Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Mobile Learning Ontologies:

Supporting Abductive Inquiry-Based Learning in the Sciences

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in

Information Technology

at Massey University, Albany, Auckland

New Zealand

Sohaib Ahmed

2012
To my parents for their love, endless support and encouragement!!
Abstract

The use of ontologies has become increasingly widespread in many application areas, particularly in technology-enhanced learning. They appear promising in supporting the generation and adaptive presentation of learning content for specific domains. This thesis examines how ontologies can be applied in abductive mobile science inquiry-based learning, an example of a learning activity that can allow students to learn science by doing science.

Traditionally, school science education has been dominated by deductive and inductive forms of inquiry investigations, while the abductive form of inquiry investigation has previously been sparsely explored in the literature, which emphasizes the development of scientific hypotheses from observed phenomena. Thus, this provides us with an opportunity to explore some new approaches to technology-assisted learning in the sciences.

The main purpose of this thesis is to demonstrate to science educators how an abductive mobile application may be applied in a science inquiry activity, and how ontology-based scaffolding can support technology-enhanced learning environments.

This thesis uses a Design Science Research Methodology (DSRM), supported by Activity-Oriented Design Methods (AODM) tools to create an ontology-driven application ‘ThinknLearn’ for a science inquiry domain, which has been evaluated using the M3 evaluation framework with high school science students. The results were promising and showed improvements in the students’ understanding of the learning domain as well as developing their positive attitudes towards mobile learning.
Acknowledgements

First and foremost, I thank Allah for bestowing upon me the wisdom and perseverance during this research, and indeed, throughout my life.

I am thankful to my funding organization, Higher Education Commission (HEC), Pakistan for providing me this opportunity to achieve this milestone. Thanks HEC; this would not be easy to get without your financial and overall support.

This thesis would not become a reality if I would not able to get assistance and encouragement from many people, in different ways, during my PhD journey. I would like to extend my appreciation especially to the following.

First of all, I am grateful to Associate Professor David Parsons from the core of my heart, for being my supervisor and mentor in these years. I have been fortunate to have the opportunity to learn from and work together with him. Thank you so much for introducing me to research and the research community. Indeed, it is because of you, Dave, I managed to accomplish such a difficult task with ease and I believe your constant support, patience, suggestions and constructive criticisms made it possible as a fruitful journey.

I am also under obligation to my co-supervisors including Associate Professor Hokyoung Ryu for his kind support during my first two years of PhD, and Dr. Mandia Mentis for her valuable feedback in this last year and so.

The other most important people to thank are the participants who were involved in both experiments by contributing their time and efforts. Further, I am thankful to the Principal of the school, Albany Senior High School, Auckland, New Zealand to provide such an opportunity to conduct experiments with her students. And most importantly,
I must acknowledge the work and support of Diana Hartley, in particular, and her colleagues to make these experiments happen.

There are few researchers who helped me during these years. Hendrik Thomas is the first person in that list. The others are: Assistant Professor Jelena Jovanovic, Professor Mike Sharples, and Associate Professor Demetrios Sampson, which gave their valuable advices related to my research area either connecting by emails or meeting in conferences.

Further, I am also grateful to my departmental colleagues who gave their advices in seminars and conferences whenever I presented my topic. Their criticisms helped me to explore my topic in depth again and again. I must appreciate Freda Mickisch and Annette Warbrooke for their administrative support throughout my stay in the University. I am also under obligation to thank Massey University Ethics Committee for the approval of the experiments as described in this thesis.

I would also like to express special gratitude to my friends and relatives who supported and encouraged morally throughout this period. Specifically, Adnan Ahmad and Yasir Javed, with whom I spent most of the time in the University and discussed each other’s research topics during lunch and tea breaks. I will really miss these days. Further, I must appreciate Inshaullah’s support for helping me in some statistical analyses. I am also grateful to Adnan Ahmad’s efforts for reading the complete thesis and suggesting some valuable points. Thank you very much Adnan!

The greatest acknowledgement I reserve for my family, for their support, patience, and love. My parents, thank you for giving me the best start in life I could ever have. You were, and will always be source of inspirations for me in life!! I love you Ami and Abu! My brother and sisters, you all are very special to me. Your moral support made me stronger and persistent! May Allah bless you all, ameen.
Table of Contents

List of Publications .. xvi
List of Acronyms .. xviii
List of Figures .. xx
List of Tables .. xxii

Chapter 1: Introduction .. 1
 1.1 Theme Explanation .. 1
 1.1.1 Ontologies in Education .. 1
 1.1.2 Mobile Learning Technologies ... 3
 1.1.3 Inquiry-based Learning .. 4
 1.1.4 Abductive Science Inquiry .. 6
 1.2 Research Challenges .. 7
 1.3 Approach and Methodology ... 8
 1.4 Research Scope ... 10
 1.5 Significance of Study ... 11
 1.6 Thesis Outline ... 12

Chapter 2: Background and State of the Art ... 15
 2.1 Ontologies .. 15
 2.1.1 The Term – Ontology .. 16
 2.1.2 Kinds of Ontologies ... 18
 2.1.3 Applications of Ontologies .. 21
 2.2 Using Ontologies in Education .. 23
 2.2.1 Ontologies for Content Generation in Education ... 24
 2.2.2 Previous Use of Ontologies in Generating Learning Content 25
Chapter 3: Research Methodology .. 75

3.1 A Design Science Exploration ... 75

3.1.1 Methods for Design Science Research .. 76

3.1.2 DSRM process model ... 79

3.1.2.1 Activities ... 79

3.1.2.1.1 Activity – 1: Problem identification and motivation 80

3.1.2.1.2 Activity – 2: Define the objectives for a solution 80

3.1.2.1.3 Activity – 3: Design and development 80

3.1.2.1.4 Activity – 4: Demonstration ... 81

3.1.2.1.5 Activity – 5: Evaluation .. 81

3.1.2.1.6 Activity – 6: Communication .. 81

3.1.2.2 Research entry points ... 82

3.1.2.2.1 Problem-centred initiation .. 82

3.1.2.2.2 Objective-centred solution ... 82

3.1.2.2.3 Design and development centred initiation 82

3.1.2.2.4 Client/context initiated .. 82

3.1.3 DSRM and Other Used Methods .. 82

3.2 Activity-Oriented Design Methods (AODM) 83

3.2.1 AODM Tool 1: Eight-Step Model ... 85

3.2.2 AODM Tool 2: Activity Notation ... 89

3.2.3 AODM Tool 3: Generating Research Questions 90

3.2.4 AODM Tool 4: Mapping Operational Processes 92

3.3 Evaluation Methods .. 94

3.3.1 The M3 Evaluation Framework .. 96

3.3.1.1 Micro level ... 97

3.3.1.2 Meso level ... 98

3.3.2 Data Collection Methods ... 99
3.3.2.1 Questionnaires ... 101
3.3.2.2 Interviews (Group discussions).. 102
3.3.2.3 Tests.. 104
3.4 Summary.. 105

Chapter 4: Implementation .. 107

4.1 Research Design Iterations.. 107
4.1.1 Iteration # 1: Adaptive Presentation of Learning Content 109
 4.1.1.1 Activity 1: Problem identification and motivation 109
 4.1.1.2 Activity 2: Objective of the solution .. 110
 4.1.1.3 Activity 3: Design and development .. 110
 4.1.1.3.1 Conceptual model ... 110
 4.1.1.3.2 First aid domain ontology .. 111
 4.1.1.3.3 Functional architecture .. 113
 4.1.1.3.4 Technical architecture ... 114
 4.1.1.4 Activity 4: Demonstration ... 116
 4.1.1.5 Activity 5: Evaluation ... 119
 4.1.1.6 Activity 6: Communication ... 120
4.1.2 Iteration # 2: Mobile Science Inquiry-based Learning 120
 4.1.2.1 Activity 1: Problem identification and motivation 121
 4.1.2.2 Activity 2: Objective of the solution .. 122
 4.1.2.3 Activity 3: Design and development .. 122
 4.1.2.3.1 Conceptual model ... 123
 4.1.2.3.2 A Science content domain ontology .. 124
 4.1.2.3.3 Using scaffolding design framework .. 126
 4.1.2.3.4 Functional architecture .. 127
 4.1.2.3.5 Technical architecture ... 129
4.1.2.4 Activity 4: Demonstration ... 130
4.1.2.5 Activity 5: Evaluation ... 133
4.1.2.6 Activity 6: Communication ... 134
4.1.3 Iteration # 3: Abductive Mobile Science Inquiry 134
 4.1.3.1 Activity 3: Design and development 135
 4.1.3.1.1 Conceptual model ... 136
 4.1.3.1.2 Heat energy transfer - A domain ontology 137
 4.1.3.1.3 Abduction example from the experimental context 138
 4.1.3.2 Activity 4: Demonstration ... 139
 4.1.3.3 Activity 5: Evaluation ... 144
 4.1.3.4 Activity 6: Communication .. 144
4.1.4 Iteration # 4: Learning Assessments in Abductive Mobile Science Inquiry .. 144
 4.1.4.1 Activity 4: Demonstration ... 144
 4.1.4.2 Activity 5: Evaluation ... 145
 4.1.4.3 Activity 6: Communication .. 146
4.2 Summary ... 146

Chapter 5: Experimental Results and Analyses 150
5.1 Experiment # 1: Pilot Study .. 150
 5.1.1 Experimental Design ... 150
 5.1.2 Participants .. 153
 5.1.3 Apparatus .. 154
 5.1.4 Procedure .. 155
 5.1.5 Results and Analyses ... 156
 5.1.5.1 Questionnaire responses ... 156
 a) Usability aspects .. 156
b) Mobile learning quality aspects .. 157

c) Questionnaire reliability and validity .. 159

5.1.5.2 Semi-structured group discussions ... 160

5.2 Experiment # 2: Final Experiment .. 165

5.2.1 Experimental Design ... 165

5.2.2 Participants .. 168

5.2.3 Apparatus ... 169

5.2.4 Procedure ... 170

5.2.5 Results and Analyses .. 172

5.2.5. Micro level evaluation .. 172

5.2.5.1 Questionnaire responses ... 172

a) Usability aspects .. 173

b) Mobile learning quality aspects .. 174

5.2.5.1.2 Semi-structured group discussions ... 175

5.2.5.2 Meso level evaluation ... 179

5.2.5.2.1 Learning performance ... 180

5.2.5.2.2 Hypothesis formation ... 182

5.2.5.2.3 Learning retention ... 183

5.3 Summary ... 185

Chapter 6: Discussion .. 189

6.1 Research Findings ... 189

6.1.1 Ontology-based Scaffolding in Learning Applications 189

6.1.2 Mobile Abductive Science Inquiry ... 191

6.2 Implications of the Research ... 193

6.2.1 Implications for Theory ... 193

6.2.2 Implications for Practice ... 194
Chapter 7: Conclusion and Future Work ... 196

7.1 Conclusion ... 196

7.1.1 Revisiting the Research Questions ... 197

7.2 Research Contributions ... 199

7.3 Limitations of the Research ... 200

7.4 Future Research Opportunities .. 202

7.4.1 Abductive Form of Reasoning ... 202

7.4.2 Mobile Learning .. 203

7.4.3 Ontologies .. 203

7.4.4 Extension to the ‘ThinknLearn’ .. 204

7.5 Epilogue ... 205

References .. 206

Appendix I: Low Risk Notification .. 238

Appendix II: Approval from the Principal of Albany Senior High School 239

Appendix III: Participants Consent Form .. 240

Appendix IV: Learning Experience Questionnaire 241

Appendix V: Group Discussion Questions .. 242

Appendix VI: Pre-test for Control and Experimental Groups 243

Appendix VII: Post-test for Control Group .. 244

Appendix VIII: Post-test for Experimental Group ... 245

Appendix IX: Retention-test for Control and Experimental Group 246
List of Publications

List of Acronyms

AIM Abductive Inquiry Model
AODM Activity Oriented Design Methods
API Application Programming Interface
AT Activity Theory
DL Description Logics
DSRM Design Science Research Methodology
DTD Data Type Definitions
HTTP Hypertext Transfer Protocol
IBL Inquiry-based Learning
JSP Java Server Pages
LO Learning Objects
MCQs Multiple Choice Questions
NCEA National Certificate of Educational Achievement
OWL Web Ontology Language
PBL Problem-based Learning
RDF Resource Description Framework
RDF-S Resource Description Framework Schema
TEL Technology-Enhanced Learning
W3C World Wide Web Consortium
XML Extensible Mark-up Language
List of Figures

Figure 2.1 Kinds of ontologies... 19
Figure 2.2 The abductive inquiry model (AIM) ... 69
Figure 2.3 Summary of the literature review topics ... 73

Figure 3.1 DSRM process model .. 79
Figure 3.2 Different methods used in this research ... 83
Figure 3.3 Technological layer of the activity system ... 89
Figure 3.4 Sub-activity notations and triangles .. 91
Figure 3.5 Research questions generated by using sub-activity triangles...................... 92
Figure 3.6 Mapping AODM operational processes with research design iterations...... 93
Figure 3.7 Triangulation of data collection methods... 101

Figure 4.1 Research design iterations .. 108
Figure 4.2 Conceptual model of iteration 1 .. 111
Figure 4.3 First aid domain ontology .. 112
Figure 4.4 Functional architecture of iteration 1 ... 114
Figure 4.5 Technical architecture of iteration 1 ... 115
Figure 4.6 An excerpt from a tutorial .. 117
Figure 4.7 MCQs related to alternative names of injuries and symptoms....................... 118
Figure 4.8 Conceptual model of iteration 2 .. 124
Figure 4.9 A science content domain ontology .. 125
Figure 4.10 Functional architecture of iteration 2 .. 128
Figure 4.11 A modified version of the previous technical architecture 129
Figure 4.12 Measurements and observation screen of 'ThinknLearn' 131
Figure 4.13 Question-Suggestion modules ... 132
Figure 4.14 Summary and hypothesis selection .. 133
Figure 4.15 Conceptual model of iteration 3 ... 136
Figure 4.16 Heat energy transfer domain ontology ... 137
Figure 4.17 Measurement and observation of Silver (Shiny)-surfaced tin 140
Figure 4.18 MCQ regarding one of the aspects of heat energy 141
Figure 4.19 Suggestion about the given question ... 141
Figure 4.20 Experimental summary .. 142
Figure 4.21 Hypothesis selection .. 143
Figure 4.22 Conceptual model of the final iteration ... 145
Figure 4.23 Summary of research design iterations ... 147

Figure 5.1 Apparatus used in the experiment .. 154
Figure 5.2 Participants filling questionnaires ... 155
Figure 5.3 One of the experimental group participants using 'ThinknLearn' 170
Figure 5.4 Experimental group participants involved in experimental activities 171
Figure 5.5 Pre-post tests comparison between experimental and control groups 182
Figure 5.6 Comparison between experimental and control groups in hypothesis formation ... 183
Figure 5.7 Post and retention test scores comparison between experimental and control groups ... 185
Figure 5.8 Evaluation summary of the experiments ... 186

Figure 7.1 Addressing research questions ... 197
List of Tables

Table 2.1 Summary of the ontology-based systems used in generating learning content
... 26
Table 2.2 Summary of the mobile science inquiry-based learning projects.................. 63

Table 3.1 Eight-step model ... 86
Table 3.2 Adapted Eight-step model .. 88
Table 3.3 The M3 evaluation framework.. 97

Table 5.1 Usability and quality aspects for evaluating 'ThinknLearn'........................... 152
Table 5.2 Quantitative responses of usability aspects in the pilot study 157
Table 5.3 Quantitative responses of mobile quality aspects in the pilot study 158
Table 5.4 Group discussion questions, categories and their frequencies in the pilot study data... 162
Table 5.5 Themes and their total frequencies in the pilot study data 163
Table 5.6 Evaluating 'ThinknLearn' based on the M3 evaluation framework 167
Table 5.7 Quantitative responses of usability aspects in the final experiment............. 173
Table 5.8 Quantitative responses of the mobile quality aspects in the final experiment.. 174
Table 5.9 Group discussion questions, categories and their frequencies in the final experiment data... 176
Table 5.10 Themes and their total frequencies in the final experiment data................. 178
Table 5.11 Pre and post tests means of experimental and control groups............. 181
Table 5.12 Post and retention tests means of experimental and control groups 184