Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
DIFFUSION EVOLVED: NEW MUSICAL INTERFACES
APPLIED TO DIFFUSION PERFORMANCE

By

BRIDGET DOUGHERTY JOHNSON

An exegesis

submitted to the New Zealand School of Music

in partial fulfilment of the requirements for the degree of Masters of the Musical Arts

in Composition

Supervisor: Dr. Ajay Kapur

Secondary Supervisor: Dr. Dugal McKinnon

2013
Acknowledgements

There are many people without whom this work would not have been possible. To all those who have been involved I would like to express my gratitude but in particular:

To Ajay Kapur and Dugal McKinnon. You supported this project from its conception. For always encouraging my ideas no matter how ridiculous or achievable they were.

To Florian Hollerweger. If you hadn’t shared your experience and expertise in spatialisation, this project would still be just a good idea, and for teaching me that math is fun.

To Blake Johnston. For your many hours, coding, rehearsing, performing, filming, calibrating and collaborating. It’s been an absolute pleasure to work with you, and I look forward to more in the future.

To Owen Vallis and Jordan Hochenbaum. For your encouragement, patience and technical support throughout all my work with the Bricktable. Also for building it!

To Jason Wright. For the beats, beer, coffee, chats, installations, furniture and gear movement, photography and funk. You’ve been such a huge part of my development as an artist and as a person. If there were more people in the world like you, it would be a far better place. Also I ate all your lollies.

To Ane and Jon, George and Wai, and team Dougherty. You have become my family away from home, I love you all.

To my loving family; Mum, Dad, Tim, Cian and Madeline. For a while there we thought this would never happen. For your support through the good times and particularly through the bad, for your strength, encouragement and for showing me I would always have you guys no matter what, and that nothing else is as important.

And finally to James Wassell Murphy........
if there were words, I would write them.
Table of Contents

Contents

Table of Figures .. iv
List of DVD Portfolio Contents ... v
Glossary ... vi

Abstract ... 1

Chapter 1 - Introduction ... 2
 1.1 Motivation .. 2
 1.2 Overview ... 3

Chapter 2 - Related Work: The Development of Sound Diffusion ... 6
 2.1 Approaches to Spatialisation .. 7
 2.1.1 Amplitude Panning ... 7
 2.1.2 Holophonic Sound Field Production 8
 2.2 Spatialisation As An Art Form .. 10
 2.3 Diffusion Systems ... 12
 2.3.1 The Gmebaphone ... 13
 2.3.2 BEAST ... 14
 2.3.3 GSMAX .. 15
 2.3.4 M2 ... 16
 2.4 Summary .. 18

Chapter 3 - Tools ... 19
 3.1 Open Source Systems For Multi-Touch Computing 19
 3.2 The Bricktable .. 22
 3.2.1 Hardware .. 23
 3.2.2 Software .. 24

Chapter 4 - Implementation .. 27
 4.1 Configurability .. 28
 4.2 Modes .. 30
 4.2.1 Quadraphonic Panning Mode ... 31
 4.2.2 Stereo Pairing Mode ... 32
 4.2.2.1 Stereo Pairing Mode Theory 32
 4.2.2.2 Stereo Pairing Mode Implementation 35
 4.2.3 VBAP Mode .. 37
 4.2.3.1 Vector Base Amplitude Panning Theory 37
 4.2.3.2 Vector Base Amplitude Panning Implementation 38
 4.3 Source Spreading .. 42
 4.4 The GUI ... 43
 4.5 The Audio Unit .. 46
 4.5.1 Max/MSP Programming .. 46
 4.5.2 Distance Encoding ... 48
 4.6 Speaker Routing .. 49
 4.7 Live Input ... 51
 4.8 Summary .. 52
Table of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Exegesis Overview</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>The 1973 Gmebaphone (Clozier 2001, 82)</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>The Bricktable (photo by J. Murphy 2009)</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>tactile.space data flow</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>Performance Interaction Sequence Diagram</td>
<td>28</td>
</tr>
<tr>
<td>6.1</td>
<td>European Octophony Standard</td>
<td>29</td>
</tr>
<tr>
<td>6.2</td>
<td>US Octophony Standard</td>
<td>29</td>
</tr>
<tr>
<td>7</td>
<td>Quadraphonic Panning Mode</td>
<td>31</td>
</tr>
<tr>
<td>8</td>
<td>Division of Stereo Pairs</td>
<td>36</td>
</tr>
<tr>
<td>9</td>
<td>Pairwise Panning</td>
<td>37</td>
</tr>
<tr>
<td>10.1</td>
<td>VBAP Division of Adjacent Pairs</td>
<td>39</td>
</tr>
<tr>
<td>10.2</td>
<td>Calculation of Radius and Angle</td>
<td>39</td>
</tr>
<tr>
<td>11.1</td>
<td>Processing Coordinate System</td>
<td>40</td>
</tr>
<tr>
<td>11.2</td>
<td>Cartesian Coordinate System</td>
<td>40</td>
</tr>
<tr>
<td>12</td>
<td>Sequence Diagram For VBAP Mode Interaction</td>
<td>41</td>
</tr>
<tr>
<td>13</td>
<td>User Spreading An Object (photo by J. Wright 2012)</td>
<td>42</td>
</tr>
<tr>
<td>14</td>
<td>tactile.space Start Up GUI (photo by J. Wright 2012)</td>
<td>44</td>
</tr>
<tr>
<td>15</td>
<td>Max/MSP GUI</td>
<td>47</td>
</tr>
<tr>
<td>16</td>
<td>Perceptual Distance Representation</td>
<td>48</td>
</tr>
<tr>
<td>17.1</td>
<td>tactile.space Speaker Routing Convention</td>
<td>50</td>
</tr>
<tr>
<td>17.2</td>
<td>Circular Speaker Routing Convention</td>
<td>51</td>
</tr>
<tr>
<td>17.3</td>
<td>VBAP Mode Numbering</td>
<td>51</td>
</tr>
<tr>
<td>18</td>
<td>Results for Intuitiveness</td>
<td>55</td>
</tr>
<tr>
<td>19</td>
<td>Results for Learnability</td>
<td>56</td>
</tr>
<tr>
<td>20.1</td>
<td>Results for Spatial Position Control</td>
<td>57</td>
</tr>
<tr>
<td>20.2</td>
<td>Results for Spatial Movement Control</td>
<td>58</td>
</tr>
<tr>
<td>21.1</td>
<td>Results for Perceivable Spatial Position</td>
<td>59</td>
</tr>
<tr>
<td>21.2</td>
<td>Results for Perceivable Spatial Movement</td>
<td>59</td>
</tr>
<tr>
<td>22.1</td>
<td>Results for Creative Expression</td>
<td>61</td>
</tr>
<tr>
<td>22.2</td>
<td>Results for Performativity</td>
<td>62</td>
</tr>
<tr>
<td>22.3</td>
<td>Results for Active Contribution To The Piece</td>
<td>63</td>
</tr>
<tr>
<td>23.1</td>
<td>Traditional Diffusion Concert Model</td>
<td>65</td>
</tr>
<tr>
<td>23.2</td>
<td>tactile.space Diffusion Concert Model</td>
<td>66</td>
</tr>
</tbody>
</table>
List of DVD Portfolio Contents

- High resolution code diagrams
- nebular performance video
- nebular performance 8 channel interleaved audio files, configured as per figure 17.1
- PDF Document of Exegesis: *Diffusion Evolved: New Musical Interfaces Applied to Diffusion Performance*
- *tactile.space* demonstration video
Glossary

Audio Object – the visual representation of each audio file on the GUI.

Control Area – the circular area of the GUI inside the representation of the speakers. Within this area the movement of objects affects the audio in real-time. Outside of this space, objects may move freely without affecting the audio.

Fiducial – in computer science image technology the term fiducial refers to an object in the field of view. In this case, it specifically refers to a physical object placed on the touch table surface.

Gain Factor – rather than being a direct gain, the gain factor is a calculated value that is then multiplied by the audio signal, to give the final gain of each speaker.

GUI – the graphical user interface. The visual aspect of the interface with which performers interacts, and via which they receive visual feedback.

Listening Point – the representation of the very centre of the speaker array. Generally this is centred around the position where the performer is standing.

Phantom Source – the phenomenon whereby two speakers’ gains are weighted to create the perception of the sound emanating from a specific point source location between the two speakers.

Regular speaker arrays – configurations of speakers that are entirely equidistant. That is, each speaker is the same distance from the centre and from its adjacent speakers.

Spreader – an Audio Object that has been spread out into an arc shape to create a wider sound source.

SweetSpot – the area that a listener can be situated inside and get an accurate depiction of the sound field. The width of the sweet spot is influenced by the number of, and positioning of, the speakers.
Abstract

This exegesis takes a critical look at the performance paradigm of sound diffusion. In making a shift away from the sixty-year-old practice of performing on a mixing desk or other fader bank console, it proposes and outlines a goal towards intuitive and transparent relationships between performance gesture and spatial trajectories. This is achieved by a coupling of the two previously segmented fields within electroacoustic: spatialisation and interface design. This research explains how connections between the two fields and an embracing of contemporary technological developments, with a goal toward increasing the liveness and gestural input that currently limit sound diffusion practice, could extend the art form into a virtuosic and compelling gestural performance art. The exegesis introduces and describes the author’s research and development of tactile.space, a new multitouch tool developed on the Bricktable for live sound diffusion. tactile.space is intended as a contribution to the growing research area of user interfaces developed specifically for the performance of sound in space. It affords performers a new level of gestural interaction with the space of the concert hall and the audience members and redefines multiple standardised interactions between the performer and the space, the gesture, the audience, and the sound in a diffusion concert.