Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
THE BEHAVIOUR AND ECOLOGY
OF SHORT-BEAKED COMMON DOLPHINS
(Delphinus delphis) ALONG THE EAST COAST
OF COROMANDEL PENINSULA,
NORTH ISLAND, NEW ZEALAND

- with a note on their interactions with humans

A dissertation presented in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
in Marine Science
at Massey University

by
Dirk R. Neumann
November 2001
This dissertation is my own composition.
All sources have been acknowledged.
No part of this work has been submitted
for another degree at Massey, or any other University.

Dirk R. Neumann

November 2001
ACKNOWLEDGEMENTS

Firstly, my deepest thanks to my chief supervisor, Senior Lecturer Dr. Mark Orams (Massey University), for his help, expertise, patience, and encouragement throughout my Ph.D. candidacy. The way in which he and his family made me feel at home in New Zealand went far above and beyond what I could have wished for. My heartfelt thanks therefore also extend to Renée, Daniel, and Brianna Orams. Thank you to my second supervisor, Dr. Liz Slooten (University of Otago) for her advice on the research project, and this thesis. Several people at Massey University deserve my thanks, especially Associate Professor John Monin, Mary Miller, Lynne Tunna, and Dr. Denny Meyer.

I am indebted to my volunteer research assistants who were (in chronological order): Trine Baier Jepsen, Colleen Clancy, Paul Grant, Sandra Winterbacher, Jo Moore, Jodie Holloway, Birgit Klumpp, Christiane Knappmeyer, Tina Jacoby, Nikki Guttridge, Lindsey Turner, Karen Stockin, Chris Smith Vangsgaard, Aline Schaffar, Daphne Bühler, Patrice Irvine, Stefanie Werner, Fabiana Mourao, Deanna Hill, Miriam Brandt, and Johanna Hiscock.
I am grateful to Scott Baker (University of Auckland), Rochelle Constantine (University of Auckland), Kirsty Russell (University of Auckland), Mike Donoghue (Department of Conservation), Michael Uddstrom (National Institute for Water and Atmospheric Research), Ingrid Visser, Alexandra Leitenberger, Susana Caballero, Deborah Kyngdon, Sue Halliwell, Adrienne Joyce, and Vicky Powell for their help and input. A special thanks to Brett Orams for creating the fabulous diagrams illustrating dolphin behaviour. The Massey University Animal Ethics Committee was kind enough to grant permission for the genetic sampling conducted as part of this research.

Vital support for this project came from dolphin-tour operators Rod & Elizabeth Rae (Mercury Bay Seafaris, Whitianga), John Wharehoka & Karen Waite (Dolphins down under, Whakatane), Graeme Butler (Gemini Galaxseas, Tauranga), and the late Stephen Stembridge (Dolphin Explorer, Auckland).

This 3-yr research project was funded by: Massey University (MU) Doctoral Scholarship, MU College of Business research grant, MU Research Equipment Fund, MU research fund, Graduate Research
Fund (MU Department of Management and International Business), WADAP (Whale and Dolphin Adoption Project), and the Department of Conservation Science Investigation Programme. Additional financial support was provided by Konrad Kohlhammer. The support of my friends and family in Germany has also been invaluable and is greatly appreciated. I thank all of you for keeping your fingers crossed, and believing in me. Finally, let us not forget, that none of this would have been possible without the cooperation of the common dolphins, who were kind enough to allow me a glimpse into their daily lives. Thank you!
PUBLICATIONS

The following have been produced during the Ph.D. candidature, as a result of the research presented in this dissertation:

Publications in peer-reviewed journals


vi


Other publications


Presentations at professional meetings


Public presentations and media appearances

10.3.2000. Public seminar, Mercury Bay area school, Whitianga, hosted by Forest and Bird Society. 60-min presentation on the biology of common dolphins.

14.3.2000 - TV3 News (6 p.m.) - “Love hurts”, 3-min interview with Darren McDonald on the dangers dolphins face today.
14.3.2001 - Seaweed seminar, Auckland Museum, hosted by the Whale and Dolphin Adoption Project. 30-min presentation on common dolphins and swim-with-dolphin tourism. Hon. Sandra Lee, Minister of Conservation in attendance.


21.4.2001 - Public seminar, Whakatane, hosted by Dept. of Conservation. 60-min presentation on common dolphins and swim-with-dolphin tourism.

4.7.2001 - Auckland Science Fair, Massey University, Albany. Two 45-min presentations on the biology of common dolphins and the logistics of field research.
This thesis provides new insights into the behavioural ecology of free-ranging short-beaked common dolphins (*Delphinus delphis*), in New Zealand. A preliminary assessment of common dolphin-human interactions was also carried out as part of this 3-yr field study (1998-2001). 166 surveys were conducted in the greater Mercury Bay area, on the east coast of Coromandel Peninsula, North Island, New Zealand. These led to 105 focal group follows, with a total of 118.2 h spent following common dolphins. Seasonal movements of common dolphins were uncovered, and are apparently tied to fluctuations in sea surface temperature.

Common dolphins appear to live in a fission-fusion society. Groups frequently merged and split again. The merging of groups was often accompanied by either sexual, or feeding activity. 408 individual dolphins were identified from photographs of their dorsal fins. No evidence of long-term associations between individuals was found. Resightings of identifiable dolphins indicate movement of individuals between Mercury Bay and the Hauraki Gulf, as well as between Mercury Bay and Whakatane.
This study provides the first activity budget for common dolphins in the wild. Common dolphins spent 55.6% of their time traveling, 20.4% milling, 16.2% feeding, 7.1% socialising, and 0.7% resting. This proportion did not change significantly by season, or from year to year. Common dolphins were found to feed on at least six different fish species. A number of different feeding strategies were employed to capture these fish. Some of these techniques had previously been observed in bottlenose dolphins and orca, but have never before been described for common dolphins.

The results of this study suggest that common dolphins can potentially be negatively affected by interactions with humans. Boat traffic appears to disturb some dolphin groups, especially those containing few individuals. However, commercial tourism appeared to have little impact on the dolphins, at this study site. Few attempts at swimming with common dolphins resulted in a sustained interaction, but unsuccessful attempts did not elicit an obvious negative response. Fishing poses the greatest threat of physical injury and possible mortality to common dolphins. Several key issues were identified, and their value in managing human-dolphin interactions is discussed.
CONTENTS

Acknowledgements iii
Publications vi
Abstract xi
Contents xiii
List of Figures xvi
List of Tables xviii
List of Plates xix
Chapter 1: Introduction 1
Chapter 2: Common dolphins - a review of current knowledge 9
   Chapter 2.1 Introduction 9
   Chapter 2.2 Common dolphin ecology 10
   Chapter 2.3 Common dolphin behaviour 16
   Chapter 2.4 Common dolphins and their interactions with humans 21
   Chapter 2.5 Summary and hypotheses 33
Chapter 3: Methods 41
   Chapter 3.1 Introduction 41
   Chapter 3.2 Pilot work 42
   Chapter 3.3 Observation platform 43
<table>
<thead>
<tr>
<th>Chapter 5.4 Summary</th>
<th>222</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 6: Common dolphins and their interactions</td>
<td></td>
</tr>
<tr>
<td>with humans</td>
<td>224</td>
</tr>
<tr>
<td>Chapter 6.1 Introduction</td>
<td>224</td>
</tr>
<tr>
<td>Chapter 6.2 Results</td>
<td>225</td>
</tr>
<tr>
<td>Chapter 6.3 Discussion</td>
<td>254</td>
</tr>
<tr>
<td>Chapter 6.4 Summary</td>
<td>274</td>
</tr>
<tr>
<td>Chapter 7: Conclusions</td>
<td>276</td>
</tr>
<tr>
<td>Chapter 7.1 Summary</td>
<td>276</td>
</tr>
<tr>
<td>Chapter 7.2 Future research</td>
<td>283</td>
</tr>
<tr>
<td>Chapter 7.3 Management recommendations</td>
<td>294</td>
</tr>
<tr>
<td>Personal communications</td>
<td>297</td>
</tr>
<tr>
<td>References</td>
<td>299</td>
</tr>
<tr>
<td>Appendix 1</td>
<td></td>
</tr>
<tr>
<td>Appendix 2</td>
<td></td>
</tr>
<tr>
<td>Appendix 3</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1. Map of northeastern New Zealand 48
Figure 2. Map of the Mercury Bay study area 52
Figure 3. Average group size over months 90
Figure 4. Average number of calves over months 92
Figure 5. Average number of newborns over months 93
Figure 6. Sighting success over months 94
Figure 7. Sighting success over the time of day 96
Figure 8. Sighting success and the timing of low tide 97
Figure 9. Locations of dolphin sightings 99
Figure 10. Mean distance from shore for dolphin sightings 100
Figure 11. Satellite image illustrating sea surface temperature 102
Figure 12. Distance from shore in La Niña years 104
Figure 13. Distance from shore and variations in SST 105
Figure 14. The rate of identifying new dolphin individuals 107
Figure 15. Cumulative number of identifications over time 108
Figure 16. Fission and fusion of groups 110
Figure 17. Intervals between resightings of individuals 113
Figure 18. Activity budget of common dolphins 157
Figure 19. Seasonal variations in the activity budget 158
xvi
Figure 20. Activity budget and group size 163
Figure 21. Behavioural event sequences for ‘leap’ 169
Figure 22. Behavioural event sequences for ‘breach’ 170
Figure 23. Behavioural event sequences for ‘sex’ 171
Figure 24. Behavioural event sequences for ‘chuff’ 172
Figure 25. Behavioural event sequences for ‘tailslap’ 173
Figure 26. High-speed pursuit of prey 181
Figure 27. Fish-whacking 183
Figure 28. Kerplunking 187
Figure 29. Line-abreast formation 190
Figure 30. Wall formation 193
Figure 31. Carouseling 194
Figure 32. Group size and boat avoidance 229
Figure 33. Activity budgets in the presence of tour boats 231
Figure 34. Recommended style of approaching dolphins 245
Figure 35. In-path placement of swimmers 261
Figure 36. Around-boat placement of swimmers 262
LIST OF TABLES

Table 1. Reference listings for various delphinids 3
Table 2. Correlations between offshore movements and season 101
Table 3. Resightings of identifiable individuals 114
Table 4. Genetic sexing of individuals 122
Table 5. Time spent in five activity states 160
Table 6. ANOVA testing variations in activity budget 162
Table 7. Frequencies of behavioural events 165
Table 8. Behavioural event sequence matrix 168
Table 9. Species associated with common dolphins 178
Table 10. Frequencies of various feeding strategies 180
Table 11. Changes in activity in response to boat approaches 227
Table 12. Success rate of swim attempts (Whitianga) 234
Table 13. Group size vs. swim success (Whitianga) 235
Table 14. Swim attempts leading to interactions (Whitianga) 236
Table 15. Behaviour of swimmers vs. swim success (Whitianga) 237
Table 16. Success rate of swim attempts (Whakatane) 240
Table 17. Group size vs. swim success (Whakatane) 241
Table 18. Swim attempts leading to interactions (Whakatane) 242
Table 19. Behaviour of swimmers vs. swim success (Whakatane) 243
Table 20. Visitor numbers in Whitianga 285
<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate 1</td>
<td>Common dolphins</td>
<td>2</td>
</tr>
<tr>
<td>Plate 2</td>
<td>‘Seafari II’ - dolphin-tour boat</td>
<td>31</td>
</tr>
<tr>
<td>Plate 3</td>
<td>‘Aihe’ - dolphin-research vessel</td>
<td>45</td>
</tr>
<tr>
<td>Plate 4</td>
<td>Common dolphin calf featuring fetal folds</td>
<td>58</td>
</tr>
<tr>
<td>Plate 5</td>
<td>Common dolphin dorsal fins - variety in fin colouration</td>
<td>61</td>
</tr>
<tr>
<td>Plate 6</td>
<td>Dorsal fin colour pattern slightly differs from side to side</td>
<td>62</td>
</tr>
<tr>
<td>Plate 7</td>
<td>An anomalously pigmented common dolphin</td>
<td>63</td>
</tr>
<tr>
<td>Plate 8</td>
<td>V-shaped cut on a dolphin’s peduncle</td>
<td>66</td>
</tr>
<tr>
<td>Plate 9</td>
<td>Digital still images captured from video</td>
<td>67</td>
</tr>
<tr>
<td>Plate 10</td>
<td>Degrees of distinctiveness among dorsal fins</td>
<td>68</td>
</tr>
<tr>
<td>Plate 11</td>
<td>Sex</td>
<td>79</td>
</tr>
<tr>
<td>Plate 12</td>
<td>Chest-slap</td>
<td>82</td>
</tr>
<tr>
<td>Plate 13</td>
<td>Playing with seaweed</td>
<td>83</td>
</tr>
<tr>
<td>Plate 14</td>
<td>Common dolphins with and without postanal humps</td>
<td>120</td>
</tr>
<tr>
<td>Plate 15</td>
<td>DNA-bandning patterns of common dolphins</td>
<td>121</td>
</tr>
<tr>
<td>Plate 16</td>
<td>Postanal hump of a mature male common dolphin</td>
<td>125</td>
</tr>
<tr>
<td>Plate 17</td>
<td>Jack mackerel</td>
<td>175</td>
</tr>
<tr>
<td>Plate 18</td>
<td>Australasian gannet</td>
<td>176</td>
</tr>
<tr>
<td>Plate 19</td>
<td>Common dolphin entangled in fishing line</td>
<td>252</td>
</tr>
</tbody>
</table>

xix