Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Expression and purification of CFM2 and Filamin A repeat 10 domain

A thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Biochemistry at Massey University, Manawatu, New Zealand.

Ben Waite
2012
Abstract

Filamins are a group of proteins that interact with over 60 other proteins. Mutations to the Filamin A gene results in a spectrum of disorders including Otoplatodigital spectrum disorder type 1, Otoplatodigital spectrum disorder type 2, Frontometaphyseal dysplasia, Melnick-Needles syndrome and Periventricular Nodular Heterotopia. All cases of Melnick-Needles syndrome can be accounted for by mutations in repeat 10. Using a yeast-2 hybrid assay Professor S.P Robertson identified the protein FAM101A (the protein is alternatively named CFM2) that associated with Filamin A repeat 10. CFM2 was found to interact with itself in a yeast-2-hybrid screen, suggesting homo-dimerisation properties in addition to Filamin A repeats 10 and 21 binding affinity. If CFM2 dimerises and binds to repeat 10 and 21 it is possible that Filamin A’s function will alter, thus altering the properties of the cytoskeleton. To investigate the interaction between Filamin A repeat 10 and CFM2, each was subcloned into an *E.coli* plasmid vector fused to a purification tag. Purification of CFM2 failed due to misfolding, this upholds later work that claims CFM2 cannot fold correctly without the presence of vertebrate Filamin. Filamin A repeat 10 purification went well but the fusion was unable to be concentrated without precipitating out of solution. Also the GST purification tag could not be cleaved without secondary cleavage products forming. Pull-down of C2C12 mouse fibroblast cell lysate using the GST-Filamin A repeat 10 fusion as the probe did not identify any other proteins that bind Filamin A repeat 10.
Acknowledgements

I would like to thank my supervisor Dr Andrew Sutherland-Smith for his support and guidance throughout my research.

A big thank-you to the post-graduates of the Institute of Molecular Biosciences, with special thanks to the post-graduates of Dr Andrew Sutherland-Smith and Dr Gill Norris. Being able to get help and share the success and failures of our respective projects makes the failures more bearable and the successes sweeter.

Thanks to my family. Your love and support has been a great motivator and enabler for me.
Abbreviations

AMP ampicillin
LB Luria broth
E.coli *Escherichia coli*
MQ milli-q
DNA deoxyribonucleic acid
EDTA ethylenediaminetetraacetic acid
PCR polymerase chain reaction
APS ammonium persulfate
SDS sodium dodecyl sulfate
DTT dithiothreitol
DNase deoxyribonuclease
cDNA complementary deoxyribonucleic acid
TEMED *N*-tetramethylethylenediamine
Tris tris (hydroxymethyl) aminomethane
BME 2-Mercaptoethanol
PPU Precision plus protein unstained (Bio-rad)
FLNAR10 Filamin A repeat 10
IPTG isopropyl β-D-1-thiogalactopyranoside
dNTP deoxyribonucleotide triphosphate
MSC mesenchymal stem cell
ABD actin-binding domain
OPD1 Otoplatodigital spectrum disorder type 1
OPD2 Otoplatodigital spectrum disorder type 2
FMD Frontometaphyseal dysplasia
MNS Melnick-Needles syndrome
F-actin filamentous actin
G-actin globular actin
PVNH Periventricular Nodular Heterotopia
EtBr ethidium bromide
Ig Immunoglobulin
Table of Contents

Abstract ... i
Acknowledgements .. ii
Abbreviations .. iii
Table of Contents .. iv
List of Tables ... vii
List of Figures .. ix
1 Introduction .. 1
 1.1 Cytoskeleton .. 1
 1.2 Intramembranous Ossification .. 2
 1.3 Otoplatodigital syndrome spectrum disorders ... 2
 1.4 Filamins .. 3
 1.5 CFM2 .. 7
 1.6 Filamin A repeat 10 - CFM2 interaction hypothesis .. 9
2 Materials and Methods ... 11
 2.1 Materials ... 11
 2.1.1 DNA manipulation .. 11
 2.1.2 Cell culturing ... 11
 2.1.3 Protein manipulation ... 11
 2.1.4 General chemicals and equipment .. 12
 2.2 Methods ... 16
 2.2.1 Competent cells ... 16
 2.2.1.3 Competent Cell Transformation ... 16
 2.2.2 Polymerase Chain Reaction ... 16
 2.2.3 DNA analysis using ethidium bromide staining of agarose gel 17
 2.2.4 DNA Sub-cloning ... 18
2.2.5 Ligation ... 19
2.2.6 Plasmid Isolation .. 19
2.2.7 DNA sequencing .. 19
2.2.8 Protein Expression .. 20
2.2.9 Cell Lysis ... 20
2.2.10 Protein size and mass analysis using SDS-PAGE ... 20
2.2.11 GST-fusion protein pull-down .. 21
2.2.12 Histidine-tag protein pull-down ... 22
2.2.13 GST fusion protein probe pull-down .. 23

3.1 Results and Discussion ... 24
3.1.1 Sub-cloning CFM2 ... 24
3.1.1.1 Sub-cloning CFM2 PCR product into pProEX HTb ... 33
3.1.2 Expression of CFM2 .. 48
3.1.3 Purification of CFM2 ... 54
3.1.4 Sub-cloning FLNAR10 .. 65
3.1.5 Expression of FLNAR10 ... 80
3.1.6 Purification of FLNAR10 .. 85
3.1.6.1 Preparation of Lysate .. 85
3.1.6.2 GST trap purification of FLNAR10 ... 85
3.1.6.3 Thrombin digest of GST-FLNAR10 ... 87
3.1.6.3 AKTA purification of GST-FLNAR10 thrombin digest products 93
3.1.7 Pull-down experiments with FLNAR10 ... 98

4.1 Summary .. 103
4.1.1 CFM2 ... 103
4.1.2 FLNAR10 ... 103
4.1.3 FLNAR10 pull-down ... 104

4.1.4 Future work .. 105

5 References.. 106

6 Appendix .. 109
List of Tables

Table 1: Alignment of CFM2 isoforms ... 8
Table 2: Primers used in this project ... 13
Table 3: Plasmids used in this project ... 14
Table 4: *E.coli* strains used in this project .. 15
Table 5: PCR run cycle* .. 17
Table 6: Double digest of pProEX HTb and PCR product 33
Table 7: Ligation setup; pProEX HTb and HCFM2-non-truncated SF1 36
Table 8: Ligation setup; pProEX HTb and HCFM2-SF1-non-truncated with ratios ... 37
Table 9: Double digest mix for pProEX HTb+CFM2 plasmids #1 and #2 38
Table 10: Confirmation PCR of insert in plasmid mini prep #1 and #2 40
Table 11: Predicted digest size of pProEX HTb using Ncol and Xhol 47
Table 12: His-Trap Column loading washing and elution protocol 55
Table 13: His-Trap loading extended washing and elution setup 60
Table 14: Alignment of FLNAR10 fragment with FLNAR10F3 and FLNAR10B2 ... 72
Table 15: Double digest of pGEX 4T3 and PCR product FLNAR10 73
Table 16: Ligation of Double digested pGEX 4T3 vector and FLNAR10 insert 73
Table 17: Alignment of pGEX 4T3:FLNAR10 (Sequence 1) with pGEX 5` and pGEX 3` primers (Sequence 2) ... 77
Table 18: Alignment of pGEX 4T3:FLNAR10 (Sequence 1) with pGEX 5` and FLNAR10B2 primers (Sequence 2) ... 78
Table 19: GST-FLNAR10 predicted fusion protein sequence 82
Table 20: FASTA protein sequences of CFM2 isoforms 109
Table 21: FAM101A sequence in pGEMT vector .. 109
Table 22: Chromatogram of pProEX+CFM2 sequencing using HTRVS and m13REV primers ... 110

Table 23: Alignment of (Sequence 1) FAM101A mRNA with (Sequence 2) pProEX+CFM2 sequenced consensus .. 113

Table 24: Chromatogram of pGEX 4T3-FLNAR10 #5 and #6 plasmid sequencing using pGEX 5’ primer ... 115

Table 25: Alignment of (Sequence 1) Sequencing of Colony #5 with (Sequence 2) pGEX-4T3:FLNAR10 .. 118

Table 26: Alignment of (Sequence 1) Sequencing of Colony #6 with (Sequence 2) pGEX-4T3:FLNAR10 .. 119
List of Figures

Figure 1: Structure of Filamin A repeat 10 ... 4
Figure 2: Diagram of Filamin A dimer .. 6
Figure 3: Chou & Fasman algorithm prediction of Secondary structure of CFM2 isoforms .. 8
Figure 4: Diagram of proposed action of CFM2 on Filamin A 10
Figure 5: pGEM T Vector Map[34] ... 25
Figure 6: pProEX HTB Vector Map[35] .. 26
Figure 7: Amplification products of pGEM-T: FAM101A-truncated and pGEM-T: FAM101A with HCFM2LF2 and HCFM2SF1 forward primers ... 28
Figure 8: Touchdown PCR amplification products of pGEM-T: FAM101A and pGEM-T: FAM101A-truncated with HCFM2LF2 and HCFM2SF1 forward primers 30
Figure 9: Touchdown PCR amplification products of pGEM-T: FAM101A and pGEM-T: FAM101A-truncated with HCFM2LF2, HCFM2LF3 and HCFM2SF1 forward primers .. 32
Figure 10: Double digest of pProEX HTb vector and PCR product (HCFM2-non-truncated SF1) ... 34
Figure 11: Double digest of pProEX HTb+CFM2 plasmid mini preps 39
Figure 12: PCR amplification products of pProEX HTb+CFM2 #1 and #2 plasmids using HCFM2SF1 and HCFM2B1 primers .. 41
Figure 13: Colony PCR of pProEX HTb+CFM2 ligation product transformants using vector primers ... 43
Figure 14: Colony PCR of pProEX HTb+CFM2 ligation product transformants using insert primers .. 44
Figure 15: Colony PCR of pProEX HTb+CFM2 ligation product transformants using vector primers .. 46
Figure 16: Time expression trial of CFM2 short isoform non-truncated 49
Figure 17: Lysis buffer trial using overnight expression of CFM2 short isoform non-truncated

Figure 18: Lysis buffer trial 2 using overnight expression of CFM2 short isoform non-truncated

Figure 19: His-Trap purification of BL21 E. coli expressing CFM2 short isoform non-truncated

Figure 20: His Bead 1.5 mL Tube purification of BL21 E. coli expressing CFM2 short isoform non-truncated

Figure 21: His-Trap purification of BL21 E. coli expressing CFM2 short isoform non-truncated

Figure 22: Concentration and purification of Fraction 68 using 10 kDa cut-off concentrator

Figure 23: pREP4 Vector Map[36]

Figure 24: pGEX 4T3 Vector Map[37]

Figure 25: Restriction map of FLNAR10F3 (5` to 3`) Showing restriction enzymes cutting maximum 1 time provided by Serial Cloner 1.3-11

Figure 26: Restriction map of FLNAR10F2 (5` to 3`) Showing restriction enzymes cutting maximum 1 time provided by Serial Cloner 1.3-11

Figure 27: Restriction map of FLNAR10B2 (5` to 3`) Showing restriction enzymes cutting maximum 1 time provided by Serial Cloner 1.3-11

Figure 28: Amplification products of pREP4: FLNA using repeat 10 domain primers

Figure 29: Gradient PCR of pREP4: FLNA plasmid clones

Figure 30: Colony PCR of pGEX 4T3 + FLNAR10 ligate transformants using vector primer

Figure 31: Colony PCR of pGEX 4T3 + FLNAR10 ligate transformants using Vector and Insert primers

Figure 32: Time expression trial of GST-FLNAR10 fusion protein