Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Effect of Processing and Storage on the Reconstitution Properties of Whole Milk and Ultrafiltered Skim Milk Powders

THESIS
PRESENTED IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY IN FOOD TECHNOLOGY

BY
ANTHONY B MCKENNA
2000
SUMMARY

Concentrated and dry milk products have a longer storage stability than fresh milk because of a lower water activity and they are therefore desirable in regions with unsuitable climates for fresh milk production and distribution.

During the manufacture of spray dried milk products, there are processing steps that cause interactions between the various components in milk that influence powder functionality. These processes include pasteurisation, homogenisation, concentration, heating, atomisation and the spray drying conditions.

Whole milk powders (WMP), particularly those sold directly to the consumer, are required to disperse rapidly in water and to be quickly and completely soluble i.e. form a stable colloidal suspension of fat and protein leaving little or no visible residue suspended in the water or coated to the inside surface of the container. Spray dried ultrafiltered skim milk containing 85% protein (UFSMP85) is used for a wide range of applications including protein fortification of liquid milks, nutritional foods and cheese milks. The UFSMP85 should have good solubility in water and milk for it to be used successfully in these applications.

The main objective of this work was to further our knowledge about the influence of processing factors on component interactions during the manufacture of WMP and UFSMP85, using microscopy as a major investigative tool. Evaluation of the influence of milk component interactions on the functional characteristics of the powders was an integral part of the work and provided important insights towards improving the reconstitution properties of these powders.

The development of confocal laser scanning microscopy methodology for WMP proved valuable for the localisation of fat globules, lactose crystals and a phospholipid-based surface wetting agent.

Major structural changes in the fat globules, casein micelles and whey proteins occurred during the manufacture of WMP. Preheating resulted in the formation of hair-like structures on and between casein micelles onto the fat globule surface. Upon further heating the adsorbed protein on the fat aggregated with other micelles to form a chain-like network. Reduction in the whey protein concentration of the concentrated milk appeared to reduce the number of hair-like structures, aggregation and the extent to which this network formed upon heating.

A study of instant-WMP products, obtained from the marketplace, indicated that WMP with poor functional properties (solubility in coffee and hot and cold water, and dispersibility) generally had been manufactured using high preheating conditions, had a high fat globule protein load (excessive shear during processing) and exhibited a high degree of protein-protein interactions. The instant-WMP sample with the most favourable functional properties (good solubility in hot and cold water and coffee, excellent dispersibility and good agglomerate structure) was manufactured using low preheating conditions and exhibited fewer protein-protein interactions as observed by transmission electron microscopy (TEM).

In the manufacture of UFSMP85 there were changes that occurred during membrane
concentration and evaporation that predisposed the concentrated milk to protein-protein and protein-mineral interactions upon drying. The extent of these protein interactions increased with an increase in protein content of the UFSMP. It was considered that these interactions gave UFSMP85 a solubility of only 40% when it was reconstituted in water at 20°C. The solubility was approximately 98% when UFSMP85 was reconstituted in water at 60°C. Determination of the location of β-lactoglobulin and κ-casein by immuno-gold labelling and TEM showed that these components may be associated with the formation of an aggregated matrix that ‘sets’ upon drying thus influencing particle solubility.

Storage of UFSMP85 at temperatures ≥ 20°C caused a “skin” to develop at the particle surface that reduced water penetration. This skin eventually (after 6 months of storage) decreased the powder solubility even in water at 60°C. The application of shear at approximately 14.50 MPa was required to break down these poorly soluble reconstituted UFSMP85 particles.

Changes in the pH of milk prior to ultrafiltration and a reduction of temperature during drying and storage of the powder may result in some incremental improvements in the solubility of the UFSMP85.
ACKNOWLEDGEMENTS

My first acknowledgement is to my beloved, Lee, who still loves me! Over the duration of this work you endured more hardship than I did. I promise it won’t happen again!!! Thanks and love to my children Rachel (10), Thomas (8), Rory (6) and Megan (3) who were as patient as could be and still call me Dad.

To my parents, Kevin and Marlene, for your love and support always. To my grandmother, Alelia, thanks for making a family out of us all.

I am appreciative of my supervisor Professor Harjinder Singh for his support, friendship and guidance.

Thanks to Professor Peter Munro (co-supervisor), who encouraged me to undertake this work and bared the brunt of many day to day enquiries.

Special thanks to Brian Brooker (co-supervisor, Institute of Food Research, UK) who graciously took me into his fold and provided expert guidance in microstructure preparation and analysis.

To Mrs Peg Brooker (passed away on the 7th August 1999). You are an inspiration to my family and I. We remember you with great warmth - “we’ll meet with a kiss when we walk through the gate”.

Thanks to the New Zealand Dairy Research Institute who generously supported my doctorate. To my friends and colleagues from the Institute, thank you for your encouragement and technical assistance. To Dr Terry Thomas and Dr Jeremy Hill for supporting this work. Thanks to Mrs Robyn Hirst for providing excellent assistance and for competently taking over operation of the microscopy unit. To Dr Ranjan Sharma, Dr Skelte Anema, Mr Richard Lloyd, Dr Steven Euston, Ms Chris Thompson, Dr Satyendra Ram, Mrs Suzie Finnigan, Dr Claire Woodhall, Ms Andrea Cooper and Mr Donald Love for expert assistance, advice and personal support. Thanks to Dr David Newstead for teaching me (with patience) to document my thoughts. Thanks to Dr John Smith and Dr Steve Haylock for being good sports.

Sincere thanks to associate Professor Donald McMahon and Mr Bill McManus from Utah State University who gave their time for training me in immunogold labelling techniques.

Finally, thanks to my friends of the Christian Community Church in Palmerston North, in particular Nigel & Carolyn Dixon, Andy & Ruth Smith, Mark & Trish Gunning, Steve & Margie Jones, Malcolm & Janice Hardy and Matt & Suzie Finnigin. You’ve been great support, thanks.
TABLE OF CONTENTS

Chapter 1 Introduction .. 1

1.1 MICROSTRUCTURAL CHANGES DURING THE MANUFACTURE AND RECONSTITUTION OF WMP 2

1.2 MICROSTRUCTURAL CHANGES DURING THE MANUFACTURE AND STORAGE OF 85% PROTEIN ULTRAFILTERED SKIM MILK POWDER (UF SMP85) .. 3

Chapter 2 Review of the Literature 4

2.1 TYPICAL POWDER MANUFACTURING PROCESSES 4

2.1.1 Milk Powder .. 4

2.1.2 Milk Protein Concentrate Powder from Ultrafiltered Skim Milk .. 5

2.2 PROCESS-INDUCED CHANGES DURING POWDER MANUFACTURE .. 7

2.2.1 Preheating ... 8

2.2.2 Evaporation ... 10

2.2.3 Ultrafiltration .. 11

2.2.4 Homogenisation .. 12

2.2.5 Spray drying ... 12

2.3 POWDER PROPERTIES DURING RECONSTITUTION 13

2.3.1 Solubility of WMP .. 14

2.3.2 Solubility of Ultrafiltered Skim Milk Powders 15

2.4 MICROSCOPIC TECHNIQUES FOR THE EVALUATION OF STRUCTURAL COMPONENTS IN DAIRY FOODS 16

2.4.1 Light Microscopy .. 16

2.4.2 Electron Microscopy 18

2.4.3 Immunolabelling .. 19

2.5 MICROSCOPY OF MILK AND MILK PRODUCTS 20

2.5.1 Microscopy of the Effects of Heat on Milk 20

2.5.2 Microscopy of Concentrated Milk Systems 21

2.5.3 Microscopy of Milk Powders 22

2.6 REFERENCES .. 23

Chapter 3 The Examination of Whole Milk Powder by Confocal Laser Scanning Microscopy 36

3.1 INTRODUCTION .. 36

3.2 MATERIALS & METHODS .. 37

3.2.1 Fat Localisation ... 37
Chapter 8 Microstructural Changes During the Storage of Spray-dried Ultrafiltered Skim Milks and Their Affect on Dissolution Properties in Water
8.1 INTRODUCTION
8.2 MATERIALS AND METHODS
8.2.1 Experimental Details
8.2.2 Transmission Electron Microscopy
8.2.3 Confocal Laser Scanning Microscopy
8.2.4 Particle Size Measurement
8.2.5 Solubility
8.3 RESULTS
8.3.1 Structure and Solubility of UFSMP Containing Different Protein Concentrations
8.3.2 The Influence of Shear on the Structure and Solubility of Reconstituted UFSMP85
8.3.3 The Influence of Storage Time and Temperature on the Structure and Solubility of UFSMP85
8.4 DISCUSSION
8.5 CONCLUSIONS
8.6 REFERENCES

Chapter 9 The Influence of Skim Milk pH on Micelle Structure and Protein Distribution Before and After Ultrafiltration
9.1 INTRODUCTION
9.2 EXPERIMENTAL
9.2.1 Proximate Analyses
9.2.2 Soluble Caseins and Whey Proteins
9.2.3 Transmission Electron Microscopy
9.2.4 Immunolabelling
9.2.5 Particle Size Analysis by Photon Correlation Spectroscopy
9.3 RESULTS
9.3.1 Changes in the Protein and Mineral Content of Retentate from Ultrafiltered pH-adjusted Skim Milk

7.2.7 Gel Electrophoresis
7.3 RESULTS
7.3.1 Chemical Analyses
7.3.2 Microscopy
7.3.3 Particle Size Analysis By Photon Correlation Spectroscopy
7.3.4 Gel Electrophoresis
7.4 DISCUSSION
7.5 CONCLUSIONS
7.6 REFERENCES
9.3.2 Concentration of Soluble Proteins in the Retentate from Ultrafiltered pH-adjusted Skim Milk ... 166
9.3.3 Particle Size Evaluation of Skim Milk and Ultrafiltered Skim Milk .. 171
9.3.4 Microstructure of pH-adjusted Skim Milks and Retentates 171
9.4 DISCUSSION ... 184
9.5 CONCLUSIONS ... 186
9.6 REFERENCES .. 188

Chapter 10 Concluding Discussion .. 190

10.1 MICROSTRUCTURAL CHANGES DURING THE MANUFACTURE AND RECONSTITUTION OF WMP .. 190
10.2 MICROSTRUCTURAL CHANGES DURING THE MANUFACTURE AND STORAGE OF 85% PROTEIN ULTRAFILTERED SKIM MILK POWDER (UFSMP85) .. 192
10.3 COMMON THEMES .. 194