Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
A NETWORK TOPOLOGICAL APPROACH to CURRENCY CASCADES

A thesis presented in fulfilment of the requirements for the degree of Doctor of Philosophy in Finance

Michael John Naylor
Massey University
New Zealand
2006
The stability of international financial markets is an important issue for academics and policymakers. Crises in currency markets have become increasingly common with the 1990s in particular experiencing major episodes of currency turmoil. The causation and frequency of these crises is a puzzle, especially for semi-free-floating currencies.

In this thesis recent currency crises are introduced and examined. Theories and methodologies which evolved in complexity and network sciences are then shown to have analogies to currency crises and to offer insights for finance. Common factors of recent currency crises are shown to be explainable using complexity and network sciences, and that price determinant influences exhibit characteristics of a complex network. An alternative approach to currency crises based on binary choices using an agent-based model in an explicit topological sparsely clustered network is proposed. This is shown to be capable of generating complex dynamics, including cascades.

A proxy topology of currency influences is then extracted from the international foreign exchange price matrix and shown to exhibit a robust taxonomy. This topology is then subjected to cascade simulation analysis. The results show that node threshold values and the density of external links are the key parameters in terms of cascade propagation. It is thus shown that a simple parsimonious model of trader interaction within a foreign exchange network can produce dynamics which are complex and contingent, and match the proposed stylised facts of currency crises. Policy issues flowing from these findings are discussed. The results increase our understanding of price dynamics in financial markets.
I would like to begin by thanking my wife, Judith, for her patience, kindness and endless support throughout the long period this thesis took. This thesis is dedicated to her. I would also like to thank my children, Sean and Caitlin, for their patience in accepting that I was not going to play with them yet again. I would also like to thank my parents, Peter and Joan, for their continued support and encouragement.

I am indebted and thankful to Professor Lawrence Rose, Professor Anne de Bruin and Dr Brendan Moyle for their excellent supervision, guidance, insight and encouragement during the ups and downs of this research.

I would like to thank Professor Chris Moore for his understanding and the Department of Finance's financial support. I would also like to thank Maryke Bublitz, Fong Mee Chin and other members of the Departments of Finance, Banking & Property and of the Department of Commerce for their ever cheerful help. I would like to thank Dr Jonathan Marshall for coming to the rescue with programming support at a critical moment, and Prof Nigel French for his useful insights and advice on disease contagion and programming. I would like to thank Karen Stanley for graciously proofreading this thesis. I would also like to thank the examiners for taking the time to examine this thesis.
Table of Contents

Abstract i
Acknowledgements ii
List of Figures viii
List of Tables x

Chapter One Introduction

1.1 International financial market stability 1
1.2 The Research Question 2
1.3 The Anticipated Contribution 3

Chapter Two Modelling Currency Crises

2.1 Introduction 4
 2.1.1 Overview of crisis models 4
 2.1.2 Developing trader behavioural rules 5
2.2 Macroeconomic Feedback Models 7
 2.2.1 Basics 7
 2.2.2 First generation models 7
 2.2.3 Second generation models 8
 2.2.4 Problems with the first two generations of models 10
 2.2.5 Third generation models 10
 2.2.6 General criticisms of macro-feedback models 11
2.3 Liquidity and Bank Run Models 12
2.4 Micro Structure Models 13
 2.4.1 Behavioural finance models 13
 2.4.2 Positive and negative feedback models 14
 2.4.3 Rational bubble models 14
 2.4.4 Information flow models 15
Chapter Three An Alternative Approach

3.1 Introduction 24
3.2 Theoretical Issues 25
3.2.1 Theoretical foundations 25
3.2.2 The power-law distribution 27
3.3 The Stability of Network Systems 30
3.3.1 Basics 30
3.3.2 Cascading failure 31
3.3.3 Contagious disease models 33
3.3.4 Physical science contagion models 34
3.3.5 The dynamics properties of cascades in random networks 37
3.3.6 Node centrality and importance 40
3.4 Currency Crises: A Network Approach 42
3.4.1 Price dynamics in foreign exchange markets 41
3.4.2 Trader behavioural assumptions 43
3.4.3 Cascades in currency networks 45
3.4.4 Theoretical assumptions of a bootstrap binary model 46
3.4.5 Sequential agent behaviour in a single decision bootstrap model 49
3.4.6 Cascade conditions 51
3.4.7 A fractional decision model 53
3.4.8 Sequencing 54
3.5 Conclusion 55

Chapter Four Topological Methodology 57

4.1 Introduction 57
4.1.1 Overview 57
4.1.2 Outline of methodological issues 57

4.2 Methodological Techniques 58
4.2.1 Econometric techniques 58
4.2.2 Hierarchical structure theory 59
4.2.3 Matrix network theory 62
4.2.4 Ln-In diagrams 65
4.2.5 Eigenvalue analysis 66

4.3 Methodological Summary 67

Chapter Five Topological Analysis 68

5.1 Introduction 68
5.2 Data Summary 68
5.2.1 Introduction 68
5.2.2 Exchange rate data 69
5.2.3 Trade data 70
5.2.4 FX turnover data 70

5.3 Topological Results 71
5.3.1 Hierarchical structure theory 71
5.3.1.1 Introduction 71
5.3.1.2 NZD matrix 72
5.3.1.3 USD matrix 76
5.3.1.4 NZD crisis matrix 80
5.3.1.5 USD crisis matrix 82
5.3.1.6 Conclusion 83

5.3.2 Matrix network methods 84
5.3.2.1 Introduction 84
5.3.2.2 NZD 5 link matrix 84
5.3.2.3 NZD dichotomised matrix 87
5.3.2.4 USD dichotomised matrix 89
5.3.2.5 NZD crisis matrix 92
5.3.2.6 USD Crisis matrix 93
5.3.2.7 Trade matrix 94
5.3.2.8 Foreign exchange centre turnover 98
5.3.2.9 Conclusion 98
5.3.3 Eigenvalue analysis 98
5.3.4 Power-laws and 1/f noise in the MYR market 99
5.4 Creation of a Proxy Topological Map 101
5.5 Conclusion 105

Chapter Six Simulation Analysis 106

6.1 Methodology 106
 6.1.1 Introduction 106
 6.1.2 Simulation Methodology 107
6.2 The Simulation Model 108
6.3 Experiments with Threshold Parameter Distributions 109
 6.3.1 Results from differing metric on parameters 109
 6.3.1.1 Introduction 109
 6.3.1.2 Normal Distribution 110
 6.3.1.3 Power-law Distribution 113
 6.3.1.4 Uniform Distribution 116
 6.3.1.5 Conclusion 117
 6.3.2 Analysis of how many cascades of a given size contain
 a given node 119
 6.3.2.1 Introduction 119
 6.3.2.2 Normal Distribution 119
 6.3.2.3 Power-law Distribution 121
 6.3.2.4 Uniform Distribution 122
 6.3.2.5 Conclusion 122
 6.3.3 Threshold experiment conclusion 123
6.4 Experiments with Linkage Densities 124
 6.4.1 Introduction 124
 6.4.2 Changing internal cluster density 125
 6.4.3 Changing external cluster density 127
 6.4.4 Conclusions from changing linkage densities 128
6.5 Simulation Conclusions 129
Chapter Seven Conclusion

7.1 Overview
 7.1.1 Thesis objectives
 7.1.2 Thesis summary

7.2 Summary of Results

7.3 Contributions
 7.3.1 Theoretical contribution
 7.3.2 Methodological contribution
 7.3.3 Empirical contribution

7.4 Theoretical and Policy Implications
 7.4.1 Theoretical implications
 7.4.2 Policy implications

7.5 Model Extensions and Future Work

Chapter Four Appendix

Chapter Five Appendix

References
List of Figures

Figures in main body of text

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Regular vs Random vs Clustered Networks</td>
<td>26</td>
</tr>
<tr>
<td>3.2</td>
<td>Power-law versus Normal Distributions</td>
<td>28</td>
</tr>
<tr>
<td>5.1</td>
<td>NZD based FX minimum spanning tree (1995-2001)</td>
<td>74</td>
</tr>
<tr>
<td>5.3</td>
<td>NZD based FX hierarchical tree of subdominant ultrametric space (1995-2001)</td>
<td>76</td>
</tr>
<tr>
<td>5.4</td>
<td>USD based FX minimum spanning tree (1995-2001)</td>
<td>77</td>
</tr>
<tr>
<td>5.6</td>
<td>USD based FX hierarchical tree of subdominant ultrametric space (1995-2001)</td>
<td>79</td>
</tr>
<tr>
<td>5.12</td>
<td>NZD network graph of binary 5 link distance matrix</td>
<td>85</td>
</tr>
<tr>
<td>5.14</td>
<td>NZD network graph of dichotomised distance matrix</td>
<td>88</td>
</tr>
<tr>
<td>5.17</td>
<td>USD network graph of dichotomised distance matrix</td>
<td>90</td>
</tr>
<tr>
<td>5.19</td>
<td>Crisis period NZD network graph of dichotomised distance matrix</td>
<td>92</td>
</tr>
<tr>
<td>5.24</td>
<td>Network graph of dichotomised trade flows at 5%</td>
<td>95</td>
</tr>
<tr>
<td>5.26</td>
<td>Network graph of dichotomised trade flows at 10%</td>
<td>97</td>
</tr>
<tr>
<td>5.33</td>
<td>Derived International Financial Flows Network</td>
<td>102</td>
</tr>
<tr>
<td>5.34</td>
<td>Simulation Topological Map</td>
<td>104</td>
</tr>
<tr>
<td>6.7</td>
<td>Effect of varying distributions on threshold parameters</td>
<td>118</td>
</tr>
</tbody>
</table>

Figures in Appendices

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td>In-In diagram of links in NZD MST graph</td>
<td>146</td>
</tr>
<tr>
<td>5.5</td>
<td>In-In diagram on links in USD MST graph</td>
<td>146</td>
</tr>
<tr>
<td>5.7</td>
<td>Crisis period FX NZD-based minimum spanning tree (1997-98)</td>
<td>148</td>
</tr>
<tr>
<td>5.8</td>
<td>Crisis period FX NZD-based hierarchical tree of subdominant ultrametric space (1997-98)</td>
<td>149</td>
</tr>
<tr>
<td>5.9</td>
<td>Crisis period FX USD-based minimum spanning tree (1997-98)</td>
<td>150</td>
</tr>
<tr>
<td>5.10</td>
<td>In-In plot of USD-based based crisis MST graph</td>
<td>151</td>
</tr>
<tr>
<td>5.11</td>
<td>Crisis period FX USD-based hierarchical tree of subdominant ultrametric space (1997-98)</td>
<td>152</td>
</tr>
</tbody>
</table>
Figure 5.13 One-step ego-nets for selected currencies for NZD 5-link distance matrix

Figure 5.15 In-In plot of NZD-based dichotomised distance matrix

Figure 5.16 One-step ego-nets for selected currencies for NZD distance matrix

Figure 5.18 One-step ego-nets for selected currencies for USD distance matrix

Figure 5.20 One-step ego-nets for selected currencies for NZD crisis-period distance matrix

Figure 5.21 USD-based crisis period network graph of dichotomised distance matrix

Figure 5.22 One-step ego-nets for selected currencies for USD crisis-period distance matrix

Figure 5.23 In-In plot of countries ranked by export trade

Figure 5.25 One-step ego-nets of trade flows dichotomised at 5%

Figure 5.27 One-step ego-nets of trade flows dichotomised at 10%

Figure 5.28 In-In plot of trade links dichotomised at 5%

Figure 5.29 In-In plot of FX turnover by centre

Figure 5.30 Time plot of MYR/USD (1990-2001)

Figure 5.31 Normality comparison for MYR/USD (1990-1998)

Figure 5.32 MYR/USD daily change distribution tests

Figure 6.1 Frequency of cascades starting at a particular node normal distribution ($\mu = 0.3$, $\sigma = 0.28$)

Figure 6.2 Cascade sizes for nodes - normal (0.4)

Figure 6.3 Frequency of cascades starting at a particular node power-law distribution ($\rho = 1.5$)

Figure 6.4 Cascade sizes for nodes - power-law distribution ($\rho = 1.5$)

Figure 6.5 Frequency of cascades starting at a particular node uniform distribution

Figure 6.6 Cascade sizes for nodes - uniform distribution

Figure 6.8 Frequency of cascades containing a particular node normal (0.3) distribution

Figure 6.9 Frequency of cascades containing a particular node power-law (1.5) distribution

Figure 6.10 Frequency of cascades containing a particular node uniform distribution
List of Tables

Tables in main body of text

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 5.8</td>
<td>MYR descriptive statistics (1993-2001)</td>
<td>100</td>
</tr>
<tr>
<td>Table 6.2</td>
<td>Normal distribution cascade statistics</td>
<td>111</td>
</tr>
<tr>
<td>Table 6.4</td>
<td>Power-law distribution cascade statistics</td>
<td>114</td>
</tr>
<tr>
<td>Table 6.6</td>
<td>Comparison for uniform, N(0.4), PL (1.2) distributions</td>
<td>116</td>
</tr>
<tr>
<td>Table 6.8</td>
<td>Comparison of node inclusion in cascades</td>
<td>120</td>
</tr>
<tr>
<td>Table 6.9</td>
<td>Effects on global cascades of varying % internal links</td>
<td>125</td>
</tr>
<tr>
<td>Table 6.10</td>
<td>Effects on global cascades of varying % external links</td>
<td>127</td>
</tr>
</tbody>
</table>

Tables in Appendices

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 5.1</td>
<td>Countries selected for exchange data</td>
<td>144</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>NZD-based FX distance matrix (1995-2001)</td>
<td>145</td>
</tr>
<tr>
<td>Table 5.3</td>
<td>Crisis-period NZD-based FX distance matrix (1997-98)</td>
<td>147</td>
</tr>
<tr>
<td>Table 5.4</td>
<td>Matrix of export trade in country percentage terms</td>
<td>160</td>
</tr>
<tr>
<td>Table 5.5</td>
<td>Turnover of FX trading by centre</td>
<td>165</td>
</tr>
<tr>
<td>Table 5.6</td>
<td>Eigenvalue of covariances of NZD matrix</td>
<td>166</td>
</tr>
<tr>
<td>Table 5.7</td>
<td>Eigenvalue of covariances of USD matrix</td>
<td>167</td>
</tr>
<tr>
<td>Table 5.9</td>
<td>MYR/USD daily change distribution tests</td>
<td>170</td>
</tr>
<tr>
<td>Table 5.10</td>
<td>MYR/USD daily change distribution tests (restricted sample)</td>
<td>171</td>
</tr>
<tr>
<td>Table 5.11</td>
<td>Internal triad linkage density</td>
<td>172</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Simulation output for normal distribution ($\mu = 0.3$)</td>
<td>174</td>
</tr>
<tr>
<td>Table 6.3</td>
<td>Simulation output for power-law distribution ($\rho = 1.5$)</td>
<td>176</td>
</tr>
<tr>
<td>Table 6.5</td>
<td>Simulation output for uniform distribution</td>
<td>178</td>
</tr>
<tr>
<td>Table 6.7</td>
<td>Containing simulation output for normal (0.3) distribution</td>
<td>180</td>
</tr>
</tbody>
</table>