Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
KINETICS AND MECHANISM OF

PROTEOLYTIC ENZYME CATALYSED REACTIONS

A thesis presented for the degree

of Doctor of Philosophy

in Biochemistry

by

Michael John Boland

The most incomprehensible thing about the universe is its comprehensibility.

Einstein.
Acknowledgements

I would like to thank Dr. M.J. Hardman for helpful advice and discussion during the course of this work. Thanks are also due to Dr. J.W. Lyttleton for carrying out the ultracentrifuge experiments, Dr. I.D. Watson for advice on the physico-chemical section, Dr. M.A. McDowall for communication of unpublished results, Dr. C.R. Boswell for assistance in designing the simulation program, Professor R. Hodges for carrying out mass spectral analyses, and to the Applied Biochemistry Division of the D.S.I.R. for a study award under which this work was carried out.
Abstract

The enzyme actinidin has been purified and studied chemically and kinetically. The enzyme has many structural and kinetic similarities with ficin and papain. Specificity studies indicate a strong preference for a basic side chain in the \(S_1 \) site, and competitive inhibitor binding shows a preference for an aromatic group in the \(S_2 \) site. Inactivation studies show the presence of one active thiol group per enzyme molecule.

The hydrolysis of \(N\alpha\)-carbobenzoxy-L-lysine \(p \)-nitrophenyl ester by actinidin has been studied in detail. The Michaelis constant, \(K_m \), is dependent on groups ionising at pH 3.75 and 8.1. The turnover number, \(k_{cat} \), shows little pH dependence at low pH but an upward inflection dependent on a group ionising at pH 8.1. When the reaction is followed with enzyme concentration in excess of substrate concentration a biphasic reaction is observed. This is interpreted by a mechanism similar to that proposed for ficin and papain catalysed hydrolyses of this substrate. This mechanism is more complicated than the simple acylation-deacylation mechanism normally expected, involving an isomerisation of some kind. Microscopic rate constants for the reaction have been calculated.

The significance of various physico-chemical principles of catalysis has been discussed in relation to enzymic catalysis. From a study of the imidazole catalysed
hydrolysis of N,O-diacetylserinam ide, it has been concluded that general base catalysis could play a much greater part in enzymic catalysis than had previously been estimated.
Contents

Abstract

SECTION I. GENERAL INTRODUCTION

1. Early History of Enzymology 1
2. Proteolytic Enzymes 4

SECTION II. THE PLANT THIOL PROTEASES

1. Introduction 15
2. Experimental 30
3. Results and Discussion 46

SECTION III. PHYSICO-CHEMICAL PRINCIPLES OF ENZYMIC CATALYSIS

1. Introduction 85
2. Experimental 97
3. Results 99
4. Discussion 101

SECTION IV. CONCLUSION

1. Properties of Actinidin 111
2. Physico-Chemical Factors in Actinidin 112
 Catalysed Hydrolysis of Z-lys-pNP

Appendix 1. Computer Programs 114

Appendix 2. Derivation of Kinetic Parameters for Actinidin Catalysed Hydrolysis of Z-lys-pNP 118

Bibliography 123
List of Figures

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Activity + Protein Concentration Profiles for Elution of Actinidin from High Resolution Ion Exchange Chromatography.</td>
<td>48</td>
</tr>
<tr>
<td>2. Plots for Determination of the Molecular Weight of Actinidin.</td>
<td>50</td>
</tr>
<tr>
<td>3. Effect of Competitive Inhibitors on Actinidin Catalysed Hydrolysis of Z-lys-pNP.</td>
<td>56</td>
</tr>
<tr>
<td>4. Lineweaver-Burk plots for Actinidin Catalysed Hydrolysis of Alkyl Esters.</td>
<td>58</td>
</tr>
<tr>
<td>5. pH Profile for k_{cat}</td>
<td>66</td>
</tr>
<tr>
<td>6. pH Profile for K_m</td>
<td>67</td>
</tr>
<tr>
<td>7. Oscilloscope Trace for Actinidin Catalysed Hydrolysis of Z-lys-pNP with Enzyme in Excess.</td>
<td>70</td>
</tr>
<tr>
<td>8. Dependence of K_b on Enzyme Concentration.</td>
<td>73</td>
</tr>
<tr>
<td>9. Double Reciprocal Plot of Dependence of Burst Size on Enzyme Concentration.</td>
<td>77</td>
</tr>
<tr>
<td>10. Comparison of Actual and Simulated Results for Actinidin Catalysed Hydrolysis of Z-lys-pNP.</td>
<td>84</td>
</tr>
</tbody>
</table>
11. Dependence of Rate of Hydrolysis of N,O, Diacetyl Serinamide on Imidazole Concentration.

13. Schematic Diagram of Simulation Program.