>
<td>The difference in absorption spectrum between NADH bound to aldehyde dehydrogenase and free NADH</td>
<td>67</td>
</tr>
<tr>
<td>2.8</td>
<td>Elution profiles for aldehyde dehydrogenase on the chromatofocusing column</td>
<td>69</td>
</tr>
<tr>
<td>2.9</td>
<td>Isoelectric focusing of aldehyde dehydrogenase on the chromatofocusing column</td>
<td>70</td>
</tr>
<tr>
<td>2.10</td>
<td>Changes in nucleotide fluorescence under single turnover conditions</td>
<td>77</td>
</tr>
<tr>
<td>3.1</td>
<td>Titration of thiol groups on native aldehyde dehydrogenase with PCMB</td>
<td>85</td>
</tr>
<tr>
<td>3.2</td>
<td>Progress curve for reaction of PCMB with aldehyde dehydrogenase</td>
<td>87</td>
</tr>
<tr>
<td>3.3</td>
<td>Stopped flow traces showing rapid reaction of PCMB with aldehyde dehydrogenase</td>
<td>89</td>
</tr>
<tr>
<td>3.4</td>
<td>Protein fluorescence changes on reaction of PCMB with aldehyde dehydrogenase</td>
<td>89</td>
</tr>
<tr>
<td>Figure</td>
<td>TITLE</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>3.5</td>
<td>The effect of PCMB on dehydrogenase activity at low concentrations of propionaldehyde.</td>
<td>91</td>
</tr>
<tr>
<td>3.6</td>
<td>The effect of PCMB on dehydrogenase activity at a low enzyme concentration</td>
<td>92</td>
</tr>
<tr>
<td>3.7</td>
<td>The Dependence of $k_{\text{app}}$ on the concentration of PCMB</td>
<td>95</td>
</tr>
<tr>
<td>3.8</td>
<td>The effect of PCMB on the dehydrogenase activity at high concentrations of propionaldehyde</td>
<td>99</td>
</tr>
<tr>
<td>3.9</td>
<td>The effect of PCMB on the esterase activity</td>
<td>101</td>
</tr>
<tr>
<td>3.10</td>
<td>NADH Titration in the presence of PCMB</td>
<td>102</td>
</tr>
<tr>
<td>3.11</td>
<td>The effect of excess PCMB on the NADH burst</td>
<td>105</td>
</tr>
<tr>
<td>3.12</td>
<td>The effect of PCMB on the NADH burst at high concentrations of propionaldehyde</td>
<td>107</td>
</tr>
<tr>
<td>4.1</td>
<td>The effect of pH on the steady state rate in 25mM buffers</td>
<td>127</td>
</tr>
<tr>
<td>4.2</td>
<td>The effect of a range of buffers on the enzyme steady state activity</td>
<td>129</td>
</tr>
<tr>
<td>4.3</td>
<td>pH profile of steady state activity of aldehyde dehydrogenase</td>
<td>131</td>
</tr>
<tr>
<td>4.4</td>
<td>The effect of pyrophosphate buffers on the steady state activity</td>
<td>133</td>
</tr>
<tr>
<td>4.5</td>
<td>The effect of pH on activation of the enzyme by PCMB</td>
<td>134</td>
</tr>
<tr>
<td>4.6</td>
<td>The effect of pH on the NADH burst at high concentrations of propionaldehyde</td>
<td>136</td>
</tr>
<tr>
<td>4.7</td>
<td>The effect of pH on the NADH burst at high concentrations of propionaldehyde and in pyrophosphate buffers</td>
<td>137</td>
</tr>
<tr>
<td>4.8</td>
<td>The effect of pH on the displacement of NADH</td>
<td>140</td>
</tr>
<tr>
<td>4.9</td>
<td>The effect of pH on the displacement of NADH in pyrophosphate buffers</td>
<td>141</td>
</tr>
<tr>
<td>Figure</td>
<td>TITLE</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>4.10</td>
<td>A comparison of the steady state turnover number at low concentrations of propionaldehyde and the slow decay constant for NADH displacement</td>
<td>148</td>
</tr>
<tr>
<td>4.11</td>
<td>A comparison of the steady state turnover number at high concentrations of propionaldehyde and the fast decay constant for NADH displacement</td>
<td>150</td>
</tr>
<tr>
<td>4.12</td>
<td>A comparison of the steady state turnover number at both low and high concentrations of propionaldehyde and the decay constants for NADH displacement</td>
<td>154</td>
</tr>
<tr>
<td>5.1</td>
<td>Progress curve for the reverse aldehyde dehydrogenase reaction</td>
<td>165</td>
</tr>
<tr>
<td>5.2</td>
<td>The dependence of the initial rate of the reverse reaction on the enzyme concentration</td>
<td>166</td>
</tr>
<tr>
<td>5.3</td>
<td>Complete progress curves for the reverse reaction</td>
<td>167</td>
</tr>
<tr>
<td>5.4</td>
<td>Changes in acetaldehyde concentrations during the reverse reaction</td>
<td>169</td>
</tr>
<tr>
<td>5.5</td>
<td>Reversibility of acylation of aldehyde dehydrogenase</td>
<td>170</td>
</tr>
<tr>
<td>5.6</td>
<td>Utilisation of NADH in reverse reactions</td>
<td>172</td>
</tr>
<tr>
<td>5.7</td>
<td>The effect of phosphate buffer and electrolyte solutions on the reverse reaction</td>
<td>175a</td>
</tr>
<tr>
<td>6.1</td>
<td>Measurement of parameters from the absorbance trace of the reverse reaction</td>
<td>187</td>
</tr>
<tr>
<td>6.2</td>
<td>The effect of NADH concentration on the reverse reaction</td>
<td>192</td>
</tr>
<tr>
<td>6.3</td>
<td>Utilisation of NADH in reverse reactions in electrolyte solution</td>
<td>194</td>
</tr>
<tr>
<td>6.4</td>
<td>The effect of NADH concentration on the reverse reaction at different initial concentrations of propionic anhydride</td>
<td>196</td>
</tr>
<tr>
<td>6.5</td>
<td>The effect of NADH on the hydrolysis of propionic anhydride</td>
<td>198</td>
</tr>
<tr>
<td>6.6</td>
<td>Optimum Utilisation of NADH in reverse reactions as a function of the concentration of propionic anhydride</td>
<td>199</td>
</tr>
<tr>
<td>6.7</td>
<td>The effect of the concentration of propionic anhydride on the reverse reaction</td>
<td>201</td>
</tr>
<tr>
<td>Figure</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>6.8</td>
<td>The effect of enzyme concentration on the reverse reaction</td>
<td>203</td>
</tr>
<tr>
<td>6.9</td>
<td>The effect of pH on the rate of the reverse reaction</td>
<td>205</td>
</tr>
<tr>
<td>6.10</td>
<td>Lag phases observed during reverse reactions</td>
<td>207</td>
</tr>
<tr>
<td>6.11</td>
<td>The effect of added propionaldehyde or NAD(^+) on the reverse reaction</td>
<td>210</td>
</tr>
<tr>
<td>6.12</td>
<td>The effect of PCMB on the reverse reaction</td>
<td>213</td>
</tr>
<tr>
<td>6.13</td>
<td>The effect of the initial NADH concentration on the dehydrogenase reaction following the reverse reaction</td>
<td>216</td>
</tr>
<tr>
<td>6.14</td>
<td>A comparison of the effects of buffer on reverse reactions with acetic and propionic anhydride</td>
<td>219</td>
</tr>
<tr>
<td>6.15</td>
<td>A comparison of reverse reactions involving propionic and butyric anhydrides</td>
<td>220</td>
</tr>
<tr>
<td>6.16</td>
<td>The presteady state process in the reverse reaction</td>
<td>222</td>
</tr>
<tr>
<td>6.17</td>
<td>The effect of the concentration of propionic anhydride on the presteady state reverse process</td>
<td>223</td>
</tr>
<tr>
<td>6.18</td>
<td>Observation of presteady state and steady state reverse reactions using the stopped flow spectrophotometer</td>
<td>225</td>
</tr>
<tr>
<td>6.19</td>
<td>The presteady state process in the reverse reaction involving diethylpyrocarbonate</td>
<td>227</td>
</tr>
<tr>
<td>6.20</td>
<td>Changes in protein fluorescence associated with the reverse reaction</td>
<td>230</td>
</tr>
<tr>
<td>6.21</td>
<td>The effect of propionic anhydride NADH binding</td>
<td>232</td>
</tr>
<tr>
<td>6.22</td>
<td>Nucleotide fluorescence changes following NADH binding in the presence of propionic anhydride</td>
<td>233</td>
</tr>
<tr>
<td>6.23</td>
<td>The effect of propionic anhydride on NADH binding and the reverse reaction</td>
<td>235</td>
</tr>
<tr>
<td>6.24</td>
<td>A comparison of the amplitudes of changes in nucleotides fluorescence during the NADH binding and presteaddy state reverse processes</td>
<td>236</td>
</tr>
<tr>
<td>6.25</td>
<td>The effect of DEPC on the binding of NADH to the enzyme</td>
<td>237</td>
</tr>
<tr>
<td>6.26</td>
<td>Lag phases observed in stopped flow experiments</td>
<td>239</td>
</tr>
<tr>
<td>Figure</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------------------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>6.27</td>
<td>The effect of enzyme and substrate concentrations on the lag phase</td>
<td>240</td>
</tr>
<tr>
<td>6.28</td>
<td>Lag phases exhibiting an increase in fluorescence</td>
<td>241</td>
</tr>
<tr>
<td>6.29</td>
<td>The appearance of an increase in fluorescence in lag phases</td>
<td>243</td>
</tr>
<tr>
<td>7.1</td>
<td>The effect of propionic anhydride on enzyme activity at low concentrations of propionaldehyde</td>
<td>257</td>
</tr>
<tr>
<td>7.2</td>
<td>The effect of propionic anhydride on enzyme activity at high concentrations of propionaldehyde</td>
<td>261</td>
</tr>
<tr>
<td>7.3</td>
<td>The effect of propionic anhydride on enzyme activity at non-saturating concentrations of NAD$^+$ and propionaldehyde</td>
<td>263</td>
</tr>
<tr>
<td>7.4</td>
<td>The dependence of the lag time and the relative reaction rate on the propionic anhydride concentration at non-saturating concentrations of NAD$^+$ and propionaldehyde</td>
<td>264</td>
</tr>
<tr>
<td>7.5</td>
<td>The effect of DEPC on the enzyme activity at both high and low propionaldehyde concentrations at pH 7.6</td>
<td>266</td>
</tr>
<tr>
<td>7.6</td>
<td>The effect of DEPC on enzyme activity at high concentrations of propionaldehyde at pH 7.6</td>
<td>269</td>
</tr>
<tr>
<td>7.7</td>
<td>The effect of DEPC on enzyme activity at low concentrations of propionaldehyde at pH 6.1</td>
<td>270</td>
</tr>
<tr>
<td>7.8</td>
<td>The effect of maleic anhydride on the enzyme activity at both high and low concentrations of propionaldehyde</td>
<td>272</td>
</tr>
<tr>
<td>7.9</td>
<td>The effect of propionic anhydride on the NADH dehydrogenase burst at low concentrations of propionaldehyde</td>
<td>275</td>
</tr>
<tr>
<td>7.10</td>
<td>The effect of propionic anhydride on the NADH burst at high concentrations of propionaldehyde</td>
<td>276</td>
</tr>
<tr>
<td>7.11</td>
<td>The effect of maleic anhydride on the NADH burst at low concentrations of propionaldehyde</td>
<td>279</td>
</tr>
<tr>
<td>7.12</td>
<td>The effect of DEPC on the NADH burst at low concentrations of propionaldehyde</td>
<td>280</td>
</tr>
</tbody>
</table>