Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
THE GENETIC BASIS OF GROWTH,
OESTROUS BEHAVIOUR AND FERTILITY IN
ROMNEY MARSH EWES

A Thesis presented in partial
fulfilment of the requirements for the degree
of Doctor of Philosophy in Animal Science
at
Massey University

TANG SENG CH'ANG

1967
ACKNOWLEDGMENTS

I wish to express my gratitude for the assistance received during the course of this study: to my colleagues who in one way or another, unknown to me have shouldered the burden which but for this Thesis, would have been my due; to the Massey sheep farm staff, both past and present, for their work in the care of the sheep flock studied herein and for their co-operation often extended beyond the call of duty; to the Massey Library staff for their ever ready willingness to help and to the Council of Massey University for the opportunity and facilities to undertake the present work. In addition, I wish to acknowledge my indebtedness and appreciation to Mr. Bruce Thatcher for his constant assistance in the collection of data and in many other ways; to Professor A.L. Rae for his encouragement, guidance and lasting counsel and to my wife, for making my work more presentable in her typing of this Thesis.
TABLE OF CONTENTS

I. INTRODUCTION 1

II. SOURCE OF DATA 3

1. Management of experimental animals 3
2. Data and data collection 3
 (a) Live weight characters 5
 (b) Oestrous behaviour 5
 (c) Fertility of the ewe 6

III. METHOD OF ANALYSIS 8

1. Estimation of environmental effects 10
2. Interaction between sire and year in hogget characters 16
3. Preliminary analysis of annual fertility of the ewe 18
 (a) Chi-square analysis 19
 (b) Weighted regression analysis 22
 (c) Least-squares regression analysis 24
4. Estimation of phenotypic and genetic parameters 26
 (a) Paternal half-sib analysis 26
 (b) Covariance analysis between dam and daughter 30
 (i) Maternal environment and weaning weight 32
 (ii) Carryover maternal effect and post weaning characters 36
 (iii) Estimation of heritability and genetic correlation 39
 (iv) Computation of covariance between dam and daughter 41
5. Construction of selection indices 43

IV. RESULTS AND DISCUSSION 48

1. Estimates of environmental effects 48
 (a) Interaction between age of dam and type of birth and rearing 48
 (b) Estimates of environmental effects on hogget characters 51
 (c) Estimates of environmental effects on fertility of the ewe 56
 Discussion 59

2. Sire-year interaction in hogget characters 63
3. Preliminary results based on analysis of annual fertility of the ewe
 (a) Test of mutual independence by chi-square analysis
 (b) Weighted and least-squares regression of annual fertility of the ewe on number of hogget oestrus

4. Estimates of phenotypic correlations
 (a) Hogget characters
 (b) Relative importance of growth and age in the determination of number of hogget oestrus
 (c) Hogget characters and fertility of the ewe

5. Estimates of heritability and genetic correlation
 (a) Estimates of heritability
 (i) Hogget characters
 (ii) Fertility of the ewe
 Discussion
 (b) Estimates of genetic correlation
 (i) Paternal half-sib analysis
 (ii) Estimates of covariance between dam and daughter
 (iii) Regression of daughter on dam and covariance analysis between dam and daughter
 Discussion

Discussion (Estimates of heritability and genetic correlation)

6. The selection indices
 (a) Index 1 (I₁)
 (b) Index 2 (I₂)
 (c) Index 3 (I₃)
 (d) Properties of the selection indices
 Discussion

V. APPLICATIONS

VI. SUMMARY

VII. LITERATURE CITED