Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
PURIFICATION AND CHARACTERIZATION OF A LECTIN FROM
TAMARILLO FRUITS (CYPHOMANDRA BETACEA)

by

Chanxing Xu

A thesis presented in partial fulfilment of requirements
for the degree of Doctor of Philosophy in Biotechnology at
Massey University, Palmerston North,
New Zealand

1991
Title of thesis: Purification and characterization of a lectin from tamarillo fruits (Solanum betaceum)

(1) (a) I give permission for my thesis to be made available to readers in the Massey University Library under conditions determined by the Librarian.

(b) I do not wish my thesis to be made available to readers without my written consent for months.

(2) (a) I agree that my thesis, or a copy, may be sent to another institution under conditions determined by the Librarian.

(b) I do not wish my thesis, or a copy, to be sent to another institution without my written consent for months.

(3) (a) I agree that my thesis may be copied for Library use.

(b) I do not wish my thesis to be copied for Library use for months.

Signed

Date

The copyright of this thesis belongs to the author. Readers must sign their name in the space below to show that they recognise this. They are asked to add their permanent address.

NAME AND ADDRESS

__

__

DATE

__

__

MASSEY UNIVERSITY
LIBRARY
Lectins specific in their binding to oligomers of \(\beta 1,4 \) linked N-acetylglucosamine were identified in the fruits of *Cyphomandra* species of the family Solanaceae. Thus, *Cyphomandra* species can be considered as a new source of lectins for basic and applied studies.

New lectins (designated as CBL1 and CBL2) were identified from tamarillo fruits (*Cyphomandra betacea*). CBL1 was purified. Biochemical characterization, subcellular localization and molecular sequence analysis for this new lectin were made. CBL2, which was immunologically unrelated to CBL1, was not further characterized.

CBL1 could be readily purified using affinity and ion exchange chromatography. CBL1 comprised two subunits joined by nonconvalant interactions. Subunit size was 25 kDa. \(N,N',N''-N'''-tetraacetylchitotetraose \) was the most effective carbohydrate for inhibition of CBL1 induced agglutination of rabbit erythrocytes. CBL1 consists of abundant residues of Cys (16 %), Gly (14 %), Glx (13 %), Ser (11 %), Pro (9 %) and Asx (7 %), and to a lesser extent, hydroxyproline residues.

CBL1 was found to be an abundant, extremely stable and developmentally regulated protein. It was found predominantly in cell walls of fruit tissues using immunofluorescence techniques. CBL1 could play a defence role in seed development.

Despite the general resemblance of chemical composition and carbohydrate specificities, no cross-reaction among solanaceous lectins in double immunodiffusion tests performed
in gels containing their carbohydrate ligands was demonstrated, suggesting they may not have similar epitopes.

Four tryptic peptides and the N-terminal fragment of CBL1 were sequenced, which showed some homologies with the Gramineae lectins. Since CBL1 and the Gramineae lectins shared similar properties such as amino acid composition and sugar specificities, it is suggested that CBL1, a solanaceous lectin, might be evolutionarily related to the Gramineae lectins.

Two cDNA clones were isolated with anti-CBL1 serum, and sequenced. One of them (X200), which reacted weakly with anti-CBL1 serum, was 96% identical with a bacterial gene \textit{ilvC} encoding acetohydroxy acid isomeroreductase. The peptide encoded by this cDNA could have some similar epitopes to CBL1, which resulted in its isolation. Another clone (X208), which showed stronger reaction with anti-CBL1 serum, was found to contain putative peptide sequences which did not show homology with CBL1 peptide sequences. This clone could be derived from one domain of CBL1’s coding region, while the peptide sequences could be confined to another domain. Complexity in immunoscreening the clone encoding CBL1 is discussed, and future work on the isolation of cDNA clone encoding this interesting lectin is suggested.
ACKNOWLEDGEMENTS

I am grateful to my chief supervisor Dr Pak-Lam Yu and co-supervisor Dr David Fountain for their encouragement, supervision, and support.

The project and other preliminary projects was supported by a Vice Chancellor Fellowship and Massey University Research Funds from November, 1986 to December 1990.

I thank Dr Chris Moore for performing amino acid composition analysis and Dr Mervyen Birtles for his assistance in the immunocytochemical work. I am also grateful to my former co-supervisor Prof Barry Scott for permitting the use of facility in the Molecular Genetics Unit and other help.

Thanks also go to the following people for their help and friendship: Prof R Earle, Prof Ian Maddox, Prof Edward Baker, Dr Brian Mansfield, Heather Baker, Prof Bob Chong, Dr Clive Cornford, Dr C O’Kelly, Dr Sue longford, Elizabeth NicKless, Dr Derek Knighton, Dr Ian Andrew, Dr David Greenwood, Professor Kelvin Moriarty.

Wil Canbourn, Bob Hodge, Fengfeng Xu, Cryn Russell, Tania Naga, Chungming Huang, Nick Ellison, Sirinda Yunchalard and technical and secretarial staff of the Biotechnology Department.

Pinthita Mungkarndee, Sridar Susarlar, Hong Chen, Qingnong Tang, Sunthorn Kanchanatawee, Jian Sun, Guoqiang Xing, Zhengzhong Xu, Zhang Lin and Jimei Zhu.

I thank Yu Yang for discussion, encouragement, patience, understanding and support during my Ph.D work. Special thanks go to my father, mother and sisters for their unending love and support. Without their support, this Ph.D research which started on October 15, 1988 and finished on December 31, 1990 would not have been completed.
LIST OF PUBLICATIONS AND ABSTRACTS

TABLE OF CONTENTS

ABSTRACT .. i
ACKNOWLEDGEMENTS ... iii
LIST OF PUBLICATIONS .. iv
TABLE OF CONTENTS .. v
LIST OF FIGURES ... x
LIST OF TABLES .. xii
ABBREVIATIONS ... xiii

CHAPTER 1: LITERATURE REVIEW. .. 1

1.1 Historical background of lectin research ... 1
 1.1.1 Definition of lectin .. 8

1.2 General overview of plant lectins ... 10
 1.2.1 Introduction ... 10
 1.2.2 Classification ... 10
 1.2.3 Chemical and structural properties ... 14
 1.2.3.1 Introduction ... 14
 1.2.3.2 N-acetyl glucosamine specific lectins .. 14
 1.2.3.2.1 Wheat germ agglutinin (WGA) ... 16
 1.2.3.3 N-acetyl galactosamine and galactose specific lectins 18
 1.2.3.3.1 Glycine max lectin (Soybean agglutinin) .. 19
 1.2.3.3.2 Phaseolus vulgaris lectin (PHA) .. 20
 1.2.3.4 Mannose and glucose specific lectins .. 23
 1.2.3.4.1 Concanavalin A (Con A) ... 26
 1.2.3.5 L-Fucose and sialic acid specific lectins .. 27
 1.2.3.6 Summary .. 28
 1.2.4 Possible in vivo functions and applications of plant lectins 28
 1.2.4.1 Possible in vivo functions of plant lectins ... 28
 1.2.4.2 Applications of plant lectins .. 30

1.3 Lectins from the Solanaceae family ... 31
1.3.1 Chemical composition and structure 32
1.3.2 Carbohydrate specificities 35
1.3.3 Distribution, localization, and possible function of solanaceous lectins 36

1.4 Aim of this study ... 37

CHAPTER 2: MATERIALS AND METHODS .. 38

2.1 Enzymes and fine chemicals 38

2.2 Vectors, bacteria strains, media and growth conditions 39

2.3 Protein biochemical methods 41

2.3.1 Isolation of lectins from tamarillo fruits 41
2.3.1.1 Chitin affinity chromatography 41
 2.3.1.1.1 Preparation of chitin affinity column 42

 2.3.1.1.2 Preparation of chitin hydrolysate solution 42

 2.3.1.2 Gel filtration chromatography 43

2.3.2 Hemagglutination and carbohydrate inhibition assay 43

2.3.3 Mitogenic study ... 44

2.3.4 Protein concentration assay 45

2.3.5 Carbohydrate assay ... 45

2.3.6 Polyacrylamide gel electrophoresis (PAGE) 46
 2.3.6.1 Coomassie blue (R250) staining 47
 2.3.6.2 Silver staining 47

2.3.7 Isoelectric focusing 48

2.3.8 Determination of protein size by gel filtration 49

2.3.9 Amino acid analysis 49

2.3.10 Tryptic digestion ... 49

2.3.11 HPLC separation of peptides 50
2.3.12 Peptide sequencing ... 50

2.4 Immunological methods ... 50
 2.4.1 Antiserum preparation .. 50
 2.4.2 Double immunological diffusion test
 (Ouchterlony test) ... 51
 2.4.3 Western blotting .. 51
 2.4.4 Immunocytochemical localization 52

2.5 Molecular biological methods 54
 2.5.1 Poly(A') RNA preparation 54
 2.5.1.1 Preparation of the frozen tamarillo fruits ... 54
 2.5.1.2 Total RNA isolation 54
 2.5.1.3 Poly(A') RNA isolation 55
 2.5.2 In vitro translation ... 56
 2.5.3 RNA quantitation .. 56
 2.5.4 Siliconization of glassware and
 plastic materials ... 56
 2.5.5 cDNA library construction 57
 2.5.5.1 cDNA synthesis .. 58
 2.5.5.2 Incorporation assay and calculation 59
 2.5.5.3 Alkaline gel analysis 60
 2.5.5.4 Methylation of cDNA 60
 2.5.5.5 Linker ligation 61
 2.5.5.6 Digestion with EcoRI 61
 2.5.5.7 Removal of undigested linkers 61
 2.5.5.8 Ligation of cDNA with lambda gt11 arms and
 in vitro package of ligated lambda gt11 62
 2.5.6 Amplification of cDNA library 63
 2.5.7 Immunological screening of cDNA library 64
 2.5.7.1 Screening .. 64
 2.5.7.2 Identification and purification of positive
 plaques .. 65
 2.5.8 Lambda phage DNA preparation 65
 2.5.9 Restriction enzyme digestion 66
 2.5.10 Plasmid isolation methods 67
 2.5.10.1 Alkaline lysis method 67
CHAPTER 3: PURIFICATION AND CHARACTERIZATION OF TAMARILLO LECTINS

3.1 Introduction ... 75

3.2 Results and discussion 75
 3.2.1 Lectin screen 75
 3.2.2 Isolation of tamarillo lectins 76
 3.2.3 Molecular size of CBL1 81
 3.2.4 Isoelectric points 83
 3.2.5 Carbohydrate specificity 85
 3.2.6 Stability of CBL1 86
 3.2.7 Chemical composition 88
 3.2.8 Mitogenic activity 90

3.3 Summary .. 90

CHAPTER 4: IMMUNOLOGICAL RELATIONSHIPS AMONG SOLANACEOUS LECTINS

4.1 Introduction ... 92

4.2 Results and discussion 93
CHAPTER 5: SUBCELLULAR LOCALIZATION OF CBL1 IN TAMARILLO FRUITS

5.1 Introduction

5.2 Results and discussion

5.3 Summary

CHAPTER 6: SEQUENCE ANALYSIS OF TAMARILLO LECTIN (CBL1)

6.1 Introduction

6.2 Results and discussion

6.2.1 Peptide sequences

6.2.2 cDNA library construction

6.2.3 cDNA library screening

6.2.4 DNA sequencing and sequence analysis

6.3 Summary

CHAPTER 7: GENERAL CONCLUSIONS AND SUMMARY

BIBLIOGRAPHY

APPENDIX: CLASSIFICATION OF PLANT LECTINS

CORRECTIONS
LIST OF FIGURES

Chapter 1

Fig.1-1 Classification of pyranose of lectin-reactive monosaccharides.
Fig.1-2 Homologies among the deduced amino acid sequences of win1 and win2 and protein sequences of hevein, chitinase, wheat germ agglutinin, rice lectin and nettle lectin.
Fig.1-3 α-Carbon backbone drawing of the WGA protomer.
Fig.1-4 Schematic illustration of the disposition of the primary and secondary binding locations on the WGA dimer.
Fig.1-5 Schematic representation of the tetrameric structure of the five isolectins from Phaseolus vulgaris.
Fig.1-6 Complete sequences of soybean agglutinin, fava bean lectin, lentil lectin, pea lectin, sainfoin seed lectin, phytohaemagglutinin, and concanavalin A.
Fig.1-7 Schematic representation of Con A tetramer.
Fig.1-8 Hypothetical model of the structure of potato lectin.

Chapter 2

Fig.2-1 λgt11 map.
Fig.2-2 A diagram of cDNA synthesis.
Fig.2-3 A diagram of ExoIII nuclease digestion of DNA.

Chapter 3

Fig.3-1 Chitin affinity chromatography of lectins from tamarillo fruits.
Fig.3-2 Cation-exchange chromatography of tamarillo lectins on a S-Sepharose column.
Fig.3-3 SDS-PAGE of tamarillo lectin samples from fractions of the S-Sepharose chromatography.
Fig.3-4 Gel filtration chromatography of lectins from tamarillo fruits.
Fig.3-5 SDS-PAGE analysis of CBL1.
Fig.3-6 Molecular size determination of CBL1 by gel filtration chromatography.
Fig.3-7 Isoelectric focusing of tamarillo lectins

Chapter 4

Fig.4-1 Double immunodiffusion test I.
Fig.4-2 Double immunodiffusion test II.
Chapter 5

Fig. 5-1 Western blotting of purified CBL1 and tamarillo extract with anti-CBL1 serum.
Fig. 5-2 Immunocytochemical localization of CBL1 using an immunofluorescent technique.
Fig. 5-3 SDS-PAGE analysis of tamarillo juice.

Chapter 6

Fig. 6-1 Partial separation of a tryptic digest of valyl-CBL1 by HPLC.
Fig. 6-2 Homologies of CBL1 peptide sequences with WGA.
Fig. 6-3 SDS-PAGE analysis of in vitro translation products of poly(A') RNAs.
Fig. 6-4 Size distribution of the first strand of cDNA and ds cDNA (double stranded cDNA).
Fig. 6-5 Dot blot analysis of CBL1 on nitrocellulose filters.
Fig. 6-6 Immunological screening and identification of recombinant phages X208 and X200 on nitrocellulose filters.
Fig. 6-7 EcoR1 digestion of the recombinant phages X208 and X200.
Fig. 6-8 ExoIII digestion of cDNA insert of the recombinant phage X200.
Fig. 6-9 Nucleotide sequence of cDNA insert of recombinant phage X200 and its comparison with that of a bacterial gene ilvC.
Fig. 6-10 Nucleotide sequences and inferred amino acid sequences of cDNA insert of the recombinant phage X208.
LIST OF TABLES

Chapter 1
Table 1-1 Major uses of lectin.
Table 1-2 Binding constants (Kᵢ) of interaction of solanaceous lectins with β(1,4)-linked oligomers of N-acetylglucosamine.

Chapter 2
Table 2-1 Bacterial strains and vectors.

Chapter 3
Table 3-1 Purification of tamarillo lectins.
Table 3-2 The minimum concentration of sugars required for complete inhibition of 8 haemagglutination units.
Table 3-3 The effect of high temperature, pH and EDTA on CBL1 haemagglutination activity.
Table 3-4 Amino acid composition of CBL1 and other known lectins from Solanaceae.

Chapter 6
Table 6-1 Amino acid composition of CBL1 and WGA.
Table 6-2 Amino acid composition of CBL1 and two putative peptides (pepl and pep2) encoded by X208 cDNA insert.
ABBREVIATIONS

BCIP 5-bromo-4-chloro-3-indolyl phosphate
Bisacrylamide N,N'-Methylene-bis-acrylamide
BpB Bromophenol blue
BSA Bovine serum albumin
CBL1 tamarillo lectin (Cyphomandra betacea), subunit size 25 kDa
CBL2 tamarillo lectin (Cyphomandra betacea), subunit size larger than 50 kDa
cDNA complementary DNA
Con A concanavalin A
DEAE diethylaminoethyl
DEPC diethylpyrocarbonate
DEAE diethylaminoethyl
dNTPs 2' -Deoxyribonucleoside 5'-triphosphates
dCTP 2' -Deoxyctydine 5'-triphosphate
DSA Datura seed lectin (thorn apple lectin, TAL)
ds DNA double stranded DNA
DTT dithiothreitol
EDTA ethylenediaminetetraacetic acid
Fuc fucose
Gal galactose
GalNAc N-acetylgalactosamine
GlcNAc N-acetylgalcosamine
Glu glucose
Hepes N-2-hydroxy ethyl piperazine-N'-2-ethane sulphonic acid
HPLC High-pressure liquid chromatography
IEF isoelectric focusing
IPTG isopropylthio-β-D-galactoside
LEL tomato lectin (Lycopersicon esculentum)
LB Luria broth
Man mannose
NBT nitro blue tetrazolium chloride
NeuNAc sialic acid
PBS phosphate-buffered saline
PBSB phosphate buffered saline containing bovine serum albumin
pfu plaque forming unit
PHA phytohemagglutinin
SDS sodium dodecyl sulphate
SDS-PAGE Sodium dodecyl sulphate-polyacrylamide gel electrophoresis
SM Phage buffer supplemented with 0.1 % gelatin
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STE</td>
<td>Tris Cl buffered NaCl/ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>STL</td>
<td>lectin of potato tuber (Solanum tuberosum)</td>
</tr>
<tr>
<td>TAL</td>
<td>thorn apple lectin (Datura seed lectin, DSA)</td>
</tr>
<tr>
<td>TBE</td>
<td>Tris-borate/EDTA electrophoresis buffer</td>
</tr>
<tr>
<td>TCA</td>
<td>trichloroacetic acid</td>
</tr>
<tr>
<td>TE</td>
<td>Tris buffered ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>TEMED</td>
<td>N,N,N',N'-tetramethylethylene diamine</td>
</tr>
<tr>
<td>TFA</td>
<td>Trifluoroacetic acid</td>
</tr>
<tr>
<td>TNT</td>
<td>Tris-Cl containing NaCl and Tween-20</td>
</tr>
<tr>
<td>TPCK</td>
<td>N-tosyl-L-phenylalanine chloromethyl ketone</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris(hydroxymethyl)aminomethane</td>
</tr>
<tr>
<td>TTBS</td>
<td>Tris-Cl/tween-20 and NaCl buffer</td>
</tr>
<tr>
<td>WGA</td>
<td>Wheat germ agglutinin</td>
</tr>
<tr>
<td>X-gal</td>
<td>5-bromo-4-chloro-3-indolyl-β-D-galactoside</td>
</tr>
</tbody>
</table>