Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Studies on the Material Responsible for Activity Attributed to the Glucose Tolerance Factor

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Chemistry

at Massey University

New Zealand

Peter Robin SHEPHERD

1989
Title of thesis: Studies of the Material Responsible for Activity Attributed to the Glucose Tolerance Factor.

(1) (a) I give permission for my thesis to be made available to readers in the Massey University Library under conditions determined by the Librarian.

(1) (b) I do not wish my thesis to be made available to readers without my written consent for ________ months.

(2) (a) I agree that my thesis, or a copy, may be sent to another institution under conditions determined by the Librarian.

(2) (b) I do not wish my thesis, or a copy, to be sent to another institution without my written consent for ________ months.

(3) (a) I agree that my thesis may be copied for Library use.

(3) (b) I do not wish my thesis to be copied for Library use for ________ months.

Signed

Date 23/2/89

The copyright of this thesis belongs to the author. Readers must sign their name in the space below to show that they recognise this. They are asked to add their permanent address.

NAME AND ADDRESS

P. Shephard

P. O. Box 200

Kaitaia

DATE 23/2/89

MASSEY UNIVERSITY LIBRARY
Abstract

An extract that was known to have activity attributed to the glucose tolerance factor (GTF) was isolated from brewers yeast and this was used as the starting point in attempts to isolate GTF.

The initial extract from brewers yeast was shown to be far from pure as it was separated into 15 fractions using high voltage paper electrophoresis. GTF activity was initially monitored using a simple yeast fermentation assay and the more active of these fractions were further purified using reverse phase high performance liquid chromatography. The most active fraction was anionic and contained little chromium or amino acid material although mass spectroscopy revealed the presence of adenine. However the exact nature of the material remained elusive.

Due to doubts about the specificity of the simple yeast assay a modified version of the yeast assay was investigated which measured the ability of the sample to stimulate the metabolism of yeast cells above the level that was accounted for by cell proliferation. This assay were shown to be very reproducible although the most active fraction from the simple yeast assay was not active in this assay.

The low chromium rat epididymal adipocyte assay was investigated as a possible means of verifying the results of the modified yeast assay. The importance of diet as a determinant of whether adipocytes would respond to GTF was investigated using 4 different diets. The adipocytes from rats fed on a torula yeast diet produced the maximum potentiations and it was found that a unique feature of these cells was a reduced ability to convert glucose to fatty acids via the glycolytic pathway. The potentiations seen in these cells were most obvious in the conversion of 1-14C-glucose to CO2 and fatty acids and it was concluded that this was due to either a potentiation of glucose transport or of acetyl-CoA carboxylase.

An extract of torula yeast was prepared in a similar method to that used to isolate the initial extract from brewers yeast. This extract showed high levels of activity in the both assay systems which indicated that these assay was not measuring GTF as originally defined. This was further indicated by the finding that no one compound was responsible for the activity in any of the assays investigated.

The chromium contained in the original yeast extract was also spread amongst many fractions and the chromium content of these fractions bore no correlation to the activity in the assay systems indicating that the active fractions were not chromium complexes.
Overall these results show that there is no unique factor responsible for the activity in the simple yeast assay and the low chromium rat adipocyte assay. Further it was concluded that none of the active material represented chromium complexes. As the activity in these assays was thought to be due to the presence of a GTF this firstly strongly argues against GTF being a chromium complex and secondly it questions the existence of GTF at all.
Acknowledgements

I have many people to thank for making this thesis possible and only a very small space to do it in. However I could start by saying;

I wish to sincerely thank my supervisors, Dr Len Blackwell and Dr Paul Buckley for their advice, guidance and above all else for their patience and understanding with regard to my unusual working hours.

I would also like to sincerely thank Professor Clint Elwood (State University of New York, Syracuse) and Emeritus Professor Eric Holdsworth (University of Tasmania) whose advice during their period of sabbatical leave here was an invaluable stimulus at a time when morale was flagging.

Thanks also to Professor Dick Hodge, Dr Graham Midwinter and Mr Dick Poll all of the Department of Chemistry and Biochemistry at Massey University for their assistance with chemical and biochemical techniques.

I would like to particularly thank my mother and father who have indirectly been major investors in this project and who, as yet, have not seen any dividends.

I would also especially like to thank my grandfather, Mr Herbert Crownshaw, for instilling in me an interest and confidence in science from early age.

Other names which spring to mind are Anna Woolf, Laurel, Marilyn, Tim Jackson, Dr Kerry Loomes, Dr Neill Haggarty, Dr David Palmer, Mark Gall, Mark Smith, Dr Rose Motion, Mr Fitzherbert, MUSA and there are no doubt many more.

Finally I would like to thank the typist, Mr Peter Shepherd, despite all the mistakes that undoubtedly remain in this thesis.
Table of Contents

ABSTRACT
ACKNOWLEDGEMENTS
TABLE OF CONTENTS
LIST OF FIGURES
LIST OF TABLES

Chapter 1 Review of Previous Investigations Related to GTF

1.1 Introduction 1
1.2 Assays for GTF 2
 1.2.1 In vivo Assays 3
 1.2.2 In vitro Assays 4
1.3 Studies of the Structure of GTF 7
 1.3.1 Attempts to Isolate GTF 7
 1.3.2 Attempts to Synthesize GTF 15
 1.3.2.1 Synthetic Chromium Complexes Investigated for GTF Activity 15
 1.3.2.2 Synthetic Chromium Complexes Not Investigated for GTF activity 18
1.4 Studies of the Function of GTF 18
 1.4.1 Does GTF Assist the Binding of Insulin to the Cell? 18
 1.4.2 Does GTF Potentiate the Transport of Glucose? 20
 1.4.3 Does GTF Act Intracellularly? 21
 1.4.4 Discussion 21
1.5 Possible Alternative Explanation for Potentiation of Insulin Action by GTF Fractions 22
 1.5.1 Insulin Potentiators 22
 1.5.2 Insulin Mimickers 23
 1.5.3 Non Specific Effects 24
 1.5.4 Trace Elements 24
 1.5.5 Discussion 26
1.6 In vivo Effects of Chromium and GTF Supplementation 27
1.7 Aims of This Thesis 33
Chapter 2 The Standard Yeast Assay for GTF

2.1 Introduction

2.2 Methods and Materials
 2.2.1 Yeast Growth and Harvesting
 2.2.2 The Yeast Assay
 2.2.3 Calculations
 2.2.4 Improvements to Methodology

2.3 Results
 2.3.1 Reproducibility of Results
 2.3.2 Effect of Ammonia on the Assay System

2.4 Discussion

Chapter 3 A New Approach to Separating GTF Fractions from Brewers Yeast

3.1 Introduction

3.2 Methods and Materials
 3.2.1 Isolation of Crude GTF Extracts
 3.2.2 Paper Electrophoresis
 3.2.3 Elution of Fractions From Paper
 3.2.4 HPLC of Electrophoresis Fractions
 3.2.5 Amino Acid Analysis of Fractions
 3.2.6 Trace Metal Analysis of Fractions
 3.2.7 Mass Spectrometry
 3.2.8 UV/Visible Absorbance Spectrum
 3.2.9 Determination of GTF Activity

3.3 Results
 3.3.1 Crude GTF Extracts
 3.3.1.1 Composition and General Characteristics
 3.3.1.2 Activity by the Yeast Assay
 3.3.2 Electrophoresis Fractions From the Crude GTF Extracts
 3.3.2.1 Naming of Fractions
 3.3.2.2 Elution of Fractions
 3.3.2.3 Activity by the Standard Yeast Assay
 3.3.2.4 Composition and General Characteristics of Electrophoresis Fractions
 3.3.3 HPLC Fractions of Electrophoresis Fractions
3.3.3.1 Isolation and Activity of HPLC Fractions
3.3.3.2 Composition and General Characteristics of HPLC Fractions of B-A-3

3.4 Discussion
3.4.1 Purification of Extracts With GTF Activity From Brewers Yeast
3.4.2 Comparison of Extracts With GTF Activity From Brewers Yeast With Similar Extracts from Torula Yeast

Chapter 4 A Modified Yeast Assay

4.1 Introduction
4.2 Materials and Methods
4.2.1 Yeast Cell Growth and Harvesting
4.2.2 Assay Protocol
4.2.3 Yeast Cell Concentration Determination
4.2.4 Calculations
4.2.5 Preparation of Chromium Complexes
4.3 Results
4.3.1 Characteristics of the Chromium Complex
4.3.2 Measurements of Differences in the Rate of Cell Proliferation
4.3.3 Investigation of the Parameters of the Modified Assay
4.3.4 Assay of Samples by the Modified Yeast Assay
4.4 Discussion

Chapter 5 Investigations of the Low Chromium Rat Epididymal Adipocyte Assay

5.1 Introduction
5.2 Methods and Materials
5.2.1 Animals and Diet
5.2.2 The Adipocyte Assay
5.2.2.1 Materials
5.2.2.2 Preparation of Isolated Adipocytes
5.2.2.3 Assay Incubation
5.2.2.4 Standard Assay Protocol
5.2.2.5 Measuring Metabolic Products
5.2.2.6 Determination of the Potentiation of Sub Optimal Insulin Concentrations
5.3 Results
 5.3.1 Standard Curve for Insulin
 5.3.2 Investigation of the Potentiation of the Action of Sub Optimal
 Insulin Concentrations on the Metabolism of Various Substrates
 to CO₂, Total Lipid, Fatty Acids and Glycerol.

5.4 Discussion
 5.4.1 Significance of Assay Results
 5.4.2 Observations About the Metabolism of Adipocytes Isolated from Rats
 on the Torula Yeast Diet
 5.4.3 Site of Action of the Material Causing Potentiation of the Adipocyte
 Assay
 5.4.4 Implications of Investigations of the Site of Action of GTF Fractions
 for the Adipocyte Assay System
 5.4.5 Implications of the Potentiation Activity Shown by the Crude Extract
 From Torula Yeast

Chapter 6 The Effect of Diet on the Response
of the Rat Epididymal Assay System to GTF

6.1 Introduction

6.2 Methods and Materials
 6.2.1 Animals and Diet
 6.2.2 Adipocyte Assay
 6.2.3 Amino Acid Analysis
 6.2.4 Trace Metal Analysis

6.3 Results
 6.3.1 Growth Rate of Rats
 6.3.2 Adipocyte Assays
 6.3.3 Amino Acid Analysis
 6.3.4 Trace Element Analysis of the Diet

6.4 Discussion
 6.4.1 Relationship Between Growth Rate and GTF Response
 6.4.2 Observations About the Metabolism of Adipocytes Isolated From Rats
 Raised on Different Diets
 6.4.3 Importance of Different Diets in the Production of Adipocytes in
 Which the Potentiations Caused by GTF Extracts Can be Observed
6.4.4 Dietary Explanations for the Different Responses Seen in Different Tissues 124
6.4.5 Conclusions 127

Chapter 7 Purification of Fractions That Cause Potentiation of the Action of Sub Optimal Amounts of Insulin in the Low Chromium Epididymal Rat Adipocyte Assay System

7.1 Introduction 129
7.2 Methods and Materials
 7.2.1 Isolation of Crude GTF Extracts 130
 7.2.2 Fractionation of Crude GTF Extracts 130
 7.2.3 Amino Acid, Trace Element and UV/Visible Spectral Analysis of Fractions 130
 7.2.4 Mass Spectrometric Analysis of Fractions 130
 7.2.5 Determinations of GTF Activity 131
7.3 Results
 7.3.1 Electrophoresis Fractions 131
 7.3.2 HPLC of Fraction B-B-I 131
 7.3.3 Amino Acid Analysis of Purified Fractions 134
 7.3.4 Chromium Analysis of Purified Fractions 138
 7.3.5 UV/Visible Spectra of Purified Fractions 138
 7.3.6 Mass Spectral Analysis of Purified Fractions 138
7.4 Discussion 143

Chapter 8 Overview
8.1 Overview 146

LIST OF ABBREVIATIONS USED 150
APPENDIX 1 151
BIBLIOGRAPHY 153
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Electrophoresis Bands of Crude GTF Extract B</td>
<td>48</td>
</tr>
<tr>
<td>3.2</td>
<td>Comparison of Electrophoretic Separation of GTF Fractions</td>
<td>50</td>
</tr>
<tr>
<td>3.3</td>
<td>HPLC Profiles of B-A-3</td>
<td>54</td>
</tr>
<tr>
<td>3.4</td>
<td>HPLC Profile of B-A-4</td>
<td>55</td>
</tr>
<tr>
<td>3.5</td>
<td>HPLC profile of B-B-4</td>
<td>55</td>
</tr>
<tr>
<td>3.6</td>
<td>Amino Acid Analysis of Hydrolysed and Unhydrolysed B-A-3-3</td>
<td>56</td>
</tr>
<tr>
<td>3.7</td>
<td>Mass Spectra of B-A-3-3</td>
<td>58</td>
</tr>
<tr>
<td>3.8</td>
<td>UV/Visible Spectra of B, B-A-3, B-A-3-3</td>
<td>60</td>
</tr>
<tr>
<td>3.9</td>
<td>UV/Visible Spectra of ATP and Adenosine</td>
<td>61</td>
</tr>
<tr>
<td>3.10</td>
<td>UV/Visible Spectra of NAD and Nicotinic Acid</td>
<td>62</td>
</tr>
<tr>
<td>4.1</td>
<td>Cell Proliferation Due to Crude GTF Extract B</td>
<td>73</td>
</tr>
<tr>
<td>4.2</td>
<td>Cell Proliferation Caused by Arginine</td>
<td>73</td>
</tr>
<tr>
<td>4.3</td>
<td>Cell Proliferation Caused by B-A-3</td>
<td>74</td>
</tr>
<tr>
<td>4.4</td>
<td>Cell proliferation Caused by the Chromium Complex</td>
<td>74</td>
</tr>
<tr>
<td>4.5</td>
<td>Investigation of Cellular CO₂ Evolution With Time in the Yeast Assay</td>
<td>75</td>
</tr>
<tr>
<td>4.6</td>
<td>Modified Yeast Assay of Crude GTF Extract B</td>
<td>77</td>
</tr>
<tr>
<td>4.7</td>
<td>Modified Yeast Assay of B-A-3</td>
<td>78</td>
</tr>
<tr>
<td>4.8</td>
<td>Modified Yeast Assay of Arginine</td>
<td>79</td>
</tr>
<tr>
<td>4.9</td>
<td>Modified Yeast Assay of the Chromium Complex</td>
<td>78</td>
</tr>
<tr>
<td>5.1</td>
<td>Photographs of Rat Housing</td>
<td>85</td>
</tr>
<tr>
<td>5.2</td>
<td>Arrangement of Incubation Flask</td>
<td>89</td>
</tr>
<tr>
<td>5.3</td>
<td>Calculation of the Potentiation of Sub Optimal Insulin Action by GTF Samples</td>
<td>92</td>
</tr>
<tr>
<td>5.4</td>
<td>Standard Curve for the Action of Insulin on the Metabolism of D-[U-14C]-glucose</td>
<td>93</td>
</tr>
<tr>
<td>5.5</td>
<td>Effects of Crude GTF Extracts B & T on the Insulin Stimulated Conversion of D-[U-14C]-glucose to 14CO₂ and 14C-Fatty Acids</td>
<td>96</td>
</tr>
<tr>
<td>5.6</td>
<td>Effects of Crude GTF Extracts B & T on the Insulin Stimulated Metabolism of D-[1-14C]-glucose to 14CO₂ and 14C-Fatty Acids</td>
<td>97</td>
</tr>
<tr>
<td>5.7</td>
<td>Effects of Crude GTF Extract B on the Insulin Stimulated Conversion of D-[U-14C]-glucose, D-[1-14C]-glucose, D-[6-14C]-glucose and 14C-acetate to 14CO₂, 14C-Total Lipid, 14C-Fatty Acids and 14C-Glycerol in Adipocytes Isolated From Rats on the 30% Torula Yeast Diet</td>
<td>98</td>
</tr>
<tr>
<td>5.8</td>
<td>Schematic Representation of Metabolism of Glucose to Fatty Acids in Adipocytes</td>
<td>102</td>
</tr>
<tr>
<td>6.1</td>
<td>Comparison of Growth Rates of Rats on Different Diets</td>
<td>114</td>
</tr>
</tbody>
</table>
6.2 Effects of Crude GTF Extract B on the Insulin Stimulated Conversion of D-[U-14C]-glucose, D-[1-14C]-glucose and D-[6-14C]-glucose into 14CO\textsubscript{2}, 14C-Total Lipid, 14C-Fatty Acids and 14C-Glycerol in Adipocytes Isolated From Rats on the Normal Diet 117

6.3 Effects of Crude GTF Extract B on the Insulin Stimulated Conversion of D-[U-14C]-glucose, D-[1-14C]-glucose and D-[6-14C]-glucose into 14CO\textsubscript{2}, 14C-Total Lipid, 14C-Fatty Acids and 14C-Glycerol in Adipocytes Isolated From Rats on the 30% Brewers Yeast Diet 119

6.4 Effects of Crude GTF Extract B on the Insulin Stimulated Conversion of D-[U-14C]-glucose, D-[1-14C]-glucose and D-[6-14C]-glucose into 14CO\textsubscript{2}, 14C-Total Lipid, 14C-Fatty Acids and 14C-Glycerol in Adipocytes Isolated From Rats on the 30% Casein Diet 121

7.1 Effect of the Electrophoresis Fractions of Crude GTF B on the Insulin Stimulated Conversion of D-[U-14C]-glucose to 14CO\textsubscript{2} in Adipocytes of Rats Raised on the Torula Yeast Diet 132

7.2 Effects of the Electrophoresis Fractions of Crude GTF B on the Insulin Stimulated Conversion of D-[1-14C]-glucose to 14CO\textsubscript{2} and 14C-Fatty Acids in Adipocytes of Rats Raised on the Torula Yeast Diet 133

7.3 HPLC Profiles of B-B-I and B-B-I-1 135

7.4 Effects of the HPLC Fractions of B-B-I on the Insulin Stimulated Conversion of D-[U-14C]-glucose to 14CO\textsubscript{2} and 14C-Fatty Acids in Adipocytes of Rats Raised on the Torula Yeast Diet 136

7.5 Effects of the HPLC Fractions of B-B-I on the Insulin Stimulated Conversion of D-[1-14C]-glucose to 14CO\textsubscript{2} and 14C-Fatty Acids in Adipocytes of Rats Raised on the Torula Yeast Diet 137

7.6 Mass Spectra of B-B-I-1 139

7.7 Effects of the Fraction B-B-I-1-2 on the Insulin Stimulated Conversion of D-[U-14C]-glucose to 14CO\textsubscript{2} and 14C-Fatty Acids in Adipocytes of Rats Raised on the Torula Yeast Diet 140

7.7 Effects of the Fraction B-B-I-1-2 on the Insulin Stimulated Conversion of D-[1-14C]-glucose to 14CO\textsubscript{2} and 14C-Fatty Acids in Adipocytes of Rats Raised on the Torula Yeast Diet 141

7.9 UV/Visible Spectra of B-I and B-B-I-1 142
List of Tables

1.1 Effect of Chromium and GTF Supplementation in Humans 28
1.2 Effect of Chromium and GTF Supplementation on Animals 31
2.1 Composition of Mineral and Essential Vitamin Solutions 35
2.2 Interassay Variation of Assays With Arginine 39
2.3 Effect of Ammonia on the Standard Yeast Assay 39
3.1 Amino Acid Composition of Crude GTF Extracts B & T and of the Yeasts From Which They Were Extracted 45
3.2 Trace Element Composition of Crude GTF Extracts B & T 46
3.3 Activity of Crude GTF Extracts in the Standard Yeast Assay 47
3.4 Comparison of Various Solvents for Eluting Electrophoresis Fractions, Isolated From Crude GTF Extract of Brewers Yeast, From Paper 51
3.5 Activity in the Standard Yeast Assay of the Fractions Separated by Electrophoresis 49
3.6 Amino Acid Analysis of the Most Active Electrophoresis Fractions from Crude GTF Fraction B 52
3.7 Chromium Content of Electrophoresis Fractions 52
3.8 Characteristics of HPLC Fractions of B-A-3 57
3.9 Activity of Various Compounds Implicated in the Makeup of B-A-3-3 57
3.10 Intra Assay Comparison of Active Electrophoresis Fractions 64
4.1 Enhancement of the Rate of Cellular CO2 Evolution in the Modified Yeast Assay 76
5.1 Potentiation of the Action of a Sub Optimal Insulin Concentration by Crude GTF Fractions 94
5.2 Potentiation of the Action of a Sub Optimal Insulin Concentration by Crude GTF Fraction B 95
6.1 Potentiation, by Crude GTF Extract B, of the Action of Sub Optimal Insulin Concentrations in Adipocytes of Rats Raised on Different Diets 115
6.2 Amino Acid Analysis of Diets 116
6.3 Trace Element Composition of Diets as Determined by ICP 116
6.4 Estimation of Fibre Content of Rat Diets 125
7.1 Potentiation of the Action of Sub Optimal Concentrations of Insulin by Electrophoresis Fractions of Crude GTF Extract B 132
7.2 Potentiation of the Action of Sub Optimal Concentrations of Insulin by HPLC Fractions of B-B-I 134
7.3 Potentiation of the Action of Sub Optimal Concentrations of Insulin by Fraction B-B-I-2 138