Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Effects of dietary sheep, cow and goat milk solids on colitis in the interleukin-10 gene deficient mouse model of Inflammatory Bowel Disease.

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in

Physiology

at Massey University, Palmerston North, New Zealand.

Anna-Lynne Elizabeth Russ

2013
Abstract

Inflammatory Bowel Disease (IBD) is a group of chronic, immunologically-mediated gastrointestinal disorders resulting from interactions between environmental influences, host genetic susceptibility, and the intestinal microbiota. Dietary factors can ameliorate symptoms, providing a rationale for using targeted nutrition to alleviate symptoms. Food components, including milk-derived oligosaccharides and conjugated linoleic acid, have shown anti-inflammatory effects in IBD patients or animal models of IBD. Additionally, some ruminant milks are perceived by some IBD patients to have more beneficial effects on their symptoms (goat, sheep) than others (cow). Soy-based milk substitutes are perceived to be more beneficial than milk. No reports describe the effects of milk solids from different species on molecular pathways in the intestine that might explain differential effects in IBD. This thesis aimed to investigate the effects of dietary intervention with milk solids on the severity of colitis (histology) and molecular pathways (microarrays and qPCR) in the interleukin-10 gene deficient (Il10⁻⁻) mouse model of IBD.

First, laser microdissection (LMD) combined with microarrays was used to analyse colon epithelium gene expression in 6 and 12 week old Il10⁻⁻ mice fed a control diet. This indicated that intact colon was an appropriate tissue in which to study global changes in gene expression when colitis is established. It also showed that studying colon epithelium during the early stages of inflammation (6 weeks old) may identify molecular changes not seen in intact colon. Secondly, analysis of DNA methylation changes (both globally, and in specific inflammation-associated genes (Ppara, Stat1 and Tap2)) in Il10⁻⁻ mouse colon showed that changes in total DNA methylation were correlated with changes in global gene expression, and changes in Stat1 methylation during inflammation correlated with Stat1 gene expression. However, these techniques had limitations for obtaining a global overview of molecular changes (DNA methylation) in response to dietary intervention in established inflammation (LMD) and therefore were not applied in the dietary intervention study. Finally, diets containing goat and cow whole milk solids (40% w/w) fed for 6 weeks had anti-inflammatory effects in the colon of 11-12 week old Il10⁻⁻ mice, shown by a reduction in colitis severity and immune-related gene expression. Further research is required to elucidate the physiological and molecular mechanisms of these anti-inflammatory effects.
Acknowledgements

This study was part of Nutrigenomics New Zealand, a collaboration between AgResearch, Plant & Food Research and The University of Auckland, primarily funded by the New Zealand Foundation for Research, Science and Technology (FRST). I acknowledge AgResearch for funding my PhD Fellowship and research project within the Nutrigenomics New Zealand partnership and for providing excellent research facilities, as well as Massey University for providing a Doctoral Scholarship.

Thank-you to my supervisors, Drs Nicole Roy, Rachel Anderson and Matthew Barnett, Professor Warren McNabb (all from AgResearch) and Dr Gordon Reynolds (from Massey University) for your support and guidance throughout this project. In particular, thank-you for your continued support during the time I was struggling with personal issues. A huge thank-you to Nicole, Rachel, and Matt, who have read many a draft chapter and remained encouraging and positive while my self-doubt ran rampant.

Many people deserve thanks for their role in helping with the experimental work presented here. Thanks to Dr Shelley Edmunds for help with the time-course experiment - you made my temporary residence in Hamilton a breeze due to your excellent company and enthusiasm. Thanks to Ric Broadhurst (AgResearch Ruakura, Hamilton, NZ) for assistance with the time-course experiment and the training in mouse gavage and cardiac puncture for the milk diet experiment – you are an amazing teacher. The milk diet experiment was performed with the assistance of a number of people, especially Leigh Ryan, Cora Ertl and Dr Emma Bermingham (all of AgResearch Grasslands, Palmerston North). Your enthusiasm and positivity was much appreciated. Thanks to Kelly Armstrong and Dr Mark McCann (both of AgResearch Grasslands) for your assistance when things went wrong in the lab (or simply appeared to).

Histological scoring was performed by William Zhu (University of Auckland, Auckland, NZ) and Kelly Armstrong (AgResearch Grasslands, Palmerston North, NZ). Statistical analysis of mouse weight, intake and histology data was performed with assistance from Dr John Koolaard and Zaneta Park (AgResearch Grasslands). Microarray designs were discussed for both mouse experiments with Zaneta Park (AgResearch Grasslands), and analysis of the microarray data was performed with the...
assistance of Zaneta Park, Dr Wayne Young, and Paul Maclean (AgResearch Ruakura, Hamilton, NZ). For the laser microdissection work, preparation of slides and microdissection of cells was performed with the assistance of Jason Peters (AgResearch Grasslands) and RNA amplification, labelling and microarray analysis was performed with assistance from Kelly Armstrong. DNA methylation analysis was performed with the assistance of Kelly Armstrong (sample preparation and method development) and Bryan Treloar (HPLC analysis of samples) (AgResearch Grasslands), Leticia Castro (The University of Auckland), Cameron Maclean (AgResearch), Dr Harold Henderson (AgResearch Ruakura) and Dr Matthew Barnett (AgResearch). The qPCR work was performed with assistance from Dr Mark McCann (AgResearch Grasslands).

Thanks to everyone in the student office at AgResearch – you have made it much more fun to come to work in the morning! Thanks to everyone in our wider group for the hellos in the tea room, the chats in the lab, birthday cake club and just generally making AgResearch a nice place to be. Thanks to Bruce who once took a draft chapter to the set of the Hobbit movie, thereby adding a touch of literary and cinematic class to this thesis!

I have to say a huge thank-you to the family and friends who have supported me emotionally throughout the last few years. Without their support, I could not possibly have reached this point. I particularly wish to thank my husband Brent for being absolutely amazing during the tough times. Thanks Karen, for your support and friendship over the last decade, and my cousins Lynise and Bevan for showing me who my real family are. Thanks to my parents for your belief in the value of education. Thanks to my other friends and people at AgResearch who have gone above and beyond in their support in the last couple of years. Your kindness and generosity has meant so much. Finally, thanks to my counsellor - you have made so much difference to my life over the last couple of years, and without you, this thesis would never have been finished. The shadows of the past have been turned into a future that I can begin to look forward to without anxiety and self-loathing, a future I never believed possible. Thank-you.
May it be when darkness falls your heart will be true.
You walk a lonely road. Oh, how far you are from home!
May it be the shadow's call will fly away.
May it be your journey on to light the day.
When the night is overcome, you may rise to find the sun.

Selected lyrics from the song “May it be” by Enya.
Featured in the film “The Fellowship of the Ring”.

v
Table of contents

Abstract ... i

Acknowledgements ... iii

Table of contents .. vii

List of tables .. xi

List of figures ... xiii

List of abbreviations ... xv

1 General introduction ... 1
1.1 Introduction .. 2
1.2 Inflammatory bowel disease ... 3
 1.2.1 Mucosal responses in IBD ... 5
 1.2.1.1 Intestinal microbiota ... 5
 1.2.1.2 Intestinal epithelium ... 7
 1.2.1.3 Intestinal immune system ... 12
1.2.2 Animal models of IBD ... 17
 1.2.2.1 Rodent models of IBD .. 17
 1.2.2.2 Interleukin-10 and the IL10 gene-deficient mouse ... 18
 1.2.2.3 The intestinal epithelium in Il10-/- mice ... 21
 1.2.2.4 The intestinal microbiota in Il10-/- mice .. 22
 1.2.2.5 Histopathology of intestinal inflammation in Il10-/- mice ... 24
1.2.3 Gene expression changes in intestinal inflammation .. 25
 1.2.3.1 Colon gene expression in whole tissue and selected mucosal cells 25
 1.2.3.2 Epigenetic changes in intestinal inflammation .. 28
1.3 Dietary factors and intestinal inflammation .. 32
1.4 Dietary milk and intestinal inflammation ... 36
 1.4.1 Milk as an infant food ... 36
 1.4.2 Milk as an adult food ... 37
 1.4.3 Milk and IBD patients ... 41
 1.4.4 Soy “milk” and health ... 43
 1.4.5 Milk and intestinal function ... 45
 1.4.6 Anti-inflammatory effects of specific milk components ... 48
 1.4.6.1 Milk protein .. 48
 1.4.6.2 Milk fat .. 49
 1.4.6.3 Milk carbohydrate ... 51
 1.4.6.4 Milk antioxidants .. 52
1.5 Conclusions and future perspectives .. 52
1.6 Aims, approach and thesis structure .. 53

2 Methods .. 57
2.1 Introduction .. 58
2.2 Mouse experiments ... 58
 2.2.1 Experimental design ... 58
 2.2.2 Mice .. 58
 2.2.2.1 Time-course experiment .. 60
 2.2.2.2 Milk diet experiment .. 60
3 Gene expression changes in the microdissected colon epithelium are similar to those of intact colon in the IL10^{−/−} mouse ... 101
3.1 Abstract .. 102
3.2 Introduction ... 102
3.3 Aims and hypothesis ... 104
3.4 Methods .. 104
3.5 Results .. 105
 3.5.1 Bodyweight, feed intake, and body condition of mice 105
 3.5.2 Histological injury score ... 105
 3.5.3 Colon gene expression by microarray analysis 109
 3.5.4 Cell harvesting for colon gene expression analysis 109
 3.5.4.1 Quality control analysis of between-slide effects 109
 3.5.4.2 Differentially expressed genes 113
 3.5.5 Pathway analysis ... 118
 3.5.6 Gene set enrichment analysis ... 118
 3.5.7 Over-representation analysis ... 123
 3.5.8 qPCR validation of microarray results 128
 3.6 Discussion ... 132
 3.7 Conclusions .. 139

4 Global and gene-specific DNA methylation is altered in the Il10−/− mouse colon in early and late inflammation ... 141
 4.1 Abstract .. 142
 4.2 Introduction ... 142
 4.3 Aims and hypotheses ... 144
 4.4 Methods .. 144
 4.5 Results .. 145
 4.5.1 Global DNA methylation .. 145
 4.5.2 Methylation of sites within genes of interest 145
 4.5.2.1 Methylation of Ppara .. 146
 4.5.2.2 Methylation of Stat1 .. 146
 4.5.2.3 Methylation of Tap2 .. 146
 4.6 Discussion ... 146

5 Milk- and soy-based diets have differential effects on colitis and colon gene expression in the Il10−/− mouse ... 155
 5.1 Abstract .. 156
 5.2 Introduction ... 156
 5.3 Aims and hypothesis ... 158
 5.4 Methods .. 158
 5.5 Results .. 158
 5.5.1 Diet analysis ... 158
 5.5.2 Growth performance ... 160
 5.5.3 Food intake ... 163
 5.5.4 Clinical signs of intestinal dysfunction 165
 5.5.5 Histological injury scores .. 167
 5.5.5.1 Small intestine ... 167
 5.5.5.2 Colon and caecum .. 167
 5.5.6 Colon gene expression ... 169
 5.5.6.1 Quality control analysis of slide effects 169
5.5.6.2 Relationship between colon histological injury score and gene expression ... 173
5.5.6.3 Comparison of gene expression results between AIN-76A and modified-AIN-76A diets .. 173
5.5.6.4 Interaction between mouse genotype and diet ... 176
 5.5.6.4.1 Differentially expressed genes ... 176
 5.5.6.4.2 Pathway, gene ontology and gene set analyses 176
 5.5.6.4.3 Expression of genes encoding membrane proteins in the colon in response to milk-based diets .. 197
5.5.6.5 qPCR validation of microarray results ... 199
5.6 Discussion .. 199
 5.6.1 Relationship between diet composition and growth performance 199
 5.6.2 Relationship between colitis severity, faecal consistency and growth performance ... 201
 5.6.3 Colon gene expression in response to milk-based diets 204
5.7 Conclusions ... 209
6 General discussion and future perspectives .. 211
 6.1 Background ... 212
 6.2 Gene expression profiles in the colon epithelium of Il10−/− mice 213
 6.3 Gene methylation in the colon of Il10−/− mice ... 216
 6.4 Effects of milk-based diets in Il10−/− mice ... 218
 6.5 Future perspectives .. 222
References .. 225
List of tables

Table 1.1	Diseases caused by interactions between genetics and diet and other environmental triggers.	4
Table 1.2	Functions of known T cell subsets	13
Table 1.3	Examples of animal models of IBD	19
Table 1.4	Anti-inflammatory foods	34
Table 1.5	Composition of whole milk from humans, cows, goats and sheep	39
Table 2.1	Mouse data at the beginning of the time-course experiment	61
Table 2.2	Composition of experimental diets	63
Table 2.3	Intact-colon microarray design for the time-course experiment	76
Table 2.4	Colon epithelial cell microarray design for the time-course experiment	77
Table 2.5	Microarray design for the milk diet experiment	79
Table 2.6	Differentially expressed gene lists generated for each microarray analysis	83
Table 3.1	Mean body weight and food intake data for all mice at the beginning and end of the experiment	106
Table 3.2	Mean colon histological injury score and mean intestinal area for each strain at each time point	107
Table 3.3	Intestinal inflammation data for individual mice	108
Table 3.4	Corrected and non-corrected gene expression data	112
Table 3.5	Numbers of differentially expressed genes for each treatment comparison for both intact colon and colon epithelial cell microarray experiments	114
Table 3.6	Top five canonical pathways for intact colon and colon epithelium	119
Table 3.7	Gene sets from enrichment analysis for \(\text{Il10}^- \) mice at 6 weeks of age vs. C57BL/6J mice at 6 weeks of age for intact colon and colon epithelium	122
Table 3.8	Gene sets from enrichment analysis for C57BL/6J mice at 12 weeks of age vs. C57BL/6J mice at 6 weeks of age for intact colon and colon epithelium	124
Table 3.9	Top 20 gene sets from enrichment analysis for \(\text{Il10}^- \) mice at 12 weeks of age vs. C57BL/6J mice at 12 weeks of age for intact and colon epithelium	125
Table 3.10	Top 20 gene sets from enrichment analysis for \(\text{Il10}^- \) mice at 12 weeks of age vs. \(\text{Il10}^- \) mice at 6 weeks of age for intact and colon epithelium	126
Table 3.11	Top 20 over-represented gene categories for the comparison \(\text{Il10}^- \) mice versus C57BL/6J mice at 12 weeks for intact colon and colon epithelium	129
Table 3.12	Top 20 over-represented gene categories for the comparison \(\text{Il10}^- \) mice, 12 vs. 6 weeks, for intact colon and colon epithelium	130
Table 3.13	qPCR validation of microarray results	131
Table 3.14	Genes highly expressed in IBD patients and their expression in intact colon or epithelium	134
Table 4.1 Summary of data available following Sequenom analysis of amplicons within the Stat1, Ppara and Tap2 genes. 147
Table 4.2 CpG sites analysed for regions of the Stat1 and Ppara gene that yielded good quality methylation data. .. 148

Table 5.1 Nutrient composition of diets as tested at the end of the experiment. 159
Table 5.2 Predicted means for body weight (g) for each treatment over the whole experiment and at the end. ... 162
Table 5.3 Predicted means for average daily food intake per mouse (g) for each treatment over the whole experiment, from repeated measurements analysis. ... 164
Table 5.4 Health scores and diarrhea observations .. 166
Table 5.5 Predicted mean histological injury scores for colon, caecum and duodenum for all treatments. ... 168
Table 5.6 Consistency of gene expression data between mouse experiments 171
Table 5.7 Correction of microarray data for slide effects.. 172
Table 5.8 Gene expression differences between high and low histological injury score 174
Table 5.9 Over-represented gene ontology processes for AIN-76A vs. modified-AIN-76A diet in C57BL/6J mice ... 175
Table 5.10 Numbers of differentially expressed genes for each diet relative to the modified-AIN-76A diet. .. 177
Table 5.11 Over-represented gene ontology processes for the soy diet in C57BL/6J mice (compared to the modified-AIN-76A diet). 180
Table 5.12 Over-represented gene ontology processes for the sheep milk diet in C57BL/6J mice (compared to the modified-AIN-76A diet). 181
Table 5.13 Enriched gene sets for Il10-/ and C57BL/6J mice fed the soy and sheep milk diets compared to the modified-AIN-76A diet 182
Table 5.14 Top 20 canonical pathways for Il10-/ mice fed the cow milk diet versus the modified-AIN-76A diet .. 184
Table 5.15 Top 20 canonical pathways for Il10-/ mice fed the goat milk diet versus the modified-AIN-76A diet ... 185
Table 5.16 Top 30 over-represented gene ontology processes for Il10-/ mice fed the goat milk diet ... 190
Table 5.17 Top 30 over-represented gene ontology processes for the Il10-/ mice fed the cow milk diet .. 191
Table 5.18 Top 30 enriched gene sets for Il10-/ mice fed the goat milk diet 192
Table 5.19 Top 30 enriched gene sets for Il10-/ mice fed the cow milk diet 193
Table 5.20 Enriched gene sets for C57BL/6J mice fed the goat and cow milk diets 195
Table 5.21 Enriched gene sets for Il10-/ mice fed the cow milk diet vs. those fed the goat milk diet ... 196
Table 5.22 qPCR validation of microarray results. ... 200
List of figures

Figure 1.1 Structure of the colon and intestinal barrier...............................6
Figure 1.2 Intestinal intercellular junctions...9
Figure 1.3 Genes associated with Crohn’s disease.......................................16
Figure 1.4 Histological section of the proximal colon from an Il10$^{-/}$ mouse with colon inflammation..26
Figure 1.5 Epigenetic modulation of gene expression....................................30
Figure 1.6 Dairy foods and IBD patients...42
Figure 1.7 Thesis outline ...56

Figure 2.1 Experimental designs for mouse experiments............................59
Figure 2.2 Intestinal sectioning...70
Figure 2.3 Gene expression analysis workflow ...75
Figure 2.4 Example of a network diagram generated in IPA.....................86
Figure 2.5 Laser microdissection workflow ..90
Figure 2.6 DNA methylation analysis workflow..97

Figure 3.1 Non-inflamed mouse colon section..110
Figure 3.2 Inflamed mouse colon section..111
Figure 3.3 Overlap of differentially expressed genes between treatments.....115
Figure 3.4 Immune-related gene expression profiles in intact colon and epithelium....117
Figure 3.5 Gene expression in the colon epithelium.....................................120
Figure 3.6 Gene expression in the intact colon..121

Figure 4.1 Methylation levels of CpG sites associated with the Ppara gene....150
Figure 4.2 Methylation levels of CpG sites associated with the Stat1 gene.. 151
Figure 4.3 Network diagram of the Ppara, Stat1 and Tap2 genes, showing their expression values in Il10$^{-/}$ mice at 12 weeks of age versus C57BL/6J mice at 12 weeks of age, with canonical pathways overlaid.152

Figure 5.1 Body weight of (A) C57BL/6J and (B) Il10$^{-/}$ mice throughout the experiment ...161
Figure 5.2 Colon histological injury scores ..170
Figure 5.3 Venn diagram showing numbers of differentially expressed genes unique to each diet or shared between diets relative to the modified-AIN-76A diet for Il10$^{-/}$ mice...178
Figure 5.4 Heatmap of KEGG pathways for all treatments........................179
Figure 5.5 Network diagram showing gene expression levels for the Il10$^{-/}$ vs. C57BL/6J mice on the modified-AIN-76A diet.186
Figure 5.6 Network diagram showing gene expression levels for Il10$^{-/}$ mice fed the goat milk diet vs. modified-AIN-76A diet..................187
Figure 5.7 Network diagram showing gene expression levels for Il10$^{-/}$ mice fed the cow milk diet vs. modified-AIN-76A diet.188
Figure 5.8 Heatmap of the expression of genes encoding membrane proteins for Il10$^{-/}$ mice fed milk diets and the modified-AIN-76A diet.198
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>BCM7</td>
<td>β-casomorphin-7</td>
</tr>
<tr>
<td>C57BL/6J, C3H/HeJ Bir, BALBc, 129 SvEv, 129 Ola</td>
<td>various strains of inbred mice</td>
</tr>
<tr>
<td>CD</td>
<td>Crohn’s disease</td>
</tr>
<tr>
<td>CIF</td>
<td>complex intestinal flora</td>
</tr>
<tr>
<td>CLA</td>
<td>conjugated linoleic acid</td>
</tr>
<tr>
<td>DSS</td>
<td>dextran sodium sulphate</td>
</tr>
<tr>
<td>EASE</td>
<td>expression analysis systematic explorer</td>
</tr>
<tr>
<td>EF</td>
<td>E. faecalis/faecium culture</td>
</tr>
<tr>
<td>EF.CIF</td>
<td>a 1:1 mixture of EF and CIF</td>
</tr>
<tr>
<td>FC</td>
<td>fold change</td>
</tr>
<tr>
<td>FDR</td>
<td>false discovery rate</td>
</tr>
<tr>
<td>GHS</td>
<td>general health score</td>
</tr>
<tr>
<td>GO</td>
<td>gene ontology</td>
</tr>
<tr>
<td>GSEA</td>
<td>gene set enrichment analysis</td>
</tr>
<tr>
<td>HIS</td>
<td>histological injury score</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>IBD</td>
<td>inflammatory bowel disease</td>
</tr>
<tr>
<td>IEL</td>
<td>intraepithelial lymphocyte</td>
</tr>
<tr>
<td>Ig</td>
<td>immunoglobulin</td>
</tr>
<tr>
<td>IL</td>
<td>interleukin</td>
</tr>
<tr>
<td>IL10</td>
<td>interleukin-10</td>
</tr>
<tr>
<td>Il10/-</td>
<td>interleukin-10 gene deficient (mouse)</td>
</tr>
<tr>
<td>IPA</td>
<td>Ingenuity pathway analysis</td>
</tr>
<tr>
<td>Limma</td>
<td>linear models for microarray analysis</td>
</tr>
<tr>
<td>LMD</td>
<td>laser microdissection</td>
</tr>
<tr>
<td>LSD</td>
<td>least significant difference</td>
</tr>
<tr>
<td>MALDI-TOF</td>
<td>matrix-assisted laser desorption ionisation-time of flight (mass spectrometry)</td>
</tr>
<tr>
<td>MCT</td>
<td>medium chain triglycerides</td>
</tr>
<tr>
<td>MDR1</td>
<td>multi-drug-resistant gene/protein</td>
</tr>
<tr>
<td>Mdr1a/-</td>
<td>multi-drug-resistant gene deficient (mouse)</td>
</tr>
<tr>
<td>n-3/n-6</td>
<td>omega-3/6 (fatty acid)</td>
</tr>
<tr>
<td>NOD</td>
<td>nucleotide oligomerisation domain</td>
</tr>
<tr>
<td>PUFA</td>
<td>polyunsaturated fatty acids</td>
</tr>
<tr>
<td>qPCR</td>
<td>quantitative real-time polymerase chain reaction</td>
</tr>
<tr>
<td>REML</td>
<td>residual maximum likelihood</td>
</tr>
<tr>
<td>RIN</td>
<td>RNA integrity number</td>
</tr>
<tr>
<td>SPF</td>
<td>specific pathogen free</td>
</tr>
<tr>
<td>TH</td>
<td>T-helper (cell)</td>
</tr>
<tr>
<td>TNBS</td>
<td>trinitrobenzenesulfonic acid</td>
</tr>
<tr>
<td>UC</td>
<td>ulcerative colitis</td>
</tr>
</tbody>
</table>