LYOTROPIC MESOMORPHISM IN MICELLAR LIQUID CRYSTALS FORMED FROM AQUEOUS SOLUTIONS OF THE SALTS OF PENTADecaFLUOROoCTANOIC ACID.

Mark Hamish Smith

Department of Chemistry and Biochemistry

Massey University

New Zealand.

A thesis presented in accordance with the requirements for the degree of Doctor of Philosophy.

November 1990.
Massey University Library: Thesis Copyright Form

Title of thesis: Mesomorphism in micelles of sodium octadecyl sulphate
formed from aqueous solution of the salt of sodium octanoic acid.

(1) (a) I give permission for my thesis to be made available to readers in the Massey University Library under conditions determined by the Librarian.

(b) I do not wish my thesis to be made available to readers without my written consent for ______ months.

(2) (a) I agree that my thesis, or a copy, may be sent to another institution under conditions determined by the Librarian.

(b) I do not wish my thesis, or a copy, to be sent to another institution without my written consent for ______ months.

(3) (a) I agree that my thesis may be copied for Library use.

(b) I do not wish my thesis to be copied for Library use for ______ months.

Signed __

Date __________

The copyright of this thesis belongs to the author. Readers must sign their names in the space below to show that they recognise this. They are asked to add their permanent address.

NAME AND ADDRESS __

__

DATE

__

__

__
ABSTRACT

High resolution phase diagrams for the caesium pentadecafluorooctanoate (CsPFO)/water and the ammonium pentadecafluorooctanoate (APFO)/heavy water systems have been determined, together with a partial phase diagram, in the liquid crystal phase transition regime, for the APFO/water system. In all three systems a discoidal nematic (N^\parallel) phase occurs over an extensive concentration and temperature range. This phase is intermediate to an isotropic micellar solution phase (I), to higher temperatures/lower concentrations and a micellar lamellar phase (L_D) to lower temperatures/higher concentrations. The distinctions between the phase diagrams lies in the temperature and composition of the phase transition. A variety of techniques have been used to delineate these temperatures including 2H, 14N and 133Cs NMR spectroscopy, DSC and electrical conductivity. The NMR method is the main technique and 133Cs NMR in particular has proved to be an excellent nucleus for the precise detection of phase transition temperatures. It is the first time 133Cs NMR has been used for this purpose. The NMR measurements show a preference for counterion binding to sites of lowest surface curvature.

Isotope effects are shown by both the CsPFO and the APFO systems. The overall effect on substituting heavy water for water is to raise the phase transition temperatures, by about 3 K at a volume fraction amphiphile $\phi = 0.1$ and by about 1 K at $\phi = 0.4$. The isotope effect is caused by an increase in micelle size in heavy water as a result of an enhanced hydrophobic effect. Isotope effects are also shown in a study undertaken on the thermodynamics of micellization in the CsPFO/water system. The cmc's in heavy water at a given temperature occur at higher concentrations than those in water, a result which is opposite to the isotope effect in hydrocarbon surfactant systems. It is shown that small changes in both the fraction of bound ions and the aggregation numbers between the two systems have a profound effect on the calculated thermodynamic parameters. A full understanding of the thermodynamics of micellization would require precise determinations of these quantities.
The effect of substituting Cs$^+$ ions for NH$_4^+$ ions is to raise the temperature of the liquid crystal phase transitions by about 23 K at a given volume fraction. The reason for this is that the micelles in the APFO/water system are smaller than those in the CsPFO/water system for any given volume fraction and temperature. This is probably due to the greater ability of the Cs$^+$ ions to reduce the electrostatic repulsion between the anionic head groups in the micelle which leads to a reduction in micelle surface curvature and an increase in micelle size.

2H NMR has been used to monitor magnetic-field induced order in an isotropic solution of discoidal micelles of CsPFO on approaching a transition to a nematic phase. The field induced order is revealed as a quadrupole splitting of the isotropic signal which is first observed, at the field strength of the experiment (6.34 T), at a temperature approximately 80 mK higher than the upper boundary to the transition (T_{IN}). The splitting increases rapidly with decreasing temperature and diverges as a hypothetical second-order transition to the nematic phase is approached at T^*. The divergence follows a $(T_{IN}-T^*)^{-1}$ dependence as predicted by molecular field theory. At T_{IN} the divergence is quenched and in the biphasic region the quadrupole splitting is constant. This facilitates the precise determination of T_{IN} and $(T_{IN}-T^*)$. This latter quantity, which was measured over the surfactant weight fraction w range of $w = 0.15$ to $w = 0.35$, approaches zero (i.e becomes second order) only at infinite dilution. $T_{IN}-T_{NI}$, which is more easily measured than $T_{IN}-T^*$ is shown to be an alternative measure of the strength of the isotropic to nematic transition.
TABLE OF CONTENTS

CHAPTER 1

Introduction .. 1

Self-Organizing Fluids .. 1

1.1 Liquid Crystals ... 2

1.2 Thermotropic Liquid Crystals .. 2

1.2.1 Calamitic Phase Structures ... 3

1.2.1.1 Nematic Phase .. 3

1.2.1.2 Smectic Phase .. 8

1.3 Lyotropic Liquid Crystals ... 8

CHAPTER 2

Materials and Methods .. 25

2.1 Materials .. 25

2.1.1 Chemicals ... 25

2.1.2 NMR Sample Preparation .. 26

2.1.3 DSC Sample Preparation .. 27

2.1.4 Conductivity Sample Preparation ... 28

2.2 Instrumentation .. 28

2.2.1 Temperature Control .. 28

2.2.2 Temperature Measurement ... 35

2.2.3 Nuclear Magnetic Resonance ... 35

2.2.4 Differential Scanning Calorimetry ... 40

2.2.5 Conductivity .. 40
CHAPTER 3

NMR Theory .. 42

3.1 Quadrupole Splitting in Anisotropic Media .. 43
 3.1.1 Deuterium Quadrupole Splitting ... 48
 3.1.2 Caesium Quadrupole Splitting .. 49
 3.1.3 Nitrogen Quadrupole Splitting .. 50

3.3 Chemical Shift Anisotropies ... 50

3.4 Appearance of NMR Spectra ... 51
 3.4.1 Appearance of 133Cs Spectra ... 51
 3.4.2 Appearance of $I=1$ Spectra ... 54

CHAPTER 4

Phase Diagram for the System CsPFO/H$_2$O .. 57

4.1 Features of the Phase Diagram ... 60

4.2 Determination of Liquid Crystal Phase Boundaries .. 63
 4.2.1 Isotropic to Nematic-Isotropic Biphasic Region .. 65
 4.2.2 Nematic-Isotropic to Nematic ... 69
 4.2.3 Nematic to Lamellar .. 72
 4.2.3.1 Transitions for samples with $w > T_{cp}$... 73
 4.2.3.2 Transitions for samples with $w < T_{cp}$... 76
 4.2.4 Location of T_{cp} .. 78
 4.2.5 Isotropic to Lamellar-Isotropic Biphasic Region 79
 4.2.6 Lamellar to Lamellar-Isotropic Biphasic Region 81
 4.2.7 Determination of $T_p(I,N,L)$.. 83
4.3 Determination of the Solubility Curve

4.3.1 Dilute Region

4.3.2 Concentrated Region

4.3.3 The Krafft Point

4.4 Testing the Validity of the NMR Model

4.4.1 The Origin of the Quadrupole Splittings

4.4.2 The Origin of the Chemical Shift Anisotropy

4.4.3 The Origin of the Quadrupole Couplings

CHAPTER 5

Field Induced Order

5.1 Introduction

5.2 Pretransitional Ordering in CsPFO/2H2O

5.2.1 NMR and Pretransitional Behaviour in CsPFO/2H2O

5.2.3 Origin of the Pretransitional Quadrupole Splitting

5.3 Discussion

5.3.1 The Dependence of the Field Induced Quadrupole Splitting on B

5.3.2 The Strength of the Isotropic to Nematic Transition

5.3.3 The Concentration Dependence of the Magnitude of the Deuterium Quadrupole Splitting

5.3.4 The Slope of the Inverse Quadrupole Splitting vs Temperature

5.3.5 Concluding Comments

CHAPTER 6
NH₄PFO Phase Diagram ... 131

6.1 Features of the NH₄PFO/Heavy Water Phase Diagram 135

6.2 Features of the Partial NH₄PFO/Water Phase Diagram 138

6.3 Testing the NMR Model .. 140

6.3.1 The Origin of the Temperature Dependence of the Quadrupolar Splittings of the Deuterons of Heavy Water and of the Deuterated Ammonium Ion in the NH₄PFO/Heavy Water System .. 140

CHAPTER 7

Thermodynamics of Micellization .. 152

7.1 Determination of Critical Micelle Concentration 152

7.2 Calculation of Thermodynamic Parameters 156

7.3 Comparison with Previous CMC Studies .. 167

7.3.1 Comparison of CMC and CMC versus Temperature
Behaviour ... 167

7.3.2 Comparison of Thermodynamic Parameters 168

7.3.2.1 Free Energy of Micelle Formation .. 168

7.3.2.2 Enthalpy of Micelle Formation ... 169

7.3.2.3 Entropy of Micelle Formation ... 169

7.4 The Isotope Effect on Micellization .. 170

7.4.1 CsPFO in Water and Heavy Water ... 170

CHAPTER 8

Discussion .. 174

8.1 Isotope Effects on the CsPFO/Water Phase Diagram 174
8.2 Isotope Effects on the NH₄PFO/Water Phase Diagram..................... 184
8.3 Influence of the Counter-Ion on Phase Behaviour 186
8.4 The Strength of the Isotropic to Nematic Transition 189
8.5 Concluding Comments .. 191
Abbreviation used in this Thesis

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>magnetic field</td>
</tr>
<tr>
<td>β_A</td>
<td>fraction of ammonium ions bound to the surface</td>
</tr>
<tr>
<td>β_{Cs}</td>
<td>fraction of Cs$^+$ ions bound to the surface of the micelle</td>
</tr>
<tr>
<td>χ</td>
<td>nuclear quadrupole coupling constant</td>
</tr>
<tr>
<td>cmc</td>
<td>critical micelle concentration</td>
</tr>
<tr>
<td>CsPFN</td>
<td>caesium heptadecafluorononanoate (perfluorononanoate)</td>
</tr>
<tr>
<td>CsPFO</td>
<td>caesium pentadecafluoroctanoate (perfluorooctanoate)</td>
</tr>
<tr>
<td>$\delta_{\alpha\beta}$</td>
<td>Kronecker delta</td>
</tr>
<tr>
<td>DACl</td>
<td>decylammonium chloride</td>
</tr>
<tr>
<td>$\Delta\chi$</td>
<td>diamagnetic susceptibility anisotropy</td>
</tr>
<tr>
<td>$\Delta\tilde{v}$</td>
<td>quadrupole splitting</td>
</tr>
<tr>
<td>$\Delta v_{1/2}$</td>
<td>linewidth at half height</td>
</tr>
<tr>
<td>DSC</td>
<td>differential scanning calorimetry</td>
</tr>
<tr>
<td>DSCG</td>
<td>disodium cromoglycate</td>
</tr>
<tr>
<td>e</td>
<td>electronic charge</td>
</tr>
<tr>
<td>FID</td>
<td>free induction decay</td>
</tr>
<tr>
<td>γ</td>
<td>magnetogyratic ratio</td>
</tr>
<tr>
<td>g_N</td>
<td>nuclear g factor</td>
</tr>
<tr>
<td>η</td>
<td>asymmetry parameter</td>
</tr>
<tr>
<td>I</td>
<td>nuclear spin quantum number</td>
</tr>
<tr>
<td>κ_\perp</td>
<td>conductivity perpendicular to the director</td>
</tr>
<tr>
<td>κ_\parallel</td>
<td>conductivity parallel to the director</td>
</tr>
<tr>
<td>μ_N</td>
<td>nuclear magneton</td>
</tr>
<tr>
<td>MTAB</td>
<td>tetradecyltrimethylammonium (myristyltrimethylammonium) bromide</td>
</tr>
<tr>
<td>n</td>
<td>mesophase director</td>
</tr>
<tr>
<td>n or \bar{n}</td>
<td>micellar aggregation number</td>
</tr>
<tr>
<td>$N(CH_3)_4PFN$</td>
<td>tetramethylammonium heptadecafluorononanoate</td>
</tr>
<tr>
<td>n_α</td>
<td>direction cosines of the nematic symmetry axis</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>NH₄PFN</td>
<td>ammonium heptadecafluorononanoate</td>
</tr>
<tr>
<td>NH₄PFO</td>
<td>Ammonium pentadecafluoroctanoate</td>
</tr>
<tr>
<td>P</td>
<td>spin angular momentum</td>
</tr>
<tr>
<td>$<(P_2\cos\alpha)>_s$</td>
<td>shape factor</td>
</tr>
<tr>
<td>Q</td>
<td>nuclear electric quadrupole moment</td>
</tr>
<tr>
<td>q</td>
<td>electric field gradient at the nucleus</td>
</tr>
<tr>
<td>q_{zz}</td>
<td>component of the nuclear quadrupole-electric field coupling parallel to the magnetization</td>
</tr>
<tr>
<td>$S_{\alpha\beta}$</td>
<td>lowest rank orientational ordering tensor</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium decyl sulphate</td>
</tr>
<tr>
<td>$\sigma_{T\gamma}$</td>
<td>components of the chemical shift tensor</td>
</tr>
<tr>
<td>σ_I</td>
<td>chemical shift of the isotropic phase</td>
</tr>
<tr>
<td>S_{O-D}</td>
<td>order parameter relating the average orientation of the O-H bond</td>
</tr>
<tr>
<td>T_2^*</td>
<td>apparent value of T_2</td>
</tr>
<tr>
<td>T_1</td>
<td>longitudinal or spin-lattice relaxation time</td>
</tr>
<tr>
<td>T_2</td>
<td>transverse or spin-spin relaxation time</td>
</tr>
<tr>
<td>x_A</td>
<td>mole fraction of amphiphile</td>
</tr>
<tr>
<td>x_W</td>
<td>mole fraction of water</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

I am grateful to a large number of people who have helped during me during the research and writing of this thesis. I am indebted to my supervisor Dr Ken W. Jolley for his guidance. His knowledge and patience made the production of this thesis possible. Also to our collaborators at Leeds University, principally Dr N. Boden.

I would also like to thank my colleague, friend and flatmate Dr David Parker for his assistance and encouragement. A valuable supporting role was played by the members of the NMR group, especially Mr Ashok Parbhu.

Thanks to the technical staff of the mechanical and glassblowing workshops who provided valuable (and usually rapid) first aid to broken equipment and glassware.

I must also thank my flatmates Miss Justine Williams and Miss Pattie Groves for their support and encouragement.

Finally I would like to acknowledge the support of my parents Rex and Lois Smith for their unflagging support both moral and financial without which this would not be possible.
This thesis is dedicated to the memory of my grandmother,

Nana Donald

who passed away this year before the completion of my

university career, which she followed with great interest