Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
CHANGES IN GERMINATION PERFORMANCE
AND HYDROLYTIC ENZYME ACTIVITY IN
WHEAT SEEDS (*Triticum aestivum* L.)
CAUSED BY AGEING AND
PRE-SOWING TREATMENTS

A thesis presented in partial
fulfilment of the requirements
for the degree of
Doctor of Philosophy
in Seed Technology
at Massey University
Palmerston North
New Zealand

SURESH NATH
1991
Massey University Library
Thesis Copyright Form

Title of thesis: Changes in Germination Performance And Hydrolytic Enzyme Activity In Wheat Seeds (Triticum aestivum L.) Caused By Aged And Pre-Sowing Treatments.

(1) (a) I give permission for my thesis to be made available to readers in Massey University Library under conditions determined by the Librarian.

(b) I do not wish my thesis to be made available to readers without my written consent for ... months.

(a) I agree that my thesis, or a copy, may be sent to another institution under conditions determined by the Librarian.

(b) I do not wish my thesis, or a copy, to be sent to another institution without my written consent for ... months.

(3) (a) I agree that my thesis may be copied for Library use.

(b) I do not wish my thesis to be copied for Library use for ... months.

Signed

Date 8 August 1971

The copyright of this thesis belongs to the author. Readers must sign their name in the space below to show that they recognise this. They are asked to add their permanent address.

NAME AND ADDRESS

Suresh Nath

DATE 8 August 1971
ABSTRACT

Three pre-sowing hydration-dehydration treatments were evaluated for their capacity to protect or repair wheat seeds stored under two different sets of artificial ageing conditions (accelerated ageing at 100% RH, 40°C or controlled deterioration at 15% SMC, 35°C). Although similar losses in germination capacity and decreases in radicle emergence rates occurred under both ageing conditions, differences with respect to the physiology of ageing were highlighted by changes in seedling growth and seed leakage. For example, increases in seed leakage observed during storage at 15% SMC were not found at 100% RH.

Longer hydration treatments (either 24 h at 15°C in water or 20 h at 20°C in -0.37 MPa PEG solution, followed by drying) improved the vigour of unaged seeds, but treated material deteriorated rapidly in storage compared to untreated controls. In contrast short hydration treatments (2 h at 25°C followed by drying) offered some protection of germinability during subsequent storage but did not affect the vigour of unaged seeds. When seeds were treated after storage, longer hydration periods were effective in producing substantial invigoration of viable deteriorated seeds (measured by evaluating T50 or seedling growth) compared to little or no improvement by short hydration treatments. These results support earlier suggestions from work on tomato seeds that losses in seed vigour and viability are not necessarily a continuum of the same deteriorative sequence.

The mechanisms of protection of germinability by short hydration treatments were not clear. Small decreases in T50's of unaged or aged seeds as a result of these treatments were due to leakage of germination inhibitory substances. However, the rapid germination of unaged and improved responses from aged seeds caused by longer hydration treatments suggested advances in germination processes and repair activity under these conditions. This aspect was pursued in further detail by studying changes in the hydrolytic metabolism of wheat seeds using the 20 h PEG treatment.
Although the starchy endosperm of treated seeds showed some indications of protein degradation, there were no changes in proteolytic activity (determined as 'Azocoll' hydrolysing activity at pH 6.8) as a result of ageing or pre-sowing treatment after storage. However, there were some indications of loss of control over proteolytic activity in seeds subjected to treatment before storage. Severe damage to membrane permeability in these seeds appears to be a post-mortem event as this was only found in samples showing drastic losses in seed germinability.

Pre-sowing treatment caused a buildup of germinative α-amylase activity in unaged but not in aged seeds, although both showed similar radicle emergence rates. Quick resumption of α-amylase production during subsequent imbibition by treated seeds, irrespective of ageing, suggests that components involved in de novo enzyme synthesis are tolerant to desiccation in wheat seeds. Increased α-amylase activity in treated seeds or its maintenance during subsequent storage, surprisingly did not cause damage to stored starch. There was no relationship between increased α-amylase activity and early radicle emergence.

The ageing-induced delay in germinative α-amylase production appeared to be due to delayed gibberellin synthesis by the aged embryo. Pre-sowing treatment of seeds after storage effectively decreased the lag period for enzyme production in deteriorated seeds. Ageing effects on aleurone were characterised by investigating changes in the responsiveness of embryoless half seeds to gibberellic acid with respect to α-amylase production in vitro. Ageing of seeds caused a significant reduction in aleurone enzyme production. These changes were at least in part, reversed by pre-sowing treatment of aged seeds.

Abbreviations: h = hours; PEG = polyethylene glycol; RH = relative humidity; SMC = seed moisture content; T50 = time to 50% radicle emergence.
ACKNOWLEDGEMENTS

I wish to express my deep sense of gratitude to Dr Peter Coolbear for his excellent supervision, critical discussion and constant encouragement throughout this work. I am also highly indebted to Dr John Hampton for his suggestions and critical reading of the manuscript. My heartfelt gratitude is also extended to Dr Clive Cornford (Botany and Zoology Department) for his excellent supervision and facilities provided during the enzyme studies and for his critical reading of the manuscript.

The valuable assistance provided by several others during the course of this work is gratefully acknowledged and in particular, I wish to thank the following:

- Mr Craig McGill for technical assistance in Electrophoresis work and a friendly support throughout this study.

- Dr D.W. Fountain for suggestions on assaying protease activity in seeds.

- Dr K. Sutton (Wheat Research Institute, Christchurch) for HPLC analysis of proteins.

- Mr D. Hopcroft (DSIR, Fruit and Trees) for Electron microscopic work.

- Mrs Anne Davies for her excellent typing of the thesis.

- Mr G. Donaldson for computer aided graphic work.

- Mrs Dulcie Humphrey, Mrs Karen Johnstone, Mrs DEM Meech, Mr Ray Johnstone and Mr Robert Southward for their help in so many ways.

This PhD programme was sponsored by 'The Rotary Foundation of Rotary International', Illinois, U.S.A., under the 'Freedom from Hunger' scholarship programme. I wish to express my gratitude to 'The Rotary International', the sponsoring Rotary Club of Mandya (district 319, India) and to the host Rotary Club of Palmerston North (district 994, New Zealand) for making
this study possible. My deep sense of gratitude is also extended to Rotarian Ross Grigor and Mrs Joan Grigor who warmly involved us in the New Zealand way of life; without their counsel and support in so many ways, this work could not have been completed.

I gratefully acknowledge the encouragement and support of Prof. Murray Hill, Director, Seed Technology Centre which played a vital role in completion of this work.

I am also indebted to 'The Miss EL Hellaby Indigenous Grasslands Research Trust' and the 'Helen E. Akers' Scholarship for financial assistance provided in the later stages of this work. In this regard, the recommendations of Prof. Murray Hill and Prof. J. Hodgson are very much appreciated.

Finally, I am pleased to thank my parents and acknowledge the patient support and love of my wife Sandhya and children Ramya and Kartik.

With great pleasure I dedicate this work to one of the primary ideals of 'The Rotary International' - 'Community Service'.
CONTENTS

<table>
<thead>
<tr>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
</tr>
<tr>
<td>CONTENTS</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 PRE-SOWING HYDRATION TREATMENTS FOR PROTECTING OR IMPROVING THE GERMINATION PERFORMANCE OF STORED WHEAT SEEDS
2

1.2 USE OF ARTIFICIAL AGEING TECHNIQUES IN PHYSIOLOGICAL STUDIES ON SEED DETERIORATION
2

1.3 AGEING AND/OR TREATMENT INDUCED CHANGES TO ENDOSPERM MOBILIZATION PROCESSES
3

1.4 OBJECTIVES OF THIS STUDY
4

CHAPTER 2 REVIEW OF LITERATURE

2.1 INTRODUCTION
5

2.2 STRUCTURE OF THE WHEAT GRAIN
5

2.2.1 The Embryo
6

2.2.2 The Endosperm
8

2.3 EARLY EVENTS DURING SEED GERMINATION
8

2.3.1 Structure of Wheat Endosperm and Early Events During its Mobilization
11

2.4 \(\alpha \)-AMYLASES
13

2.4.1 The enzymes and their General Mode of Action
13
2.4.2 Mechanisms of Action on Starch Granules 15
2.4.3 Activity in Immature Grains 17
2.4.4 Activity in Mature Quiescent Grains 19
2.4.5 Control of Activity in Germinating Grains 20
 2.4.5.1 Scutellum 22
 2.4.5.2 Aleurone 22
2.4.6 Inhibitors of α-amylase Activity 23
2.5 PROTEOLYTIC ENZYMES IN WHEAT GRAINS 24
 2.5.1 Storage Proteins of Wheat Grains 24
 2.5.2 The Enzymes and their General Mode of Action 26
 2.5.3 Proteolytic Enzymes and their Inhibitors 28
 2.5.3.1 Proteases of quiescent and germinating grains 28
 2.5.3.2 Peptidases of quiescent and germinating grains 28
2.6 PHYSIOLOGICAL AND BIOCHEMICAL CHANGES ASSOCIATED WITH SEED AGEING 29
 2.6.1 Damage to Membranes 30
 2.6.1.1 Ultrastructural changes 31
 2.6.1.2 Changes in the leakage of electrolytes from seeds 31
 2.6.1.3 Changes in phospholipids 32
 2.6.2 Changes in Enzyme Activity 33
 2.6.3 Genetic Damage During Ageing 35
 2.6.4 Changes in Respiration 37
 2.6.5 Protein and RNA Synthesis 37
 2.6.6 Changes in Plant Growth Regulator levels 39
 2.6.7 Accumulation of Toxic Metabolites 40
2.7 ARTIFICIAL AGEING OF SEEDS 40
 2.7.1 Artificial vs Natural Ageing of Seeds 45
2.8 PRE-SOWING TREATMENTS FOR WHEAT SEEDS 48
 2.8.1 Pre-sowing Treatments for Invigoration of Wheat Seeds (treatments applied on unaged or aged seeds) 48
 2.8.1.1 Cultivar and seed lot responses to pre-sowing treatments 55
2.8.1.2 Treatment method and conditions used for invigorative pre-sowing treatments 55

2.8.2 Pre-sowing Treatments for Protection of Stored Wheat Seeds (treatments applied before ageing) 57

CHAPTER 3 MATERIAL AND METHODS 60
3.1 SEED MATERIAL 60
3.2 ARTIFICIAL AGEING TECHNIQUES 60
3.2.1 Accelerated Ageing 60
3.2.2 Controlled Deterioration 62
3.3 PRE-SOWING HYDRATION TREATMENTS 64
3.3.1 Short Hydration Treatments 64
3.3.2 Longer Hydration Treatments 64
3.3.2.1 Hydration in water 65
3.3.2.2 Hydration in PEG solution 65
3.4 SEED MOISTURE DETERMINATION, GERMINATION AND SEEDLING GROWTH TRIALS 68
3.4.1 Normal Germination and Seedling Growth Trials 69
3.4.2 Time to 50% Radicle Emergence 69
3.5 GENERAL APPROACH TO EXPERIMENTAL DESIGN 69
3.6 SEED LEACHATES 70
3.6.1 Electrical Conductivity of Seed Leachate 70
3.6.2 Soluble Sugars in Seeds and Seed Leachate 70
3.6.3 Studies on Leakage of Germination Inhibiting Metabolites from Seeds 71
3.7 ELECTRON MICROSCOPY 71
3.8 STUDIES ON PROTEOLYTIC ACTIVITY 71
3.8.1 SDS-Polyacrylamide Gel Electrophoresis of Total Seed Proteins 72
3.8.2 High Performance Liquid Chromatography 73
3.8.3 Protease Activity 73
3.8.3.1 Choice of assay conditions 73
3.8.3.2 'Azocoll' hydrolysing activity of seeds

3.9 α-AMYLASE ACTIVITY

3.9.1 Determination of Enzyme Activity in Seeds

3.9.1.1 Enzyme extraction efficiency

3.9.1.2 Inhibition of α-amylase activity by possible co-extraction of inhibitors

3.9.2 Localization of Enzyme Activity in Seeds

3.9.2.1 Substrate-film technique

3.9.2.2 Quantification of enzyme activity in different parts of the grain

3.9.3 Studies on Aleurone Responses to Exogenously Applied GA3

CHAPTER 4 EVALUATION OF SHORT SOAKING TREATMENTS FOR IMPROVING THE GERMINATION PERFORMANCE OF AGED WHEAT SEEDS

4.1 INTRODUCTION

4.2 RESULTS

4.2.1 Responses of the Three Wheat Seed Lots to Accelerated Ageing Conditions

4.2.2 The Effect of 2 or 12 h Soaking Treatments at 35°C on the Germination Performance and Electrical Conductivity of Unaged and Aged Karamu 1987 Wheat Seeds

4.2.3 The Effect of 2 or 12 h Soaking Treatments at 35°C on the Germination Performance and Electrical Conductivity of Unaged and Aged 'Oroua' Seed Lots

4.2.4 Effect of Reducing the Soaking Temperature on the Efficiency of Invigoration by 2 h Soaking Treatment of Karamu 1987

4.2.5 Effect of Washing Seeds in Water and/or Germinating Over a Seed Leachate Media on the Germination Performance of Four Wheat Cultivars
DISCUSSION

4.3.1 Responses of the Three Seed Lots to Accelerated Ageing Conditions

4.3.2 Responses of Seeds to Short Soaking Treatments

4.3.3 Evaluation of the Suggestion of Physiological Repair (Goldsworthy et al., 1982) During Short Soaking Treatments

CHAPTER 5 EVALUATION OF DIFFERENT PRE-SOWING HYDRATION TREATMENTS FOR THE PROTECTION OR REPAIR OF STORED WHEAT SEEDS cv. KARAMU

5.1 INTRODUCTION

5.2 RESULTS

5.2.1 The Effects of Accelerated Ageing or Controlled Deterioration on Karamu 1988 Wheat Seeds

5.2.2 The Effects of Different Pre-sowing Hydration Treatments on Unaged Karamu 1988 Wheat Seeds and Interactions with Ageing

5.2.2.1 Effect on unaged seeds

5.2.2.2 The effects of pre-sowing hydration treatments applied to seeds before exposure to ageing conditions

5.2.2.3 The effects of pre-sowing hydration treatments applied to seeds after exposure to ageing conditions

5.3 DISCUSSION

5.3.1 Responses of Wheat Seeds cv. Karamu, to Different Storage Regimes

5.3.2 Effect of Different Hydration Treatments on Unaged and Deteriorated Seeds, cv. Karamu

5.3.3 Responses of Wheat Seeds, cv. Karamu, to Hydration Treatments given as Protection before Storage
CHAPTER 6 CHANGES IN SEED PROTEINS AND PROTEOLYTIC ACTIVITY DURING AGEING OR PRE-SOWING TREATMENT OF WHEAT SEEDS

6.1 INTRODUCTION 133
6.2 RESULTS 135
6.2.1 Scanning Electron Microscope Studies of the Starchy Endosperm 135
6.2.2 Studies on Qualitative Changes in Seed proteins Using SDS-Polyacrylamide gel Electrophoresis 135
6.2.3 Studies on Quantitative Changes in Seed Proteins Using High Performance Liquid Chromatography 141
6.2.4 Changes in the Azocoll Hydrolysing Activity of Seeds in Response to Ageing or Pre-sowing Treatment of Seeds 144
6.3 DISCUSSION 144
6.3.1 Changes in Protease Activity (Azocoll Substrate) and Seed Proteins During Ageing of Wheat Seeds 144
6.3.2 Changes in Seed Proteins and Protease Activity (Azocoll Substrate) Due to Pre-sowing Treatment of Unaged and Aged Seeds 144
6.3.3 Effects on Seed Proteins and Protease Activity Due to Treatment of Seeds Prior to Storage 146

CHAPTER 7 THE EFFECTS OF AGEING AND PRE-SOWING TREATMENT ON THE α-AMYLASE ACTIVITY OF WHEAT SEEDS

7.1 INTRODUCTION 148
7.2 RESULTS 150
7.2.1 The Effect of Pre-sowing Treatment on the α-amylase Activity of Unaged Wheat Seeds 150
7.2.1.1 Changes in α-amylase activity in response to pre-sowing treatment 150
7.2.1.2 Localization of α-amylase activity in untreated and treated seeds

7.2.2 The Effect of Ageing and pre-sowing Treatment on α-amylase Activity

7.2.2.1 Pre-sowing treatment induced changes in α-amylase activity of slow aged seeds (treatment after ageing)

7.2.2.2 Changes in α-amylase activity due to pre-sowing treatment of rapidly aged seeds (treatment after ageing)

7.2.2.3 Changes in the α-amylase activity during storage of treated seeds (treatment before ageing)

7.2.3 The Effect of Ageing or Treatment Related Changes in α-amylase Activity of Seeds on Stored Starch

7.2.3.1 Electron microscopic study of the starchy endosperm

7.2.3.2 Changes in soluble sugar levels in seed or seed leachate

7.2.4 The Effect of Ageing and Pre-sowing Treatment on the Responses of Aleurone Tissue (endosperm halves) to Exogenous Application of Gibberellic Acid

7.2.4.1 The effect of ageing

7.2.4.2 The effect of pre-sowing treatment on the aleurone tissue of unaged or slow aged seeds

7.2.4.3 Responses of aleurone tissue from aged or treated seeds to changes in GA₃ concentration

7.3 DISCUSSION

7.3.1 Effects of Ageing and Pre-sowing Treatment on the α-amylase Activity of Wheat Seeds

7.3.1.1 Effect of ageing on base levels of activity

7.3.1.2 Effect of pre-sowing treatment on the α-amylase activity of unaged and aged seeds

7.3.1.3 Age-induced reduction of aleurone tissue sensitivity to GA₃ and the effects of pre-sowing treatment
7.3.2 The Relationship Between Changes in α-amylase Activity and Germination Performance of Wheat Seeds 187

7.3.3 Effects of Ageing or Treatment Related Changes in α-amylase Activity on Stored Starch 187

7.3.4 Possible Mechanisms of Changes in α-amylase Metabolism During Ageing or Pre-sowing Treatment 189

CHAPTER 8 GENERAL DISCUSSION 192

8.1 EVALUATION OF KEY FINDINGS AND LIMITATIONS OF THIS STUDY 192

8.1.1 Pre-sowing Treatments for Protection or Invigoration of Wheat Seeds 192

8.1.2 Relationship Between α-amylase or Protease Activity and Germination Performance in Wheat Seeds 194

8.1.2.1 Relationship between α-amylase activity and germination performance 194

8.1.2.2 Relationship between protease activity and germination performance 197

8.1.2.3 Comparison of the effects of PEG treatment with those of sprouting damage 197

8.1.3 Effects of High vs Lower Moisture Ageing in Wheat Seeds 198

8.1.4 Limitations of this Study 199

8.2 SCOPE FOR FUTURE WORK 201

8.2.1 Metabolism of Deterioration in Wheat Seeds 202

8.2.2 The Role of Plant Growth Regulators and Tissue Sensitivity in Seed Ageing 203

8.2.2.1 Stability of gibberellins and α-amylase mRNA in wheat seeds 204

8.2.2.2 Physiological studies on sprouting damage in seeds 204

8.2.3 Commercial Utilization of Pre-sowing Treatments 205

BIBLIOGRAPHY 206

APPENDICES
LIST OF TABLES

Tab. 2.1	Different names used in the literature to describe the three groups of α-amylases known to occur at different stages of wheat grain development, maturation and germination
Tab. 2.2	Examples of accelerated ageing conditions used for wheat seeds, their effects on germination performance and the observed physiological/biochemical changes
Tab. 2.3	Examples of controlled deterioration conditions used for wheat seeds and their effects on germination performance
Tab. 2.4	The effects of short imbibition treatments on wheat grains
Tab. 2.5	The effects of longer hydration treatments on wheat grains
Tab. 3.1	Details of the different seed lots used in the experiments
Tab. 3.2	Changes in seed moisture content during accelerated ageing or controlled deterioration of wheat seeds (cv. Karamu, 1988)
Tab. 3.3	Comparison of seed moisture levels attained by unaged and differently aged seeds of cv. Karamu during short and longer hydration treatments
Tab. 3.4	Efficiency of α-amylase extraction determined by following the normal extraction procedure by 3 subsequent extractions of the pellet
Tab. 3.5 The effect of wheat seed extracts from differently aged or treated seeds on the activity of added barley malt α-amylase

Tab. 4.1 The effect of soaking temperature on times to 50% radicle emergence at 10°C of unaged and artificially aged Karamu 1987 seeds

Tab. 4.2 The effect of washing seeds for 2 h in water and/or germination over seed leachate on times to 50% radicle emergence of wheat seeds at 10°C

Tab. 4.3 Effect of washing seeds and/or germination in seed leachate on the mean root length of an Australian cultivar germinated at 10°C

Tab. 5.1 Effects of different hydration treatments on the vigour and electrical conductivity of unaged wheat seeds, cv. Karamu

Tab. 5.2 The effect of different pre-storage hydration treatments on the median radicle emergence times of wheat seeds cv. Karamu stored at 35°C and 15% SMC

Tab. 5.3 Changes in the electrical conductivity of leachate from wheat seeds, cv. Karamu, subjected to different hydration treatments after storage under two different ageing regimes

Tab. 6.1 Changes in the azocoll hydrolysing activity due to ageing and/or pre-sowing treatment of wheat seeds

Tab. 7.1 The effect of pre-sowing treatment on the α-amylase activity and germination performance of unaged seeds
Tab. 7.2 Localization of α-amylase activity in unaged wheat seeds, cv. Karamu, with or without pre-sowing treatment 156

Tab. 7.3 The effect of pre-sowing treatment on germination performance of unaged and slow aged seeds 162

Tab. 7.4 The effect of pre-sowing treatment on germination performance of unaged and rapidly aged seeds 165

Tab. 7.5 Effects of slow ageing on the germination performance of wheat seeds subjected to pre-sowing treatment prior to storage 169

Tab. 7.6 Effects of rapid ageing on the germination performance of wheat seeds subjected to pre-sowing treatment prior to storage 170

Tab. 7.7 Changes in α-amylase activity during germination of seeds subjected to pre-sowing treatment prior to rapid ageing 171

Tab. 7.8 Changes in soluble sugar concentration of seeds or in seed leachate as influenced by pre-sowing treatment given prior to storage (slow ageing at 35°C, 15% SMC) 175
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The longitudinal (a) and transverse (central plane) (b) sections of wheat seeds showing some important seed tissues</td>
<td>7</td>
</tr>
<tr>
<td>3.1</td>
<td>Effect of different hydration times, in two pre-sowing treatment methods, on times to 50% radicle emergence of wheat seeds</td>
<td>66</td>
</tr>
<tr>
<td>3.2</td>
<td>The effect of different pH levels on the 'Azocoll' hydrolysing activity of extracts from unaged-untreated wheat seeds</td>
<td>75</td>
</tr>
<tr>
<td>3.3</td>
<td>Time-course of 'Azocoll' hydrolysing activity of extracts from unaged-untreated wheat seeds at pH 6.8</td>
<td>75</td>
</tr>
<tr>
<td>4.1</td>
<td>The effect of accelerated ageing on the normal germination of Karamu 1987, Oroua 1987 and Oroua 1985 seeds germinated at 10°C</td>
<td>85</td>
</tr>
<tr>
<td>4.2</td>
<td>The effect of accelerated aging on times to 50% radicle emergence of Karamu 1987, Oroua 1987 and Oroua 1985 seed lots germinated at 10°C</td>
<td>86</td>
</tr>
<tr>
<td>4.3</td>
<td>The effect of short soaking and drying treatments on the radicle emergence capacity of unaged and rapidly aged Karamu 1987 wheat seeds germinated at 10°C</td>
<td>88</td>
</tr>
<tr>
<td>4.4</td>
<td>The effect of short soaking and drying treatments on times to 50% radicle emergence of unaged and rapidly aged Karamu 1987 wheat seeds germinated at 10°C</td>
<td>89</td>
</tr>
<tr>
<td>4.5</td>
<td>The effect of short soaking and drying treatments on the normal germination capacity of unaged and rapidly aged Oroua 1987 wheat seeds at 10°C</td>
<td>91</td>
</tr>
</tbody>
</table>
Fig. 4.6 The effect of short soaking and drying treatments on the normal germination capacity of unaged and rapidly aged Oroua 1985 wheat seeds at 20°C

Fig. 5.1 Final percentage radicle emergence and normal germination of wheat seeds, cv. Karamu at 10°C after exposure to two different storage regimes

Fig. 5.2 Times to 50% radicle emergence of wheat seeds, cv. Karamu at 10°C after exposure to two different storage regimes

Fig. 5.3 The effect of accelerated ageing on mean dry weights of shoots and roots of normal seedlings germinated at 10°C

Fig. 5.4 Electrical conductivity of seed leachate from wheat seeds, cv. Karamu stored under two different ageing regimes

Fig. 5.5 The effect of pre-storage hydration treatments on percentage radicle emergence of wheat seeds, cv. Karamu, stored under two different ageing regimes

Fig. 5.6 The effect of pre-storage hydration treatments on mean root dry weights of normal seedlings from wheat seeds, cv. Karamu, stored under two different ageing regimes

Fig. 5.7 The effect of pre-storage hydration treatments on the electrical conductivity of seed leachate from wheat seeds, cv. Karamu, stored under two different ageing regimes
Fig. 5.8 The effect of different post-storage hydration treatments on the median radicle emergence time of wheat seeds, cv. Karamu, held under two different ageing regimes

Fig. 5.9 Root and shoot dry weights of normal wheat seedlings cv. Karamu, grown from seeds aged at 15% SMC, 35°C for up to 50 d and the effect of post-ageing treatments

Fig. 5.10 The effect of different post-storage hydration treatments on the dry weights of shoot and roots of normal seedlings from seeds aged at 40°C and 100% RH for up to 6 days

Fig. 5.11 The relationship between electrical conductivity and times to 50% radicle emergence as a function of controlled deterioration at 35°C and 15% SMC

Fig. 7.1 Changes in seed moisture content and α-amylase activity during pre-sowing treatment of unaged wheat seeds, cv. Karamu

Fig. 7.2 α-amylase activity from different parts of unaged seeds before or after pre-sowing treatment

Fig. 7.3 Time course of α-amylase production by unaged and 40 d slow aged seeds during germination at 10°C

Fig. 7.4 The effect of pre-sowing treatment (after ageing) on the α-amylase activity of slow aged seeds (ungerminated)

Fig. 7.5 The effect of pre-sowing treatment (after ageing) on the ability of slow aged seeds to produce α-amylase during germination
Fig. 7.6 The effect of pre-sowing treatment (after ageing) on the α-amylase activity of rapidly aged seeds (ungerminated)

Fig. 7.7 The effect of pre-sowing treatment (after ageing) on the ability of rapidly aged seeds to produce α-amylase during germination

Fig. 7.8 Changes in the α-amylase activity of wheat seeds which had been subjected to pre-sowing treatment before storage under slow ageing conditions

Fig. 7.9 Changes in the α-amylase activity of wheat seeds which had been subjected to pre-sowing treatment before storage under rapid ageing conditions

Fig. 7.10 Time-course of α-amylase production, by endosperm halves cut from unaged and 40 d slow aged seeds, in response to exogenous application of GA$_3$

Fig. 7.11 Time-course of α-amylase production by endosperm halves cut from unaged seeds, with or without pre-sowing treatment prior to dissection, in response to exogenous application of GA$_3$

Fig. 7.12 Time-course of α-amylase production by endosperm halves cut from 40 d slow aged seeds, with or without pre-sowing treatment prior to dissection, in response to exogenous application of GA$_3$

Fig. 7.13 α-amylase production by endosperm halves cut from unaged and 40 d slow aged seeds in response to changes in the concentration of GA$_3$
Fig. 7.14 α-amylase production by endosperm halves cut from treated or untreated, unaged seeds (Fig. 7.14A) and from treated or untreated, 40 d slow aged seeds (Fig. 7.14B), in response to changes in the concentration of GA3.
LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Scanning electron micrographs of the starchy endosperm of unaged and aged wheat seeds</td>
<td>137</td>
</tr>
<tr>
<td>6.2</td>
<td>Scanning electron micrographs of the starchy endosperm of wheat seeds subjected to pre-sowing treatment before or after storage</td>
<td>139</td>
</tr>
<tr>
<td>6.3</td>
<td>SDS-PAGE of total seed proteins using 7.5% gel and a dual staining process (Silver stain-Coomassie blue). Changes in protein banding patterns as influenced by ageing and/or pre-sowing treatment</td>
<td>140</td>
</tr>
<tr>
<td>7.1</td>
<td>Starch agar plates showing localization of α-amylase activity in wheat seeds subjected to pre-sowing treatment</td>
<td>154</td>
</tr>
<tr>
<td>7.2</td>
<td>Scanning electron micrographs of the starchy endosperm of wheat seeds subjected to pre-sowing treatment before or after storage</td>
<td>173</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

Appendix 1 Scanning electron microscopic studies of the starchy endosperm

Appendix 2 Method for HPLC analysis of seed proteins

Appendix 3 Quantitative changes in four HMW glutenin subunits as affected by ageing and/or pre-sowing treatment of wheat seeds

Appendix 4 Quantitative changes in different seed protein fractions due to storage of treated wheat seeds

Appendix 5 Effect of pre-sowing treatment of wheat seeds, cv. Karamu, prior to storage on the baking performance of flour.
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>accelerated ageing</td>
</tr>
<tr>
<td>ABA</td>
<td>abscisic acid</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>CD</td>
<td>controlled deterioration</td>
</tr>
<tr>
<td>cv</td>
<td>cultivar</td>
</tr>
<tr>
<td>d</td>
<td>days</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>dwt</td>
<td>dry weight</td>
</tr>
<tr>
<td>EC</td>
<td>electrical conductivity</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>Fig</td>
<td>figure</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>GA</td>
<td>gibberellic acid</td>
</tr>
<tr>
<td>GADA</td>
<td>glutamic acid decarboxylase activity</td>
</tr>
<tr>
<td>h</td>
<td>hours</td>
</tr>
<tr>
<td>HMW</td>
<td>high molecular weight</td>
</tr>
<tr>
<td>HPLC</td>
<td>high-performance liquid chromatography</td>
</tr>
<tr>
<td>ISTA</td>
<td>International Seed Testing Association</td>
</tr>
<tr>
<td>IUPAC-IUB</td>
<td>International union of pure and applied chemistry and the International union of biochemistry</td>
</tr>
<tr>
<td>kD</td>
<td>kilo Dalton</td>
</tr>
<tr>
<td>LSD</td>
<td>least significant difference</td>
</tr>
<tr>
<td>M</td>
<td>molar</td>
</tr>
<tr>
<td>ME</td>
<td>moisture equilibration</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>mM</td>
<td>millimolar</td>
</tr>
<tr>
<td>MPa</td>
<td>megapascal</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>mwt</td>
<td>molecular weight</td>
</tr>
<tr>
<td>nm</td>
<td>nanometer</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>p</td>
<td>probability of non occurrence of the event</td>
</tr>
<tr>
<td>PEG</td>
<td>polyethylene glycol</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>PGR</td>
<td>plant growth regulator</td>
</tr>
<tr>
<td>Poly(A)$^+$ RNA</td>
<td>polyadenylated RNA</td>
</tr>
<tr>
<td>PST</td>
<td>pre-sowing treatment</td>
</tr>
<tr>
<td>RH</td>
<td>relative humidity</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>sodium dodecyl sulphate-polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>Sec</td>
<td>section</td>
</tr>
<tr>
<td>SH</td>
<td>sulfhydryl</td>
</tr>
<tr>
<td>SMC</td>
<td>seed moisture content</td>
</tr>
<tr>
<td>SE/SEM</td>
<td>standard error of mean</td>
</tr>
<tr>
<td>T50</td>
<td>time to 50% radicle emergence</td>
</tr>
<tr>
<td>tab</td>
<td>table</td>
</tr>
<tr>
<td>v/v</td>
<td>volume/volume</td>
</tr>
<tr>
<td>w/v</td>
<td>weight/volume</td>
</tr>
<tr>
<td>μS</td>
<td>microsiemen</td>
</tr>
<tr>
<td>α</td>
<td>alpha</td>
</tr>
<tr>
<td>β</td>
<td>beta</td>
</tr>
<tr>
<td>~</td>
<td>approximately equal to</td>
</tr>
<tr>
<td><</td>
<td>less than</td>
</tr>
<tr>
<td>></td>
<td>greater than</td>
</tr>
</tbody>
</table>