Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
The Effect of Urban Parks on Residential Property Values.

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Geography at Massey University.

Harold W. Bockemuehl
1974
Abstract

This thesis presents the report on an inquiry into the relationship between residential property valuation and distance to urban parks and recreational areas in the New Zealand cities of Christchurch, Palmerston North, Wanganui and Hastings. Open spaces make up an important part of the contemporary urban landscape, and as major features of urban patterns they may be expected to exert a measurable influence upon property values in their surrounding areas. An empirically based framework is developed to permit the measuring of the strength and direction of this relationship, that is, whether property values increase or decrease as distance from the park becomes greater. The data are subjected to statistical tests, including correlation using the Pearson product-moment method, and linear and curvilinear regression.

The introduction reviews the generally accepted requirements for open space in cities of western European culture, and presents a brief historical account of the development of the movement towards urban parks. Particular attention is given to the establishment of open space in New Zealand, where parks have been planned into virtually all communities from their earliest days.

Five hypotheses are postulated, and each is tested against the empirical findings for each city. These hypotheses are, firstly, in a neighbourhood which develops around a park or reserve, residential property valuations are highest alongside the open space, and decline with increasing distance from it. The influence will vary with differing characteristics of the space. Secondly, the positive, or appreciating, influence of a park, as postulated in the first hypothesis, will decline as distance to the open rural landscape decreases. Thirdly, the positive influence of a park will decline with a decrease in average property values for a neighbourhood. Fourthly, the positive influence of a park will increase with an increase in housing density. Finally, the average property values of neighbourhoods surrounding open
spaces are higher than average values of those areas which do not have ready access to parks.

Findings of the study support three of the hypotheses. Strongest support is found for Hypothesis III, the postulation that the appreciative influence of a park declines with a decrease in average values in the surrounding area. Alpha levels of significance beyond the 0.001 level are noted consistently.

The first and last hypotheses, which suggest the existence of an appreciative effect on both micro and macro scales, are also upheld. The average value of properties adjacent to the 44 parks considered in the study exceed by 11.3 per cent the average for those properties 200 metres further from the parks. Furthermore, a difference of 7.93 per cent is found between average values for properties in park-oriented neighbourhoods and those in areas further away from open spaces.

The other two hypotheses are rejected for lack of support by findings of the study.
ACKNOWLEDGEMENTS

Research is seldom the work of one individual. In the course of investigation for this study, the writer received assistance from many people. Special thanks are due to:

Professor K.W. Thomson, Dean of Social Science, Massey University, who supervised the research and provided guidance, critical review and encouragement;

Mr B.G.R. Saunders, Reader in Geography, Massey University, who proposed the research topic, suggested the initial readings and approach to the study, and served as major advisor on the thesis committee;

Mr E.G. Thomas, Lecturer in Geography, Massey University, who served on the thesis committee;

Mrs Lilian Griffin, M.A., who draughted most of the maps;

Nola Simpson, Massey University Computer Unit, and Mr S. Henry, Computer Science Department, University of Montana, who provided computer programs;

Professor R. Banaugh, Chairman of Computer Science Department, and Dr D. Loftsgaarden, Associate Professor of Mathematics, University of Montana, who commented on the statistical work;

the New Zealand Department of Valuation, and especially Mr B. de Lautour, Urban District Valuer, Palmerston North, Mr A.P. Faulls, Urban Valuer, Christchurch, Mr N. Jenkin, District Valuer, Napier, and Mr J. Brown, District Valuer, Wanganui, who made valuation files available, explained the valuation technique and provided information regarding urban development in New Zealand cities;

Mr H.G. Gilpin, Director of Botanic Gardens, Parks and Reserves, Christchurch; Mr J.W. Bolton, Director of Reserves, Palmerston North; Mr M.R. Boothby, Superintendent of Parks and Reserves, Wanganui; Mr J.G.C. MacKenzie, Superintendent of Parks, Hastings; and the City Engineers of Palmerston North, Christchurch and Wanganui for their cooperation;
and finally, to the writer's wife and daughter, Maybelle and Karen, who maintained cheerful dispositions through the long hours of research and writing. To these, and to all who helped in any way, the writer is deeply grateful.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

CHAPTERS IN TEXT

I Introduction 1
II Methodology 22
III Christchurch 49
IV Palmerston North 82
V Hastings 124
VI Wanganui 150
VII Summary 174

APPENDICES

I List of New Zealand Cities. 193
II Coefficients of Correlation, Zones 5 through 10. 194
III Letter of Authorisation. 196
IV Analysis of Variance Data. 197
V Regression Angles. 199
VI Regression Residuals Used for Mapping. 200

BIBLIOGRAPHY OF WORKS CONSULTED

Books, Articles, Thesis, etc. 217
Government Publications 231
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Slope of Terrain, as Percentage of City Area.</td>
<td>23</td>
</tr>
<tr>
<td>2.2</td>
<td>Distance of Optimum Correlation.</td>
<td>27</td>
</tr>
<tr>
<td>3.1</td>
<td>Christchurch Open Spaces.</td>
<td>51</td>
</tr>
<tr>
<td>3.2</td>
<td>Average Property Valuations, Christchurch.</td>
<td>52</td>
</tr>
<tr>
<td>4.1</td>
<td>Palmerston North Open Spaces.</td>
<td>84</td>
</tr>
<tr>
<td>4.2</td>
<td>Average Property Valuations, Palmerston North.</td>
<td>88</td>
</tr>
<tr>
<td>5.1</td>
<td>Hastings Major Open Spaces.</td>
<td>126</td>
</tr>
<tr>
<td>5.2</td>
<td>Average Property Valuations, Hastings.</td>
<td>128</td>
</tr>
<tr>
<td>6.1</td>
<td>Wanganui Open Spaces</td>
<td>152</td>
</tr>
<tr>
<td>6.2</td>
<td>Average Property Valuations, Wanganui</td>
<td>153</td>
</tr>
<tr>
<td>7.1</td>
<td>Classification of Parks According to Function.</td>
<td>181</td>
</tr>
<tr>
<td>7.2</td>
<td>Average Values for Appreciating Parks, by Regression Function.</td>
<td>184</td>
</tr>
<tr>
<td>7.3</td>
<td>Comparison of Values, Park-oriented vs. Random Sample Properties.</td>
<td>187</td>
</tr>
<tr>
<td>Figure</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>1.1</td>
<td>Map showing location of cities in New Zealand.</td>
<td>16</td>
</tr>
<tr>
<td>2.1</td>
<td>Schematic representation of park, showing expanding outline, zones, and quadrants.</td>
<td>26</td>
</tr>
<tr>
<td>2.2</td>
<td>Hypothetical depreciation curve for housing.</td>
<td>37</td>
</tr>
<tr>
<td>3.1</td>
<td>Map of Christchurch study area, in relation to city.</td>
<td>50</td>
</tr>
<tr>
<td>3.2</td>
<td>Map of Hagley Park area, showing regression residuals.</td>
<td>54</td>
</tr>
<tr>
<td>3.3</td>
<td>Regression graphs for Christchurch parks.</td>
<td>55-57</td>
</tr>
<tr>
<td>3.4</td>
<td>Map of Elmwood Park area, showing regression residuals.</td>
<td>59</td>
</tr>
<tr>
<td>3.5</td>
<td>Map of Edgar Macintosh Park area, showing regression residuals.</td>
<td>61</td>
</tr>
<tr>
<td>3.6</td>
<td>Map of Malvern Park and Rugby Park areas, showing regression residuals.</td>
<td>63</td>
</tr>
<tr>
<td>3.7</td>
<td>Map of Horseshoe Lake Reserve and Burwood Park areas, showing regression residuals.</td>
<td>64</td>
</tr>
<tr>
<td>3.8</td>
<td>Map of Richmond Domain area, showing regression residuals.</td>
<td>67</td>
</tr>
<tr>
<td>3.9</td>
<td>Map of Papanui Domain area, showing regression residuals.</td>
<td>68</td>
</tr>
<tr>
<td>3.10</td>
<td>Map of St Albans Park area, showing regression residuals.</td>
<td>70</td>
</tr>
<tr>
<td>3.11</td>
<td>Map of Shirley Golf Course area, showing regression residuals.</td>
<td>72</td>
</tr>
<tr>
<td>3.12</td>
<td>Map of St James Park area, showing regression residuals.</td>
<td>74</td>
</tr>
<tr>
<td>3.13</td>
<td>Map of Macfarlane Park area, showing regression residuals.</td>
<td>76</td>
</tr>
<tr>
<td>3.14</td>
<td>Valuation profile of single-unit state housing in Macfarlane Park area.</td>
<td>78</td>
</tr>
<tr>
<td>4.1</td>
<td>Map of Palmerston North study area.</td>
<td>83</td>
</tr>
<tr>
<td>4.2</td>
<td>Map of Centennial Lagoon--Hokowhitu Golf Course area, showing regression residuals.</td>
<td>89</td>
</tr>
</tbody>
</table>
4.3 Regression graphs for Palmerston North parks.

4.4 Map of Hokowhitu Domain area, showing regression residuals.

4.5 Map of Esplanade Park complex area, showing regression residuals.

4.6 Map of Brightwater Terrace Golf Course area, showing regression residuals.

4.7 Map of Buick Crescent Park area, showing regression residuals.

4.8 Map of Waterloo Crescent Park area, showing regression residuals.

4.9 Map of Monrad Park area, showing regression residuals.

4.10 Map of Papaeoia Park area, showing regression residuals.

4.11 Map of Awapuni Park area, showing regression residuals.

4.12 Map of Puriri Street Basketball Courts and Humber Park areas, showing regression residuals.

4.13 Map of Coronation Park area, showing regression residuals.

4.14 Map of Takaro Park area, showing regression residuals.

4.15 Map of Savage Crescent Park area, showing regression residuals.

4.16 Map of Agricultural and Pastoral Association Showgrounds area, showing regression residuals.

4.17 Map of Milverton Park area, showing regression residuals.

4.18 Map of Memorial Park area, showing regression residuals.

5.1 Map of Hastings study area.

5.2 Map of Frimley Park area, showing regression residuals.

5.3 Regression graphs for Hastings parks.

5.4 Map of Flaxmere Park area, showing regression residuals.

5.5 Map of Windsor Park and Mayfair Park areas, showing regression residuals.
5.6 Map of Cornwall Park area, showing regression residuals.

5.7 Map of St Leonards Park area, showing regression residuals.

5.8 Map of Hawke's Bay Jockey Club Racecourse and Ebbett Park areas, showing regression residuals.

5.9 Map of Akina Park area, showing regression residuals.

5.10 Map of Kirkpatrick Park area, showing regression residuals.

6.1 Map of Wanganui study area.

6.2 Map of Kowhai Park area, showing regression residuals.

6.3 Regression graphs for Wanganui parks.

6.4 Map of Wanganui Domain area, showing regression residuals.

6.5 Map of Wanganui Racecourse area, showing regression residuals.

6.6 Map of Lorenzdale Park area, showing regression residuals.

6.7 Map of Williams Domain and Wanganui East Showgrounds areas, showing regression residuals.

6.8 Map of Virginia Lake and Peat Park areas, showing regression residuals.

6.9 Map of Victoria Park area, showing regression residuals.

6.10 Map of Castlecliff Beach Domain area, showing regression residuals.

7.1 Size of park vs. regression angle.

7.2 Average age of housing vs. regression angle.

7.3 Average property value vs. regression angle.