Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Investigating Downdraft Gasification of Biomass

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in

Physics

Massey University, Palmerston North,
New Zealand.

Donna Louise Giltrap
2002
Abstract

Gasification of biomass is a potential source of renewable energy. Downdraft gasifiers are comparatively cheap and can produce gases with low tar content. We constructed a simple, phenomenological model of downdraft gasification which we compared to both previously published data and our own experimental results. The steady-state gas compositions predicted by the model were quite close to those found experimentally, although the model tended to over-predict the amount of methane in the dry product gas. The steady-state gas composition predicted depended upon the conditions assumed at the top of the gasifier.

The experimental part of this investigation looked at the effect of the air flow rate into the gasifier and the length of the gasifier bed. However, the uncertainties in the experimental measurements were too large to determine whether the experimental results followed the same trends as predicted by the model.

The gasifier was run successfully using both 18.7% moisture content pine chips and 12.3% moisture content walnut shells (weight percentage, dry basis) as fuel. Both fuel types produced dry exit gases of similar compositions.
Acknowledgements

This project received funding from the Institute of Fundamental Sciences Graduate Research Fund and the Massey University Research Equipment Fund.

I would also like to thank the following for their contributions towards this project:

• Bill Dwyer of Dwyer Technical Services for his help in developing the gasifier ignition system and for the loan of a gas bottle and fittings.
• The Institute of Fundamental Sciences specialist services staff for their help in manufacturing, altering and repairing the experimental apparatus.
• The Fielding Lumber Co. for the donation of some freshly cut pine chips.
• The Institute of Technology and Engineering for the loan of a digital anemometer and the use of the gas chromatograph.
• Malcolm Harbrow for allowing himself to be drafted to help carry equipment and fuel.
• My supervisors Geoff Barnes and Robert McKibbin.
Table of Contents

ABSTRACT .................................................................................................................. ii

ACKNOWLEDGEMENTS ........................................................................................... iii

LIST OF FIGURES AND TABLES .............................................................................. vii

1. INTRODUCTION ................................................................................................. 1-1

1.1 THE WORLD ENERGY SITUATION ........................................................................ 1-2

New Zealand Energy Usage .................................................................................. 1-3

1.2 GASIFICATION .................................................................................................. 1-6

Downdraft .............................................................................................................. 1-7

Updraft .................................................................................................................... 1-8

Fluidised Bed ........................................................................................................... 1-9

1.3 REVIEW OF RELATED RESEARCH ................................................................... 1-9

(A) Electricity Production Using Gasification ......................................................... 1-9

(B) Gasification of Biomass ..................................................................................... 1-10

(C) Modelling Gasification ...................................................................................... 1-11

1.4 THESIS ORGANISATION ................................................................................ 1-12

2. EXPERIMENTAL APPARATUS .......................................................................... 2-1

2.1 GASIFIER I GNITION SYSTEM ......................................................................... 2-2

2.2 TRANSDUCERS AND CALIBRATION .................................................................. 2-4

(A) Temperature ....................................................................................................... 2-4

(B) Inlet Air Flow Rate ............................................................................................ 2-5

(C) Exit Gas Flow Rate ........................................................................................... 2-8

(D) Pressure Gradient across bed ............................................................................ 2-11

(E) Fuel Moisture Content ...................................................................................... 2-12

(F) CO detector ........................................................................................................ 2-13

2.3 GAS COLLECTION AND ANALYSIS ................................................................ 2-13

(A) Gas Sampling ...................................................................................................... 2-13

(B) Gas Chromatograph .......................................................................................... 2-13

3. STEADY STATE AND TIME DEPENDENT MODELS ....................................... 3-1
3.1-DIMENSIONAL STEADY-STATE MODEL ................................................................. 3-2
(A) Reaction Rates .................................................................................................. 3-2
(B) Mass and Energy Balances .................................................................................. 3-3
(C) Model Sensitivity to Initial Conditions ............................................................. 3-7
Varying Initial Temperature ..................................................................................... 3-8
Varying Initial Pressure ........................................................................................... 3-10
Varying Initial Velocity and C_{RF} ........................................................................... 3-11
Varying Initial CO₂ .................................................................................................. 3-13
Varying Initial CO and CH₄ ...................................................................................... 3-14
Varying Initial H₂ .................................................................................................... 3-16
Varying Initial H₂O ................................................................................................. 3-17
(D) Initial Values .................................................................................................... 3-19
Initial Gas Concentrations ....................................................................................... 3-19
Initial Gas Temperature .......................................................................................... 3-21
Char Reactivity Factor (C_{RF}) .............................................................................. 3-21
Pyrolysis Fraction ................................................................................................... 3-22
(E) Comparison with Experimental results ............................................................. 3-23
3.2 1-DIMENSIONAL STEADY STATE MODEL WITH COMBUSTION REACTIONS ...... 3-26
3.3 TIME DEPENDENT MODEL ............................................................................... 3-29
(A) Model Construction .......................................................................................... 3-29
(B) Agreement with Steady State Model ................................................................. 3-32
3.4 CONCLUSION ................................................................................................... 3-34
4. EXPERIMENTAL RESULTS ................................................................................. 4-1
4.1 PERFORMANCE OF GASIFIER RUN IN BATCH MODE ........................................ 4-1
(A) Mass and Energy Balances of Gasifier .............................................................. 4-3
4.2 EFFECT OF VARYING BED LENGTH ................................................................ 4-5
(A) Exit Gas Temperature ......................................................................................... 4-5
(B) Exit Gas Composition ......................................................................................... 4-8
(C) Mass and Energy Balance of Gasifier .............................................................. 4-10
(D) Summary .................. ................................................................. 4-11
4.3 EFFECT OF VARYING AIR FLOW RATE ......................................................... 4-12
(A) Exit Gas Temperature ......................................................................................... 4-12
(B) Exit Gas Composition ......................................................................................... 4-15
(C) Mass and Energy Balances of Gasifier .............................................................. 4-18
(D) Summary ......................................................................................................... 4-22
4.4 EFFECT OF DIFFERENT FUEL TYPES ............................................................. 4-22
   (A) Exit Gas Temperature ........................................................................ 4-23
   (B) Exit Gas Composition....................................................................... 4-24
   (C) Mass and Energy Balances of the Gasifier .................................. 4-25
   (D) Summary ......................................................................................... 4-27

4.5 CONCLUSION ......................................................................................... 4-27

5 COMPARING EXPERIMENTAL RESULTS WITH MODEL PREDICTIONS
.................................................................................................................. 5-1

5.1 MODEL WITHOUT METHANE COMBUSTION ........................................... 5-1
   (A) Effect of Varying Air Flow Rate ...................................................... 5-2
   (B) The Effect of Varying Bed Length .................................................. 5-6
   (C) Summary ......................................................................................... 5-9

5.2 MODEL INCLUDING METHANE COMBUSTION REACTIONS .................. 5-10
   (A) The Effect of Varying the Air Flow .................................................. 5-10
   (B) The Effect of Varying Bed Length .................................................. 5-14
   (C) Summary ......................................................................................... 5-17

6 CONCLUSION .......................................................................................... 6-1

APPENDIX A: JUSTIFICATION OF THE IDEAL GAS APPROXIMATION ...7-1

APPENDIX B: EQUILIBRIUM CONSTANTS FOR REACTIONS .................... 8-1

APPENDIX C: MATLAB SCRIPTS ............................................................. 9-1

REFERENCES .............................................................................................. 10-1
List of Figures and Tables

**FIGURE 1.1:** NEW ZEALAND ENERGY CONSUMPTION BY FUEL TYPE FOR THE CALENDAR YEAR 2001 ...................................................................................................................... 1-3

**FIGURE 1.2:** NEW ZEALAND CO₂ EMISSIONS BY SECTOR FOR THE CALENDAR YEAR 2001 ........................................................................................................................................ 1-4

**FIGURE 1.3:** NEW ZEALAND ELECTRICITY GENERATION FOR THE YEAR ENDED MARCH 2002 ...................................................................................................................... 1-5

**FIGURE 1.4:** SCHEMATIC OF A TYPICAL DOWNDRAFT GASIFIER ................................................................. 1-7

**FIGURE 1.5:** SCHEMATIC OF A TYPICAL UPDRAFT GASIFIER ................................................................. 1-8

**FIGURE 1.6:** SCHEMATIC OF A TYPICAL FLUIDISED BED GASIFIER ................................................................. 1-9

**FIGURE 2.1:** DOWNDRAFT GASIFIER CONFIGURATION ................................................................................. 2-1

**FIGURE 2.2:** CALIBRATION OF N-TYPE THERMOCOUPLE USED IN EXPERIMENTS ......................... 2-5

**FIGURE 2.3:** VOLUME FLOW RATE OF AIR OUT OF VACUUM CLEANER VS THE SETTING OF THE VARIAC VARIABLE TRANSFORMER ATTACHED TO THE VACUUM CLEANER POWER SUPPLY ................................................................. 2-6

**FIGURE 2.4:** AIR SPEED AT VACUUM CLEANER INLET VS. THE VOLUME FLOW RATE OUTPUT OF THE VACUUM CLEANER ................................................................................. 2-7

**FIGURE 2.5:** AIR FLOW RATE PRODUCED BY VACUUM CLEANER AT DIFFERENT VARIAC SETTINGS WHEN OPERATING AGAINST ATMOSPHERIC PRESSURE AND WHEN CONNECTED TO AN OPERATING GASIFIER ................................................................................. 2-8

**FIGURE 2.6:** PRESSURE DROP ACROSS THE VENTURI CONSTRICTION PLOTTED AS A FUNCTION OF VOLUME FLOW RATE AND TEMPERATURE ................................................................................. 2-11

**FIGURE 2.7:** PRESSURE GRADIENT AS A FUNCTION OF SUPERFICIAL GAS VELOCITY FOR GASIFIER BEDS OF WOOD CHIPS AND WALNUT SHELLS ................................................................................. 2-12

**FIGURE 2.8:** LOG OF THE NORMALISED CONCENTRATION OF H₂ REMAINING IN SAMPLE VS TIME ......................................................................................................................... 2-14

**TABLE 3.1:** NET RATE OF PRODUCTION OF THE DIFFERENT GASEOUS SPECIES BY CHEMICAL REACTIONS IN TERMS OF THE RATES OF REACTIONS 1 - 4 ................................................................................. 3-4

**TABLE 3.2:** INITIAL VALUES USED IN SIMULATIONS TO TEST THE MODEL SENSITIVITY 3-8
FIGURE 3.2: THE EFFECTS OF CHANGING THE INITIAL PRESSURE ON (A) THE GASIFIER TEMPERATURE PROFILE, (B) THE DRY GAS HHV AND (C) THE MOLAR FLUX OF DRY GAS PREDICTED .......................................................... 3-10

FIGURE 3.3: THE EFFECTS OF VARYING SUPERFICIAL GAS VELOCITY ON (A) THE GASIFIER TEMPERATURE PROFILE AND (B) THE DRY GAS HHV PREDICTED .................................................. 3-12

FIGURE 3.4: THE EFFECTS OF VARYING THE $C_{RF}$ ON (A) THE TEMPERATURE PROFILE OF THE REDUCTION ZONE AND (B) THE DRY GAS HHV PREDICTED. ........................................ 3-13

FIGURE 3.5: THE EFFECTS OF VARYING INITIAL CO$_2$ CONCENTRATION ON (A) THE TEMPERATURE PROFILE OF THE REDUCTION ZONE AND (B) THE DRY GAS HHV PREDICTED .................................................. 3-14

FIGURE 3.6: THE EFFECTS OF VARYING THE INITIAL CONCENTRATION OF CO ON (A) THE TEMPERATURE PROFILE OF THE REDUCTION ZONE AND (B) THE DRY GAS HHV PREDICTED .................................................. 3-15

FIGURE 3.7: THE EFFECTS OF VARYING INITIAL CH$_4$ CONCENTRATION ON (A) THE TEMPERATURE PROFILE IN THE REDUCTION ZONE AND (B) THE DRY GAS HHV PREDICTIONS. .................................................. 3-16

FIGURE 3.8: THE EFFECTS OF VARYING INITIAL H$_2$ CONCENTRATION ON (A) THE TEMPERATURE PROFILE OF THE REDUCTION ZONE AND (B) THE DRY GAS HHV PREDICTIONS .................................................. 3-17

FIGURE 3.9: THE EFFECTS OF VARYING THE INITIAL H$_2$O CONCENTRATION ON (A) THE TEMPERATURE PROFILE OF THE REDUCTION ZONE, AND (B) THE DRY GAS HHV PREDICTIONS. .................................................. 3-18

TABLE 3.3: COMPOSITION OF PINUS RADIATA WOOD .................................................. 3-20

TABLE 3.4: CALCULATED COMPOSITION OF THE VOLATILE COMPONENT OF PINUS RADIATA WOOD .................................................. 3-20

FIGURE 3.10: GASIFIER TEMPERATURE PROFILES PREDICTED BY THE MODEL USING DIFFERENT $C_{RF}$ VALUES. .................................................. 3-21

FIGURE 3.11: N$_2$ CONCENTRATIONS IN DRY GAS PREDICTED BY MODEL USING DIFFERENT $F_p$ VALUES .................................................. 3-23

TABLE 3.5: PARAMETERS USED IN EXPERIMENTAL DOWNDRAFT GASIFICATION AND IN THE MODEL SIMULATION .................................................. 3-24


TABLE 3.6: NET RATE OF PRODUCTION OF THE DIFFERENT GASEOUS SPECIES BY CHEMICAL REACTIONS IN TERMS OF THE RATES OF REACTIONS 1 TO 5.......................................................................................................................... 3-27


FIGURE 3.15: DRY EXIT GAS COMPOSITION PREDICTED BY MODEL INCLUDING METHANE COMBUSTION REACTION AND ASSUMING PYROLYSIS GAS CONSISTS OF CO₂, CH₄ AND H₂O, COMPARED WITH EXPERIMENTAL RESULTS FROM CHEE (1987) AND SENELWA (1997).......................................................................................................................... 3-29

FIGURE 4.1: EXIT GAS TEMPERATURE PLOTTED AGAINST TIME FOR GASIFIER OPERATED USING PINE CHIPS AS FUEL AND A BED LENGTH OF 10 ± 1 CM .................................................................................................................................................. 4-1

FIGURE 4.2: COMPOSITION (BY VOLUME FRACTION) OF DRY EXIT GAS SAMPLES TAKEN AT VARIOUS TIME INTERVALS THROUGHOUT THE GASIFIER RUN .................................................................................................................................. 4-2

TABLE 4.1: VALUES OF PARAMETERS A, B, C, AND D DERIVED FROM EXPERIMENTAL MEASUREMENTS OF STEADY-STATE DOWNDRAFT GASIFIER PRODUCT GAS.......................................................................................................................... 4-4

FIGURE 4.3: EXIT GAS TEMPERATURE VS TIME FOR GASIFIER BED LENGTHS (A) 10CM, (B) 13CM AND (C) 24CM ......................................................................................................................................................... 4-6

FIGURE 4.4: "STEADY-STATE" EXIT GAS TEMPERATURE OF GASIFIER VS BED LENGTH ............................................................................................................................................................... 4-7

FIGURE 4.5: O₂ CONCENTRATION FOR GASIFIER RUNNING ON PINE CHIPS AT NEAR ATMOSPHERIC PRESSURE (SIME, 1998) ...................................................................................................................................................... 4-8

FIGURE 4.6: COMPOSITION OF DRY EXIT GAS VS TIME FOR BED LENGTHS (A) 0.10 ±0.01M, (B) 0.13 ±0.01M AND (C) 0.24 ±0.01M ......................................................................................................................................................... 4-9

FIGURE 4.7: AVERAGE COMPOSITION OF THE DRY EXIT GAS DURING "STEADY-STATE" OPERATION VS GASIFIER BED LENGTH ...................................................................................................................................... 4-10

TABLE 4.2: VALUES OF PARAMETERS A, B, C, AND D DERIVED FROM EXPERIMENTAL MEASUREMENTS OF STEADY-STATE DOWNDRAFT GASIFIER PRODUCT GAS FOR DIFFERENT GASIFIER BED LENGTHS .................................................................................................................................. 4-11
FIGURE 4.8: GAS EXIT TEMPERATURE VS TIME FOR GASIFIER USING PINE CHIPS AS FUEL. ................................................................. 4-13

TABLE 4.3: TIME INTERVALS FOR WHICH THE GASIFIER OPERATION WAS APPROXIMATELY STEADY-STATE. ....................................................... 4-14

FIGURE 4.9: EXIT GAS TEMPERATURE DURING STEADY-STATE OPERATION VS THE MOLAR FLOW RATE OF AIR INTO THE INLET. ................................................................. 4-14

FIGURE 4.10: MEASURED GAS CONCENTRATIONS (EXPRESSED AS VOLUME PERCENTAGES) VS TIME FOR GASIFIER USING PINE CHIPS AS FUEL. ......................... 4-15

FIGURE 4.11: STEADY-STATE COMPOSITION OF DRY EXIT GAS VS THE FLOW RATE OF AIR INTO THE GASIFIER. ................................................................. 4-17

TABLE 4.4: VALUES OF PARAMETERS A, B, C, AND D DERIVED FROM EXPERIMENTAL MEASUREMENTS OF STEADY-STATE DOWNDRAFT GASIFIER PRODUCT GAS FOR VARIOUS AIR FLOW RATES. ................................................................. 4-18

TABLE 4.5: ENERGY BALANCE FOR GASIFICATION OF A MOLE PINE CHIPS WITH DIFFERENT AIR INFLOW RATES. ................................................................. 4-19

FIGURE 4.12: ENERGY BALANCES FOR GASIFICATION OF PINE CHIPS AT AIR FLOW RATES OF (A) 0.22 ± 0.03 MOL/S, (B) 0.32 ± 0.06 MOL/S AND (C) 0.6 ± 0.1 MOL/S. .................. 4-20

TABLE 4.6: RATE OF EXIT GAS CHEMICAL ENERGY PRODUCTION FOR DIFFERENT AIR FLOW RATES. ................................................................. 4-22

FIGURE 4.13: TEMPERATURE OF EXIT GAS VS TIME FOR GASIFIER OPERATING ON WALNUT SHELLS. ................................................................. 4-23

FIGURE 4.14: COMPOSITION OF DRY EXIT GAS. GASIFIER OPERATING WITH WALNUT SHELLS FOR FUEL, BED LENGTH = 10 ± 1 CM. ................................................................. 4-24

FIGURE 4.15: COMPOSITION OF STEADY-STATE DRY EXIT GAS FOR GASIFIER RUN ON PINE CHIPS AND WALNUT SHELLS. ................................................................. 4-25

TABLE 4.7: COMPOSITION OF WALNUT SHELLS. ................................................................. 4-25

TABLE 4.8: VALUES OF PARAMETERS A, B, C, AND D DERIVED FROM EXPERIMENTAL MEASUREMENTS OF STEADY-STATE DRY EXIT GAS COMPOSITION FOR DOWNDRAFT GASIFIER OPERATED USING WALNUT SHELLS AS FUEL. ................................................................. 4-26

FIGURE 5.1: THE DRY EXIT GAS COMPOSITION FOUND FOR A GASIFIER RUN USING AN AIR FLOW RATE OF 0.22 ± 0.03 MOL·S⁻¹ AND BED LENGTH OF 0.10 ± 0.01 M COMPARED TO THE MODEL PREDICTION. ................................................................. 5-2
TABLE 5.1: SUPERFICIAL GAS VELOCITIES CORRESPONDING TO THE DIFFERENT AIR FLOW RATES

FIGURE 5.2: EXPERIMENTAL RESULTS AND MODEL PREDICTIONS OF THE EXIT GAS TEMPERATURE VS INITIAL GAS VELOCITY

FIGURE 5.3: MODEL PREDICTIONS AND EXPERIMENTAL MEASUREMENTS OF THE MOLAR FRACTION OF (A) N₂, (B) CO₂, (C) CO, (D) CH₄ AND (E) H₂ IN THE DRY EXIT GAS AS THE INITIAL SUPERFICIAL GAS VELOCITY IS VARIED

FIGURE 5.4: EXPERIMENTAL MEASUREMENT AND MODEL PREDICTION OF THE STEADY-STATE EXIT GAS TEMPERATURE VS GASIFIER BED LENGTH

FIGURE 5.5: MODEL PREDICTIONS AND EXPERIMENTAL MEASUREMENTS OF THE MOLAR FRACTION OF (A) N₂, (B) CO₂, (C) CO, (D) CH₄ AND (E) H₂ IN THE DRY EXIT GAS AS THE BED LENGTH WAS VARIED

FIGURE 5.6: EXPERIMENTAL RESULTS AND MODEL PREDICTIONS OF THE STEADY-STATE EXIT GAS TEMPERATURE VS INITIAL GAS VELOCITY

FIGURE 5.7: MODEL PREDICTIONS AND EXPERIMENTAL MEASUREMENTS OF THE MOLAR FRACTION OF (A) N₂, (B) CO₂, (C) CO, (D) CH₄ AND (E) H₂ IN THE DRY EXIT GAS AS THE INITIAL SUPERFICIAL GAS VELOCITY IS VARIED

FIGURE 5.8: EXPERIMENTAL MEASUREMENT AND MODEL PREDICTION OF THE STEADY-STATE EXIT GAS TEMPERATURE VS GASIFIER BED LENGTH

FIGURE 5.9: MODEL PREDICTIONS AND EXPERIMENTAL MEASUREMENTS OF THE MOLAR FRACTION OF (A) N₂, (B) CO₂, (C) CO, (D) CH₄ AND (E) H₂ IN THE DRY EXIT GAS AS THE BED LENGTH WAS VARIED

TABLE 7.1: CORRECTION TERMS TO THE IDEAL GAS EQUATION FOR GASES WITH T = 900 K, Vₐ = 7.38 X 10^{-2} m³/mol, P = 101,300 Pa

TABLE 7.2: CORRECTION TERMS TO THE IDEAL GAS EQUATION FOR GASES IN GASIFIER WITH T = 900 K, Vₐ = 7.38 X 10^{-3} m³/mol, P = 1,013,000 Pa

FIGURE 8.1: THE LOG OF THE EQUILIBRIUM CONSTANTS FOR REACTIONS 1-5 PLOTTED AGAINST THE RECIPROCAL OF THE TEMPERATURE

TABLE 8.1: FORMULAE USED TO CALCULATE EQUILIBRIUM CONSTANTS OF REACTIONS AT DIFFERENT TEMPERATURES