Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
A QUANTITATIVE MODEL FOR THE DESIGN OF
A PROCESSED INFANT FOOD
PRODUCT FOR THAILAND

A thesis presented in partial fulfilment
of the requirements for the degree of Ph.D.
in Product Development at Massey University

Patchree Chittaporn
1977
A quantitative model was developed to design a processed infant food product for Thailand. Linear programming was used as a basis for the model. The model can select not only the raw materials but also the process, taking into consideration the nutritional requirements of infants and the product acceptability. Furthermore, any changes in the raw materials, process and product quality can be easily studied with the model.

The model was developed in three consecutive steps. Firstly, the Thai infant's nutritional requirements, and the compositions and costs of suitable indigenous Thai raw materials were included in the linear programming model. Secondly, the effect of heat processing on the destruction of the required nutrients was considered for different processes and the nutritional constraints in the model were modified to allow for the losses during processing. A mixture of raw materials was chosen by the model for each process and the most suitable combination of process and raw materials was selected. Finally, eating qualities were included in the model which enabled the model to select the raw materials not only subject to the modified nutritional constraints but also to the required eating quality.

To include the losses of nutrients during heat processing, data on the destruction of nutrients by heat
processing were collected from the literature to predict the reaction rate constants at different temperatures. First order reaction kinetics were assumed. The Arrhenius relationship between the reaction rate constant and the reciprocal of the absolute temperature was found to be generally true for the destruction of all vitamins and essential amino acids. The losses of vitamins and amino acids during a process were thus calculated from the Arrhenius relationship using the time and temperature history of the process.

By including these losses of nutrients into the nutritional constraints in the model, their effects on the nutritional composition and cost of the formulation were compared for different processes and a choice was made of the most suitable process. Several cooking and dehydration processes which could be used for infant food processing in Thailand were compared and batch cooking followed by drum drying was found to be best.

Consumer evaluation of the drum dried product suggested a need for improvement in the taste and colour of the product. Constraints restricting the selection of sugar and of raw materials with strong colours were included in the model, and a more acceptable product was obtained.

This model can be used not only to formulate an acceptable mixture of raw materials for any process but also to compare different processes for the production of an acceptable and cheap infant food.
ACKNOWLEDGEMENTS

This research, forming a cooperative research programme between Food Technology Department, Massey University and Chemical Technology Department, Chulalongkorn University, was sponsored by the New Zealand Colombo Plan Scholarship. The sponsorship would have not been possible to obtain without the initial support by Dr. Mary D. Earle and the Food Technology Department.

The success of this research was due to the experience and confidence of my supervisor, Dr. Mary D. Earle, whom I shall always be grateful and in particular for her untiring interest, patience and encouragement.

I also wish to express my appreciation to various people, who assisted this research in many ways. In particular I would like to thank:

Professor R.L. Earle and Dr. G.M. Wallace for their valuable discussion, willing assistance and encouragement.

Professor A. Valyasevi, Dr. S. Dhanamitta, Professor M. Robinson, Dr. M. Swindle and Dr. M. Hardy for advice and comment on infant nutritional requirements.

Dr. W. Edwardson and Dr. A. Anderson for their valuable criticism and encouragement.

Professor R. Richards for providing the facilities.

Esso Refinery Company, Thailand for the use of the IBM computer.

Also to Tipwanna and Kanjana for their assistance in
carrying out the consumer survey, the Thai students in Palmerston North who participated in the consumer panel; and in particular to Sripanya, Saowaluk, Kalaya, Pantipa and Pimpan for their time and effort in proof reading.

Finally, I would like to thank my typists, Mrs. Chris Holdaway for her efficiency, skill and patience and also to Mrs. Heather Devere and Nongluk for taking part in some of the typing.

Patchree Chittaporn
July, 1977
CONTENTS

TABLES

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLES</td>
</tr>
</tbody>
</table>

FIGURES

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIGURES</td>
</tr>
</tbody>
</table>

1. THE NEED FOR AN INFANT FOOD IN THAILAND

1.1 Relevant information on Thailand
1.2 Nutritional status of infant in Thailand
1.3 Reviews on infant feeding practices in Thailand
1.4 Investigation on feeding patterns
1.5 The types of infant food available in Thailand
1.6 The need for nutritional infant food

2. DETERMINATION OF QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF INFANT FOOD

2.1 Infant nutritional requirement
2.2 Qualitative characteristics of the infant food
2.3 Conclusion

3. SETTING UP THE LINEAR PROGRAMMING MODEL FOR AN INFANT FOOD

3.1 The general linear programming model
3.2 The Thai food raw materials
3.3 Linear programming model for infant food
3.4 Setting up the data for solving the problem by computer
3.5 Obtaining solution by computer
3.6 Conclusion

4. THE DESTRUCTION OF NUTRIENTS WITH HEAT PROCESSING

4.1 Nutrient losses in food processing
4.2 The order of the reactions involved in the destruction of nutrients
4.3 Reaction rate kinetics for nutrient destruction
4.4 Review on stability of nutrients during heat processing
7.2 Evaluation of the product 246
7.3 Modification of the model according to the required qualitative characteristics 248
7.4 Evaluation of the modified product 256
7.5 Processing of the designed infant food using synthetic raw materials 260
7.6 Conclusion 263

8. A POSSIBLE SCHEME FOR DESIGNING AN INFANT FOOD FOR THAILAND
8.1 The scheme 265
8.2 The present achievement 267
8.3 Future work regarding the product 268
8.4 Future work regarding the model 270
8.5 Conclusion 271

BIBLIOGRAPHY 273

APPENDICES
1. Percentage distribution of monthly household expenditure for foods, goods and services by region in rural and urban area 302
2. Breast feeding for infant (0-1 year) 303
3. Consumer survey form 304
4. Market survey form 307
5. The Thai Notification on the quality of infant food 308
6. Codex Alimentarius draft standard for infant formula 313
7. The average weight of male and female infants by age group 322
8. Summary of linear programming models in nutrition problems 323
9. Recorded and estimated yearly production of raw materials 326
10. List of references for the food compositions 327
11. Raw material composition tables 331
<table>
<thead>
<tr>
<th></th>
<th>Abbreviated names used for rows and columns</th>
<th>338</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.</td>
<td>The temperatures and times collected for different methods of drying</td>
<td>339</td>
</tr>
<tr>
<td>14.</td>
<td>Product temperatures during vacuum drying of tomato juice</td>
<td>343</td>
</tr>
<tr>
<td>15.</td>
<td>Taste panel form</td>
<td>344</td>
</tr>
<tr>
<td>16.</td>
<td>Scoring for the mothers' opinions</td>
<td>345</td>
</tr>
</tbody>
</table>
TABLES

1.1 Area and population by region .. 2
1.2 Income per capita by region .. 2
1.3 The mortality rate of children 1-4 years of age in selected countries compared to Thailand 4
1.4 Cases admitted and deaths of infants by malnutrition (number and percentage) 5
1.5 Percent of PGM in preschool children in various categories by age in months in 4 districts 6
1.6 Type of food fed to infant (0-1 year) ... 9
1.7 The distribution of the number of households in Thailand and the number of mothers interviewed in each region .. 10
1.8 Milk feeding pattern .. 11
1.9 Duration of breast feeding .. 12
1.10 Percentage distribution of different types of solid food introduced to infants in 4 regions ... 13
1.11 Age of infant when different solid foods are introduced in various regions 14
1.12 Dairy products available in the market .. 17
1.13 Types of infant food other than dairy products available in the market 18
2.1 The nutrients specified in the design of infant food 25
2.2 Energy requirement for infants .. 28
2.3 Recommended daily energy intake for Thai infant 29
2.4 Safe level of protein intake for different age groups of infants 30
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>Comparison of amino acids in egg, human milk and FAO pattern</td>
<td>34</td>
</tr>
<tr>
<td>2.6</td>
<td>Estimated requirements and advisable intakes of major minerals at the age of 4 to 12 months</td>
<td>45</td>
</tr>
<tr>
<td>2.7</td>
<td>Renal solutes load of proposed specification</td>
<td>48</td>
</tr>
<tr>
<td>2.8</td>
<td>Specification set for infant food</td>
<td>58</td>
</tr>
<tr>
<td>2.9</td>
<td>Number and percentage of different types of fruits given to infants in 4 regions</td>
<td>61</td>
</tr>
<tr>
<td>2.10</td>
<td>Number and percentage of mothers preferring different forms of infant food</td>
<td>63</td>
</tr>
<tr>
<td>2.11</td>
<td>Number and percentage of mothers preferring different flavours</td>
<td>63</td>
</tr>
<tr>
<td>2.12</td>
<td>Number and percentage of mothers preferring different colours</td>
<td>64</td>
</tr>
<tr>
<td>2.13</td>
<td>Number and percentage of mothers preferring different consistencies</td>
<td>64</td>
</tr>
<tr>
<td>2.14</td>
<td>Number and percentage of mothers with different methods of preparing food for infants</td>
<td>65</td>
</tr>
<tr>
<td>2.15</td>
<td>Number and percentage distribution of mothers' occupation</td>
<td>66</td>
</tr>
<tr>
<td>2.16</td>
<td>Number and percentage of mothers with different opinions in preparing infant food</td>
<td>67</td>
</tr>
<tr>
<td>2.17</td>
<td>Number and percentage of facilities</td>
<td>68</td>
</tr>
<tr>
<td>2.18</td>
<td>Number and percentage of mothers with different market channels for milk-based infant food distribution</td>
<td>70</td>
</tr>
<tr>
<td>2.19</td>
<td>The distribution of mothers incomes by different regions, comparing to the national distribution</td>
<td>71</td>
</tr>
<tr>
<td>2.20</td>
<td>Number and percentage of mothers with different acceptable prices for daily feeding by income categories</td>
<td>72</td>
</tr>
<tr>
<td>2.21</td>
<td>Number and percentage of mothers with different acceptable prices for daily feeding</td>
<td>73</td>
</tr>
</tbody>
</table>
3.1 Food raw materials and their costs, baht per 100 g edible portion, used in the linear programming model

3.2 Direct nutritional constraints

3.3 Nutritional constraint requiring linear expression of interrelationship between nutrients

3.4 Nutritional constraints at bounds found with initial problem file

3.5 Nutritional and raw material compositions and cost of feasible solutions

4.1 Reaction rate constants for histidine

4.2 Reaction rate constants for isoleucine

4.3 Reaction rate constants for leucine

4.4 Reaction rate constants for lysine

4.5 Reaction rate constants for methionine

4.6 Reaction rate constants for cystine

4.7 Reaction rate constants for phenylalanine

4.8 Reaction rate constants for tyrosine

4.9 Reaction rate constants for threonine

4.10 Reaction rate constants for tryptophan

4.11 Reaction rate constants for valine

4.12 Reaction rate constants for carotene

4.13 Reaction rate constants for vitamin B

4.14 Reaction rate constants for ascorbic acid

4.15 Reaction rate constants for thiamine

4.16 Reaction rate constants for riboflavin

4.17 Reaction rate constants for niacin

4.18 Reaction rate constants for vitamin B6

4.19 Reaction rate constants for vitamin B12

4.20 Reaction rate constants for pantothenic acid

4.21 Reaction rate constants for folic acid
4.22 The estimated activation energy for amino acids and vitamins 165
4.23 The reaction rate constants predicted at temperatures of 90°C to 130°C for amino acids and vitamins 166
5.1 The reaction rate constant for destruction of trypsin inhibitor 183
5.2 Gelatinization ranges of temperature for various starches 186
5.3 Temperature and time distribution during heating and cooling for selected batch and continuous processes 190
5.4 Product temperatures and drying times selected for vacuum, foam mat and drum drying 198
5.5 The predicted nutrient losses during predrying process at 98°C and 121°C, batch and continuous process 203
5.6 The predicted nutrient losses during different methods of drying 209
5.7 The predicted nutrient losses during different methods of drying with batch predrying at 98°C 212
6.1 The modified constraints of amino acids and vitamins for the predrying process 218
6.2 Nutritional and raw material compositions for batch and continuous process at 98°C and 121°C 220
6.3 Nutritional and raw material compositions for batch and continuous process at 98°C and 121°C with calcium carbonate added 224
6.4 The cost of the solutions and the modifications for predrying process, with and without calcium carbonate 226
6.5 The modified constraints of amino acids and vitamins for different drying methods 229
6.6 Nutritional and raw material compositions of the solutions for different methods of drying 231
6.7 The restricted constraints of the solutions for different drying methods, with and without calcium carbonate 235

6.8 Summary on the cost, modification of the constraints and the percentage losses of restricted nutrients for different drying methods 236

6.9 Nutritional and raw material compositions of the solutions for different methods of processing with added calcium carbonate 238

7.1 The classification of raw materials according to different colours and different scores 250

7.2 Determination of the different colour intensities in the initial formula 251

7.3 Nutritional and raw material compositions and costs of the solutions with colour and taste constraints compared to the original solution 256

7.4 The consumer panel scores for the original and modified products 258

7.5 The consumer panel scores for the modified indigenous product and calcium carbonate added product 262
FIGURES

3.1 The Linear programming matrix for the design of infant food

4.1 Relationship of reaction rate and temperature for isoleucine, cystine, threonine and histidine

4.2 Relationship of reaction rate and temperature for leucine, lysine, methionine and tyrosine

4.3 Relationship of reaction rate and temperature for phenylalanine, tryptophan and valine

4.4 Relationship of reaction rate and temperature for thiamine, niacin, folic acid and vitamin B12

4.5 Relationship of reaction rate and temperature for vitamin A, vitamin E, ascorbic acid, riboflavin, vitamin P6 and pantothenic acid

5.1 Relationship of reaction rate and temperature for destruction of trypsin inhibitor

5.2 Relationship of reaction rate and temperature for trypsin inhibitor, thiamine, folic acid and vitamin E

5.3 Comparison of the destruction of trypsin inhibitor, vitamins and bacteria

8.1 The scheme for the design of infant food