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The geodesic motion on a Lie group equipped with a left or right invariant Riemannian
metric is governed by the Euler-Arnold equation. This paper investigates conditions on the
metric in order for a given subgroup to be totally geodesic. Results on the construction
and characterisation of such metrics are given. The setting works both in the classical finite
dimensional case, and in the category of infinite dimensional Fréchet Lie groups, in which
diffeomorphism groups are included. Using the framework we give new examples of both finite
and infinite dimensional totally geodesic subgroups. In particular, based on the cross helicity,
we construct right invariant metrics such that a given subgroup of exact volume preserving
diffeomorphisms is totally geodesic.

The paper also gives a general framework for the representation of Euler-Arnold equations
in arbitrary choice of dual pairing.
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1 Introduction

In 1966 Vladimir Arnold demonstrated that Euler’s equation for an ideal fluid is the geodesic equa-
tion on the group of volume preserving diffeomorphisms with respect to the right invariant L2 met-
ric [2]. Since then there has been a lot of interest in generalised Euler equations (also known as
Euler-Arnold equations), i.e., geodesic equations on a Lie group equipped with an invariant metric.
Examples of such equations include Burgers’ equation (Diff(S1) with a right-invariant L2 metric),
Korteweg-de Vries (Virasoro-Bott group with a right invariant L2 metric), and Camassa-Holm
(Diff(S1) with a right invariant H1 metric); these and other examples are surveyed in [21].

A Lie subgroup H ⊂ G is called totally geodesic in G if geodesics in H are also geodesics in G.
Motivated by the physical applications it is common to ask which subgroups (of a given group) are
totally geodesic with respect to a given metric. In this paper we investigate a different question:
we do not fix the metric, but ask if it is possible to choose one so that a given subgroup H ⊂ G is
totally geodesic. A motivation for this study comes from diffeomorphic image matching, where one
may want to require a certain class of transformations (e.g. affine transformations) to be totally
geodesic within a larger class.

There has been little systematic study of totally geodesic subgroups. However, in the case of
diffeomorphisms, the following results are known:
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1. The exact volume preserving diffeomorphisms of a flat compact Riemannian manifold without
boundary is totally geodesic in the volume preserving diffeomorphisms, with respect to the
right invariant L2 metric. (Recall that the exact volume preserving diffeomorphisms are
generated by vector fields that have a vector potential in terms of the curl operator.) This
result is given in [4], and refined in [8].

2. The Hamiltonian diffeomorphisms of a closed Kähler manifold with flat metric is totally
geodesic in the symplectic diffeomorphisms, with respect to the right invariant L2 metric.
This result is given in [4], and refined in [8].

3. Let G be a compact Lie group that acts on on a Riemannian manifold M by isometries.
Let Φg denote the action. The subgroup of equivariant diffeomorphisms DiffΦg (M) is totally
geodesic in Diff(M) and Diffvol(M), with respect to the right invariant L2 metric. This result
is given in [20].

4. The subgroup of diffeomorphisms on a Riemannian manifold M that leaves the point of a
submanifold N ⊂ M fixed is totally geodesic with respect to the right invariant L2 metric.
This result is given in [20].

5. The subgroup of diffeomorphisms of the cylindrical surface S1 × [0, 1] that rotates each
horizontal circle rigidly by an angle is totally geodesic in the group of volume preserving
diffeomorphisms of S1 × [0, 1]. This result is given in [7].

The main contribution of this paper is a framework for the construction of a family of left or
right invariant metrics on a Lie algebra G such that a given subgroup H ⊂ G is totally geodesic with
respect to each metric in the family. The requirement is that there is a bi-linear symmetric form on
the Lie algebra g of G with certain bi-invariance and non-degeneracy properties. The construction
works both in the finite and infinite dimensional case (as in [8], we work in the category of Fréchet
Lie groups [12]). In the finite dimensional case, using the Killing form as bi-linear symmetric form,
the requirement is that h is semisimple.

Using this technique, we can extend the list of totally geodesic examples above:

6. Let G be an n dimensional Lie group, and let H ⊂ G be an m dimensional semisimple Lie
subgroup of G. We construct a (n + 1)n/2 − (n − m)m dimensional manifold of left (or
right) invariant metrics on G, for which H is totally geodesic in G. In particular, we give an
example of a left invariant metric such that SO(3) is totally geodesic in GL(3).

In the infinite dimensional case of diffeomorphism groups, we are lead to bi-invariant forms.
For exact divergence free and Hamiltonian vector fields respectively, a bi-invariant non-degenerate
bi-linear symmetric form has been given by Smolentsev [16, 17, 18]. We give a generalisation of
Smolentsev’s result, extending it to include manifolds with boundaries. Using our framework, we
then give the following new examples of totally geodesic subgroups of diffeomorphisms:

7. Let (M, g) be a compact Riemannian n–manifold with boundary. The (finite dimensional)
group of isometries Diff iso(M) is totally geodesic in Diff(M) with respect to the right invariant
H1
α metric.

8. Let (M, g) be a compact Riemannian n–manifold with boundary. Then we give a strong
condition for Diffex

vol(M) to be totally geodesic in Diffvol(M) with respect to the right invariant
H1
α metric. This is an extension of a result in [8].

9. Let (M, g) be a compact contact 3–manifold with boundary. Then the exact contact diffeo-
morphisms are totally geodesic in the exact volume preserving diffeomorphisms, with respect
to the right invariant L2 metric.
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The paper is organised as follows. Section 2 begins with a brief presentation of geodesic flow
on groups and the Euler-Arnold equation. In Section 2.1 we state the infinite dimensional setting,
which is based on Fréchet Lie groups. In particular, this setting allows groups of diffeomorphisms.
As a subsidiary objective of the paper, we give in Section 2.2 a fairly detailed framework of how to
represent the dual space g∗ of a Lie algebra g by a choice of pairing. It is our experience that, in
the current literature, the choice of pairing used to represent a particular Euler-Arnold equation
is often implicit, and varies from equation to equation and from research group to research group.
As examples, we give two different representations of the rigid body equation, and five different
representations of the ideal fluid equation, using various choices of pairing (all of them occur in
literature).

In Section 3 we derive a characterisation on the algebra level, for a subgroup to be totally
geodesic (Theorem 2). We point out that part of this result appears already as a main tool in the
paper [8]. To gain geometric insight we also derive, in Section 3.1, the condition for a subgroup to
be totally geodesic by the standard technique using the second fundamental form. Furthermore, in
Section 3.2 we derive the correspondence of Theorem 2 in terms of Lie algebra structure coefficients
and metric tensor elements, i.e., from the coordinate point view.

Section 4 presents a framework for constructing totally geodesic metrics. To some extent, this
construction characterises all metrics which makes a subgroup easy totally geodesic, meaning that
the orthogonal complement of the subalgebra is invariant under the adjoint action. In Section 4.2
we investigate the special case of semi-direct products.

Finally, the examples of totally geodesic diffeomorphism subgroups given in the list above are
derived in Section 5.

2 Geodesic Flow and Euler-Arnold Equations

Let G be a Lie group with Lie algebra g. We denote by [·, ·] the Lie algebra bracket on g, and
the identity element in G is denoted e. For each g ∈ G we denote by Lg and Rg the left and right
translation maps on G, and by TLg and TRg their corresponding tangent maps (derivatives). To
simplify the development we mainly work with left translation in our derivation. Notice however
that all results also carry over to the setting of right translation.

Consider a real inner product 〈·, ·〉A on g. It is implicitly associated with an inertia operator
A : g→ g∗ such that 〈·, ·〉A = 〈A · , ·〉. The tensor field over G given by

TgG× TgG 3 (vg, wg) 7−→ 〈TgLg−1vg, TgLg−1wg〉A =: 〈〈vg, wg〉〉A,g,

defines a Riemannian metric 〈〈·, ·〉〉A on G. The geodesic flow γ : [0, 1] → G between two points
g0, g1 ∈ G fulfils (by definition) the variational problem

δ

∫ 1

0

1
2
〈〈γ̇(t), γ̇(t)〉〉A,γ(t) dt = 0, γ(0) = g0, γ(1) = g1. (1)

This can be viewed as a Lagrangian problem, with a quadratic Lagrangian function L : TG → R
given by L(vg) = 1

2 〈〈vg, vg〉〉A,g.
From the construction of the metric on G it is straightforward to check that L is left invariant,

i.e., L(vg) = L(TgLhvg) for each h ∈ G. In particular, it means that the Lagrangian L is fully
determined by the reduced quadratic Lagrangian l : g→ R defined by restriction of L to TeG ≡ g,
i.e., l(ξ) = 1

2 〈ξ, ξ〉A. By Euler-Poincaré reduction (cf. Marsden and Ratiu [15, Ch. 13]), the second
order differential equation for geodesic motion, i.e., the Euler-Lagrange equation for L, can be
reduced to a first order differential equation on the Lie algebra g called the Euler-Arnold equation.
In weak form it is given by

〈ξ̇, η〉A = 〈ξ, adξ(η)〉A, ∀ η ∈ g, (2a)
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where adξ := [ξ, ·]. The corresponding strong form of the Euler-Arnold equation is

ξ̇ = ad>Aξ (ξ) (2b)

where ad>Aξ is the transpose of the map adξ with respect to the inner product 〈·, ·〉A, i.e.,
〈ad>Aξ (ψ), η〉A = 〈ψ, adξ(η)〉A for all ξ, ψ, η ∈ g. Throughout the rest of this paper we assume
that ad>Aξ is well defined for every ξ ∈ g, and that the strong form of the Euler-Arnold equation
is locally well posed for every choice of initial data. In finite dimensions this is always the case
since the inner product 〈·, ·〉A is non-degenerate, so A is an isomorphism. For infinite dimensional
groups (see Section 2.1 below) the assumption is non-trivial.

Given a solution curve ξ(t) ∈ g to the Euler-Arnold equation (2), the corresponding solution
curve γ(t) ∈ G is recovered by the reconstruction equation γ̇(t) = TeLγ(t)ξ(t).

The Euler-Arnold equation (2b) is described in the Lagrangian framework of mechanics. It is
also possible to obtain a Hamiltonian description. Indeed, by the Legendre transformation we can
change to the momentum variable µ := dl/dξ(ξ) = Aξ. In this variable the Euler-Arnold equation
takes the form

µ̇ = ad∗ξ(µ), ξ = A−1µ, (2c)

where ad∗ξ : g∗ → g∗ is defined by 〈µ, adξ(η)〉 = 〈ad∗ξ(µ), η〉 for all η ∈ g and µ ∈ g∗. This is a
Hamiltonian system with respect to the canonical Lie-Poisson bracket (cf. Marsden and Ratiu [15,
Ch. 13]), for the reduced quadratic Hamiltonian function h(µ) = 1

2 〈µ,A
−1µ〉.

Remark 2.1. If right invariance instead of left invariance is considered, the framework is almost
identical, with the two deviations that the right hand side of the Euler-Arnold equation (2) switches
sign, and right instead of left reconstruction should be used. Typically, finite dimensional examples
are left invariant, and infinite dimensional examples are right invariant.

Remark 2.2. In this paper, we mean with “Lagrangian form” of an Euler-Arnold equation that
it corresponds to a reduced Lagrangian function as described above. We do not mean the fluid
particle representation of the equation.

2.1 Infinite Dimensional Setting

In addition to the classical setting of finite dimensional Lie groups, the framework described above
is also valid for infinite dimensional Fréchet Lie groups and corresponding Fréchet Lie algebras.
The prime examples, and the only ones we consider in this paper, are subgroups (including the full
group itself) of the group Diff(M) of diffeomorphisms on an n–dimensional compact manifold M ,
with composition as group operation. If M has no boundary, the corresponding Fréchet Lie algebra
is the space X(M) of smooth vector field on M . If M has a boundary, it is the vector fields Xt(M)
in X(M) that are tangent to the boundary. The Lie algebra bracket on X(M) is minus the Jacobi-
Lie commutator bracket, i.e., adξ(η) ≡ [ξ, η] = −[ξ, η]X. The topology on X(M), making it a
Fréchet space, is given by the sequence of semi norms

‖ξ‖0, ‖ξ‖1, ‖ξ‖2, . . . where ‖ξ‖m :=
m∑
k=0

sup
x∈M

n∑
i=1

|ξ(k)
i (x)|, ξ =

n∑
i=1

ξi∂i (3)

The Jacobi-Lie bracket [·, ·]X : X(M) × X(M) → X(M) is a smooth map with this topology, as is
every differential operator X(M)→ X(M). See Hamilton [9, Sect. I.4] for details on the category
of Fréchet Lie algebras and Fréchet Lie groups.

Remark 2.3. Notice that the Fréchet topology defined in equation (3) is independent of the choice
of coordinates on M , since all norms on M are equivalent.
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The dual space of a Fréchet space is not itself a Fréchet space (see [9, Sect. I.1]). Thus, the
Hamiltonian view-point, established by equation (2c) above, does not make sense, since it assumes
that g and g∗ are isomorphic. As a remedy, it is customary to introduce the so called regular
dual. It is a subspace of the full dual which is isomorphic to g. Indeed, the regular dual is given
by the image of the inertia operator g∗reg = Ag. Throughout this paper we will only work with
the regular dual, so the subscript is omitted: g∗ := g∗reg. Furthermore, if several inertia operators
A1,A2 are considered for the same Fréchet Lie algebra, we assume that the regular part of the
dual is invariant, i.e., that A1g = A2g.

2.2 Choice of Pairing

The most straightforward way to get a coordinate representation of the Euler-Arnold equation (2)
is to introduce coordinates in g, and then compute the transpose of adξ in these coordinates with
respect to the given inner product 〈·, ·〉A. However, with this approach the inner product is im-
plicitly entangled in the equation. Furthermore, in the infinite dimensional case of diffeomorphism
groups it is only possible to explicitly compute the transpose map ad>Aξ in a few special cases.
Instead, a common approach is to “decouple” the dependence on the choice of inner product in the
coordinate representation. That is, to have a representation of the Euler-Arnold equation similar
to the Hamiltonian form (2c). In order to do so one needs to introduce a correspondence between
elements in g∗ and elements in g without reference to the given inner product 〈·, ·〉A. In finite
dimensions one may choose any basis in g and use the corresponding dual basis in g∗. In general,
we identify every element in g∗ with a corresponding element in a space g•, isomorphic to g∗, via
an isomorphism L : g• → g∗ which we call the pairing operator. That is, µ ∈ g∗ is represented by
µ̄ = L−1µ ∈ g•. In infinite dimensions the trick is to find an isomorphic space g• and a suitable
pairing operator in which ad∗ξ is nicely represented, i.e., in which ad•ξ := L−1 ◦ ad∗ξ ◦ L is simple
to write down. It is our experience that the relation between the choice of inner product 〈·, ·〉A,
the choice of dual pairing space g•, and the choice of pairing operator L, has caused confusion in
the current literature, especially when comparing different Euler-Arnold equations with different
traditions.

In the Hamiltonian view-point, the Euler-Arnold equation (2) can be written in terms of µ̄ as
dµ̄
dt

= ad•ξ(µ̄)

µ̄ = Jξ
where J := L−1A. (4a)

One may also take the Lagrangian view-point, in which case the equation is written

Jξ̇ = ad•ξ(Jξ). (4b)

Notice, in both cases, that the map ad•ξ is used, not ad>Aξ or ad∗ξ . The dependence on the choice
of inner product 〈·, ·〉A is captured through J alone.

The reconstructed variables µ(t) = Lµ̄(t) and ξ(t) = J−1µ̄(t) are of course independent of the
choice of pairing space and choice of hat map. For the choice g• = g and L = A both equation (4a)
and equation (4b) exactly recover the original form (2b) of the Euler-Arnold equation. We call
this choice the inertia pairing. Next we continue with two original examples by Arnold. Using our
framework, we give a list of various choices of pairings, all occurring in the literature.

Example 2.1 (Rigid body). This is the first example of Arnold [2]. The group is the set of
rotation matrices SO(3). Its Lie algebra is the space of skew-symmetric matrices so(3). A left-
invariant metric on SO(3) is obtained from the inertia operator A : so(3)→ so(3)∗, corresponding
to moments of inertia for the rigid body. Next, we specify a choice of pairing. We give two
commonly used examples.

(a) Chose g• = so(3), and the map L : g• → so(3)∗ defined by the Frobenius inner product:
〈Lµ̄, ξ〉 = 1

2 tr(µ̄>ξ). With this pairing operator it holds that ad•ξ(µ̄) = −adξ(µ̄) = −ξµ̄+ µ̄ξ, which
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follows from the fact that the Frobenius inner product on so(3) is the negative of the bi-invariant
Killing form on so(3) (see Section 4 below). Thus, the rigid body equation in Hamiltonian form (4a)
is given by the Lax pair formulation

dµ̄
dt

= −[ξ, µ̄] = µ̄ξ − ξµ̄, µ̄ = Jξ,

and in the Lagrangian form (4b) it is

Jξ̇ = −[ξ, Jξ] = Jξ ξ − ξ Jξ,

where J = L−1A is a linear map so(3) → so(3), self-adjoint with respect to the Frobenius inner
product, giving the moments of inertia.

(b) This second choice of pairing is most frequently used. Let e1, e2, e3 denote the basis(
0 0 0
0 0 −1
0 1 0

)
,
(

0 0 1
0 0 0
−1 0 0

)
,
(

0 −1 0
1 0 0
0 0 0

)
for so(3). We chose g• = R3. Further, we use the traditional notation for the coordinate vector
µ̄ = π = (π1, π2, π3), corresponding to angular momentum. The pairing operator is given by
Lπ =

∑3
i=1 πie

∗
i , where e∗1, e

∗
2, e
∗
3 is the dual basis of so(3)∗. With this pairing operator it holds that

ad•ξ(π) = π×ω, where ω ∈ R3 is the coordinate vector of ξ in the basis e1, e2, e3, corresponding to
angular velocity. Thus, we recover the classical version of the rigid body equation, in Hamiltonian
form

π̇ = π × ω, π = Jξ = Jω

or in Lagrangian form
Jω̇ = Jω × ω

where J is the symmetric 3×3 inertia matrix, defined by Jei = Jei = L−1Aei, with {ei}3i=1 being
the canonical basis in R3.

Example 2.2 (Ideal hydrodynamics). This is the second example of Arnold [2]. Let (M, g) be
a compact Riemannian manifold of dimension n, possibly with boundary. The group we consider
is first Diffvol(M), i.e., the set of volume preserving diffeomorphism, and later also the subgroup
Diffex

vol(M) ⊂ Diffvol(M) of exact volume preserving diffeomorphisms.
It holds that Diffvol(M) is a Fréchet Lie subgroup of Diff(M); see [12]. Its Fréchet Lie algebra

is Xvol,t(M) = Xvol(M) ∩Xt(M), i.e., the set of divergence free vector fields on M , tangent to the
boundary ∂M . The metric 〈〈·, ·〉〉A on Diffvol(M) is right translation of the L2 inner product, i.e.,

〈ξ, η〉A = 〈ξ, η〉L2 :=
∫
M

g(ξ, η)vol,

where vol is the volume form associated with the Riemannian metric g. We now present various
choices of pairings which renders different representations of the Euler-Arnold equation for ideal
hydrodynamics.

(a) The classical choice is the inertia pairing, i.e., g• = Xvol,t(M) and L = A (the L2 inner
product is used for the pairing). Straightforward calculations yield (see e.g. any of [4, 18, 21])

ad•ξ(ξ) = P (∇ξξ)

where ∇ denotes the Levi-Civita connection and P : X(M) → Xvol,t(M) is the L2 projection
onto Xvol,t(M), i.e., projection along X⊥A

vol,t. From the Hodge decomposition for manifold with
boundary (see [1, Sect. 7.5]), it follows that X⊥A

vol,t = grad(F(M)). We now recover the well known
Euler equation of an ideal incompressible fluid:

ξ̇ = −∇ξξ − grad p, div ξ = 0. (5)
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Notice that the additional pressure function p (corresponding to Lagrangian multiplier) must be
used in this representation, due to the projection operator P occurring in the expression for ad•ξ .

(b) There is another commonly used choice of pairing, in which the Euler fluid equation takes
a simpler form (see e.g. [4, Sect. 7.B]). The space of k–forms on M is denoted Ωk(M). Every
vector field ξ on M corresponds to a 1-form ξ[, by the flat operator [ : X(M) → Ω1(M) defined
by contraction with the metric. Its inverse is given by the sharp operator ] : Ω1(M) → X(M).
Consider the map T : Ω1(M)→ Xvol,t(M) defined by Tα = Pα], were P is the projection operator
as above. Clearly, the kernel is given by kerT = grad(F(M))[ = dΩ0(M), i.e., the exact 1–forms.
Thus, we have a corresponding isomorphism T : Ω1(M)/dΩ0(M)→ imT = Xvol,t(M), so we may
chose g• = Ω1(M)/ dΩ0(M), with pairing operator defined by

〈Lµ̄, ξ〉 = 〈Tµ̄, ξ〉L2 ∀ξ ∈ Xvol,t(M).

Since Diffvol(M) acts on Xvol,t(M) by coordinate changes, and due to preservation of the volume
form, it holds that ad•ξ(µ̄) = £ξµ̄, where the Lie derivative is well defined on Ω1(M)/ dΩ0(M) since
it maps exact forms to exact forms. For details see [11, Chap. 3]. Thus, the Hamiltonian form of
the Euler-Arnold equation with this pairing is

d
dt
µ̄ = −£ξµ̄, ξ = Tµ̄, (6a)

and the corresponding Lagrangian form of the equation is

d
dt

[ξ[] = −£ξ[ξ[]. (6b)

(c) There is another choice of pairing, “in between” the choices (a) and (b), sometimes used
in the literature (see e.g. [15, Sect. 14.1]). Recall that the metric on M induces the Hodge star
operator ? : Ωk(M)→ Ωn−k(M). The L2 inner product on Ωk(M) is given by

〈α, β〉L2 :=
∫
M

α ∧ ?β. (7)

From the Hodge decomposition theorem for manifolds with boundary (see [1, Sect. 7.5]) we get an
L2 orthogonal decomposition Ωk(M) = dΩk−1(M)⊕ Dkt (M), where Dkt (M) = {α ∈ Ωk(M); δα =
0, i∗(?α) = 0} are the co-closed tangential k–forms (i : ∂M → M is the natural inclusion and
δ : Ωk(M)→ Ωk−1(M) is the co-differential). It follows from the de Rham complex (see Figure 1)
that Xvol,t(M) ' D1

t (M), with an isomorphism given by ξ 7→ ξ[. Indeed, if ξ ∈ Xvol,t(M) then
iξvol is a closed normal (n − 1)–form, since the isomorphism ξ 7→ iξvol maps tangential vector
fields to normal (n − 1)–forms, and since div on X(M) corresponds to d on Ωn−1

n (M). Further,
the Hodge star maps tangential k–forms to normal (n− k)–forms, and co-closed k–forms to closed
(n− k)–forms, so

Xvol,t(M) 3 ξ 7→ ?−1iξvol = ?−1 ? ξ[ = ξ[ ∈ D1
t (M)

is an isomorphism. Thus, we may chose g• = D1
t (M), with pairing operator defined by

〈Lµ̄, ξ〉 = 〈µ̄, ξ[〉L2 .
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The ad•ξ operator is obtained by direct calculations:

〈ad∗ξ(µ), η〉 = 〈Lad•ξ(L
−1µ), η〉 = 〈Lad•ξ(µ̄), η〉

= 〈ad•ξ(µ̄), η[〉L2 = 〈µ̄, (adξ(η))[〉L2 = 〈µ̄,−[ξ, η][〉L2

= −
∫
M

µ̄ ∧ ?[ξ, η][ = −
∫
M

µ̄ ∧ i[ξ,η]vol

= −
∫
M

µ̄ ∧£ξiηvol +
∫
M

µ̄ ∧ iη £ξvol︸ ︷︷ ︸
0

=
∫
M

£ξµ̄ ∧ iηvol−
∫
M

£ξ(µ̄ ∧ iηvol)

=
∫
M

£ξµ̄ ∧ ?η[ −
∫
∂M

i∗(iξ(µ̄ ∧ ?η[))

=
∫
M

£ξµ̄ ∧ ?η[ −
∫
∂M

ii∗ξ(i∗(µ̄) ∧ i∗(?η[)︸ ︷︷ ︸
0

)

= 〈£ξµ̄, η
[〉L2 .

Thus, ad•ξ(µ̄) = P (£ξµ̄), where P : Ω1(M) → D1
t (M) is the L2 orthogonal projection. Since

the orthogonal complement of D1
t (M) is dΩ0(M) (by the Hodge decomposition theorem), we get

ad•ξ(µ̄) = £ξµ̄+ dp, for some p ∈ Ω0(M). Thus, the Hamiltonian form of the Euler-Arnold equation
is

d
dt
µ̄ = −£ξµ̄− dp, δµ̄ = 0, µ̄ = ξ[, (8a)

and the Lagrangian form is
d
dt
ξ[ = −£ξξ

[ − dp, δξ[ = 0. (8b)

Notice the resemblance with both the form (5) and the form (6). Indeed, applying the Riemannian
lift yields (5), and applying the quotient map yields (6).

(d) Now let M be a 3–manifold, and consider the subgroup Diffex
vol(M) ⊂ Diffvol(M) consisting

of exact volume preserving diffeomorphisms (see Section 5.2 below). For this setting, one may use
the vorticity formulation (see e.g. [16]). The space of exact divergence free tangential vector fields
Xex

vol,t(M) is the Lie algebra of Diffex
vol(M). Furthermore, Xex

vol,t(M) is isomorphic to the space of
normal exact 2–forms dΩ1

n(M), with isomorphism given by ξ 7→ iξvol. Also, the map (d?)−1 is
well defined on dΩ1

n(M), where it is non-degenerate and L2 self-adjoint; see Lemma 19 below.
Now, we chose g• = dΩ1

n(M) with pairing operator defined by

〈Lµ̄, ξ〉 = 〈µ̄, (d?)−1iξvol〉L2 .

For ξ, η ∈ Xex
vol,t(M) we now get

〈ad∗ξ(µ̄), η〉 = 〈ad•ξ µ̄, (d?)
−1iηvol〉L2 = 〈µ̄, (d?)−1iadξ(η)vol〉L2

= −〈µ̄, (d?)−1i[ξ,η]Xvol〉L2

= −〈µ̄, (d?)−1£ξiηvol〉L2 + 〈µ̄, (d?)−1iη £ξvol︸ ︷︷ ︸
0

〉L2

= 〈£ξµ̄, (d?)−1iηvol〉L2

where the last equality follows from the bi-invariant property of cross helicity (see Section 5.4
below). Notice that £ξµ̄ is exact since d commutes with the Lie derivative. Thus, ad•ξ = £ξ.
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F(M)
OO

Id

��

grad //

Id

))
X(M)

[
��

Id

**
X(M) div //

ξ 7→iξ vol

��

F(M)

f 7→f vol

��
0 // Ω0(M) d //

?

55Ω1(M)

]

OO

d //
? 33
. . . d // Ωn−1(M) d // Ωn(M) // 0

Figure 1: The de Rham complex of a Riemannian manifold M . The upper sequence corresponds
to the lower sequence with identifications given by the vertical arrows (which are isomorphisms).
Likewise, the upper curved arrows corresponds to the lower curved arrows.

Next, notice that Aξ = L d ? iξvol, so Jξ = d ? iξvol = d ? ?ξ[ = dξ[. Now, the Hamiltonian form
of the Euler-Arnold equation is

d
dt
µ̄ = −£ξµ̄, µ̄ = Jξ = dξ[. (9a)

and the Lagrangian form is
dξ̇[ = −£ξ dξ[. (9b)

The requirement for solutions of equation (9b) to also fulfill equation (8b) is that Diffex
vol(M) is

totally geodesic inside Diffvol(M). The exact condition for this is given in [8], in the case when M
has no boundary. It is extended to the case when M has a boundary, and for a possibly altered
H1
α metric (corresponding to the averaged Euler fluid equation), in Theorem 15 below.

(e) There is another vorticity formulation, which is perhaps the most elegant form of the ideal
hydrodynamic fluid equation. Again, the requirements is that M is a 3–manifold, and we consider
the subgroup Diffex

vol(M). As pairing space we chose g• = Xex
vol,t(M), and the pairing operator is

defined by
〈Lµ̄, ξ〉 = 〈µ̄, curl−1 ξ〉L2 .

It follows from Lemma 19 that curl−1 is well defined on Xex
vol,t(M). Further, using Theorem 17,

it follows that ad•ξ(µ̄) = −adξ(µ̄) = [ξ, µ̄]X, since the inner product 〈·, curl−1 ·〉L2 is bi-invariant.
Moreover, Jξ = curl ξ, so the Hamiltonian form of the Euler-Arnold equation takes the Lax pairing
form

d
dt
µ̄ = −[ξ, µ̄]X, µ̄ = Jξ = curl ξ. (10a)

The corresponding Lagrangian form of the equation is

curl ξ̇ = −[ξ, curl ξ]X. (10b)

From the de Rham complex of a 3–manifold (see Figure 2) it follows that the previous form (d)
is obtained from these equations by applying the flat operator followed by the Hodge star. Again,
we remark that these equations give solutions corresponding to solutions of the full Euler fluid
equation only in the case when Diffex

vol(M) is totally geodesic in Diffvol(M).

3 Totally Geodesic Subgroups

First, recall the definition of totally geodesic:
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Definition 3.1. Let M be a Riemannian manifold, with metric 〈〈·, ·〉〉, and let N ⊂ M be a
submanifold with the induced metric. Then N is called totally geodesic in M with respect to 〈〈·, ·〉〉
if each geodesic of N , embedded in M , is also a geodesic of M .

Now, let G be a Lie group equipped with a left (or right) invariant metric. Let H be a Lie sub-
group of G, i.e., a topologically closed submanifold which is closed under the group multiplication
inherited from G. The main ambition of our paper is to investigate conditions on the left invariant
metric 〈〈·, ·〉〉A under which a given subgroup H is totally geodesic in G. Due to left invariance, it
is enough to consider the Lie subalgebra h of g:

Lemma 1. H is totally geodesic in G if and only if all solutions ξ(t) ∈ h to the Euler-Arnold
equation on h are also solutions to the Euler-Arnold equation on g.

Proof. Let i : H → G be the inclusion map, let LHh and LGg for h ∈ H and g ∈ G be the left
translation maps on H and G respectively. Then i ◦ LHh = LGi(h) ◦ i, so Ti ◦ TLHh = TLGi(h) ◦ Ti.

Now, let ξ(t) ∈ g be the solution to the Euler-Arnold equation on g with initial data ξ(0) =
TeGiψ0 for ψ0 ∈ h (eG is the identity element in G). Further, let ψ(t) ∈ h be the solution to
the Euler-Arnold equation on h with initial data ψ(0) = ψ0. Let g(t) ∈ G and h(t) ∈ H be the
corresponding geodesic curves. We need to prove that i(h(t)) = g(t) if and only if ξ(t) = TeH iψ(t).
The curve h(t) fulfils ḣ(t) = TeHLHh(t)ψ(t) with h(0) = eH . Applying Ti from the right and using
the identity derived above we get

d
dt
i(h(t)) = Th(t)i ◦ TeHLHh(t)ψ(t) = TeGLGi(h(t)) ◦ TeH iψ(t), i(h(0)) = eG.

Thus, i(h(t)) fulfils the same reconstruction equation as g(t) if and only if ξ(t) = TeH iψ(t), so the
result follows by uniqueness of solutions.

Thus, we say that a subalgebra h is totally geodesic in g with respect to 〈·, ·〉A if solutions to
the Euler-Arnold equation for h are also solution to the Euler-Arnold equation for g. Whether
this holds or not depends upon an interplay between the choice of subalgebra h and the choice of
metric 〈·, ·〉A. As a basic tool we have the following result, of which 1↔ 4 is stated in [8]:

Theorem 2. Let h be a subalgebra of g, and let h⊥A the orthogonal complement of h with respect
to the inner product 〈·, ·〉A. The following statements are equivalent:

1. h is totally geodesic in g with respect to 〈·, ·〉A.

2. 〈ξ, [ξ, η]〉A = 0 for all ξ ∈ h and η ∈ h⊥A .

3. 〈ψ, [ξ, η]〉A + 〈ξ, [ψ, η]〉A = 0 for all ξ, ψ ∈ h and η ∈ h⊥A .

4. ad>Aξ (ξ) ∈ h for all ξ ∈ h.

5. ad>Aξ (ψ) + ad>Aψ (ξ) ∈ h for all ξ, ψ ∈ h.

Proof. We first prove 1↔ 2. Let ξ(t) be a solution to the Euler-Arnold equation (2) on h. Consider
the weak formulation (2a). Every test function can be uniquely written η = η1 + η2 with η1 ∈ h
and η2 ∈ h⊥A . Since ξ(t) ∈ h for all t it holds that 〈ξ̇(t), η2〉A = 0. Thus, in order for ξ(t)
to be totally geodesic, i.e., fulfil the Euler-Arnold equation (2a) on g, a sufficient condition is
that 〈ξ(t), [ξ(t), η2]〉A = 0 for all η2 ∈ h⊥. Since the initial condition ξ(0) ∈ h is arbitrary the
condition is also necessary. Next, 2 ↔ 3 follows since the bi-linear form Qη(ξ, ψ) := 〈ξ, [ψ, η]〉A
fulfils Qη(ξ, ξ) = 0 if and only if Qη is skew-symmetric. Lastly, 2↔ 4 and 3↔ 5 follows from the
definition of ad>Aξ and the fact that g is spanned by h⊕ h⊥A .

A geometric interpretation of the result in Theorem 2 is that h is totally geodesic if and only
if [ξ, η]⊥Aξ for all ξ ∈ h and η ∈ h⊥A . That is, [ξ, η] must belong to the hyperplane which is
A–orthogonal to ξ.
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Remark 3.1. Notice that Theorem 2 is valid also in the case when g is an infinite dimensional
Fréchet Lie algebra. Indeed, a Fréchet Lie subalgebra h is (by definition) a topologically closed
linear subspace of g which is closed under the bracket. Thus, every η ∈ g admits a unique
decomposition η = η1 + η2 with η1 ∈ h and η2 ∈ h⊥A .

Example 3.1 (Rigid body, cont.). Consider again Example 2.1. A one dimensional subalgebra of
so(3) is given by h = {ξ ∈ so(3); ξ = ae1, a ∈ R}. Since it is one dimensional the bracket is trivial,
so the Euler-Arnold equation on h reduce to ξ̇ = 0, i.e., all solutions are stationary.

From Theorem 2 we obtain that h is totally geodesic if and only if ad>Aξ (ξ) ∈ h for all ξ ∈ h.
Expressed in ad• this means ad•e1(Jê1) = bê1 for some b ∈ R. (Since solutions are stationary we
know that b = 0.) Explicitly, this reads ê1×Jê1 = bê1, which happens if and only if ê1 and Jê1 are
parallel, i.e., ê1 is an eigenvector of J . Indeed, it is well known that the only stationary solutions
to the Euler-Arnold equation on so(3) are given by the set of eigenvectors of the inertia matrix J .

3.1 Derivation Using the Second Fundamental Form

In this section we give a different derivation of Theorem 2, based on computing the second funda-
mental form. This derivation gives more geometrical insight to the process.

To begin with, recall the following well known result (see e.g. [13]):

Theorem 3. Let N be a submanifold of a Riemannian manifold M with metric g. Then N is
totally geodesic in M if and only if the second fundamental form of N vanishes identically.

Thus, an alternative approach for deriving Theorem 2 is to compute the second fundamental
form of the subgroup H ⊂ G. Again, 〈〈·, ·〉〉A denotes a left invariant metric on G, and we use the
same notation for its restriction to H. Let e denote the identity element of G. Recall that the
second fundamental form is a symmetric tensor on TH, given by

Π(X,Y ) := (∇XY )⊥A .

Because the metric is invariant, this tensor is determined by its values on the tangent vectors to H
at the identity. It therefore follows that we can determine the tensor by computing a formula for

〈〈∇XξYη, Zψ〉〉A,e,

where Xξ denotes the left invariant vector field on G whose value at e is ξ, and similarly for Yη
and Zψ. Indeed, we have the following result:

Proposition 4. For left invariant vector fields Xξ, Yη on G the following formula holds,

∇XξYη(e) =
1
2
(
[ξ, η]− ad>Aξ (η)− ad>Aη (ξ)

)
. (11)

Proof. Starting with the defining identity for the connection,

2〈〈∇XY,Z〉〉A = £X〈〈Y,Z〉〉A + £Y 〈〈Z,X〉〉A −£Z〈〈X,Y 〉〉A
− 〈〈Y, [X,Z]〉〉A − 〈〈Z, [Y,X]〉〉A + 〈〈X, [Z, Y ]〉〉A

and replacing X by Xξ, Y by Yη and Z by Zλ and noting that the first three terms then vanish
due to left invariance of the vector fields and metric, we then have, evaluating at the identity,

2〈〈∇XξYη, Zλ〉〉A,e = −〈〈Yη, [Xξ, Zλ]〉〉A,e − 〈〈Zλ, [Yη, Xξ]〉〉A,e + 〈〈Xξ, [Zλ, Yη]〉〉A,e
= −〈η, [ξ, λ]〉A − 〈λ, [η, ξ]〉A + 〈ξ, [λ, η]〉A
= 〈−ad>Aξ η, λ〉A − 〈[η, ξ], λ〉A − 〈ad>Aη ξ, λ〉A
= 〈[ξ, η]− ad>Aξ η − ad>Aη ξ, λ〉A

which proves the result.
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Using this result we obtain a different proof of Theorem 2 above:

Another proof of Theorem 2. From equation (11) we have that the fundamental form, Π of H is
given by, for ξ, ψ ∈ h

Π(X,Y )(e) = (∇XY )⊥A =
1
2

([ξ, ψ]− ad>Aξ ψ − ad>Aψ ξ)⊥A (12)

where X and Y are arbitrary vector fields extending ξ and ψ. From this equation it follows that
the fundamental form vanishes if and only if the pairing of the right hand side of (12) with every
element η ∈ h⊥A vanishes. Thus, the second fundamental form is zero if and only if for all ξ, ψ ∈ h
and η ∈ h⊥A it holds that 〈([ξ, ψ] − ad>Aξ ψ − ad>Aψ ξ), η〉A = 0. Since [ξ, ψ] ∈ h, this holds if and
only if for all ξ, ψ ∈ h and η ∈ h⊥A , it holds that 〈ad>Aξ ψ + ad>Aψ ξ, η〉A = 0. This is equivalent
to 〈ψ, [ξ, η]〉A = −〈ξ, [ψ, η]〉A for all ξ, ψ ∈ h and η ∈ h⊥A . In particular, letting ψ = ξ, this last
equation says that 〈ξ, [ξ, η]〉A = −〈ξ, [ξ, η]〉A for all η ∈ h⊥A and therefore 〈ξ, [ξ, η]〉A = 0. This
yields condition (2) in Theorem 2.

3.2 Coordinate Form of Theorem 2

We now work out the consequence of Theorem 2 in terms of the structure constants of the Lie
algebra and the symmetric matrix of the inner product. That is, we investigate the condition for
a subalgebra to be totally geodesic from a coordinate point of view.

Let g be of finite dimension n, and let h be a subalgebra of dimension m < n. Further, let
e1, . . . , en be a basis of g such that h is spanned by e1, . . . , em. The corresponding Cartesian
coordinate vectors in Rn are denoted with bold symbols e1, . . . , en. We denote by Ci the matrix
representation of adei in the given basis. In terms of the structure constants ckij for the bracket we
have e>k Ciej = ckij .

For every inner product 〈·, ·〉A on g there corresponds a symmetric matrix A = (aij) defined
by aij = 〈ei, ej〉A. The following result is a statement of Theorem 2 in terms of the matrices Cj
and A:

Proposition 5. The subalgebra h is totally geodesic with respect to (g, 〈·, ·〉A) if and only if

e>i ACjA
−1ek + e>j ACiA

−1ek = 0 for all
{
i, j ∈ {1, . . . ,m}
k ∈ {m+ 1, . . . , n} .

Proof. From Theorem 2 it follows that h is totally geodesic if and only if

〈ξ, [ξ, η]〉A = 0 ∀ ξ ∈ h and η ∈ h⊥.

This is true if and only if the kernel of each of the one-forms φξ : η 7→ 〈ξ, [ξ, η]〉A, with ξ ∈ h,
contains h⊥. Since ξ 7→ φξ is quadratic, this holds if and only of φξ is of the form

φξ =
m∑

i,j,k=1

ξiξjbijk〈ek, · 〉A (13)

for some tensor bijk. On the other hand, direct expansion of φξ in the basis gives

φξ =
m∑

i,j=1

ξiξj〈ei, [ej , ·]〉A =
m∑

i,j=1

ξiξj〈ad>ejei, ·〉A =
n∑
k=1

m∑
i,j=1

ξiξjb′ijk〈ek, ·〉A (14)

where b′ijk = e>k A
−1C>j Aei. (Notice that A−1C>j A is the matrix representation of ad>Aej .) Com-

paring equation (13) and equation (14) we get the condition
m∑

i,j=1

ξiξje>k A
−1C>j Aei = 0, ∀ k ∈ {m+ 1, . . . , n}.

This is true for all ξ ∈ Rm if and only if the condition in the theorem is fulfilled.
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Notice that if the basis e1, . . . , en diagonalises A (i.e. A = Id in the basis), then the condition
reads e>i Cjek + e>j Ciek = 0. From skew-symmetry of the bracket we get e>i Ckej + e>j Ckei = 0.
In turn, this implies that the leading m×m–block of the Ck matrices are skew-symmetric for k ∈
m+ 1, . . . , n. The equivalent non-coordinate statement is that 〈adηξ, ψ〉A + 〈ad>Aη ξ, ψ〉A = 0 for all
η ∈ h⊥A and ξ, ψ ∈ h, which again recovers Theorem 2.

4 Totally Geodesic Metrics

In this section the setting is the following: given a Lie group G and a subgroup H, find a right
invariant Riemannian metric such that H is totally geodesic. Thus, throughout this section the
condition in Theorem 2 is interpreted as a condition on the inner product 〈·, ·〉A in order for the
subalgebra h of H to be totally geodesic in the algebra g of G.

4.1 Construction with Invariant Form

As a start, consider first the case when the full algebra g is finite dimensional and semisim-
ple. In particular, this implies that the Killing form, denoted 〈·, ·〉K, is non-degenerate (but
not necessarily negative definite). Recall that the Killing form is bi-invariant, i.e., it fulfils the
relation 〈[ξ, ψ], η〉K = −〈ψ, [ξ, η]〉K for all ξ, ψ, η ∈ g. If the corresponding self-adjoint isomor-
phism K : g→ g∗ is used as pairing operator, the Lagrangian form of the Euler-Arnold equation 4b
takes the “rigid body form”

Jξ̇ = −[ξ, Jξ], where J = K−1A, (15)

which is a direct consequence of the bi-invariant property. Indeed, it holds that 〈ψ, adξ(η)〉K =
−〈adξ(ψ), η〉K so ad•ξ = −adξ. Notice that both KJ and AJ are self-adjoint operators, so J is
self-adjoint with respect to both 〈·, ·〉K and 〈·, ·〉A.

Remark 4.1. If, in addition to being semisimple, g is also compact, then its Killing form is negative
definite. Thus, we may use 〈·, ·〉A = 〈− · , ·〉K as choice of inner product. Since it is bi-invariant, it
follows that all subalgebras in g fulfil the condition in Theorem 2, i.e., all subalgebras are totally
geodesic with respect to a bi-invariant inner product. The dynamics in this case is trivial. Indeed,
we have J = −Id, so the Euler-Arnold equation (15) reduce to −ξ̇ = [ξ,−ξ] = 0. For the rigid body
this happens when all moments of inertia are equal. From a geometric point of view, bi-invariance
of the metric implies that geodesics are given by the group exponential.

A direct consequence of Theorem 2 is that h being totally geodesic in a semisimple Lie algebra g
is equivalent to

J−1[ξ, Jξ] ∈ h ∀ ξ ∈ h. (16)

In particular this is always true if h is an invariant subspace of J, i.e., Jh = h.
We now continue with a generalisation of these ideas, which will lead to a recipe for the

construction of totally geodesic metrics.

Definition 4.1. Let 〈·, ·〉A be an inner product on g. A subalgebra h ⊂ g is called easy totally
geodesic in g respect to 〈·, ·〉A if adh(h⊥A) ⊂ h⊥A , i.e., h⊥A is invariant under adh.

As the name implies, easy totally geodesic is a special case of totally geodesic:

Proposition 6. Let h be a subalgebra of g which is easy totally geodesic in g with respect to 〈·, ·〉A.
Then h is totally geodesic in g with respect to 〈·, ·〉A.

Proof. Let ξ, ψ ∈ h and η ∈ h⊥A . Easy totally geodesic implies 〈[ξ, η], ψ〉A = 〈adξ(η), ψ〉A = 0,
since adξ(η) ∈ h⊥A and ψ ∈ h. The result now follows from Theorem 2 by taking ψ = ξ.
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We now develop a method for constructing inner products for which a given subalgebra is easy
totally geodesic. The construction generalises the approach described above, where the Killing
form was used as a pairing.

Definition 4.2. Let h be a subalgebra and V a subspace of g. A symmetric bi-linear form 〈·, ·〉K
on g is called adh–invariant on V if

〈adξ(η), ψ〉K + 〈η, adξ(ψ)〉K = 0 ∀ ξ ∈ h and ∀ η, ψ ∈ V.

If V = g we simply call 〈·, ·〉K adh–invariant.

Notice that bi-invariance is equivalent to adg–invariance. Also notice that adh–invariance is
equivalent to 〈Adh(ξ),Adh(η)〉K = 〈ξ, η〉K for all h ∈ H.

Given an adh–invariant form on g, which is non-degenerate on h, we can construct a large class
of inner products on g for which h is totally geodesic. Indeed, we have the following result:

Theorem 7. Let g be a Lie algebra, and h ⊂ g a subalgebra. Further, let 〈·, ·〉K be an adh–invariant
form on g, such that its restriction to h is non-degenerate, and let 〈·, ·〉A be an inner product on g.
Then:

1. If h⊥K = h⊥A , then h is easy totally geodesic in g with respect to 〈·, ·〉A.1

2. If [h, h] = h and h is easy totally geodesic in g with respect to 〈·, ·〉A, then h⊥K = h⊥A .

Proof. In general, g have the two decompositions g = h ⊕ h⊥A and g = h ⊕ h⊥K . The inertia
operator A : g → g∗ can be decomposed as Aξ = A1ξ1 + A2ξ2, where ξ = ξ1 + ξ2 are the unique
components in the decomposition g = h⊕h⊥A , and A1 : h→ h∗, A2 : h⊥A → (h⊥A)∗ are invertible
operators. Further, the operator K : g → g∗ can be decomposed as Kξ = Kaξa + Kbξb, where
ξ = ξa + ξb are the unique components in the decomposition g = h ⊕ h⊥K , and Ka : h → h∗ is
invertible.

We first prove assertion 1. Let ξ, ψ ∈ h and η ∈ h⊥A . Then

〈[ξ, η], ψ〉A = 〈Aψ, [ξ, η]〉 = 〈A1ψ, [ξ, η]〉
= 〈Ka K−1

a A1︸ ︷︷ ︸
J1

ψ, [ξ, η]〉 = 〈KJ1ψ, [ξ, η]〉

= 〈J1ψ, [ξ, η]〉K = −〈[ξ, J1ψ], η〉K = 0

where the last equality follows since [ξ, J1ψ] ∈ h and η ∈ h⊥A = h⊥K . Thus, 〈[ξ, η], ψ〉A = 0 for
all ξ, ψ ∈ h, η ∈ h⊥A , which means that [ξ, η] ∈ h⊥A for all ξ ∈ h, η ∈ h⊥A , i.e., h is easy totally
geodesic.

Next we prove assertion 2. Again, let ξ, ψ ∈ h and η ∈ h⊥A . Then, since h is easy totally
geodesic, it holds that

0 = 〈[ξ, η], ψ〉A = 〈Aψ, [ξ, η]〉 = 〈A1ψ, [ξ, η]〉
= 〈KaK

−1
a A1ψ, [ξ, η]〉 = 〈J1ψ, [ξ, η]〉K = −〈[ξ, J1ψ], η〉K.

Thus, since J1 : h→ h is non-degenerate and ξ, ψ is arbitrary, it must hold that 〈[h, h], η〉K = 0 for
all η ∈ h⊥A . Using now that [h, h] = h, we get 〈h, η〉K = 0 for all η ∈ h⊥A . Since every element
in h⊥K also fulfils this, and since h⊥A and h⊥K are isomorphic, it holds that h⊥A = h⊥K , which
proves the result.

1Here, h⊥K = {η ∈ g; 〈η, h〉K = 0} denotes the generalised orthogonal complement with respect to 〈·, ·〉K.
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From the first part of Theorem 7 we obtain a recipe for constructing easy totally geodesic inner
products. Indeed, take any inner product of the form

〈ξ, ψ〉A = 〈ξ1, ψ1〉A1 + 〈ξ2, ψ2〉A2 ,

where ξ = ξ1 + ξ2 and ψ = ψ1 +ψ2 are the unique components in the decomposition g = h⊕ h⊥K .
From the second part of Theorem 7 we see that if [h, h] = h we can totally characterise the

inner products making h easy totally geodesic. For example, in the finite dimensional case we have
the following:

Corollary 8. Let g be an n–dimensional Lie algebra, and let h ⊂ g be an m–dimensional semisim-
ple subalgebra. Denote by 〈·, ·〉K the Killing form on g. Then h is easy totally geodesic in g with
respect to 〈·, ·〉A if and only if h⊥A = h⊥K . Further, the set of inner products on g making h easy
totally geodesic defines a manifold of dimension (n+ 1)n/2− (n−m)m.

Proof. Since h is semisimple, the Killing form restricted to h is non-degenerate. Further, [h, h] = h
since h is semisimple. Thus, it follows from Theorem 7 that 〈·, ·〉A makes h easy totally geodesic
in g if and only if h⊥A = h⊥K . Further, every inertia operator A with h⊥A = h⊥K takes the form

Aξ = A1ξ1 + A2ξ2,

where A1 : h→ h∗ and A2 : h⊥K → (h⊥K)∗ are self-adjoint linear operators. The set of such pairs
(A1,A2) forms a linear space of dimension (n+1)n/2− (n−m)m. The subset of such pairs having
positive definite eigenvalues is thus a manifold of dimension (n+ 1)n/2− (n−m)m.

In contrast to the non-easy totally geodesic case, the following universality result holds for easy
totally geodesic subalgebras:

Proposition 9. Let g be a Lie algebra, and let 〈·, ·〉A be an inner product. Further, let h be a
subalgebra of g, and k a subalgebra of h. If k is easy totally geodesic in h with respect to 〈·, ·〉A, then
k is easy totally geodesic in g with respect to 〈·, ·〉A.

Proof. Let k⊥A be the orthogonal complement of k in g with respect to 〈·, ·〉A. Then adk(k⊥A) ⊂ k⊥A

since k is easy totally geodesic in g. Now, since h is a subalgebra it holds that

adk(k⊥A ∩ h) ⊂ k⊥A ∩ h

which proves the theorem.

Example 4.1. Let g = gl(3) and h = so(3). A basis e1, . . . , e9 for gl(3) is given by

1√
2

(
0 0 0
0 0 −1
0 1 0

)
, 1√

2

(
0 0 1
0 0 0
−1 0 0

)
, 1√

2

(
0 −1 0
1 0 0
0 0 0

)
,

1√
2

(
0 1 0
1 0 0
0 0 0

)
, 1√

2

(
0 0 1
0 0 0
1 0 0

)
, 1√

2

(
0 0 0
0 0 1
0 1 0

)
, 1√

2

(
1 0 0
0 0 0
0 0 −1

)
, 1√

6

(
1 0 0
0 −2 0
0 0 1

)
, 1√

3

(
1 0 0
0 1 0
0 0 1

)
.

The first three elements gives the standard basis of so(3). It is straightforward to check that the
symmetric matrix representing the Killing form with respect to this basis is diagonal with entries
(−1,−1,−1, 1, 1, 1, 1, 1, 0). Thus, the orthogonal complement so(3)⊥K is the subspace generated
by e4, . . . , e9. Now, from Theorem 7 it follows that so(3) is easy totally geodesic in gl(3) for any
inertia operator A : so(3)→ so(3)∗ which is represented by a 3×3 and 6×6 block diagonal matrix
with respect to the basis e1, . . . , e9.

Given such an inner product, the weak form of the Euler-Arnold equations in the decomposition
ξ = ξ1 + ξ2 relative to g = h⊕ h⊥K is

〈ξ̇1, η1〉A1 = 〈ξ1, [ξ1, η1]〉A1 + 〈ξ2, [ξ2, η1]〉A2 , ∀ η1 ∈ h

〈ξ̇2, η2〉A2 = 〈ξ, [ξ2, η2]〉A + 〈ξ2, [ξ1, η2]〉A2 , ∀ η2 ∈ h⊥K .
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Notice that the coupling between the so(3) and so(3)⊥A variables is non-trivial. That is, the
full Euler-Arnold equation of (gl(3), 〈·, ·〉A) for a block diagonal inertia operator A as above does
not simply decouple into one “rotation” part and one “non-rotation” part. Also notice that ξ2 = 0
implies ξ̇2 = 0, and the equation reduces to the Euler-Arnold equation for ξ1, as expected from the
totally geodesic property. In contrast, ξ1 = 0 does not imply ξ̇1 = 0, nor ξ̇2 = 0.

Notice that the algebra of trace free matrices sl(3) is spanned by the basis elements e1, . . . , e8.
Thus, using Proposition 9, we get that so(3) is easy totally geodesic also as a subalgebra of sl(3)
for any of the constructed inner products restricted to sl(3).

4.2 Semidirect Products

Consider the semidirect product GsV of the group G with the vector space V , with group mul-
tiplication given by

(g, v) · (h, u) := (gh, g · v + u),

where g · v denotes the linear action (representation) of G on V . The Lie algebra of GsV is
denoted g sV , and the corresponding Lie bracket on g sV is given, in terms of the Lie bracket on
g, by

[(ξ, v), (η, u)] = ([ξ, η], ξ · u− η · v)

where ξ · v indicates the infinitesimal action of g on V from the action of G on V .
The unit element in GsV is (e, 0). There are two natural subgroups, Gs {0} and the normal

subgroup {e}sV . Their Lie algebras are given correspondingly by g s {0} and {0}sV . An inner
product 〈·, ·〉A on g sV is called a split metric if (g s {0})⊥A = {0}sV .

Theorem 10. It holds that:

1. The subalgebra g s {0} is easy totally geodesic in g sV with respect to any split metric 〈·, ·〉A.

2. The subalgebra {0}sV is totally geodesic in g sV with respect to an inner product 〈·, ·〉A
on g sV if and only if G acts on V by isometries with respect to 〈·, ·〉A restricted to V .

Proof. For (ξ, 0) ∈ g s {0} and (0, v) ∈ (g s {0})⊥A , we have

[(ξ, 0), (0, v)] = (0, ξ · v) ∈ {0}sV = (g s {0})⊥A .

Thus, we conclude that the subalgebra g s {0} is easy totally geodesic in g sV for any split metric.
Next consider the subalgebra {0}sV . For v ∈ V , (η, u) ∈ ({0}sV )⊥A we again compute the

obstruction to the vanishing of the second fundamental form

〈(0, v), [(0, v), (η, u)]〉A = 〈(0, v), (0,−η · v)〉A = −〈v, η · v〉A|V ,

where 〈·, ·〉A|V is the restriction of 〈·, ·〉A to V . Now, let g(t) be a curve in G such that g(0) = e
and ġ(0) = η. Then

〈v, η · v〉A|V =
1
2

d
dt

∣∣∣
t=0
〈g(t) · v, g(t) · v〉A|V .

The right hand side vanishes for all η ∈ g and v ∈ V if and only if G acts on V by isometries with
respect to 〈·, ·〉A|V .

Example 4.2 (Magnetic Groups). For any group G we can consider the action of G on g∗ by
coadjoint action, which is a linear representation of G. We can then form the semidirect product,
Gs g∗, so that g∗ plays the role of V in the previous development.

This example arises physically in magnetohydrodynamics, where the group is given by G =
Diffvol(M), thus forming the semidirect product Diffvol(M) s Xvol,t(M)∗. The inner product is
given by ((ξ, a), (η, b)) 7→ 〈ξ, η〉L2 + 〈a, b〉L2 . Since this is a split metric, Theorem 7 asserts that
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Xvol,t(M) s {0} is easy totally geodesic. From a physical point of view, it means that if the magnetic
field is initially zero, then it remains zero and the flow reduces to the Euler fluid.

We now wish to construct the Euler equations generally for a split metric on the magnetic
group Gs g∗. This is the content of the following theorem, given e.g. in [14, 4]:

Theorem 11. Let A : g → g∗ be an inertia tensor on g. The right Euler-Arnold equation on
the Lie algebra of the magnetic group Gs g∗ associated to the split metric 〈(ξ, µ), (η, σ)〉A :=
〈ξ, η〉A + 〈µ, σ〉A−1 is given by

ξ̇ = −ad>Aξ (ξ) + ad>AA−1(µ) ◦A−1µ

µ̇ = A ◦ adξ ◦A−1µ
(17)

Proof. The weak form of the right Euler equations on g s g∗ for the split metric is given by

〈 d
dt

(ξ, µ), (η, σ)〉A = −〈(ξ, µ), [(ξ, µ), (η, σ)]〉A

= −〈(ξ, µ), ([ξ, η], ξ · σ − η · µ)〉A
= −〈ξ, [ξ, η]〉A − 〈µ, ξ · σ − η · µ〉A−1

= −〈ad>Aξ (ξ), η〉A − 〈µ, ξ · σ〉A−1 + 〈µ, η · µ〉A−1

We now isolate σ and η, respectively, in the final two terms as follows. For the second term we
have

〈µ, ξ · σ〉A−1 = 〈µ,−ad∗ξ(σ)〉A−1

= 〈−ad∗ξ(σ),A−1µ〉
= 〈σ,−adξ ◦A−1µ〉
= 〈σ,−A ◦ adξ ◦A−1µ〉A−1 ,

and for the last term we have

〈µ, η · µ〉A−1 = 〈µ,−ad∗η(µ)〉A−1

= 〈−ad∗η(µ),A−1µ〉A
= 〈µ,−adη ◦A−1µ〉
= 〈µ, adA−1µ(η)〉
= 〈A−1(µ), adA−1µ(η)〉A
= 〈ad>AA−1(µ) ◦A−1µ, η〉A.

We then conclude that

〈 d
dt

(ξ, µ), (η, σ)〉A = 〈−ad>Aξ (ξ) + ad>AA−1µ ◦A−1µ, η〉A + 〈A ◦ adξ ◦A−1(µ), σ〉A−1 .

Since this must hold for all (η, σ), the equations of the statement of the Theorem now follow.

Let us now investigate directly from the Euler equations of the preceding Theorem 11, the
conditions for the subgroups Gs {0} and {0}s g∗ to be totally geodesic. It is clear from the
equations that g s {0} is invariant under the flow of equations (17). For the Euler flow to be
tangent to {0}s g∗ however, we require that for all ξ ∈ g, 〈ad>AA−1(µ), ξ〉A = 0. But we have

〈ad>AA−1µ ◦A−1µ, ξ〉A = 〈A−1µ,−adξ ◦A−1µ〉A
= −〈ξ · µ,A−1µ〉 = −〈µ, ξ · µ〉A−1

and this last term vanishes (for all ξ and all µ) if and only if g acts by isometries on g∗ with respect
to 〈·, ·〉A−1 , in conjunction with Theorem 7 above.
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Example 4.3 (Rigid body in fluid). Another example in physics in given by Kirchhoff’s equations
for a rigid body in a fluid. Here, G = SO(3) and V = R3, thus forming the special Euclidean
group SO(3) s R3. The SO(3) variable describes the orientation of the body, and the R3 variable
the translational position of its centre of mass. The Lie algebra is given by so(3) s R3, and the
inner product (describing the total kinetic energy) is of the form

((ξ, u), (η, v)) 7→ 〈ξ, η〉I +m〈u, v〉L2 +Q(ξ, v) +Q(η, u),

where I : so(3) → so(3)∗ is the rotational moments of inertia operator, m > 0 is the effective
mass, and Q is positive and bilinear (depending on the geometry of the body). Thus, the inner
product is generally not a split metric, so so(3) s {0} is typically not totally geodesic. Physically
this implies that if the initial velocity of the centre of mass of a rotating rigid body in a fluid
is zero, it will generally not remain zero (due to interaction with the fluid). However, since
m〈g · u, g · v〉L2 = m〈u, v〉L2 for all g ∈ SO(3) it holds that SO(3) acts on R3 by isometries. Thus,
it follows from Theorem 7 that {0}sV is totally geodesic, meaning that an initially non-rotating
rigid body moving in a fluid will remain non-rotating.

5 Diffeomorphism Group Examples

Theorem 7 is valid also for infinite dimensional Fréchet Lie algebras. In the finite dimensional case,
as we have seen, one can always use the Killing form as adh–invariant form, so the only requirement
is that the Killing form is non-degenerate on h, which is equivalent to the subalgebra h being
semisimple. In the infinite dimensional case the situation is more difficult: one has to explicitly
find an infinite dimensional adh–invariant form on g. In this section we give some examples.

5.1 Isometries and H1
α metric

Let (M, g) be a Riemannian manifold. Further, let 〈·, ·〉L2 be the inner product on Ωk(M) given
by (7). Recall the flat operator [ : X(M) → Ω1(M), the differential d : Ωk(M) → Ωk+1(M), and
the co-differential δ : Ωk(M)→ Ωk−1(M).

Definition 5.1. The left (right) H1
α metric on Diff(M) is the left (right) invariant metric given

by left (right) translation of the corresponding H1
α inner product on X(M) given by

〈ξ, η〉H1
α

:= 〈ξ[, η[〉L2 + α〈dξ[, dη[〉L2 + α〈δξ[, δη[〉L2 .

Remark 5.1. The H1
α metric as defined here contains 1 + n(n− 1)/2 partial derivative terms. In

some literature, an H1
α metric is defined such that it contains all the n2 partial derivative terms.

Let Xiso(M) = {ξ ∈ X(M); £ξg = 0} denote the Killing vector fields on M . Let Diff iso(M) ⊂
Diff(M) denote the subgroup of isometries. The corresponding subalgebra is given by the tangential
Killing vector fields Xiso,t(M) = Xiso(M) ∩ Xt(M).

Proposition 12. Let (M, g) be an n dimensional Riemannian manifold. Then the H1
α inner

product on Xt(M) is Xiso(M)–invariant.

For the proof of this proposition we need the following result:

Lemma 13. Let β ∈ Ωk(M) and ξ ∈ Xiso(M). Then £ξ ? β = ?£ξβ.

Proof. Let α ∈ Ωk(M). The Hodge star fulfils (by definition) α∧ ?β = g[(α, β)vol, where g[ is the
inner product on Ωk(M), induced by g (see e.g. [19, Chap. 2]). It is straightforward to check that
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£ξg = 0 implies £ξg
[ = 0. Thus,

£ξ(α ∧ ?β) = £ξ(g[(α, β)vol)
m

£ξα ∧ ?β + α ∧£ξ ? β = (£ξg
[)︸ ︷︷ ︸

0

(α, β)vol + g[(£ξα, β)vol

+ g[(α,£ξβ)vol + g[(α, β) £ξvol︸ ︷︷ ︸
0

m
α ∧£ξ ? β = g[(α,£ξβ)vol = α ∧ ?£ξβ,

where we use that £ξg
[ = 0 since ξ is a Killing vector field, and £ξvol = 0 since every Killing vector

field is divergence free. Now, since α is arbitrary, we get that the Lie derivative £ξ commutes with
the Hodge star operator on Ωk(M).

Proof of Proposition 12. For vector fields ξ, η ∈ X(M), it holds that £ξη
[ = (£ξη)[ + (£ξg)(η, ·).

Thus, if ξ ∈ Xiso(M) and η, ψ ∈ Xt(M) it holds that

〈adξ(η), ψ〉H1
α

= −〈[ξ, η]X, ψ〉H1
α

= −〈£ξη
[, ψ[〉L2 − α〈d£ξη

[, dψ[〉L2 − α〈δ£ξη
[, δψ[〉L2 . (18)

We show that each of these terms are invariant. For the first term in (18) we get

〈£ξη
[, ψ[〉L2 =

∫
M

£ξη
[ ∧ ?ψ[ =

∫
M

£ξ(η[ ∧ ?ψ[)−
∫
M

η[ ∧£ξ ? ψ
[

=
∫
M

diξ(η[ ∧ ?ψ[)−
∫
M

η[ ∧£ξ ? ψ
[

=
∫
∂M

i∗(iξ(η[ ∧ ?ψ[))−
∫
M

η[ ∧£ξ ? ψ
[

=
∫
∂M

ii∗ξ(i∗(η[) ∧ i∗(?ψ[))−
∫
M

η[ ∧£ξ ? ψ
[

where we have used Cartan’s magic formula and Stokes theorem to get the boundary terms, and
i : ∂M → M is the natural inclusion. Since ψ is tangential to the boundary ∂M , it holds that
i∗(?ψ[) = 0 (see [1, Sect. 7.5]). Thus, the boundary terms vanishes. Next, using Lemma 13 we get
〈£ξη

[, ψ[〉L2 = −〈η[,£ξψ
[〉L2 .

For the second term in (18) we recall the identity 〈dα, β〉L2 = 〈α, δβ〉L2 +
∫
∂M

α ∧ ?β, which
holds for any α ∈ Ωk(M) and β ∈ Ωk+1(M). Using this formula, Lemma 13, that £ξ commutes
with d, and the same calculation as for the first term, we get

〈d£ξη
[, dψ[〉L2 = 〈δ d£ξη

[, ψ[〉L2 +
∫
∂M

i∗( d£ξη
[ ∧ ?ψ[)

= 〈? d ? d£ξη
[, ψ[〉L2 +

∫
∂M

i∗( d£ξη
[) ∧ i∗(?ψ[)︸ ︷︷ ︸

0

= 〈£ξ ? d ? dη[, ψ[〉L2 = 〈£ξδ dη[, ψ[〉L2

= −〈δ dη[,£ξψ
[〉L2

= −〈 dη[, d£ξψ
[〉L2 +

∫
∂M

i∗( dη[ ∧ ?£ξψ
[)

= −〈 dη[, d£ξψ
[〉L2 +

∫
∂M

i∗( dη[) ∧ i∗(?£ξψ
[)

= −〈 dη[, d£ξψ
[〉L2 .
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The last boundary term vanish since

i∗(?£ξψ
[) = i∗(£ξ ? ψ

[) = i∗( diξ ? ψ[) + i∗(iξ d ? ψ[) = dii∗ξ i∗(?ψ[)︸ ︷︷ ︸
0

+ii∗ξ d i∗(?ψ[)︸ ︷︷ ︸
0

.

Likewise, for the third term in (18) we get

〈δ£ξη
[, δψ[〉L2 = 〈dδ£ξη

[, ψ[〉L2 = 〈£ξ dδη[, ψ[〉L2

= −〈dδη[,£ξψ
[〉L2 = −〈δη[, δ£ξψ

[〉L2 .

Altogether, we now have

〈adξ(η), ψ〉H1
α

= −〈[ξ, η]X, ψ〉H1
α

= 〈η[,£ξψ
[〉L2 + α〈dη[, d£ξψ

[〉L2 + α〈δη[, δ£ξψ
[〉L2

= 〈η, [ξ, ψ]X〉H1
α

= −〈η, adξ(ψ)〉H1
α
,

which proves the theorem.

As a consequence, we now have:

Corollary 14. Diff iso(M) is easy totally geodesic in Diff(M) with respect to the H1
α metric. In fact,

if ξ ∈ Xiso(M), then ξ is a stationary solution to the (Diff(M), 〈〈·, ·〉〉H1
α

) Euler-Arnold equation.

Proof. The first assertion follows from Proposition 12 and Proposition 6. Further, if ξ ∈ Xiso(M)
the weak Euler-Arnold equation is

〈ξ̇, η〉H1
α

= 〈adξ(η), ξ〉H1
α

= 〈η, adξ(ξ)〉H1
α

= 0,

for any η ∈ X(M). Thus, ξ is a stationary solution.

5.2 Exact Volume Preserving Diffeomorphisms and H1
α metric

In this section we extend a result in [8], which, on a compact Riemannian manifold without bound-
ary, gives a condition for the subgroup of exact volume preserving diffeomorphisms, corresponding
to the Lie subalgebra of exact divergence free vector fields, to be totally geodesic with respect to the
L2 metric. We extend the result to compact Riemannian manifolds with boundary and H1

α metric.
Let (M, g) be a Riemannian n–manifold with boundary. Recall that the exact divergence free

vector fields on M are given by

Xex
vol(M) = {ξ ∈ Xvol(M);∃α ∈ Ωn−2(M) s.t. iξvol = dα}.

It is straightforward to check that it is a subalgebra. Indeed, if ξ, η ∈ Xex
vol(M) then

i[ξ,η]vol = £ξiηvol + iη £ξvol︸ ︷︷ ︸
0

= £ξ dα = d£ξα,

so i[ξ,η]vol is exact. The subgroup of Diffvol(M) corresponding to Xex
vol,t(M) = Xex

vol(M) ∩ Xt(M)
is denoted Diffex

vol(M).

Theorem 15. Diffex
vol(M) is totally geodesic in Diffvol(M) with respect to the H1

α metric if and
only if

〈iξ dξ[, γ〉L2 = 0

for all ξ ∈ Xex
vol,t(M) and γ ∈ H1(M).



Geodesics on Lie Groups: Euler Equations and Totally Geodesic Subgroups 99

Proof. By the flat operator, the space Xvol,t(M) corresponds to the tangential co-closed 1–forms
D1
t (M), and Xex

vol,t(M) corresponds to the co-exact tangential 1–forms (δΩ2(M))t = δΩ2
t (M).

From the Hodge decomposition for manifolds with boundary (see [1, Sect. 7.5]) it follows that the
L2 orthogonal complement of δΩ2

t (M) in Ω1
t (M) is given by the tangential closed 1–forms C1

t (M).
Thus, the L2 orthogonal complement of δΩ2

t (M) in D1
t (M) is given by C1

t (M)∩D1
t (M), which are

the tangential harmonic fields H1
t (M). Since δγ = 0 and dγ = 0 for any harmonic field, it follows

that H1
t (M) is the orthogonal complement of δΩ2

t (M) also with respect to H1
α.

As computed in Example 2.2 (c), it holds that ad∗ξ represented on D1
t (M) takes the form

ad•ξ(ψ) = P (£ξψ
[), where P is the L2 orthogonal projection Ω1

t (M) → D1
t (M). Now, from

Theorem 2 we get that Xex
vol,t(M) is totally geodesic in Xvol,t(M) if and only if

0 = 〈ad>Aξ (ξ), γ]〉H1
α

= 〈A−1ad∗ξ(Aξ), γ
]〉H1

α

= 〈P (£ξξ
[), γ〉H1

α
= 〈P (£ξξ

[), γ〉L2

= 〈£ξξ
[ + dp, γ〉L2 = 〈£ξξ

[, γ〉L2

for all ξ ∈ Xex
vol,t(M), and all γ ∈ H1

t (M). The last equality follows since dΩ0(M) is orthogonal to
H1
t (M). Next we have

〈£ξξ
[, γ〉L2 = 〈iξ dξ[, γ〉L2 + 〈diξξ[, γ〉L2

= 〈iξ dξ[, γ〉L2 + 〈iξξ[, δγ︸︷︷︸
0

〉L2 +
∫
M

i∗(iξξ[) ∧ i∗(?γ)︸ ︷︷ ︸
0

= 〈iξ dξ[, γ〉L2

which proves the theorem.

Remark 5.2. In the case when α = 0 and M has no boundary, Theorem 15 amounts to statement
1↔ 5 of Theorem 1 in [8].

5.3 Maximal Torus of Volume Preserving Diffeomorphisms

Consider the finite cylinder M = S1× [0, 1], coordinatised by (θ, z) and equipped with the natural
Riemannian structure. In [5, 6, 7] the group of volume preserving diffeomorphisms on M is studied.
In particular, it is shown in [7] that the maximum Abelian subgroup of Diffvol(M) is given by

T = {φ ∈ Diffvol(M);φ(θ, z) = (θ + f(z), z), f ∈ C∞([0, 1], S1)}.

The corresponding algebra is given by

t = {ξ ∈ Xvol,t(M); ξ(θ, z) = T ′(z)∂θ, T ∈ C∞([0, 1],R)}.

It is also shown in [7] that T is totally geodesic in Diffvol(M) with respect to the L2 inner product.
Using our framework, we now show the slightly stronger result that it actually is easy totally
geodesic.

Since M is a 2–manifold, the metric together with the induced volume form equips M with the
structure of a Kähler manifold. Thus, since the volume form is the symplectic form, the algebra of
tangential divergence free vector fields on M is equal to the space of tangential symplectic vector
fields on M . Furthermore, by the flat map, the space of tangential divergence free vector fields on M
is isomorphic to the tangential co-closed 1–forms on M , i.e., Xvol,t(M)[ = D1

t (M). It is a result
in [7] that D1

t (M) = δΩ2
t (M), i.e., that every tangential co-closed 1–form on the finite cylinder is

co-exact. In turn, this implies that Xvol,t(M) consists of tangential Hamiltonian vector fields on M .
Notice that a Hamiltonian vector field is tangential if and only if the corresponding Hamiltonian
function is constant when restricted to each connected component (∂M)i of the boundary.
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Next, it is straightforward to compute the orthogonal complement of t in Xvol,t(M). Indeed,
let ξT ∈ t, and consider an element ξH = ∂H

∂z ∂θ −
∂H
∂θ ∂z ∈ Xvol,t(M). Now

〈ξT , ξH〉L2 :=
∫
M

g(ξT , ξH)vol =
∫
M

?dT ∧ ? ? dH =
∫
M

dT ∧ ?dH.

Using a Fourier expansion we see that 〈ξT , ξH〉L2 = 0 for all ξT ∈ t if and only if H is of the form

H(θ, z) = const +
∞∑
k=1

ak(z) cos(kθ) + bk(z) sin(kθ). (19)

Thus, the L2 orthogonal complement of t in Xvol,t(M) is given by

t⊥ = r =
{
ξH ∈ Xvol,t(M);H(θ, z) =

∞∑
k=1

ak(z) sin(kθ) + bk(z) cos(kθ),

ak, bk ∈ C∞([0, 1],R)
}
.

Now, let ξT ∈ t and ξH ∈ r. Then adξT (ξH) = [ξT , ξH ] = ξ{T,H}, where {T,H} = −∂H∂θ
∂T
∂z . It

is straightforward to check that ∂H
∂θ

∂T
∂z is of the form (19). Thus, adt(r) ⊂ r, so t is easy totally

geodesic in Xvol,t(M).

5.4 Bi-invariant Form on XHam(M)

Let (M,ω) be a symplectic manifold with boundary. The Hamiltonian vector fields XHam(M) are
the tangential symplectic vector fields which have a globally defined Hamiltonian. Consider the
following symmetric bi-linear form on XHam(M):

(ξH , ξG) 7→
∫
M

HGωn =: 〈ξH , ξG〉Ham (20)

where H,G are normalised such that
∫
M
H ωn =

∫
M
Gωn = 0. If Φ ∈ DiffSp(M) then AdΦ(ξH) =

ξΦ∗H ∈ XHam(M), since Φ preserves the symplectic structure. Now,

〈AdΦ(ξH),AdΦ(ξG)〉Ham =
∫
M

(Φ∗H)(Φ∗G)ωn =
∫
M

(Φ∗H)(Φ∗G)(Φ∗ω)n

=
∫
M

(Φ∗H)(Φ∗G)Φ∗ωn =
∫
M

Φ∗(HGωn)

=
∫
M

HGωn = 〈ξH , ξG〉Ham

where we have used that Φ∗ω = ω. Thus, since the Lie algebra of DiffSp(M) is XSp,t(M) we have
the following result, which is given for boundary-free manifolds in [17] and [10]:

Proposition 16. The bi-linear form (20) defines an adXSp,t(M)–invariant inner product on
XHam(M).

5.5 Bi-invariant Form on Xex
vol,t(M)

Let (M, g) is a Riemannian 3–manifold. The exact divergence free vector fields Xex
vol(M) are the

vector fields on M that have globally defined vector potentials. That is, ξ ∈ Xex
vol(M) implies that

ξ = curlψ for some ψ ∈ X(M). Equivalently, in the language of differential forms, ξ ∈ Xex
vol(M)
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F(M)
OO

Id

��

grad //

Id

''
X(M)

[
��

curl //

Id
((
X(M) div //

ξ 7→iξµ

��

F(M)

f 7→fvol

��
0 // Ω0(M) d //

?

77
Ω1(M)

]

OO

d //
? 66

Ω2(M) d // Ω3(M) // 0

Figure 2: The de Rham complex for a Riemannian 3–manifold.

implies that iξvol = dα, for some α ∈ Ω1(M) which is unique up to closed 1-forms. Now, let
iξvol = dα and iηvol = dβ and consider the following bi-linear form

(ξ, η) 7→
∫
M

α ∧ dβ =: 〈ξ, η〉hel (21)

sometimes called cross helicity. This form is symmetric and independent of the choice of α (see [4,
Sect. III.1D]). Equivalently, in terms of the curl operator we have

〈ξ, η〉hel =
∫
M

g(ξ, curl−1 η) vol.

The following result is given in [3] (see also [16] and [4, Sect. III.1D]). We give here a different
proof, based on the Hodge decomposition theorem.

Theorem 17. Let (M, g) be a Riemannian 3–manifold with boundary. Then (21) defines an
adXvol,t(M)–invariant non-degenerate symmetric bi-linear form on Xex

vol,t(M).

We define Xex
vol,n(M) = Xex

vol(M) ∩ Xn(M). For the proof we need the following results:

Lemma 18. Xex
vol,t(M) is an ideal in Xvol,t(M).

Proof. Let ξ ∈ Xvol,tM and η ∈ Xex
vol,t(M). It holds that [ξ, η] ∈ Xex

vol,t(M) if and only if i[ξ,η]vol ∈
dΩ2

n(M). Since η ∈ Xex
vol,t(M) it holds that iηvol = dα, for some (non-unique) α ∈ Ω1

n(M). Now,

i[ξ,η]vol = £ξiηvol− iη £ξvol︸ ︷︷ ︸
0

= £ξ dα = d£ξα ∈ dΩ1
n(M),

which proves the result.

Lemma 19. Let (dΩ1(M))t denote the tangential exact 2–forms. The operator d? is an L2 self-
adjoint isomorphism (dΩ1(M))t → dΩ1

n(M). Equivalently, curl is an L2 self-adjoint isomorphism
Xex

vol,n(M)→ Xex
vol,t(M).

Proof. By the generalised Hodge decomposition, we get Ω2(M) = dΩ1(M)⊕D2
t (M), where D2

t (M)
are the co-closed tangential 2–forms; see [1, Sect. 7.5]. Further, (dΩ1(M))n = dΩ1

n(M) since d
commutes with the pull-back of the inclusion i : ∂M →M . Since Xt(M) ' Ω2

n(M) and Xex
vol(M) '

dΩ1(M), by the isomorphism given by contraction with the volume form, it holds that Xex
vol,t(M) =

Xex
vol(M) ∩ Xt(M) ' dΩ1(M) ∩ Ω2

n(M) = dΩ1
n(M) with the same isomorphism.

By the de Rham complex (see Figure 1) we see that the operator curl corresponds to the
operator d? on Ω2(M). The kernel of d? contains D2

t (M). Indeed, if β ∈ D2
t (M), then d ? β =
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? ? d ? β = ?δβ = 0, since β is co-closed. Further, it is clear that the image of d? is equal to
dΩ1(M) (surjectivity follows since ? is an isomorphism).

Next, d? maps (dΩ1(M))t isomorphically to dΩ1
n(M). We first show that the image of d? on

(dΩ1(M))t is contained in dΩ1
n(M). If dα ∈ (dΩ1(M))t, then

i∗(d ? dα) = i∗(?δ dα) = 0

where the last equality follows since δ maps tangential to tangential. Thus, d? dα is normal. Next,
we show surjectivity. Let dβ ∈ dΩ1

n(M). It follows from a variant of the Hodge decomposition
theorem for manifolds with boundary (see [1, Sect. 7.5]), that β = δγ + p, with δγ ∈ δΩ2(M) and
p a normal closed 1–form. Since β and p are normal, it must hold that δγ ∈ (δΩ2(M))n. We now
have

dβ = d(δγ + p) = d δγ︸︷︷︸
normal

= d ? ?δγ︸︷︷︸
tangential

, (22)

where we have used that the Hodge star maps normal forms to tangential forms, and co-exact
forms to exact forms. Thus, any dβ ∈ dΩ1

n(M) is the image under d? of an element in (dΩ(M))t,
so the map d? : (dΩ1(M))t → dΩ1

n(M) is surjective. Furthermore, ?δγ in equation (22) is unique
since: ? is an isomorphism (dΩ1(M))t → (δΩ2(M))n, δγ is unique by the Hodge decomposition,
and d is non-degenerate on (δΩ2(M))n. Indeed,

〈dδγ, α〉L2 = 〈δγ, δα〉L2 +
∫
∂M

i∗(δγ)︸ ︷︷ ︸
0

∧i∗(?α) = 〈δγ, δα〉L2

which is zero for all δα ∈ (δΩ2(M))n if and only if δγ = 0. Altogether, we now have that
d? : ( dΩ1(M))t → dΩ1

n(M) is bijective, i.e., it is an isomorphism. Notice also that d? is self-
adjoint with respect to the L2 inner product. Indeed, if dα, dβ ∈ (dΩ1(M))t, then

〈d ? dα, dβ〉L2 = 〈? dα, δ dβ〉L2 +
∫
∂M

i∗(? dα) ∧ i∗(? dβ)︸ ︷︷ ︸
0

= 〈? dα, ? d ? dβ〉L2 = 〈dα, d ? dβ〉L2 .

For vector fields the result implies that curl is an isomorphism from the exact divergence free
vector fields normal to the boundary, to Xex

vol,t(M).

Proof of Theorem 17. Due to Lemma 19, the form (21), which we denote 〈·, ·〉K, is a well defined
symmetric non-degenerate bi-linear form on Xex

vol,t(M). Indeed, d? is a L2 self-adjoint isomorphism,
so (d?)−1 is also L2 self-adjoint. Thus, if ξ, η ∈ Xex

vol,t(M), then

〈ξ, η〉K = 〈curl−1 ξ, η〉L2 = 〈(d?)−1iξvol, iηvol〉L2

= 〈iξvol, (d?)−1iηvol〉L2 = 〈ξ, curl−1 η〉L2 = 〈η, ξ〉K.

We are now ready to show adXvol,t(M)–invariance. Let ξ ∈ Xvol,t(M) and let η, ψ ∈ Xex
vol,t(M).

First, it follows from Lemma 18, that adξ(η) ∈ Xex
vol,t(M), so even though 〈·, ·〉K is only defined on

Xex
vol,t(M), it makes sense for it to be adXvol,t(M)–invariant. Denote by dα = iηvol and dβ = iψvol
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the corresponding elements in dΩ2
n(M). Now,

〈adξ(η), ψ〉K = 〈−[ξ, η], ψ〉K = −〈i[ξ,η]vol, (d?)−1iψvol〉L2

= −〈i[ξ,η]vol, (d?)−1 dβ〉L2 = −〈i[ξ,η]vol, (d?)−1 d ? ?β〉L2

= −〈i[ξ,η]vol, ?β〉L2 = −
∫
M

i[ξ,η]vol ∧ β

= −
∫
M

£ξ dα ∧ β +
∫
M

iη £ξvol︸ ︷︷ ︸
0

∧β

=
∫
M

dα ∧£ξβ +
∫
M

£ξ( dα ∧ β)

=
∫
M

dα ∧£ξβ +
∫
∂M

i∗(iξ( dα ∧ β))

=
∫
M

dα ∧£ξβ +
∫
∂M

ii∗ξ(i∗( dα)︸ ︷︷ ︸
0

∧i∗(β))

=
∫
M

α ∧ d£ξβ +
∫
∂M

i∗(α)︸ ︷︷ ︸
0

∧i∗(£ξβ)

=
∫
M

α ∧£ξ dβ = 〈?α,£ξ dβ〉L2

= 〈(d?)−1 d ? ?α,£ξ dβ〉L2 = 〈dα,£ξ dβ〉K
= 〈η, [ξ, ψ]〉K = −〈η, adξ(ψ)〉K,

which proves the result.

Remark 5.3. Notice that normality of dα, but never of dβ, is used in the proof above. Further,
we never use that ξ is tangential. Thus, 〈η, ψ〉K is well defined for η ∈ Xex

vol,t(M) and ψ ∈ Xex
vol(M),

and we have 〈adξ(η), ψ〉K = −〈η, adξ(ψ)〉K for any ξ ∈ Xvol(M). In particular, this allows us to
write the L2 inner product on Xex

vol,t(M) using 〈·, ·〉K. Indeed, we have

〈η, ψ〉L2 = 〈iηvol, iψvol〉L2 = 〈d ? (d?)−1iηvol, iψvol〉L2

= 〈?(d?)−1iηvol, δiψvol〉L2 +
∫
∂M

i∗(?(d?)−1iηvol)︸ ︷︷ ︸
0

∧i∗(?iψvol)

= 〈(d?)−1iηvol, d ? iψvol〉L2 = 〈η, curlψ〉K

where the boundary term vanishes since ?(d?)−1 is a map dΩ1
n(M)→ Ω1

n(M).

With this result we get a characterisation of subalgebras of Xex
vol,t(M) which are easy totally

geodesic with respect to the L2 inner product.

Theorem 20. Let h be a subalgebra of Xex
vol,t(M). Then h is easy totally geodesic in Xex

vol,t(M)
with respect to the L2 inner product if and only if adh(curl h) ⊆ h.

Proof. Let V be the orthogonal complement of h in Xex
vol,t(M). Then h is easy totally geodesic if

and only if 〈adh(V ), h〉L2 = {0}. Now,

〈adh(V ), h〉L2 = 〈adh(V ), curl h〉K = −〈V, adh(curl h)〉K.

This proves sufficiency. To get necessity, we need to show that adh(curl h) ⊂ Xvol,t(M), because
then 〈V, adh(curl h)〉K = {0} implies adh(curl h) ⊆ h. But this follows since Xvol,t(M) is an ideal
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in Xvol(M). Indeed, if ξ ∈ Xvol(M) and η ∈ Xvol,t(M) then

i∗(i[ξ,η]vol) = i∗(£ξiηvol)
= i∗( diξiηvol + iξ diηvol)
= dii∗ξ i∗(iηvol)︸ ︷︷ ︸

0

+ii∗ξ d i∗(iηvol)︸ ︷︷ ︸
0

= 0,

where, as usual, i : ∂M →M is the natural inclusion. Thus, i[ξ,η]vol is normal, which is equivalent
to [ξ, η] ∈ Xvol,t(M).

As an example, let M now be a three dimensional contact manifold, with contact form θ ∈
Ω1(M). For details on contact manifolds, see [18, Sect. 11]. In our context, it is enough to recall
the following properties:

• M carries a natural contact Riemannian structure;

• the volume form is given by θ ∧ dθ;

• the Reeb vector field is given by ξR = θ]. We assume K–contact structure (cf. [18, Sect. 11]),
i.e., that the Reeb vector field is Killing. This is the common case, although it is not always
true.

Consider the subgroup of exact contact diffeomorphisms Diffex
θ (M) = {φ ∈ Diff(M);φ∗θ = θ}. It

is shown by Smolentsev [18, Sect. 11.2] that Diffex
θ (M) is a subgroup of Diffex

vol(M). Now, using
Theorem 20, we give the following new example of an easy totally geodesic subgroup of Diffex

vol(M):

Corollary 21. Diffex
θ (M) is easy totally geodesic in Diffex

vol(M) with respect to the L2 metric.

Proof. The algebra of Diffex
θ (M) is given by Xex

θ,t(M) = {ξ ∈ Xex
vol,t(M); £ξθ = 0}. Let ξ ∈

Xex
θ,t(M). We first show that £curl ξθ = 0, and then use Theorem 20. Since θ = ξ[R, and since ξR

is a Killing vector field, it holds that £curl ξθ = [curl ξ, ξR][. From [18, Sect. 11.2] we have that
curl ξ = (f − ∆f)ξR + ξR × grad f , where f = iξθ is the contact Hamiltonian. We recall that
the Reeb vector field conserves all contact Hamiltonians. Also, we have [ξR, ξR × grad f ] = 0.
Thus, it remains to show [(f −∆f)ξR, ξR] = 0. But this follows since both f and ∆f are contact
Hamiltonians, so

[ξR, (f −∆f)ξR] = £ξR(f −∆f)ξR = (£ξRf︸ ︷︷ ︸
0

−£ξR∆f︸ ︷︷ ︸
0

)ξR + (f −∆f) £ξRξR︸ ︷︷ ︸
0

.

Thus, [curl ξ, η] ∈ Xex
θ,t(M), for any η ∈ Xex

θ,t(M), and the result follows from Theorem 20.
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