The disjunctivities of ω-languages

Yow Tzong Yeh
I.I.M.S., Massey University Albany Campus, Auckland, N.Z.
y.t.yeh@massey.ac.nz

Abstract
An ω-language over a finite alphabet X is a set of infinite sequences of letters of X. Consider congruences I, P_{ω}, and O_{ω} on X^* and a congruence O_{ω} on X^ω introduced by an ω-language L. I, P_{ω}, and O_{ω} are called the infinitary syntactic-congruence, the principal congruence and the ω-syntactic congruence of L, respectively. If I (P_{ω}, O_{ω}) is the equality then L is called an I-disjunctive (P-disjunctive, O-disjunctive, respectively) ω-language. Properties concerning such ω-languages are explored and relations between these ω-languages are also studied.

The disjunctivity concerning the infinitary syntactic-congruence I
Given an ω-language L, by the infinitary syntactic-congruence I of L we mean the relation I on X^* given by $u \equiv v (I) \iff \forall x, y \in X^*, x(uy)^\omega \in L \iff x(vy)^\omega \in L$. If I is the equality then L is called I-disjunctive. Every I-discrete I-dense ω-language is I-disjunctive. An ω-language is I-dense iff it contains an I-disjunctive language. A periodically generated ω-language L is I-dense iff L can be expressed as a disjoint union of infinitely many I-disjunctive ω-languages.

The disjunctivity concerning the principal congruence P_{ω}
Given an ω-language L, by the principal congruence P_{ω} of L we mean the relation P_{ω} on X^* given by $u \equiv v (P_{\omega}) \iff \forall x \in X^*$ and $\alpha \in X^\omega$, $xu\alpha \in L \iff xv\alpha \in L$. If P_{ω} is the equality then L is called P-disjunctive. Every P-discrete P-dense ω-language is P-disjunctive. A P-discrete ω-language is P-disjunctive iff the set of all its finite subwords is X^*.

The disjunctivity concerning the ω-syntactic congruence O_{ω}
Given an ω-language L, by the ω-syntactic congruence O_{ω} of L we mean the relation O_{ω} on X^ω given by $\alpha \equiv \beta (O_{\omega}) \iff \forall x \in X^*$, $x\alpha \in L \iff x\beta \in L$. If O_{ω} is the equality then L is called O-disjunctive. If S is a left singular language then SL is O-disjunctive for any O-disjunctive ω-language L. If P is a finite prefix code then L is an O-disjunctive ω-language iff PL is O-disjunctive.

Families of Disjunctive ω-languages
Every I-closed I-disjunctive ω-language is P-disjunctive while not every P-disjunctive ω-language is I-disjunctive. Every O-disjunctive ω-language is P-disjunctive while not every P-disjunctive ω-language is O-disjunctive. Every O-disjunctive ω-language is I-disjunctive while not every I-disjunctive ω-language is O-disjunctive. Every P-disjunctive ω-language is P-dense

References

