Salmonella Brandenburg in sheep meat in New Zealand

Mirzet Sabirovic
2002
Salmonella Brandenburg in sheep meat in New Zealand – Preliminary studies to support a risk assessment approach

A Thesis presented in partial fulfillment of the requirements for the degree of Masters of Veterinary Sciences in Veterinary Public Health

At Massey University, Palmerston North, New Zealand

Mirzet Sabirovic
Abstract

Abortion and death of ewes caused by a particular strain of Salmonella Brandenburg is an animal disease problem that is unique to the South Island of New Zealand. Like most Salmonella serovars, this organism is zoonotic and has caused cases in occupationally exposed people. As Salmonella are primarily recognised as agents of foodborne disease, the potential for foodborne transmission must be acknowledged, although human cases attributed to consumption of sheep meat have not yet been reported. Salmonella Brandenburg has an additional concern for New Zealand’s sheep meat industry owing to the possibility that contamination of sheep meat products could compromise market access. In 1995, the Sanitary Phytosanitary Agreement of the World Trade Organisation specified that scientific risk analysis was required before countries could refuse to import animal or plant materials on the basis of risks to animal, plant, or human health. This thesis presents initial microbiological studies of the prevalence and concentration of Salmonella Brandenburg on sheep meat carcasses that were conducted in conjunction with other projects designed to address the Salmonella Brandenburg issue using a modern risk assessment approach.

The microbiological studies (Chapters 3 and 4) are preceded by two introductory discussions that provide the context for the project. Chapter 1 presents an overview of national and international regulatory approaches to food safety, foodborne diseases and protection of consumer health relevant to meat and meat products. A selective review of literature on Salmonella focuses on Salmonella in sheep and on aspects most relevant to food safety. Chapter 2 summarises information on published quantitative microbiological risk assessments (QRA) conducted using the guidelines developed by the Codex Alimentarius Commission to apply QRA to microbiological foodborne hazards. A conceptual framework is presented for developing a QRA for Salmonella Brandenburg in sheep meat that covers all sectors of the food supply chain from animal production to the point of consumption. Following the precedent of previous QRA efforts, the food supply chain is divided into a series of five modules: animal production; transport and lairage; slaughter and processing; retail and distribution; and consumer. For each module, key outputs (prevalence and concentration of Salmonella in animals or product at various points in the supply chain), and their likely determinants, are identified. The specific objective of the microbiological studies conducted was to estimate the prevalence and
concentration of *Salmonella* on sheep carcasses from animals originating from farms that had experienced *Salmonella* Brandenburg disease and other farms from the same region that had no history of this disease.

Prior to undertaking the field studies, it was necessary to conduct some methodological studies to evaluate the effect of sample handling procedures on the results obtained with quantitative bacteriology. Chapter 3 presents three controlled laboratory experiments with swab samples taken from meat contaminated experimentally with the epidemic strain of *Salmonella* Brandenburg. The Most Probably Number (MPN) method was used to quantify counts of *Salmonella* Brandenburg per 100cm2 area of meat swabbed. In each experiment, control samples were processed immediately, and treatment samples were subjected to different periods and conditions of storage. Treatments were chosen to emulate anticipated conditions that would be required for the field studies due to logistic constraints. The three storage protocols evaluated were:

Experiment 1: Storage of swabs diluted in buffered peptone water (BPW) for 48h at 4$^\circ$C
Experiment 2: Storage of swabs diluted in BPW for 5 days at 4$^\circ$C
Experiment 3: Storage of swabs for 24h at 4$^\circ$C before dilution in BPW, followed by storage for a further 48h at 4$^\circ$C.

Differences in counts between control and treatment samples were not tested statistically, owing to the small samples sizes, but were numerically less than one log difference in all experiments. In 2 of the 3 experiments, counts for stored samples were in fact numerically greater than for samples processed immediately. These results suggested that carcass swabs contaminated with *Salmonella* could be stored under the specified conditions without affecting the results of quantitative bacteriology using the MPN method.

Chapter 4 presents a study undertaken to obtain initial qualitative and quantitative estimates of the presence of *Salmonella* organisms on sheep carcasses sampled at 3 points in the processing chain (i.e. slaughter floor, cooler, and boning room). Slaughtered sheep (ewes and lambs) were sourced from six farms in the Central Otago/Southland region of the South Island where *Salmonella* Brandenburg disease is endemic. Three farms (case farms) were selected based on the occurrence of an outbreak of *Salmonella* Brandenburg
disease during the spring of 2000. Three non-case farms from the same region were also sampled. As the disease epidemics are temporally clustered in July and August, well before lambs are sent for slaughter, sampling was replicated after an interval of approximately 2 months to assess likely temporal variation in risk of carcass contamination. For comparative purposes, samples from sheep carcasses were also collected from 6 groups of sheep slaughtered at 2 plants in the North Island where salmonellosis due to *Salmonella* Brandenburg infection in sheep has not been reported. A total of 1417 carcasses were sampled in the study and initially tested by BAX® test. Of these, 1214 samples were sourced from the 3 case and 3 non-case farms supplying the South Island plant. The remaining 203 carcasses were sampled at the 2 North Island plants. A total of 138 (11.3%) of the 1214 samples collected in the South Island plant tested positive for the presence of *Salmonella* Brandenburg. No positive findings were obtained from the samples collected in the North Island plants. The vast majority (130 or 94%) of the 138 positive samples was obtained in the first period of sampling, indicating a substantial decline in risk of carcass contamination in the period between the first and second sampling. These findings indicated that the prevalence of carcass contamination with *Salmonella* Brandenburg was markedly elevated in the region where sheep flocks experienced abortion outbreaks caused by the organism. Although clinical *Salmonella* Brandenburg enteric disease has not been reported in lambs, the first sampling revealed that overall prevalence of contamination was higher (33%) for lamb carcasses than ewe carcasses (10%) from the same farms. While the prevalence of lamb carcass contamination was comparable for both case and non-case farms, the prevalence of ewe carcass contamination was strongly clustered and only 2 samples were positive from non-case farms. Estimates of the prevalence of contamination were influenced by the location of sampling carcasses (e.g. slaughter floor, cooler), but estimates of bacterial numbers on positive carcasses were generally similar regardless of class of stock, time of sampling, or sampling location in the plant. No positive samples were obtained from swabs of primary cuts in the boning room. Collectively these findings suggest that the emergence of *Salmonella* Brandenburg infection of sheep in the South Island may have considerable implications for product safety and public health. A strong case can be made for more research to better characterise the potential risks and to explore potential risk mitigation strategies. While the data obtained in this study have provided valuable insights into several important aspects of the issue, due to logistic and other constraints they have
considerable shortcomings with respect to the requirements of the formal QRA. These shortcomings were discussed and evaluated in terms of representativeness and suitability for quantitative risk assessment.

Chapter 5 presents an extension of the conceptual framework for a QRA outlined in Chapter 2, by integrating the data obtained from the bacteriological study, as well as data from other sources. Major data gaps are identified and suggestions are presented with respect to options for ongoing research to advance understanding and management of *Salmonella* Brandenburg in New Zealand sheep meat. More extensive and representative surveys are required to obtain more reliable data on farm, and within-farm, prevalence of infection as well as more extensive and representative longitudinal studies of the prevalence and concentration of the organism during slaughter and processing. It is considered that more systematic surveys at the time of apparent highest risk would be a more reliable means of assessing potential exposure of consumers than predictive microbiology.
Acknowledgements

“Never give up, … there is always hope”

This thesis would have not been possible without the co-operation and enthusiasm from the entire Salmonella Brandenburg quantitative risk assessment (QRA) project comprised of professional and dedicated people determined to influence and progress the future. I feel privileged to have had the opportunity to work with this team with the vision and courage to explore the unexplored. I would like to thank the industry (Meat New Zealand) and government (New Zealand Ministry of Agriculture and Food Safety Authority) for providing funding in relation to this thesis.

Special thanks go to my chief supervisor, Professor Peter R. Davies, and my work supervisor Dr Steve Hathaway for their skilful guidance, understanding and patience in broadening my professional perspective, and making this thesis a reality. I found it a rewarding learning experience, challenging, and ultimately successful.

I would like to express my sincere thanks to GuilleRoux, John Mills and the team from AgResearch, Hamilton for their professional approach which highlighted the importance of the teamwork that contributed to parts of this thesis. My sincere appreciation and thanks to Peter van der Logt, Dr Roger Cook, and John Bassett from NZFSA and Gary Clark from LABNET who provided unlimited personal support and professional assistance throughout. I am grateful to Tony Zohrab and the team from NZFSA Animal Products Group for the support provided. I would like to thank people at the Alliance Group Mataura meat plant, particularly Allan Patterson and Jane Marshal who made my field work and stay in the South Island very pleasant and enjoyable.

I would like to thank my mates (David, Glen, Tony, Andrew, Ashley, Richard and Howard) for their friendship and encouragement.

This thesis is dedicated to Heather Fraser and my family for their love, understanding and inspiration to complete this work.
Table of Contents

Abstract ... i

Acknowledgements ... v

Table of Contents .. vii

List of Figures ... xi

List of Tables ... xii

List of Abbreviations ... xiii

List of Appendices ... xiv

Chapter 1: A Review of the Food Safety Environment ... 1

1.1 Introduction ... 1

1.2 Foodborne diseases and pathogens .. 3
 1.2.1 Sources ... 3
 1.2.2 The role of environment .. 4
 1.2.3 Public health .. 5
 1.2.3.1 Surveillance .. 5
 1.2.3.2 Economic impact ... 7
 1.2.3.3 Traceability .. 7
 1.2.3.4 Changing consumer habits ... 8
 1.2.3.5 Reactions to foodborne diseases ... 9

1.3 Contemporary meat hygiene ... 10
 1.3.1 Process control .. 12
 1.3.2 Hazard Analysis and Critical Control Point (HACCP) .. 15
 1.3.2.1 Origins ... 15
 1.3.2.2 Issues for consideration .. 17
 1.3.3 Risk based approach .. 18
 1.3.3.1 Concept of risk analysis .. 18
 1.3.3.2 Risk management framework .. 21
 1.3.3.3 World Trade Organisation ... 21
 1.3.3.4 Codex and HACCP .. 24
 1.3.3.5 Codex and meat hygiene ... 27

1.4 Salmonella – a food safety issue ... 30
 1.4.1 General considerations .. 31
 1.4.2 Diagnosis .. 33
 1.4.3 Public health .. 34
 1.4.3.1 National regulatory actions and international impact ... 35
 1.4.3.1.1 Swedish Salmonella control programme ... 36
 1.4.3.1.2 United States of America .. 39
 1.4.3.1.3 New Zealand – Draft policy on detection of Salmonella in meat ... 40
 1.4.4 Production/processing industries ... 40
1.4.5 Sheep meat and meat products ... 41
1.4.5.1. New Zealand National Microbiological Database .. 42

1.5 Objective of this thesis .. 43

Chapter 2: Quantitative microbiological risk assessment – practical application in New Zealand 45
2.1 Background ... 45
2.2 Sheep meat as a source of foodborne salmonellosis ... 46
2.3 Quantitative microbiological risk assessments ... 46
 2.3.1 Stochastic modelling .. 48
 2.3.1.1 Exposure assessment in production and slaughter ... 48
 2.3.1.2 Predictive microbiology ... 49
 2.3.1.3 Dose response modelling .. 50
2.4 Selected QRA models ... 50
 2.4.1 E. coli O157:H7 in ground beef .. 51
 2.4.2 Salmonella in broilers ... 53
 2.4.3 Listeria monocytogenes in ready-to-eat foods .. 55
 2.4.4 Salmonella Enteritidis in eggs ... 57
2.5 QRA of S. Brandenburg in sheep meat in New Zealand .. 58
 2.5.1 Outline of pathogen pathway model ... 61

Chapter 3: Effect of sample storage on detection of Salmonella Brandenburg in swabs of experimentally contaminated meat... 66
3.1 Introduction ... 66
3.2 Material and Methods .. 67
 3.2.1 Experimental contamination of meat samples .. 67
 3.2.2 Sample storage treatments .. 68
 3.2.3 Detection of Salmonella .. 69
 3.2.3.1 Most Probable Number method ... 69
3.3 Results .. 71
 3.3.1 Experiment A ... 71
 Base MPN ... 72
 Mean ... 72
 3.3.2 Experiment B ... 72
 Mean ... 72
 3.3.3 Experiment C ... 73
3.4 Discussion ... 73

Chapter 4: Prevalence and numbers of Salmonella on sheep and lamb carcasses during processing 76
4.1 Introduction ... 76
4.2 Material and methods .. 77
 4.2.1 Selection of sheep farms and animals ... 77
 4.2.1.1 South Island ... 77
CHAPTER 5: Analysis of available microbiological data in the context of risk assessment, and identification of future research needs... 101

5.1 Introduction ... 101

5.2 Animal production module .. 101
 5.2.1 Prevalence of infected farms in the region .. 103
 5.2.2 Within-farm prevalence of S. Brandenburg .. 106
 5.2.2.1 Epidemiology of S. Brandenburg infection in sheep ... 107
 5.2.3 Future data needs - animal production module ... 110

5.3 Transport and lairage module .. 110
 5.3.1 Future data needs - transport and lairage module ... 112

5.4 Slaughter and processing module ... 112
 5.4.1 Sheep slaughter ... 113
 5.4.2 Slaughter and dressing .. 114
 5.4.3 Trimming and washing .. 116
 5.4.4 Evisceration/post-mortem inspection ... 117
 5.4.5 Spray washing ... 117
 5.4.6 Cooling floor and chillers .. 117
List of Figures

Figure 1.1. Potential reactions to foodborne disease ... 10
Figure 1.2. Risk management framework steps and activities .. 22
Figure 1.3. The new proposed draft Code – Production of fresh meat 30
Figure 2.1. Influence diagram showing steps in food production process that contribute to level of hazard experienced at the point of consumption .. 56
Figure 2.2. A generic exposure assessment model for pathogens in foods 57
Figure 2.3. Project development for the management of risks associated with Salmonella in sheep ... 62
Figure 2.4. Description of key model outputs and their likely determinants in respective modules of the pathogen pathway .. 63
Figure 3.1. Dilution scheme used for MPN method ... 70
Figure 3.2. Example of MPN scoring procedure* ... 71
Figure 4.1. Slaughter floor point of samples collection ... 80
Figure 4.2. Slaughter floor - first step (sternum/abdomen) ... 82
Figure 4.3. Slaughter floor - second step (Y-cut) ... 82
Figure 4.4. Slaughter floor - second step (forelegs) ... 82
Figure 4.5. Slaughter floor - third step (bung area) ... 82
Figure 4.6. Result of BAX® PCR Salmonella test analysis on electrophoresis gel 86
Figure 4.7. Total number of Salmonella positive carcasses of lambs or ewes collected on the slaughter floor (SF) or cooling floor (CF) where MPN number was higher than 240 (TNTC), or <240 (low) ... 93
Figure 5.1: Probability scenario tree for Salmonella Brandenburg infection or fleece contamination of sheep on farms ... 102
Figure 5.2. Sheep farms with laboratory confirmed cases of S. Brandenburg infection in affected regions in the South Island (1996 to 2000) .. 104
Figure 5.3. Potential routes for regional interfarm spread of S. Brandenburg 105
Figure 5.4: Flow chart of slaughter plant operations for sheep meat production at Plant A (site of studies reported in Chapter 4) ... 115
List of Tables

Table 1.1. Principal food sources of the common foodborne pathogens ...3

Table 1.2. Salmonella: New Zealand Meat Industry Microbiological (Pathogen) Profile, 2001(NMD)43

Table 2.1. Farm module: data sources and research initiatives ...64

Table 2.2. Processing module: data sources and research initiatives ...65

Table 2.3. Storage and distribution module – studies ..65

Table 2.4. Consumer module: data sources and research initiatives ...65

Table 3.1. MPN results for samples processed immediately after collection (control) and samples stored for 48 hours in BPW solution before processing (treatment) ..72

Table 3.2. MPN results for samples processed immediately after collection (control) and samples stored for 5 days in BPW solution before processing (treatment) ..72

Table 3.3. MPN results for samples processed immediately after collection (control) and swabs stored 24 hours before dilution in BPW, then a further 48 hours in BPW before processing (treatment) ...73

Table 4.1. Sampling dates for ewes and lambs sourced from case (C) and non-case (NC) farms78

Table 4.2. Proportion of BAX® PCR Salmonella positive carcasses from case and non-case farms at first sampling ..88

Table 4.3. Proportion of BAX® PCR Salmonella positive lamb and ewe carcasses at first sampling89

Table 4.4. Proportions of BAX® PCR Salmonella positive carcasses from case farms at first sampling89

Table 4.5: Proportions of BAX® PCR Salmonella positive carcasses from non-case farms at first sampling89

Table 4.6. Proportion of BAX® PCR Salmonella positive test samples from lambs from case farms at first sampling ..90

Table 4.7. Proportion of BAX® PCR Salmonella positive test samples from lambs from non-case farms at first sampling ..90

Table 4.8. Proportion of BAX® PCR Salmonella positive test samples from ewes from case farms at first sampling ..91

Table 4.9. Proportion of BAX® PCR Salmonella positive test samples from ewes from non case farms at first sampling ..91

Table 4.10. Areas (cm²) of sites swabbed on lamb carcasses at first sampling ..91

Table 4.11. MPN counts (log_{10} MPN/100cm²) of 34 BAX® PCR Salmonella positive test samples at the first sampling period (MPN number less than < 240)** ...93

Table 4.12. Numbers of Salmonella detected by the MPN method in swabs of 8 BAX® PCR Salmonella positive sheep carcasses at the second sampling ..94
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALOP</td>
<td>Appropriate Level Of Protection</td>
</tr>
<tr>
<td>BSE</td>
<td>bovine spongiform encephalopathy</td>
</tr>
<tr>
<td>CAC</td>
<td>Codex Alimentarius Commission</td>
</tr>
<tr>
<td>CCP</td>
<td>Critical Control Point</td>
</tr>
<tr>
<td>CCFH</td>
<td>Codex Committee on Food Hygiene</td>
</tr>
<tr>
<td>ESR</td>
<td>The New Zealand Institute of Environmental Sciences & Research Limited</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organisation</td>
</tr>
<tr>
<td>FSO</td>
<td>Food Safety Objective</td>
</tr>
<tr>
<td>GATT</td>
<td>General Agreement on Tariffs and Trade</td>
</tr>
<tr>
<td>GHP</td>
<td>Good Hygiene Practices</td>
</tr>
<tr>
<td>GMP</td>
<td>Good Manufacturing Practices</td>
</tr>
<tr>
<td>HACCP</td>
<td>Hazard Analysis and Critical Control Point</td>
</tr>
<tr>
<td>MPN</td>
<td>Most Probable Number method</td>
</tr>
<tr>
<td>NMD</td>
<td>New Zealand National Microbiological Database</td>
</tr>
<tr>
<td>NZFSA</td>
<td>New Zealand Food Safety Authority</td>
</tr>
<tr>
<td>OIE</td>
<td>Office International des Epizooties (World Organisation for Animal Health)</td>
</tr>
<tr>
<td>S. Brandenburg</td>
<td>Salmonella enterica subsp. enterica (Brandenburg)</td>
</tr>
<tr>
<td>S. Brandenburg - QRA project</td>
<td>Multisectorial quantitative risk assessment project administered by NZFSA and funded primarily by Meat New Zealand over a 3 year period. Sectors include NZFSA, primary producers, the meat processing industry, field veterinarians, Ministry of Health, local health authorities, science providers (Massey University, AgResearch, ESR, LABNET), animal remedy industry</td>
</tr>
<tr>
<td>SPS</td>
<td>Sanitary and Phytosanitary Agreement</td>
</tr>
<tr>
<td>QRA</td>
<td>Quantitative Risk Assessment</td>
</tr>
<tr>
<td>VCJD</td>
<td>variant Creutzfeldt-Jacob disease</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>USDA</td>
<td>United States Department of Agriculture</td>
</tr>
<tr>
<td>USDA-FSIS</td>
<td>United States Department of Agriculture Food Safety and Inspection Services</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
<tr>
<td>WTO</td>
<td>World Trade Organisation</td>
</tr>
</tbody>
</table>
List of Appendices

Appendix 1. Reagent Preparation for BAX® test…………………………………………………………… 124