Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
SALMONELLA BRANDENBURG IN NEW ZEALAND SHEEP:
THE DEVELOPMENT OF A SEROLOGICAL DIAGNOSTIC TEST
AND A CASE CONTROL STUDY

A THESIS PRESENTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR
THE DEGREE OF MASTER OF VETERINARY STUDIES AT MASSEY UNIVERSITY

JOANNE ISABEL KERSLAKE
February 2003
ABSTRACT

Salmonella Brandenburg causes acute diarrhoea and severe illness in a variety of animals and was first isolated in New Zealand in 1986. Since 1996 *Salmonella* Brandenburg has been associated with an emerging epidemic of abortions and deaths in sheep in the southern regions of the South Island. Little is known about the specific epidemiology of *Salmonella* Brandenburg in sheep and as a result control to date has been largely based on anecdotal evidence and general principles. This study focused on the following aims:

- To develop a serological test for use in epidemiological studies and for monitoring future control efforts targeting *Salmonella* Brandenburg in New Zealand sheep.
- To identify factors associated with the occurrence and severity of *Salmonella* Brandenburg outbreaks in New Zealand sheep.

Traditionally *Salmonella* diagnosis has depended on bacteriological culture. Such tests are time consuming, labour and equipment intensive, and may lack sensitivity. ELISA (Enzyme-Linked Immunosorbent Assay) methodologies offer an alternative for the diagnosis of *Salmonella* infection. Therefore the development of an ELISA test for detecting antibodies to *Salmonella* Brandenburg organism in sheep plasma was undertaken. Expression of common antigens has resulted in a high level of antibody cross-reactivity between different serovars in serological tests. Lipopolysaccharides (LPS) (O Antigens) are the primary cause of these cross-reactions. Cross-reactivity with two common sheep serovars (*Salmonella* Typhimurium and *Salmonella* Brandenburg) was of major concern for the development of a *Salmonella* Brandenburg ELISA. This was overcome by preparing an antigen mainly composed of flagella and fimbria proteins (LPS free). The antigen preparation was of a relatively crude and non-characterised nature and could only produce a reasonable optical density response at a high concentration. Unfortunately, while the ELISA was responsive, the specificity of the ELISA for *Salmonella* Brandenburg antibodies remained poor. Further investigation of the specificity of the antigen preparation, through the use of different sera, or through the development of a more pure and specific antigen, is needed for the successful development of a sensitive and specific serological test for determining *Salmonella* Brandenburg exposure in New Zealand sheep.
A case control study was performed as part of a large-scale ongoing investigation aimed at identifying factors associated with *Salmonella* Brandenburg disease in New Zealand sheep. Details of disease prevalence and farm management methods were collected from two affected regions in southern New Zealand. Associations between possible risk factors and *Salmonella* Brandenburg were evaluated using odds ratios, with analyses being performed at two different levels:

- farm level analysis to compare affected vs. unaffected farms using a case-control approach.
- within farm analysis restricted only to affected farms to evaluate risk factors associated with severity of reported disease on affected farms.

Data were collected from 405 farms containing a total of 1,170,737 ewes. Of the 175 case farms, 97% had diseased mixed age (MA) ewes, 45% had diseased two-tooth (TT) ewes, and 5% had diseased hogget (H) ewes.

Salmonella Brandenburg appeared to occur in better performing flocks, which are often associated with intensive farming methods. At the farm level, factors such as increased total number of ewes, feeding of hay, and controlled winter grazing appeared to increase the risk of disease. Farming methods such as controlled winter grazing may result in higher stress levels and increase the shedding of *Salmonella* Brandenburg organisms. This may create a higher risk of exposure in sheep yards and on pasture, resulting in a higher risk of disease. Feeding crop and having hilly terrain decreased the risk of a farm having disease. A protective effect of hilly terrain could be due to less intensive farm management, with a subsequent reduction in stress associated disease risk. Within affected farms, disease appeared to be more severe with the removal of rams after July, feeding of hay, and the practices of strop grazing. Shearing after July, increasing the total number of pre-lamb yardings, and vaccinating for *Salmonella* appeared to be protective. Therefore reducing stress and vaccinating ewes appear to reduce the risk of a *Salmonella* Brandenburg outbreak.
DEDICATION

To Isabella Kerslake
Always wishing that I could have been closer.
ACKNOWLEDGEMENTS

I arrived at the Epicentre as a bit of a lost soul, unsure in what I wanted to do in the year 2000, let alone what I wanted to do in life. It was at the Epicentre where that all changed.

I met and knew so many amazing and interesting people during my Masters that influenced and supported me in a number of fantastic different ways. I am grateful to everyone; in whatever little or huge parts that you played in the past couple of years of my life, I could not have grown or become half the person that I am today without all of you.

To the 'amazing' Nigel Perkins. There has not been one time that I have felt uncomfortable in coming to you and asking for help or advice. You have the most amazing ability to make complicated things seem so simple and easy to understand and the ability to never make someone feel stupid, when at times I am sure that I asked you some stupid questions. You provided me with so much knowledge, input and time, and for that I will always be grateful. They say that everyone should have a "mentor" in life, and I thank you for being mine.

I would like to thank the rest of the Epicentre. From the students to administration to lecturers, you have all provided me with a wide range of knowledge and offered me invaluable support. You are all an amazing group of people, which makes the Epicentre a stimulating and fulfilling environment to work in.

I express my appreciation to Len Blackwell, Delwyn Cook, and Gill Norris and her lab (Molecular BioSciences). I came to you out of the blue looking for support and advice on various lab components of my study. You offered me invaluable knowledge, support and a home in both your labs. For that I am grateful. Thank you.

I would also like to thank the numerous farmers who took the time to reply to the survey. My research would have been impossible without you. I also would like to acknowledge Meat New Zealand and the C Alma Baker Fund, which funded the project.
To my ma, pa and brother, there is not a time in this life that you have not been there for me. You have seen and received the worst and the best of me during my Masters and you have taken every little bit in your stride and offered me nothing but love and amazing support. I love and thank you for that.

Last, but definitely not least, to my numerous flatmates and friends. "I don't have much to go", "I should be finished in about a couple of weeks", "I am getting there", and "I will be done by the end of the month". Well girls and boys you wouldn't believe it, I am finally there! Thanks for the laughter, hangovers, and numerous good times. Your friendships have been fantastic.
TABLE OF CONTENTS

ABSTRACT .. III

DEDICATION ... V

ACKNOWLEDGEMENTS ... V

ACKNOWLEDGEMENTS ... VII

TABLE OF CONTENTS ... IX

LIST OF FIGURES .. XIII

LIST OF TABLES ... XVII

CHAPTER ONE1 REVIEW OF THE LITERATURE.. 1

SALMONELLA .. 1

SALMONELLA IN SHEEP ... 1

Salmonella Abortus-ovis ... 2

Salmonella Montevideo ... 2

Salmonella Typhimurium .. 2

Salmonella Dublin ... 2

TREATMENT AND PREVENTION OF SALMONELLA ASSOCIATED DISEASE .. 3

Vaccination ... 3

SALMONELLA HISTORY AND ISOLATION IN NEW ZEALAND SHEEP ... 4

SALMONELLA BRANDENBURG DISEASE OUTBREAKS IN NEW ZEALAND SHEEP 5

The Current Situation .. 7

Salmonella Brandenburg - preventative measures .. 10

Salmonella Brandenburg Vaccine development in New Zealand ... 11

THE SPECIFIC EPIDEMIOLOGY OF SALMONELLA BRANDENBURG ... 12

THE IMMUNOLOGY OF SALMONELLA INFECTION .. 12

The immune response ... 12

Antibody production .. 12

Factors affecting the immune response .. 13

DIAGNOSTIC TECHNIQUES FOR SALMONELLA INFECTION ... 13

Bacteriological methods .. 13

Serological methods .. 14

Serological methods vs. bacteriological methods .. 15

ix
<table>
<thead>
<tr>
<th>Chapter Four</th>
<th>Discussion</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antigen</td>
<td>Preparation One</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>Specificity of Antigen preparation one</td>
<td>72</td>
</tr>
<tr>
<td>Indirect</td>
<td>ELISA of Antigen Preparation One</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>Response to high background optical densities</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Response to repeated low optical densities</td>
<td>75</td>
</tr>
<tr>
<td>Antigen</td>
<td>Preparation Two</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Specificity of antigen preparation two</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Further investigation of specificity of antigen preparation one and two</td>
<td>81</td>
</tr>
<tr>
<td>Indirect</td>
<td>ELISA of Antigen Preparation Two</td>
<td>82</td>
</tr>
<tr>
<td>Limitations</td>
<td>of study</td>
<td>82</td>
</tr>
<tr>
<td>Future</td>
<td>Direction</td>
<td>83</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>84</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter Five</th>
<th>Case Control Study</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>Materials</td>
<td>and Methods</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farm Selection</td>
<td></td>
<td>86</td>
</tr>
<tr>
<td>Questionnaire</td>
<td></td>
<td>87</td>
</tr>
<tr>
<td>Data Collection</td>
<td></td>
<td>87</td>
</tr>
<tr>
<td>Data Management</td>
<td></td>
<td>87</td>
</tr>
<tr>
<td>Data Analysis</td>
<td></td>
<td>88</td>
</tr>
<tr>
<td>Univariate Analysis</td>
<td></td>
<td>88</td>
</tr>
<tr>
<td>Multivariate Analysis</td>
<td></td>
<td>89</td>
</tr>
<tr>
<td>Results</td>
<td></td>
<td>89</td>
</tr>
<tr>
<td>Data Collection</td>
<td></td>
<td>89</td>
</tr>
<tr>
<td>Data Management</td>
<td></td>
<td>90</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

FIGURE 1. ANNUAL INCREASE OF *Salmonella* Brandenburg affected farms in Canterbury, Otago and Southland ... 6

FIGURE 2. THE TOTAL NUMBER OF HUMAN *Salmonella* Brandenburg cases reported from 1985 - 1999 ... 7

FIGURE 3. LOCATION OF FARMS AFFECTED WITH *Salmonella* Brandenburg FROM 1996-2001 THROUGHOUT NEW ZEALAND .. 8

FIGURE 4. ALTERNATIVE METHODS FOR DIAGNOSIS OF *Salmonella* INFECTION 16

FIGURE 5. DIAGRAM OF THE 96-WELL ELISA PLATE .. 42

FIGURE 6. GEL ELECTROPHORESIS OF WESTERN BLOT OF PROTEIN COMPONENTS OF ANTIGEN PREPARATION ONE (AP1) .. 45

FIGURE 7. WESTERN BLOT OF ANTIGEN PREPARATION ONE INCUBATED IN 1/50 AND 1/500 DILUTION OF SERUM FROM A PREVIOUS VACCINE TRIAL .. 46

FIGURE 8A. OPTICAL DENSITY VALUES OF SERIAL DILUTIONS OF ANTIGEN PREPARATION ONE AND ANTI-SERA. ANTIGEN PREPARATION CONCENTRATION IS REPRESENTED BY A SERIAL TWO-FOLD DILUTION OF A STOCK SOLUTION OF 0.25µGML. ANTIBODY CONCENTRATIONS ARE UNKNOWN BUT EACH LINE REPRESENTS A DIFFERENT DILUTION OF ANTI-SERA 48

FIGURE 8B. OPTICAL DENSITY VALUES OF SERIAL DILUTIONS OF ANTIGEN PREPARATION ONE AND ANTI-SERA, WITH A BLOCKING STEP ADDED TO THE ORIGINAL ELISA METHODOLOGY (ELISA METHODOLOGY ONE) .. 49

FIGURE 9. OPTICAL DENSITY VALUES OF SERIAL DILUTIONS OF ANTI-SERA (DIRECT ELISA), (ELISA METHODOLOGY 2A). ANTIBODY CONCENTRATIONS ARE REPRESENTED BY A SERIAL TWO-FOLD DILUTION OF UNKNOWN CONCENTRATION. THE RED LINE REPRESENTS ANTI-SERA FROM A *Salmonella* Brandenburg affected ewe. Both sera were used in the development of the indirect ELISA .. 51

FIGURE 10A. OPTICAL DENSITY VALUES OF SERIAL DILUTIONS OF ANTIGEN PREPARATION ONE AND ANTI-SERA (ELISA METHODOLOGY ONE). ANTIGEN CONCENTRATION IS REPRESENTED BY THE SERIAL TWO-FOLD DILUTION OF A STOCK SOLUTION OF 0.25µGML. ANTIBODY CONCENTRATIONS ARE UNKNOWN BUT EACH LINE REPRESENTS A DIFFERENT DILUTION OF ANTI-SERA .. 52

FIGURE 10B. OPTICAL DENSITY VALUES OF SERIAL DILUTIONS OF ANTIGEN PREPARATION ONE AND ANTI-SERA, USING A DIFFERENT DETERGENT (THESIT) IN THE WASHING BUFFER OF ELISA METHODOLOGY ONE (ELISA METHODOLOGY 2B.) .. 53
FIGURE 11A. OPTICAL DENSITY VALUES OF SERIAL DILUTIONS OF ANTIGEN PREPARATION ONE AND ANTI-SERA (ELISA METHODOLOGY ONE). ANTIGEN CONCENTRATION IS REPRESENTED BY THE SERIAL TWO-FOLD DILUTION OF A STOCK SOLUTION OF 0.25µGML. ANTIBODY CONCENTRATIONS ARE UNKNOWN BUT EACH LINE REPRESENTS A DIFFERENT DILUTION OF ANTI-SERA .. 54

FIGURE 11B. OPTICAL DENSITY VALUES OF SERIAL DILUTIONS OF ANTIGEN PREPARATION ONE AND ANTI-SERA, USING NO DETERGENT IN THE WASHING BUFFER OF ELISA METHODOLOGY ONE. (ELISA METHODOLOGY 2C.) .. 55

FIGURE 12A. OPTICAL DENSITY VALUES OF SERIAL DILUTIONS OF ANTIGEN PREPARATION ONE AND ANTI-SERA (ELISA METHODOLOGY ONE). ANTIGEN CONCENTRATION IS REPRESENTED BY THE SERIAL TWO-FOLD DILUTION OF A STOCK SOLUTION OF 0.25µGML. ANTIBODY CONCENTRATIONS ARE UNKNOWN BUT EACH LINE REPRESENTS A DIFFERENT DILUTION OF ANTI-SERA .. 56

FIGURE 12B. OPTICAL DENSITY VALUES OF SERIAL DILUTIONS OF ANTIGEN PREPARATION ONE AND ANTI-SERA, USING ONE WASH INSTEAD OF THREE IN ELISA METHODOLOGY ONE (ELISA METHODOLOGY 2D.) .. 57

FIGURE 13A. OPTICAL DENSITY VALUES OF SERIAL DILUTIONS OF ANTIGEN PREPARATION ONE AND ANTI-SERA (ELISA METHODOLOGY ONE). ANTIGEN CONCENTRATION IS REPRESENTED BY THE SERIAL TWO-FOLD DILUTION OF A STOCK SOLUTION OF 0.25µGML. ANTIBODY CONCENTRATIONS ARE UNKNOWN BUT EACH LINE REPRESENTS A DIFFERENT DILUTION OF ANTI-SERA .. 58

FIGURE 13B. OPTICAL DENSITY VALUES OF SERIAL DILUTIONS OF ANTIGEN PREPARATION ONE AND ANTI-SERA, USING A BLOCKING BUFFER OF 0.25% IN ELISA METHODOLOGY ONE (ELISA METHODOLOGY 2E.) .. 59

FIGURE 14A. OPTICAL DENSITY VALUES OF SERIAL DILUTIONS OF ANTIGEN PREPARATION ONE AND ANTI-SERA (ELISA METHODOLOGY ONE). ANTIGEN CONCENTRATION IS REPRESENTED BY THE SERIAL TWO-FOLD DILUTION OF A STOCK SOLUTION OF 0.25µGML. ANTIBODY CONCENTRATIONS ARE UNKNOWN BUT EACH LINE REPRESENTS A DIFFERENT DILUTION OF ANTI-SERA .. 60

FIGURE 14B. OPTICAL DENSITY VALUES OF SERIAL DILUTIONS OF ANTIGEN PREPARATION ONE AND ANTI-SERA, USING A DIFFERENT TYPE OF BLOCKING BUFFER (SKIM MILK) IN ELISA METHODOLOGY ONE (ELISA METHODOLOGY 2F.) .. 61

FIGURE 15A. OPTICAL DENSITY VALUES OF SERIAL DILUTIONS OF ANTIGEN PREPARATION ONE AND ANTI-SERA (ELISA METHODOLOGY ONE). ANTIGEN CONCENTRATION IS REPRESENTED BY THE SERIAL TWO-FOLD DILUTION OF A STOCK SOLUTION OF 0.25µGML. ANTIBODY CONCENTRATIONS ARE UNKNOWN BUT EACH LINE REPRESENTS A DIFFERENT DILUTION OF ANTI-SERA .. 62
FIGURE 15B. OPTICAL DENSITY VALUES OF SERIAL DILUTIONS OF ANTIGEN PREPARATION ONE AND ANTI-SERA, USING AN ANTIGEN CONCENTRATION OF 1/40 INSTEAD OF 1/100. (ELISA METHODOLOGY 2G.)

FIGURE 16A. OPTICAL DENSITY VALUES OF SERIAL DILUTIONS OF ANTIGEN PREPARATION ONE AND ANTI-SERA (ELISA METHODOLOGY ONE). ANTIGEN CONCENTRATION IS REPRESENTED BY THE SERIAL TWO-FOLD DILUTION OF A STOCK SOLUTION OF 0.25µGML. ANTIBODY CONCENTRATIONS ARE UNKNOWN BUT EACH LINE REPRESENTS A DIFFERENT DILUTION OF ANTI-SERA.

FIGURE 16B. OPTICAL DENSITY VALUES OF SERIAL DILUTIONS OF A CRUDE PREPARATION OF OVALBUMIN AND PDG ANTI-SERA (ELISA METHODOLOGY 2H.). OVALBUMIN CONCENTRATION IS REPRESENTED BY A SERIAL TWO-FOLD DILUTION OF A SOLUTION OF 0.25µGML. ANTIBODY CONCENTRATIONS ARE UNKNOWN BUT EACH LINE REPRESENTS A DIFFERENT DILUTION OF ANTI-SERA.

FIGURE 17. GEL ELECTROPHORESIS OF PROTEIN COMPONENTS OF ANTIGEN PREPARATION TWO (AP2).

FIGURE 18A. OPTICAL DENSITY VALUES OF SERIAL DILUTIONS OF ANTIGEN PREPARATION ONE AND ANTI-SERA (ELISA METHODOLOGY ONE). ANTIGEN PREPARATION CONCENTRATION IS REPRESENTED BY A SERIAL TWO-FOLD DILUTION OF A STOCK SOLUTION OF 0.25µGML. ANTIBODY CONCENTRATIONS ARE UNKNOWN BUT EACH LINE REPRESENTS A DIFFERENT DILUTION OF ANTI-SERA.

FIGURE 18B. OPTICAL DENSITY VALUES OF SERIAL DILUTIONS OF ANTIGEN PREPARATION TWO AND ANTI-SERA (ELISA METHODOLOGY ONE). ANTIGEN PREPARATION CONCENTRATION IS REPRESENTED BY A SERIAL TWO-FOLD DILUTION OF A STOCK SOLUTION OF 0.70µG.ML. ANTIBODY CONCENTRATIONS ARE UNKNOWN BUT EACH LINE REPRESENTS A DIFFERENT DILUTION OF ANTI-SERA (ELISA METHODOLOGY 2L.).

FIGURE 18C. OPTICAL DENSITY VALUES OF SERIAL DILUTIONS OF ANTIGEN PREPARATION TWO (0.70µGML) AND ANTI-SERA (ELISA METHODOLOGY ONE), USING AN ANTIGEN CONCENTRATION OF 1/40 INSTEAD OF 1/100 (ELISA METHODOLOGY 2L.).

FIGURE 19. THE RELATIVE CONCENTRATION ERROR AS A FUNCTION OF TRANSMITTANCE FOR A 1% UNCERTAINTY IN PERCENTAGE TRANSMITTANCE (THE BEERS LAMBERT LAW).

FIGURE 20. THE IDEAL INDIRECT ELISA STANDARD CURVE.
LIST OF TABLES

TABLE 1. SALMONELLA serotypes isolated from sheep in New Zealand 4
TABLE 2. NUMBER OF OVINE SALMONELLA BRANDENBURG CONFIRMED LAB SUBMISSIONS 5
TABLE 3. SALMONELLA BRANDENBURG INFECTION IN OTHER SPECIES 8
TABLE 4. NUMBERS OF CASE AND CONTROL FARMS FROM EACH VETERINARY CLINIC 87
TABLE 5. SUMMARY OF SHEEP NUMBERS ON RESPONDENT FARMS 90
TABLE 6. NUMBER OF SHEEP IN DIFFERENT AGE CLASSES AFFECTED AND DYING ON FARMS
reporting SALMONELLA BRANDENBURG DISEASE DURING 2000 91
TABLE 7. PRESENCE (+) OR ABSENCE (-) OF CLINICALLY DISEASED SHEEP IN DIFFERENT AGE
classes on 405 farms in the South Island of New Zealand 91
TABLE 8. LOGISTIC REGRESSION ANALYSIS OF FACTORS ASSOCIATED WITH OCCURRENCE OF
SALMONELLA BRANDENBURG DISEASE IN MIXED AGE EWES 92
TABLE 9. LOGISTIC REGRESSION ANALYSIS OF FACTORS ASSOCIATED WITH OCCURRENCE OF
SALMONELLA BRANDENBURG DISEASE IN TWO-TOOTH EWES 93
TABLE 10. LOGISTIC REGRESSION ANALYSIS OF FACTORS ASSOCIATED WITH REPORTED SEVERITY OF
SALMONELLA BRANDENBURG DISEASE IN MIXED AGE EWES ON AFFECTED FARMS 93
TABLE 11. LOGISTIC REGRESSION ANALYSIS OF FACTORS ASSOCIATED WITH REPORTED SEVERITY
of SALMONELLA BRANDENBURG DISEASE IN TWO-TOOTH EWES ON AFFECTED FARMS 94